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Abstract Estimation of distribution algorithms (ED As) are 
one of the most promising paradigms in today's evolutionary 
computation. In this field, there has been an incipient activity 
in the so-called parallel estimation of distribution algorithms 
(pEDAs). One of these approaches is the distributed estima­
tion of distribution algorithms (dEDAs). This paper intro­
duces a new initialization mechanism for each of the 
populations of the islands based on the Voronoi cells. To 
analyze the results, a series of different experiments using the 
benchmark suite for the special session on Real-parameter 
Optimization of the IEEE CEC 2005 conference has been 
carried out. The results obtained suggest that the Voronoi 
initialization method considerably improves the performance 
obtained from a traditional uniform initialization. 
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1 Introduction 

Currently, there is a wide range of optimization tools to deal 
with many complex problems in very different fields, such as 
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engineering, bioinformatics or scheduling. Evolutionary 
techniques are receiving more and more attention in these 
complex optimization scenarios. Their exploratory charac­
teristics play a significant role in problems with difficult 
fitness landscapes. On the other hand, the use of population-
based evolutionary algorithms (EAs) has the drawback of 
the number of evaluations required to guide the search. 

Because EAs are inherently parallel, the so-called par­
allel evolutionary algorithms (pEAs) have been studied as 
an alternative to tackle one of the aspects of this drawback 
(Alba 2002). A successful example of parallel evolutionary 
algorithms is the model called distributed evolutionary 
algorithms (dEAs) or island model. In this model, inde­
pendent nodes execute a local EA, exchanging information 
under given conditions. The information exchanged pro­
vides the mechanism to enhance the local population with 
the improvements already achieved in other nodes (popu­
lations). This kind of EAs seems to improve the numerical 
and runtime behavior of the basic algorithm in many cases 
(Alba and Troya 2002; Risco-Martin et al. 2008). 

Estimation of distribution algorithms (EDAs) (Miihlen-
bein and Paass 1996; Larranaga and Lozano 2002), which 
have become a fruitful new paradigm for population-based 
evolutionary computation, have not been an exception. Par­
allel estimation of distribution algorithms (pEDAs) have been 
proposed with a broad range of possible parallel approaches 
(Ocenasek 2001; Bengoetxea 2002; delaOssa et al. 2004). 

A relevant aspect in EAs is the initialization of the 
starting population. This issue is important to provide a 
good supply of initial individuals to start up the stochastic 
search. When there is more than one population, the 
influence of the initial individuals on each of the subpop-
ulations should also be considered. 

This paper proposes a new initialization procedure based 
on a topological tool (Voronoi diagrams) to restrict the 
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initial search space of the different nodes of the island 
model. Within each island, the initialization method applies 
the D2 method (Glover et al. 1998), an heuristic used for 
the maximum diversity problem, for generating a diverse 
set of individuals which tries to maximize the coverage of 
the solutions space. For analyzing the effects of the pro­
posed mechanism, an experiment with 108 distributed 
EDA configurations has been conducted over the bench­
mark suite of the special session on Real-Parameter Opti­
mization of the IEEE CEC 2005 conference (Suganthan 
et al. 2005). The results have been validated using a sta­
tistical non-parametric test. 

The rest of the paper is organized as follows: Sect. 2 
presents an overview of the parallel evolutionary and ini­
tialization techniques. Section 3 details the proposed tech­
nique and the rationale behind it. In Sect. 4, the experimental 
scenario is described in detail. Section 5 presents and com­
ments on the results obtained and lists the most relevant facts 
extracted from this analysis. Finally, Sect. 6 contains the 
concluding remarks obtained from this study. 

2 Related work 

2.1 Estimation of distribution algorithms 

Estimation of distribution algorithms are non-deterministic, 
stochastic heuristic search strategies that are part of the 
evolutionary computation paradigm (Mtihlenbein and Paass 
1996; Larranaga and Lozano 2002). In EDAs, multiple 
solutions or individuals are created every generation, 
evolving successively until a satisfactory solution is 
achieved. In brief, the characteristic that most differentiates 
EDAs from other evolutionary search strategies, such as 
genetic algorithms (GAs) is that the evolution from one 
generation to the next one is achieved by estimating the joint 
probability distribution of a set of individuals followed by 
sampling the induced model. This avoids the use of crossing 
and mutation operators, thus reducing the number of 
parameters that are required by EDAs. The general schema 
of the algorithm is described in Algorithm 1. 

Algorithm 1 EDA schema 
Create initial population (popSize individuals) DQ 
i = 0 
repeat 

Evaluate population D{ 
D | = Select N < popSize individuals from Di 
Estimate a new model M from Df 
D' = Sample popSize individuals from M 
Evaluate D' 
Dj+i = Select popSize individuals from Di U D' 
i = i + l 

until stop criterion 

Graphical models have been commonly used for esti­
mating the joint probability distribution. Some authors 
have proposed Bayesian networks to represent the proba­
bility distribution for discrete domains, whereas Gaussian 
networks are usually employed for continuous domains. 
Based on the probabilistic model considered, three main 
groups of EDAs can be distinguished: univariate models, 
which assume that variables are marginally independent; 
bivariate models, which accept dependences between pairs 
of variables; and multivariate models, in which there is no 
limitation on the number of dependences. In this study, we 
are going to focus on the univariate marginal distribution 
algorithm for Gaussian models (UMDAg) (Larranaga and 
Lozano 2002) because it has usually been considered as 
baseline for comparison. In addition, as a result of its 
simplicity, it is easier to identify and analyze the benefits 
coming from the proposal. UMDAg uses the normal dis­
tribution to model the density of each variable. Therefore, 
the induction of the model is reduced to the estimation of fi 
and <T2 of each variable. 

2.2 Distributed estimation of distribution algorithms 

In the distributed evolutionary algorithm, the overall 
population is distributed over multiple subpopulations and 
occasionally allows the migration or exchange of some 
individuals among the different islands. Therefore, each 
node executes an independent algorithm on an independent 
population. An important aspect of the performance of 
dEAs is the migration strategy. This is configured through 
different parameters (Cantu-Paz 2001): (1) Migration fre­
quency: How often (in generations) is information sent? (2) 
Migration rate: How many individuals migrate each time? 
(3) Information selection: What information is selected to 
migrate? (4) Acceptance policy: How are the incoming 
information and the local algorithm state combined? and 
(5) Migration topology: Which island sends information to 
which other? 

Close scrutiny of migration parameters (Petty and Leuze 
1989) has verified that, even though EAs with small pop­
ulations risk being trapped in a local optimum, an appro­
priate migration strategy can avoid a suboptimal solution 
from dominating all the populations. This appropriate 
strategy must be adjusted between the limits of a low 
interaction (which would practically imply the execution of 
N independent algorithms) and an excessive interaction 
(that would lead to the predominance of only one solution). 
A correct configuration can help in obtaining better results 
with fewer evaluations, but configuring these optimal 
parameters is not a simple issue (Whitley et al. 1999; Alba 
and Troya 2000; Muelas et al. 2007). 

Also known as coarse-grained, multiple-deme or island models. 



2.3 Initialization 

The initialization of population-based evolutionary algo­
rithms is hardly addressed in the literature (Kallel and 
Schoenauer 1997). Nevertheless, every expert in the field 
agrees that a bad initialization can make evolution to 
converge prematurely at suboptimal solutions. 

In many cases, the initialization process depends on the 
application field if an approximate solution to the problem 
is known. In Ramsey and Grefenstette (1993), Ramsey 
concluded that, initializing the population with members of 
previously seen states, accelerated the learning in a 
changing environment. Otherwise, if the individuals of the 
population can be built through certain heuristic tech­
niques, these could be a good starting point to reach the 
optimum (Schwarz and Ocenasek 2000). However, this 
strategy has general drawbacks: (1) it completely depends 
on the field of application and (2) it may involve biasing 
the search process towards certain kinds of solutions 
(possibly others than the optimal ones). Another approach 
is to use other metaheuristic algorithms (with different 
fitness functions) for initializing the population (de Garis 
1991). In Ahuja and Orlin (1997), it was proposed to 
develop the initial population with a good randomized 
heuristic. In Ahuja et al. (2000), this recommendation was 
followed using the construction phase of a GRASP algo­
rithm as the initial population of a genetic algorithm. 

Island models are especially sensitive to initialization, 
not only for the aforementioned reasons, but also because 
of the possible mutual dependence between the different 
populations of the islands. There is very little literature on 
this topic and, therefore, this is one of the aspects to be 
studied in depth. 

3 Contribution 

In this paper, a new initialization mechanism for dEDAs is 
presented. The main idea of this procedure is to use a 
Voronoi tessellation (Aurenhammer 1991) to define a 
partition set of the solution space in which each island or 
node will start its own exploration. The proposal applies 
several steps as presented in Fig. 1. 

To create the tesselation, a set of reference points (r,) 
need to be created and assigned to each of the n islands. 
The initial population of island i will be a set of diverse 

points in the solution space which are closer to the ith 
reference point than to any other reference point. 

To avoid the generation of small partitions, we have 
applied two methods for selecting a good set of diverse 
reference points. The first method uses a controlled ran­
domization and frequency memory procedure for generat­
ing a set S = {s\,S2, • •-,sN},N > n of initial diverse 
individuals. This method is influenced by the work in 
Duarte et al. (2009) for a Scatter Search algorithm. The 
procedure starts with the division of the range of each 
dimension into sr subranges of equal size. Then, for each 
generated individual, a subrange for each dimension is 
selected based on the inverse probability value of the fre­
quency count associated with the sub-range. Finally, a 
value is uniformly generated within the selected interval 
and the frequency count associated with the subrange is 
incremented. 

The second method takes the set of N points and extracts 
the N — n individuals with the minimum distance between 
any pair of points. This procedure is based on the D2 
Method presented in Glover et al. (1998) for the maximum 
diversity problem. This method was chosen because it 
provides a good balance between the diversity of the 
individuals and the speed of computation. The general 
schema of the algorithm is described in Algorithm 2. 

Algorithm 2 D2 Method 
Sel = S 
while \Sel\ > n do 

s? = argminSiesel{d(si, Sel)} 
Sel = Sel-{s*} 

end while 

The distance between an individual 5, and a set X = 
{SJ :jEl} is defined as follows: 

d(si,X) = min{d(si,Sj)/sj € X} 

For our experiments with continuous problems, the 
Euclidean distance has been considered between every pair 
of individuals. 

Once the reference points are created, the next action to 
execute is the generation of the population of each island. 
For this task, two steps are applied one after another. First, 
k * popSize individuals are created and distributed uni­
formly among the islands, i.e, each island is assigned k * 
popSize/n individuals. Each new individual is assigned to 

Create N individuals 
based on the Controlled 
randomization and freq 

memory procedure H Appythe D2 Method to 
select the n most diverse 

individuals 

Set each individual as ar 
island reference point 

Using Algorithm 3 
generate k * popSize / n • 

individuals per island 

Apply the D2 Method to 
select the popSize / n 

most diverse individuals 
per island 

Fig. 1 Initialization procedure 



the island which distance to its reference point is minimum. 
This procedure is described by the pseudocode of Algo­
rithm 3. Then the Ul Method is applied to each set of 
individuals so that the final island set contains the most 
diverse popSize/n solutions. 

Algorithm 3 Population initialization 
for i = 0 to n do 

Populaticmi = 0 
end for 
while | |Ji=o Populaticmi\ < k* PopSize do 

newindividual = GenerateARandomlndividual 
Let i* I d(newindividual, Si*) = d(newindividual, S) 
if \Populatiorn* \ < k * PopSize/n then 

Populaticmi- = Populaticmi* U newindividual 
end if 

end while 

For the purpose of clarifying the effects of the proce­
dure, a simple example is provided. Figure 2 details the 
results of initializing a two-dimensional function with 
the new method and with the traditional uniform approach. 
The cell lines in the new method diagram delimit the 
individuals that would be assigned to each island. 

Rationale: our approach carries out a systematic ini­
tialization procedure following two criteria: (1) homoge­
neous coverage of the whole solution space, (2) no overlap 
of the solution space explored by each island. 

4 Experimental scenario 

To carry out the experimental validation, we have selected 
the benchmark suite of the special session on Real-
Parameter Optimization of the IEEE CEC 2005 conference. 
This is a standard test that has been extensively used in 
recent years for analyzing algorithms on a continuous 
domain. The benchmark contains 25 generic test problems. 
Most of these functions are variations of well-known test 
functions through rotation, shifting and hybridization. 
Because all the participants of the special session solved 
the first five functions, functions fl-f5 have not been 
considered for the experiments. Furthermore, the 50 
dimensional functions have not been considered since 
several algorithms of the session did not execute them and 
were also not considered for the comparison analysis of the 
original session. For each function, 25 independent exe­
cutions were carried out for both 10 and 30 dimensions 
having a fixed number of fitness evaluations of 105 and 
3 x 105, respectively. The performance criterion is the 
distance (error) between the best individual found and the 
global optimum in terms of fitness value. 

With the purpose of analyzing the influence of the 
proposed strategy, 108 dEDA configurations from the 
values displayed on Table 1 were executed with both 
Voronoi and uniform initializations. A set of sequential 
EDA UMDAg algorithms with the same global and island 
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Fig. 2 Initialization comparison, a Voronoi initialization, b Random uniform initialization 
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Table 1 Parameters chosen for the experiments 

Population size 

Offspring size 

Selected individuals for 
learning 

Learning model 

N # islands 

Migration ratio 

Migration period 

Acceptance criterion 

Topology 

Selected emigrants 

Full elitism 

64, 100 and 200 individuals per island (i.e. 512, 800 and 1,600 of global population). For the proposed method, k 
has been fixed to 10 

Equal to the population size 

100% of the population size 

UMDAg 

8 

1, 4 and 8 individuals 

Migrate every 10, 20 or 40 generations 

Select the best individuals between the immigrants and the resident population 

Ring and hypercube 

Best and random policies 

Best individuals from the parent and the offspring populations 

Table 2 # N of configurations in 10D with significant differences 

Voronoi y Uniform 

Uniform y Voronoi 

Voronoi y Uniform 

Uniform y Voronoi 

f6 f7 f8 f9 flO f l l 

4 11 3 2 0 9 

0 0 0 6 2 1 

fl6 fl7 fl8 fl9 f20 f21 

1 1 63 59 57 59 

15 12 0 0 0 1 

fl2 fl3 fl4 fl5 

0 0 0 1 

30 0 6 3 

f22 f23 f24 f25 Sum 

18 62 83 31 464 

0 0 0 0 76 

A^B represent that the results of A were statistically better than those 
of B 

Table 3 

Voronoi 

Uniform 

Voronoi 

Uniform 

# N of configurations in 30D with si 

y Uniform 

y Voronoi 

f6 

2 

1 

f7 

14 

0 

f8 

1 

1 

f9 

2 

4 

flO 

0 

2 

f l l 

0 

0 

fl6 fl7 fl8 fl9 f20 f21 

y Uniform 1 

y Voronoi 3 

0 

3 

13 

0 

21 

0 

20 

0 

0 

0 

gnificant differences 

fl2 

0 

0 

. fl3 fl4 

2 1 

0 0 

f22 f23 f24 f25 

5 

0 

1 0 29 

3 0 0 

fl5 

0 

11 

i Sum 

112 

28 

A^B represent that the results of A were statistically better than those 
of B 

populations (64, 100, 200, 512, 800 and 1,600) were also 
executed. 

The number of islands was fixed to 8. The proposed 
procedure obtains better results with a high number of 
islands but, because of the maximum number of evalua­
tions of the benchmark, a higher number would imply a 
reduced number of individuals per island (not appropriate 
for ED As) or a considerably reduced number of iterations. 
Therefore, the selected number offers a good trade-off 
between the number of islands and the number of 
iterations. 

5 Analyzing the results 

As mentioned in the previous section, 108 uniformly ini­
tialized configurations were compared against their equiv­
alent Voronoi configurations. For each problem, each pair 
of uniform and Voronoi configurations were compared 
with a non-parametric Wilcoxon's rank sum test with a 
significance level of a = 0.01.Tables 2 and 3 present the 
number of comparisons per function in which the results 
were statistically significant as well as the aggregated 
number for all the functions. It can be seen that Voronoi 
configurations clearly obtain a higher number of significant 

results than their uniform counterparts, this number being 
higher with the 10 dimensional functions and with the 
hardest 8 functions of the benchmark (18-25). Because the 
number of partitions is the same for both the 10 and the 30 
dimensional functions, each island is less affected by the 
local optima in the 10 dimensional scenario and therefore 
obtains better results. 

A global comparison of the best configurations of both 
types of initializations per population size and the 
sequential EDAs was also carried out. The criterion used 
for selecting the best configurations was: for each popu­
lation size, select the configuration with the minimum sum 
of average errors over all the functions in both 10 and 30 
dimensions. Similarly to the analysis used in the CEC'05 
special session, each algorithm was ranked at each function 
according to its average error. Although the objective of 
this study was not to tune an EDA algorithm to obtain the 
best results in the benchmark, the best algorithm from 
the special session, G-CMA-ES, has also been included in 
the analyses. Table 4 presents the average ranking of all 
the algorithms. Here, Voronoi configurations also obtain 
better results than their equivalent uniform ones being the 
Voronoi configuration of 512 individuals the best EDA 
algorithm. For the purpose of determining the significance 



Table 4 Average ranking of the best algorithms 

Algorithm 10D Algorithm 30D 

G-CMA-ES 

vorodeda512 

unifdeda512 

vorodeda800 

unifdeda800 

vorodedal600 

eda64 

eda512 

edal28 

unifdedal600 

eda800 

edal600 

1.75 

2.8 

4.72 

5.3 

6.72 

7.1 

7.1 

7.57 

7.8 

8.32 

8.42 

10.3 

vorodeda512 

unifdeda512 

G-CMA-ES 

vorodeda800 

unifdeda800 

vorodedal600 

unifdedal600 

edal28 

eda800 

eda512 

edal600 

eda64 

3.075 

3.15 

3.85 

4.57 

5.82 

7.22 

7.52 

7.87 

7.87 

8.02 

9.3 

9.7 

Table 5 p-Values of the comparisons of the best configurations 

vorodeda512 VS 10D 30D 

unifdeda512 

vorodeda800 

unifdeda800 

vorodedal600 

unifdedal600 

eda64 

edal28 

eda512 

eda800 

edal600 

G-CMA-ES 

y7 represents that the 

x represents that the 

1.3065E-04 

2.6585E-02 

1.8120E-05 

2.4300E-03 

9.5367E-07 

6.0396E-03 

6.6757E-05 

4.7684E-06 

9.5367E-07 

9.5367E-07 

9.9953E-01 

p-value is a = 

p-value is not 

V 
X 

V 
V 
V 
V 
V 
V 
V 
V 
X 

2.1046E-

4.1275E-

5.0831E-

3.1243E-

1.4628E-

1.9073E-

9.5367E-

1.3351E-

1.3351E-

2.8610E-

5.7959E-

0.01 significant 

significant 

-01 

-02 

-04 

-04 

-04 

-06 

-06 

-05 

-05 

-06 

-01 

X 

X 

V 
V 
V 
V 
V 
V 
V 
V 
X 

of these results, a non-parametric paired Wilcoxon's rank-
sum test was applied. Table 5 shows the ^-values of the 
comparisons of the best EDA configuration (Voronoi with 
512 individuals) against the rest of the algorithms. It can be 
observed that the best Voronoi configuration is a = 0.01 
significantly better in each comparison to the rest of the 
ED As algorithms in both 10 and 30 dimensions except 
against the uniform initialized configuration of 512 indi­
viduals in 30 dimensions and the Voronoi configuration of 
800 individuals. 

It can also be seen that this configuration is clearly 
superior to any of the sequential EDAs executed. In addi­
tion, it can be observed that the dEDA configurations with 
the fewer number of individuals tend to obtain better 
results. This is partially due to the constraint in the maxi­
mum number of fitness evaluations imposed by the 
benchmark, which allows them to execute for more itera­
tions. Finally, when analyzing the comparison against a 

specially tuned algorithm for the session, the G-CMA-ES 
algorithm, it can be seen that although the G-CMA-ES is 
significantly better than the best dEDA configuration in 10 
dimensions p-value — 0.05, with the 30 dimensional 
functions, the G-CMA-ES has worse rank and its results 
are not significantly better. 

Figure 3 shows the evolution of the average score for 
the 10 dimensional /20 function.2 The evolution of the 
score of the algorithms on the next generations is almost 
the same for both methods but the influence of the first 
generations clearly increases the performance of the 
Voronoi configurations. 

Finally, an analysis of the influence of the initialization 
in the migration schemes was also carried out. For this task, 
the total number of individuals that are exchanged 
throughout the evolution for each distributed configuration 
was measured, i.e.: 

^iterations 
Migration^, 

Migration^ x Topologyde (1) 
ieriod 

Table 6 presents the average of this number for the 10 
distributed configurations with the minimum average error 
for all the functions. This number represents the total 
number of individuals that are exchanged along the 
execution. For obtaining the number of individuals that 
were actually accepted on each island, the acceptance 
criterion needs to be taken into account and 
averaged through all the executions. In general, Voronoi 
configurations need to exchange fewer individuals than the 
uniform configurations. This effect is much clearer for the 
10 dimensional functions and with bigger population sizes 
(which, because of the benchmark constraints, have also a 
smaller number of iterations). It seems that, to obtain the 
best results, the Voronoi initialized islands need less 
interaction with their neighboring islands, so they can 
intensify the exploration on their isolated region (in 
particular, in their earlier iterations). 

6 Conclusions 

This paper presents a new initialization method for the 
distributed estimation of distribution algorithms. The pro­
posed initialization is based on Voronoi cells that isolate 
the initial search space of each island and uses a heuristic 
method for uniformly covering each region of the search 
space. Several parameter values have been tested on the 
standard CEC'05 continuous benchmark suite. To analyze 
the results, non-parametrical tests were applied. The 
obtained results show that the best overall performance is 

The evolution of the average scores in most of the other functions 
follows a similar pattern. 



Fig. 3 Evolution of the average 
score for the / 2 0 function 
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Table 6 Number of individuals exchanged between the best 
configurations 

Popsize 

512 

800 

1,600 

10D 

Voronoi 

331.05 

288.75 

60.94 

Uniform 

480.47 

405 

168.75 

30D 

Voronoi 

244.14 

180 

64.49 

Uniform 

295.44 

213.75 

63.48 
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