
The GPU on the simulation of cellular computing models

 José M. Cecilia, José M. Garcı́a, Ginés D. Guerrero,
 Miguel A. Martı́nez-del-Amor, Mario J. Pérez-Jiménez,
 Manuel Ujaldón

Abstract Membrane Computing is a discipline aiming to

abstract formal computing models, called membrane systems

or P systems, from the structure and functioning of the living

cells as well as from the cooperation of cells in tissues,

organs, and other higher order structures. This framework

provides polynomial time solutions to NP-complete prob-

lems by trading space for time, and whose efficient simula-

tion poses challenges in three different aspects: an intrinsic

massively parallelism of P systems, an exponential compu-

tational workspace, and a non-intensive floating point nature.

In this paper, we analyze the simulation of a family of rec-

ognizer P systems with active membranes that solves the

Satisfiability problem in linear time on different instances of

Graphics Processing Units (GPUs). For an efficient handling

of the exponential workspace created by the P systems

computation, we enable different data policies to increase

memory bandwidth and exploit data locality through tiling

and dynamic queues. Parallelism inherent to the target P

system is also managed to demonstrate that GPUs offer a

valid alternative for high-performance computing at a con-

siderably lower cost. Furthermore, scalability is demon-

strated on the way to the largest problem size we were able to

run, and considering the new hardware generation from

Nvidia, Fermi, for a total speed-up exceeding four orders of

magnitude when running our simulations on the Tesla S2050

server.

Keywords Manycore � GPUs � P systems �
SAT problem � High performance computing

1 Introduction

Evolutionary computation is a branch of Natural Comput-

ing aiming to abstract computing models, called evolu-

tionary algorithms, from the processes of (natural)

selection and perturbation. Computations start from an

initial population of individuals (randomly generated) and

proceed according to rules of selection and other operators,

such as recombination and mutation. A fitness function

evaluates each individual measuring its fitness in the

environment. Selection acts in the population focusing on

high-fitness individuals and eliminating those with worst

fitness from a probabilistic viewpoint. Reproduction

(recombination and mutation) produces new individuals by

random variation of the individuals in the current popula-

tion. Finally, the survival step decides which individuals

survive in the environment. Evolutionary algorithms con-

stitute a wide set of problems trying to replicate the

behavior of mother nature through extensive simulations.

J. M. Cecilia � J. M. Garcı́a � G. D. Guerrero

Computer Engineering and Technology Department,

University of Murcia, 30100 Murcia, Spain

e-mail: chema@ditec.um.es

J. M. Garcı́a

e-mail: jmgarcia@ditec.um.es

G. D. Guerrero

e-mail: gines.guerrero@ditec.um.es

M. A. Martı́nez-del-Amor � M. J. Pérez-Jiménez

Computer Science and Artificial Intelligence Department,

University of Seville, 41012 Seville, Spain

e-mail: mdelamor@us.es

M. J. Pérez-Jiménez

e-mail: marper@us.es

M. Ujaldón (&)

Computer Architecture Department, University of Malaga,

29071 Malaga, Spain

e-mail: ujaldon@uma.es

These simulations may take a very long time to find the

solutions, mainly due to the numerous fitness evaluations

and complicated evolutionary operations involved, and the

situation worsens on typical large-scale populations. This is

where parallel computing naturally emerges to speed-up

simulations and provide practical implementations for a

feasible search of a single, unified and parametrized solution.

The use of powerful supercomputers has been proposed

over the past years to tackle certain instances of this class

of methods, among which we may cite ant colony (Stutzle

1998), particle swarm (Mussi and Cagnoni 2009) and even

genetic algorithms (Pospichal and Jaros 2009). Following

this trend of good alliance between applications and

hardware, we contribute with novelties on both sides:

• At hardware level, we propose the use of commodity

graphics hardware (GPUs) as a low-cost and emerging

parallel architecture to accelerate the simulations.

• At application level, we focus on Membrane Comput-

ing, an emergent research area which abstracts com-

puting ideas (like data structures, operations or

computing models, among others) from the structure

and behavior of single cells, ultimately grouped into

complexes of cells.

A wide variety of Membrane Computing models, called

described in Sect. 4 together with the programming para-

digm and the benchmark we create to run experiments.

Section 3 describes the parallelism which can be extracted

from a P system simulation with active membranes, and

once this is learnt, we demonstrate in Sect. 5 how GPUs

can accommodate two levels of parallelism in its compu-

tational model. Section 6 analyzes different data policies to

increase the memory bandwidth, and also to take advantage

of the data locality on GPUs by providing a blocking/tiling

algorithm and also by managing dynamic queues. We also

get a glimpse of the memory limitations to simulate larger

datasets and benchmarks by adding more GPUs to the

system. Section 7 summarizes our contribution and Sect. 8

provides some directions for future work.

2 Related work

2.1 Our road towards evolutionary algorithms

Our departure point was stencil-based computations

(Cecilia et al. 2010c), an active area of research where a

number of optimizations have been proposed on two

dimensional time evolution problems (Datta et al. 2008;

Krishnamoorthy et al. 2010). Two major assumptions meet

on stencil computations: (1) constant-sized neighborhood

dependencies that remain static throughout the simulation,

and (2) availability of data at neighbor locations at each

time step.

Neither of these two remain true in a more complex

class of evolutionary algorithms like ant colony (Li et al.

2009) or Membrane Computing, where memory access

patterns span dynamically the whole computational domain

to produce spatial and temporal data dependencies. When

those features arise, communication–computation tradeoff

strategies get complicated, and more sophisticated

approaches are required for an efficient implementation on

many-core GPUs, where independent calculations have to

predominate in order to exploit fine-grained parallelism.

2.2 Membrane Computing and P systems

Gh. Păun introduced Membrane Computing in 1998 (Păun

2000), and since then, this bio-inspired computing para-

digm has attracted research activities within Natural

Computing. The model starts with the assumption that

processes taking place in the compartmental structure of a

living cell can be interpreted as computations. Devices of

this model are called P systems, which consist of a cell-like

membrane structure, where compartments allocate multi-

sets of objects, that is, sets of objects with multiplicities

associated to the elements.

membrane systems or P systems, have been proposed and
studied. They are distributed, parallel and non-determinis-

tic computing devices, and some models have been suc-

cessfully used for designing polynomial time solutions to
NP-complete problems by trading space for time. Specifi-

cally, these models were inspired by the capability of cells
to produce an exponential number of new membranes in
linear time, through mitosis (membrane division) and/or
autopoiesis (membrane creation) processes. Major chal-

lenges on P systems simulations are (1) a dynamic handling
of memory space and (2) an exponential workspace
growing as our code increases the number of variables
involved to run the simulation.

Currently, we lack of a feasible biological implemen-

tation, either in vivo or in vitro, of P systems. The only way
to analyze and execute these devices is on silicon-based
architectures which are limited by the physical laws.
Although some simulators and software applications have
been derived (Garcı́a-Quismondo et al. 2010; Dı́az et al.
2009), most of them were developed for sequential archi-

tectures using languages such as Java, CLIPS, Prolog or C,
where performance is hardly compromised.

The rest of this paper is organized as follows. Section 2
introduces Membrane Computing and describes the
behavior of this biologically inspired way of computation,
focusing on computational devices called P systems to
solve the Satisfiability (SAT) problem. This behavior is
later simulated on graphics architectures, which are

P systems have several syntactic elements (see Fig. 1): a

membrane structure consisting of a hierarchical arrange-

ment of membranes embedded in a skin membrane, and

delimiting regions or compartments where multisets of

objects (corresponding to chemical substances) and sets of

evolution rules (corresponding to reactions) are placed. The

region outside the skin membrane is referred to as envi-

ronment. Every membrane has associated an unchangeable

label, and depending on the P system model, it may also

contain a charge or polarization that can be modified during

the computation. Besides, P systems possess two valuable

features: inherent massive parallelism and non-

determinism.

A configuration of a P system is an instantaneous

description of the system which can be described by the

structure of membranes at this moment, and the multisets

of objects associated with each compartment/region in the

system. We evolve from a configuration to a next one by

applying the rules of the system to the objects inside the

regions in a maximal parallel manner, that is, the rules

should be used in parallel to the maximum degree attain-

able (we assign objects to rules, choosing the rules and the

objects assigned to each rule in a non-deterministic man-

ner, but in such a way that after the assignation no further

rule can be applied to the remaining objects). When

defining transitions in a P system, different maximal mul-

tisets of rules can be chosen in order to perform a maxi-

mally parallel transition step, hence the evolution of the

system has branching in a non-deterministic manner.

A computation of a P system is a (finite or infinite)

sequence of instantaneous transitions between configura-

tions. The computation starts with an initial configuration

of the system, where the input data of a given problem is

encoded. The transition from a configuration to the next

one is performed by applying rules to the objects inside the

regions. A computation which reaches a configuration

(called halting configuration) where no rule is applicable to

the existing objects, is a halting computation. Only halting

computations give a result and the result is encoded by the

multiset of objects in a specified output membrane or in the

environment of the system.

Note that P systems exhibit two levels of parallelism:

one at region level (rules are applied in parallel), and

another one at system level (regions evolve concurrently).

The objects inside the membranes evolve according to

given rules in a synchronous, parallel, and non-determin-

istic way.

The two-level parallelism and non-determinism can be

used to solve NP-complete problems in polynomial time,

reducing this from an exponential time, but at the expense

of using an exponential workspace of membranes and

objects which is created in linear time.

Computational complexity theory usually deals with

decision problems which require a yes or no answer. Of

course, many abstract problems are not decision problems

but, for instance, each optimization problem can be trans-

formed into a roughly equivalent decision problem. There

is a natural matching between decision problems and lan-

guages, in such a way that solving a decision problem is

equivalent to recognize the language associated with it.

That is the rationale for us to consider a class of P system,

called recognizer, in order to solve decision problems

within the framework of Membrane Computing. This kind

of P systems has a working alphabet with two distinguished

objects, yes and no, which halt all computations in the

system, and if C is one of those computations, then either

object yes or object no (but not both) must have been

released into the environment and the result encoded in the

last step of the computation.

In this computing paradigm, decision problems are

solved by using families of recognizer confluent P systems

(Pérez-Jiménez et al. 2003) where all possible computa-

tions with the same initial configuration must give the same

answer. Therefore, this kind of P systems capture the true

algorithmic concept in the sense that the result of one

computation suffices to determine the answer of the overall

system.

Up to date, there have not been in vivo nor in vitro

implementations of P systems, and researchers have

focused on simulators developed in silico whose initial

versions were targeted to sequential platforms (Dı́az et al.

2009; Garcı́a-Quismondo et al. 2010). From this departure

point, the main challenge for the simulations of P systems

in general is to find the right platform to exploit massively

the parallelism inherent to the definition of P systems.

In this respect, several efforts have been done imple-

menting this massively parallelism on parallel architec-

tures. For instance, Alonso et al. (2008) proposed a circuit

implementation for the class of transition P systems;Fig. 1 Structure and syntactic elements of a P system

Nguyen et al. (2010) proposed an implementation of

transition P systems in FPGAs, providing several levels of

parallelism, one at rule level and other at region level,

releasing a software framework for Membrane Computing

called Reconfig-P, and a generic simulator on GPUs for a

family of recognizer P system with active membranes was

presented in Cecilia et al. (2010b), showing that the double

level of parallelism exposed by GPUs represents a valid

alternative to simulate P systems.

2.3 P systems with active membranes

Many different models of P systems have arisen from the

inspiration of different behaviors from living cells. In this

sense, P systems with active membranes are one of the first

models introduced by Păun (2002), and they have been

proved to be complete from a computational viewpoint,

equivalent in this respect to Turing machines.

P systems with active membranes have rules which

directly involve the membranes where the objects evolve

and at the same time make membranes to progress: evo-

lution and communication rules are associated with objects

and membranes, which can also be dissolved or multiplied

by division. A new feature of these membrane systems is

polarization, they have one of three possible electrical

charges: ? (positive), - (negative), 0 (neutral). Since the

number of membranes can grow exponentially, polynomial

time solutions to NP-complete problems in Membrane

Computing are achieved by trading space (number of

membranes and objects) for time (transitions in the com-

putation). This is inspired by biological facts, namely, the

capability of cells to produce new membranes via events

like mitosis.

Now we briefly provide a description of P systems with

active membranes (see Păun 2009 for additional informa-

tion). These systems are of the form P ¼
ðC;H; l;M1; . . .;Mq;RÞ; where q C 1 is the initial degree

of the system; C is the working alphabet of objects, H is a

finite set of labels for membranes; l is a membrane structure

(a rooted tree), consisting of q membranes injectively labeled

with elements of H and every membrane has associated

electrical charges from the set fþ;�; 0g;M1; . . .;Mq are

strings over C; describing the multisets of objects placed in

the q regions of l; and R is a finite set of rules, where each

rule adopts one of the following forms:

(a) ½a! v�ah where h 2 H; a 2 fþ;�; 0g; a 2 C and v is a

string over C describing a multiset of objects asso-

ciated with membranes and depending on the label

and the charge of the membranes (evolution rules).

(b) a½ �ah ! ½b�
b
h where h 2 H; a; b 2 fþ;�; 0g; a; b 2 C

(send-in communication rules). An object is

introduced in the membrane, possibly modified, and

the initial charge a is changed to b.

(c) ½a�ah ! ½ �
b
hb where h 2 H; a; b 2 fþ;�; 0g; a; b 2 C

(send-out communication rules). An object is sent

out of the membrane, possibly modified, and the

initial charge a is changed to b.

(d) ½a�ah ! b where h 2 H; a 2 fþ;�; 0g; a; b 2 C (disso-

lution rules). A membrane with an specific charge is

dissolved in reaction with a (possibly modified) object.

(e) ½a�ah ! ½b�
b
h ½c�

c
h where h 2 H; a; b; c 2

fþ;�; 0g; a; b; c 2 C (division rules). A membrane

is divided into two membranes. The objects inside the

membrane are replicated, except for a, that may be

modified in each membrane.

Rules are applied according to the following principles:

• All the elements which are not affected by operations to

be applied remain unchanged.

• Rules associated with label h are used for all mem-

branes with this label, regardless the membrane is

initial or generated by division during the computation.

• Rules from (a) to (e) are used as usual in the framework

of Membrane Computing, i.e. maximizing parallelism.

At each step, each object in a membrane can only be

used by at most one rule (non-deterministically cho-

sen), but any object which can evolve by a rule must do

it (given the constraints indicated below).

• Rules (b)–(e) cannot be applied simultaneously in a

membrane in a single computational step.

• An object a in a membrane labeled with h and with

charge a can trigger a division, yielding two mem-

branes with label h, one of them having charge b and

the other one having charge c. Note that existing

contents prior to the division, except for object a, can

be the subject of rules in parallel with the division. In

this case, we consider that two processes take place in a

single step: ‘‘first’’, the contents are affected by the

rules applied to them, and, ‘‘after that’’, the results are

replicated into the two new membranes.

• If a membrane is dissolved, its content (multiset and

interior membranes) becomes part of the immediately

external one. The skin is never dissolved neither

divided.

Finally, we say that P ¼ ðR;C;H; l;M1; . . .;
Mq;R; inÞ is a P system with active membranes and input

if it verifies the following conditions:

1. The alphabet R; strictly contained in C; is the input

alphabet of P:
2. P ¼ ðC;H; l;M1; . . .;Mq;RÞ is a P system with

active membranes.

3. M1; . . .;Mq are strings over C n R; describing the

multisets of objects placed in the q regions of l.

4. in 2 H is the label of the input membrane of P:

Given a multiset m over R; the initial configuration of P
with input m is the tuple ðM1; . . .;Min þ m; . . .;MqÞ;
whereMin þ m means the union of the multisetsMin and

m. Therefore, it is possible to distinguish, in this initial

configuration, the objects in membrane in that come from

the input m of the system, since Min represents a multiset

over C n R and m is a multiset over R:

2.4 The SAT problem

Propositional Satisfiability problem (SAT, for short) was

the first known NP-complete problem, as proven by Cook

(1971). Let us recall that a boolean formula is in con-

junctive normal form (CNF) if it is a conjunction of clau-

ses, where each clause is a disjunction of literals. A literal

is either a variable or its negation. The SAT problem

consists of, given a boolean formula in CNF, determine

whether or not it is satisfiable, that is, whether there exists

an assignment of truth values to its variables on which it

evaluates true. This is of paramount importance in many

computer science areas, including theory, algorithmic,

artificial intelligence, hardware design, electronic design

automation, and verification.

The time spent by all known deterministic algorithms

solving the SAT problem is exponential depending on the

size of the input. With the help of membrane systems, we

were able to find the solution at linear time, but trading

space for time, that is, by making use of an exponential

workspace built in linear time (Pérez-Jiménez et al. 2003).

Now we describe the required P-system, which is the focus

of our computational simulation.

Let us consider a boolean formula u ¼ C1 ^ . . . ^ Cm in

CNF with VarðuÞ ¼ fx1; . . .; xng; consisting of m clauses

Ci ¼ zi;1 _ . . . _ zi;ki
; 1� i�m; where zi;i0 2 fxj;:xj :

1� j� ng are the literals of u: Without loss of generality,

we may assume that no clause contains two occurrences of

some xj or two occurrences of some :xj (the formula is not

redundant at clause level), or both xj and :xj (otherwise

such a clause is trivially satisfiable, hence it can be

removed).

We codify u; which is an instance of SAT with size

parameters n and m, by the following multiset (which is

actually a set)

codðuÞ ¼
[m

i¼1

fxi;j : xj 2 Cig [fxi;j : :xj 2 Cig

and the length of the formula u (in a reasonable encoding

scheme) is represented by sðuÞ ¼ ðnþmÞ�ðnþmþ1Þ
2

þ n

(denoted by hn;mi : it is well known that the application

s is a bijection from N2 onto N). The instance u will be

processed by the P system with active mem-

branes PðsðuÞÞ with input codðuÞ (Pérez-Jiménez et al.

2003).

For each m; n 2 N we consider the following P system

with active membranes of degree 2:

Pðhm; niÞ ¼ ðR;C;H; l;M1;M2;R; 2Þ: This is defined as

follows:

• The input alphabet is R ¼ fxi;j; xi;j : 1� i�m;

1� j� ng:
• The working alphabet is C ¼ R [fck : 1� k�mþ

2g [fdk : 1� k� 3nþ 2mþ 3g [fri;k :

0� i�m; 1� k� 2ng [fe; tg [fYes;Nog:
• The set of labels is H = {1,2}.

• The initial membrane structure is l = [[]2]1 (a

rooted tree where the root is the membrane labeled

by 1 which has a son: the membrane labeled by 2).

• The initial multisets associated with the membranes are

the following M1 ¼ ; and M2 ¼ fd1g:
• The input membrane is the membrane labeled by 2.

• The set of rules, R, consists of:

(a) {[dk]2
0? [dk]2

? [dk]2
-:1 B k B n}.

(b) f½xi;1 ! ri;1�þ2 ; ½xi;1 ! ri;1��2 : 1� i�mg:
f½xi;1 ! k��2 ; ½xi;1 ! k�þ2 : 1� i�mg:

(c) f½xi;j ! xi;j�1�þ2 ; ½xi;j ! xi;j�1��2 : 1� i�m; 2

� j� ng:
f½xi;j ! xi;j�1�þ2 ; ½xi;j ! xi;j�1��2 : 1� i�m; 2�
j� ng:

(d) {[dk]2
?? []2

0 dk, [dk]2
-? []2

0 dk: 1 B k B n}.

{dk[]2
0? [dk?1]2

0: 1 B k B n - 1}.

(e) {[ri,k? ri,k?1]2
0: 1 B i B m, 1 B k B 2n - 1}.

(f) {[dk? dk?1]1
0: n B k B 3n - 3}; [d3n-2? d3n-1

e]1
0.

(g) e[]2
0? [c1]2

?;[d3n-1? d3n]1
0.

(h) {[dk? dk?1]1
0: 3n B k B 3n ? 2m ? 2}.

(i) [r1,2n]2
?? []2

- r1,2n.

(j) {[ri,2n? ri-1,2n]2
-: 1 B i B m}.

(k) r1,2n[]2
-? [r0,2n]2

?.

(l) {[ck? ck?1]2
-: 1 B k B m}.

(m) [cm?1]2
?? []2

? cm?1.

(n) [cm?1 ? cm?2 t]1
0.

(o) [t]1
0 ? []1

? t.

(p) [cm?2]1
? ? []1

-Yes.

(q) [d3n?2m?3]1
0 ? []1

?No.

The symbols ck and dk are counters. The presence of a

symbol ri,k in a membrane represents that the truth

assignment encoded by such membrane makes true the ith

clause. The subscript k is used for a synchronization pro-

cess. Finally, e and t are auxiliary symbols.

The execution of the P system PðsðuÞÞ with input

codðuÞ can be structured in four consecutive stages (see

Pérez-Jiménez et al. 2003 for details):

1. Generation Membranes are structured within a rooted

tree with a single branch. The root node is the skin

membrane, and the second node is called internal

membrane. All possible truth assignments to the

variables are generated by using division rules, and

they are encoded in the internal membranes by

executing step by step the set of P system rules. In

this way, 2n internal membranes are created such that

each one encodes a truth assignment to the variables of

the formula. This stage ends whenever object dn

appears in the skin membrane. Only rules from (a) to

(e) are executed at this stage, and the whole stage takes

3n - 1 transition steps.

2. Synchronization The objects encoding a true clause (a

partial solution to the CNF formula) are unified in the

membrane, making the second subscript of ri,j to be

2n. Rules from (e) to (g) are executed, and the stage

requires 2n steps to be completed.

3. Check out The goal here is to determine how many

(and which) clauses are true in every internal mem-

brane (that is, by the assignment that represents). This

stage ends when object d3n?2m appears in the skin

membrane. It spends 2m steps, and rules from (h) to

(l) are executed.

4. Output Internal membranes encoding a solution send

an object to the skin. If the skin has such object from

some membrane, the object Yes is sent to the

environment. Otherwise, the object No is sent. Only

four steps are needed by this stage, and rules from

(m) to (q) are executed.

problem. Hereafter, we combine these two stages into a

joint CheckOut function.

The specific simulation of the family of P systems that

solves SAT for a single GPU is analyzed in Cecilia et al.

(2010a), where problems to carry out the theoretical sim-

ulation of P systems on GPUs are depicted, and some

heuristics to accelerate its computation are provided.

3 The parallel simulator for the P system solving

the SAT problem

The family of P systems solving the SAT problem (in short,

SAT P system) gathers all computational features of the

recognizer P systems with active membranes (Păun 2002).

Among them, we highlight the theoretical double level of

parallelism and non-determinism that makes P systems a

computational tool to solve NP-complete problems in

polynomial time.

The first level of parallelism for the SAT P system is

found among membranes, that is, by executing rules inside

each membrane in parallel along the computation (see

Fig. 2). The second level of parallelism is found within

each membrane (see Fig. 3). That way, the first level is

coarse-grained and can be characterized by an inter-task

parallelism and exploited by the number of processors

available in a parallel system, whereas the second level of

parallelism is fine-grained and intra-task to be exploited by

the number of cores within each processor, either on multi-

or many-core architectures.

Membrane parallelism is shown in Fig. 2 for the exe-

cution of the Generation function for the SAT P system in

a sequential as well as a parallel architecture with four

Compute Elements (CE). In a parallel architecture, a set of

membranes is initially created by the master process,

whose size is equal to the number of CEs available during

the execution. Then, a membrane is sent to each CE by the

master processor. This step is called Parallel Preprocess-

ing (PP), and it is developed just before the Generation

starts the computation on each CE. This CE is represented

by a processor (die) which can later be eventually

decomposed into multi- or many-cores when exploiting

intra-task parallelism.

2.5 P system simulation algorithm

The P system simulation algorithm to solve the SAT
problem is based on the P system computation described
above. For instance, Algorithm 1 summarizes the sequen-

tial code based on previous stages. First, Generation and
Synchronization are the stages creating an exponential
workspace of membranes in a synchronous way, and also
unifying the objects that codify a partial solution. Both
stages are executed in the same function, which is referred
to as Generation from now on. Note that each membrane
runs in parallel at each iteration of Generation, but a global
synchronization is required by different iterations.

Once the workspace is created, the Check out and
Output stages are performed. First, they determine the
clauses being true in every internal membrane, and then
they check whether there is a solution for the SAT

Fig. 2 Sequential and parallel

membranes generation on four

Compute Elements (CE). The

Parallel Preprocessing (PP) is

required to set up the parallel

execution prior to its starting on

each CE. This CE is represented

by a processor (die) which can

later be eventually decomposed

into multi- or many-cores

depending on target architecture

Fig. 3 Sequential and parallel

execution when creating the

exponential workload shows the

second level of parallelism in P

systems, that internal to

membranes. P system rules are

applied for the SAT problem

running on hardware cores, and

many-core GPUs translates this

into massive parallelism using

hundreds of cores

Furthermore, Fig. 2 shows that it is known which

membrane generates each one and also in which compu-

tational step. For instance, membrane two is always gen-

erated by membrane one in the first computational step,

membrane three is always generated by membrane one in

the second step, and so on. Finally, each node sends the

partial response back to the master in order to produce the

final result of the P system.

Figure 3 shows the second level of parallelism in P

systems, that internal to membranes. Once the initial data

has arrived to the CE after the Parallel Preprocessing step,

it starts the computation according to Algorithm 1, and

applying the P system rules for the SAT problem depicted

in Pérez-Jiménez et al. (2003). Then, resources on each CE

can be exploited at its peak to cooperate for speeding up

the computation of the Generation and CheckOut func-

tions. This resources are essentially hardware cores, but

fortunately GPUs are many-core which can handle this

level of parallelism at large scale using hundreds of

streaming processors (see Table 1).

4 Experimental setup

4.1 Hardware features

Major features for our hardware equipment are summa-

rized in Tables 1 and 2. Intel-based host machines provide

service to two different GPU systems based on Nvidia

Teslas, a C1060 model manufactured in mid 2008 and

delivered as a graphics card plugged into a PCI-express 2

socket (see Fig. 4a), and the more recent S2050 released in

November 2010 and based on the Fermi architecture

(NVIDIA 2010). In addition to a larger number of

streaming processors (see Fig. 5), Fermi improves the GPU

capabilities with additional features like enhanced single-

precision floating-point accuracy and double-precision

floating-point performance, new general-purpose L1 and

L2 caches, faster context switching, a unified 64-bit virtual

address space and a brand new instruction set.

The Tesla S2050 Computing System is mounted on a 1U

rack chassis and endowed with four M2050 Fermi GPUs on

a 2 9 2 setup accessible through a couple of PCI-express

Gen2 external cables which are plugged into the mother-

board of the host computer via a Host Interface Card (HIC).

4.2 CUDA programming model

All GPU platforms previously outlined can be pro-

grammed using the Compute Unified Device Architecture

(CUDA) programming model which makes the GPU to

operate as a highly parallel computing device. Each GPU

device is a scalable processor array consisting of a set of

SIMT (Single Instruction Multiple Threads) multipro-

cessors (SM), each of them containing several stream

processors (SPs). Different memory spaces are available

in each GPU on the system. The global memory (also

called device or video memory) is the only space

accessible by all multiprocessors. It is the largest and the

slowest memory space and it is private to each GPU on

the system. Moreover, each multiprocessor has its own

private memory space called shared memory. The shared

memory is smaller and also lower access latency than

global memory (NVIDIA 2008).

Table 1 Hardware features for the Teslas C1060 and M2050 GPUs

GPU element Feature Tesla C1060 Tesla M2050

Streaming processors (GPU cores) Cores per multiprocessor 8 32

Number of multiprocessors 30 14

Total number of cores 240 448

Clock frequency 1,296 MHz 1,147 MHz

Maximum number of threads Per multiprocessor 1,024 1,536

Per block 512 1,024

Per warp 32 32

SRAM memory available per multiprocessor 32-bit registers 16 K 32 K

Shared memory 16 KB 16 or 48 KB

L1 cache No 48 or 16 KB

Total SRAM (shared ? L1) 16 KB 64 KB

Global (video) memory Size 4 GB 3 GB

Speed 2 9 800 MHz 2 9 1,500 MHz

Width 512 bits 384 bits

Bandwidth 102 GB/s 144 GB/s

Technology GDDR3 DRAM GDDR5 DRAM

The CUDA programming model is based on a hierarchy

of abstraction layers (see Fig. 4b): The thread is the basic

execution unit that is mapped to a single SP. A block is a

batch of threads which can cooperate together because they

are assigned to the same multiprocessor, and therefore they

share all the resources included in this multiprocessor, such

as register file and shared memory. A grid is composed of

several blocks which are equally distributed and scheduled

Fig. 5 An outline of the Fermi

architecture used within the

Tesla M2050 GPU. We have 16

multiprocessors, each composed

of 32 cores. An L1 cache (up to

48 KB) is introduced in parallel

to the shared memory, and even

an L2 cache emerges with

768 KB. More resources are

devoted to floating-point

arithmetic too

Fig. 4 a The CUDA hardware

interface for the Tesla C1060

GPU. We can see how 240

stream processors are arranged

into 30 multiprocessors (z
dimension), each composed of 8

cores (x dimension). The

memory hierarchy extends on

dimension y to accommodate

registers, share memory, texture

cache and, finally, global

memory. b The CUDA

programming model. Threads

are mapped into cores using a

grid composed of blocks which

can only communicate through

global memory

Table 2 Summary of features for the host architectures used during our experimental survey. The Tesla GPUs are described separately in

Table 1

Hardware platform 4 Intel Xeon E5530 CPU (plus 4 Tesla C1060 GPUs) 1 Intel Q9440 CPU (plus 4 Tesla M2050 GPUs)

Cores per CPU 4 4

CPU cores and speed 16 @ 2.4 GHz 4 @ 2.66 GHz

Main memory (DRAM) 16 GB (?16 GB video) 8 GB (?12 GB video)

CUDA compiler nvcc Nvidia 2.3 nvcc Nvidia 3.1

among all multiprocessors. Finally, threads included in a

block are divided into batches of 32 threads called warps.

The warp is the scheduled unit, so the threads of the same

block are scheduled in a given multiprocessor warp by

warp. The programmer declares the number of blocks, the

number of threads per block and their distribution to

arrange parallelism given the program constraints (i.e., data

and control dependencies).

4.3 Our benchmark

Data policies and simulation performance are evaluated on

GPUs under a set of benchmarks generated by the WinSAT

program (Qasem 2009), which basically builds data struc-

tures for the simulator to run under a pre-established set up.

WinSAT can generate random SAT problems in DIMACS

CNF format file by configuring three parameters: the

number of variables (n), the number of clauses (m and the

number of literals per clause (k).

The number of membranes in our P system depends on

the number of CNF variables, n (membranes = 2n). We

vary this parameter from n = 13 variables (213 mem-

branes) to n = 21 variables (221 membranes), whereas the

number of literals (l = m 9 k) is kept constant in l = 256.

Memory requirements for each benchmark can be calcu-

lated according to Eq. 1. For example, the largest case

corresponds to n = 21, which requires 2 GB (note that

n = 22 would require 4 GB to run, and the Tesla M2050 is

endowed with 3 GB of video memory on each of its four

GPUs).

Size ¼ 2nðmembranesÞ � lðobjectsÞ � 4ðunitÞ bytes: ð1Þ

for additional explanations on coalescing and warps, we

refer the reader to NVIDIA 2008).

Blocking can be exploited on GPUs, taking advantage of

the on-chip shared memory by using tiles and dynamic

queues with the aim of increasing the bandwidth to device

memory (see Fig. 6). Tiles decompose the computational

domain into a number of independent chunks whose size

fits within the shared memory, and they are implemented

using the concept of CUDA blocks (see Fig. 4b). This way,

the whole data structure can benefit from this high-speed

and low-latency memory even though it represents just a

tiny fraction of the algorithm requirements. On the other

hard, dynamic queues allow to establish the number of

queued elements at real-time, thus increasing or decreasing

the number of queues handled by each block. Our simu-

lation requires to allocate memory dynamically as the data

set grows exponentially on every new iteration, and once

this memory is generated, we have to check for this

overwhelming amount of memory not to exceed our

hardware limits. Here, dynamic queues are used for the

generation phase and tiling is used during the checking

phase.

The simulation has to perform a Block Preprocessing

(BP) step before starting the Generation stage itself, which

is implemented through a CUDA kernel where a set of

membranes are partially created, placing them apart from

each other at a block size distance. An additional kernel is

created at the end of the simulation to perform the Gen-

eration locally to each block, followed by the CheckOut

stage. Each thread on a thread block cooperates for an

efficient load from global memory to shared memory of the

initial membrane generated by the Block Preprocessing

step (represented by black squares in Fig. 6). Then, the

Generation stage interacts with shared memory, saving

expensive loads/writes from/to global memory which are

around 400 times slower. Finally, the CheckOut stage is

performed over the data stored in shared memory after a

block-level synchronization. This checks whether a clause

makes true the CNF formula, and writes its result into

device memory.

Figure 7 shows the data policy used by the simulation of

the P system for the SAT problem on a GPU-based plat-

form. This simulator arranges data according to the ‘‘best

practices’’ existing at this moment for CUDA enabled

devices with CUDA Compute Capabilities (CCC) 1.3

(NVIDIA 2008). Nevertheless, those guidelines are mainly

focused on arithmetic intensive applications on a single

GPU. It remains to be seen whether they are valid on

architectures like GPU-based clusters with a much higher

degree of parallelism.

Within a GPU-based cluster, GPUs cannot interact with

each other, and a CPU process has to be created to monitor

each GPU independently. Note that the C1060 does not

5 The GPU implementation for the simulator

Our P system simulator for the SAT problem organizes
data depending on the features of the GPU architecture. In
short, a CUDA thread block is set for each membrane and a
CUDA thread per object (or set of objects) in the initial
multiset.

The first attempt for the SAT P system simulation on
GPUs, the Generation stage, is encoded as a CUDA kernel,
and it starts right after the Parallel Preprocessing step.
Once membranes have been generated, the CheckOut stage
starts its execution in a different kernel. Each thread block
loads a membrane from global memory, and then each
thread checks the rules associated with this stage. Finally,
each block returns whether its associated membrane makes
true the CNF formula or not. For these stages, all threads
within a CUDA thread block cooperate with coalesced
access to device memory (threads of the same warp access
the same memory segment either for reading or writing—

force us to use parallelism at CPU core level, as we have

exactly four CPUs, which can individually host each of the

required processes. This way, we do not need to use mul-

tithread capabilities on CPU cores to handle multiple

GPUs. Within our S2050 system, however, pthreads have

to be used to enable the four GPUs available. Note that

pthreads may also be useful to exploit multi-core paral-

lelism when the simulation runs entirely on a single CPU,

but the CPU times that we have measured as a mere ref-

erence for the GPU speed do not include such

enhancement.

Figure 7 shows how the master thread creates four CPU

threads (CPU context) to invoke the execution on each

GPU and manage its resources (i.e allocate device memory,

move data to/from the GPU, and so on). Resources created

on each CPU thread are not accessible by any other thread,

and there is no explicit initialization function for the run-

time API (NVIDIA 2008), which makes hard to measure

time in a reliable manner, particularly on multi-GPU

environments.

For the GPU case, the master process performs the

Parallel Preprocessing step as usual, generating as many

membranes as GPUs are involved in the simulation, and

performing the assignment.

At a starting point, the simulation barely exploits GPU

resources because the computation begins with a single

CUDA thread block (which represents the membrane

generated by the Parallel Preprocessing step). However,

the number of CUDA thread blocks grows exponentially in

the Generation stage along with the number of membranes,

and GPU resources are fully utilized at early stages of the

simulation. Another alternative consists of creating a larger

Fig. 6 P system simulation on a

single GPU using dynamic

queues and tiling. On the upper
side, dynamic queues and tile

sizes are established (Blocki

bytes) by placing the initial data

into separate global memory

spaces. On the lower side, the

local generation of the dynamic

queues is performed in Shared

Memory in order to proceed

with the Check Out using tiling

We see that GPUs are far ahead in performance: Around

three orders of magnitude faster, even after considering two

additional issues: (1) a feasible implementation which

would enable four cores on the CPU using pthreads and (2)

the GPU overhead caused by the initial and final data

transfers between CPU and GPU, GPU memory allocation,

and CUDA runtime initialization. This overhead is

accounted for in the last column of the table, being around

30–35% for the Tesla M2050 case).

6.2 Improvements with tiling

Table 3 also shows us the benefit of using the tiling tech-

nique and dynamic queues: up to 29 speed-up factor ver-

sus the non-tiling counterpart on GPUs, being more

rewarded on the newer Tesla M2050. This is because tiling

becomes more effective on caches, and the M2050 enables

a 16 KB L1 cache, a larger L2 cache, and provides three

times more room for the shared memory to allocate more

membranes. GPUs improve significantly the device mem-

ory bandwidth through shared memory usage, which is

explicitly used by the CUDA programmer. This way, one

can control the number of accesses and the way to access

on memory bounded applications like ours. Even though

the small size of the shared memory decreases GPU

occupancy, the benefit of reducing the number of accesses

Fig. 7 Data policy on a set of
four GPUs. The Master Process

creates four CPU threads for

dealing with each GPU context.

The dynamic generation of

thread blocks on each GPU is
shown, where the initial

membrane is highlighted as a
gray block (as input of each

GPU context)

set of initial membranes in the Parallel Preprocessing step
to fulfill that GPU resources are occupied right from the
beginning, but we have tested that this initial low usage of
GPU resources has a negligible impact, even on tiny
benchmarks.

6 Performance evaluation

This section evaluates our P systems implementations on
GPUs under different aspects: Comparison versus a CPU
counterpart, improvement degree attained through tiling,
speed-up obtained when upgrading the GPU generation,
and scalability when porting the code to a multi-GPU
system or a cluster of GPUs. We now address each of these
issues separately.

6.1 GPU versus CPU

Table 3 presents execution times on a high-end CPU and
the two high-end Tesla GPUs already introduced for the
set of simulations included within our benchmark. It is
worth mentioning that for a fair comparison we have
selected hardware platforms with a similar cost (invest-

ment ranges between 1.500 and 2.000 euros for each
single processor).

to device memory is much higher and this cost is widely

amortized.

Another factor that favors the GPU is the problem

instance size. Considering the slowest GPU time, speed-up

is 976.189 when the simulation covers 213 membranes and

reaches up to 1,446.839 when we extend it to 221 mem-

branes. The reason behind that lies in the data bandwidth,

which is much higher on GPUs. On small data sets,

memory latency plays its role, but when the data set grows

exponentially like in our benchmark, bandwidth is what

really matters.

Table 4 shows the breakdown of the total execution time

for a single GPU executing the benchmark with n = 21

variables and using a tiling version. These numbers also

evaluate the impact of the data block size, which is limited

by the on-chip shared memory space (16 KB for Tesla

C1060 and 48 KB for Tesla M2050). Considering those

constraints, we were able to measure performance for 2, 4

and 8 membranes per block on the Tesla C1060, and for 2,

4, 8, 16 and 32 membranes per block on the Tesla M2050.

Note that the number of global memory accesses and the

number of iterations in the Block Preprocessing kernel

intrinsically depends on the block size. In particular, eight

membranes per block require half of the memory accesses

and computations (that is, iterations) as compared to the

four membranes per block configuration. Similarly, four

membranes cut down to a half those required by the two

membranes per block case.

Likewise, memory accesses in the Generation and

CheckOut stages are reduced in a similar proportion as long

as the block size increases. However, the GPU resources

occupancy worsens for the eight membranes per block

case, because the shared memory usage per block prevents

from allocating more than one block per GPU multipro-

cessor. As a result, the overall improvement is barely 14%

versus the four membranes per block configuration on the

Tesla M2050, and then worsens if we continue increasing

this parameter (which cannot grow any more on the Tesla

C1060 due to shared memory constraints).

6.3 On a set of GPUs

Table 5 shows the performance for the tiling version of the

GPU simulator with eight membranes per block, and

varying the problem size. We vary here the number of

GPUs to study the scalability on a graphics multiprocessor.

Parallel Preprocessing time spent to arrange the execution

on multiple GPUs is ignored, though this time is negligible

as the simulation creates just four membranes on a four

GPUs configuration.

The multi-GPU environment shines with a linear speed-

up along with the number of GPUs. This result is expected

as the computational workload is evenly distributed on

GPUs. Furthermore, there is more room on each GPU

memory space, so higher workloads may be executed.

Nevertheless, a P systems simulation creates an exponen-

tial workspace to obtain polynomial time solutions for NP-

complete problems, so the simulation composed of n = 22

variables consumes 3.2 GB and already exceeds our Tesla

M2050 capabilities.

6.4 Overall performance

Table 6 summarizes the performance for all software

implementations and hardware enhancements exploited

through parallel strategies deployed along this paper. For

the smallest benchmark, GPU performance achieves an

impressive speed-up factor which exceeds three orders of

magnitude, and this factor even growing with the problem

size. Acceleration reaches its peak for the highest number

of membranes that can fit into video memory given our

hardware constraints (that is, the n = 21 variables case).

Table 3 Execution times (ms) on different hardware platforms (CPU vs. GPU) and enabling tiling on the GPU

Number

of membranes

CPU Xeon E5530 GPU (wo. tiling) GPU (w. tiling) GPU (w. overhead)

Tesla C1060 Tesla M2050 Tesla C1060 Tesla M2050 Tesla C1060 Tesla M2050

213 800.47 0.82 0.62 0.64 0.37 1.17 1.46

214 1,659.92 1.55 1.20 1.15 0.66 1.68 1.91

215 3,382.49 2.90 2.30 2.17 1.24 2.67 2.80

216 6,888.05 5.65 4.37 4.23 2.37 4.66 4.56

217 14,211.80 11.16 8.71 8.29 4.65 8.73 8.02

218 28,995.10 22.06 17.15 16.46 9.19 16.52 15.01

219 59,521.80 44.69 33.16 32.79 18.27 33.01 28.94

220 121,199.67 88.48 69.03 65.51 36.65 66.12 57.04

221 247,467.00 171.04 127.85 130.96 73.23 131.43 113.30

We vary the number of membranes and keep constant the number of literals, l = 256, and membranes per CUDA block, 8. Communication and

initialization times (runtime overhead) are included in the last column for the tiling case

overall amount of cache available for running the code,

which is multiplied by a factor of four in a memory-bound

algorithm like ours. On the down side, one might expect

more from the new Tesla M2050 GPU: 448 cores running

at 1.147 GHz deliver 513 GFLOPS, while those 240 cores

Table 4 Execution times (ms) on a single GPU depending on hardware platform and number of membranes per CUDA block for the particular

case of a P system composed of 221 membranes

GPU Block size (in membranes) 2 4 8 16 32

Tesla C1060 Par. and Block Preprocessing 83.59 41.56 20.68 n.a. n.a.

Generation and Check Out 113.12 104.02 103.61 n.a. n.a.

Total execution time 196.71 145.58 124.29 n.a. n.a.

Tesla M2050 Par. & Block Preprocessing 32.51 16.17 8.10 4.13 2.02

Generation and Check Out 85.71 75.90 65.12 65.63 101.24

Total execution time 118.22 92.07 73.22 69.76 103.26

Communication and initialization times (runtime overhead) are not accounted for (n.a. means ‘‘not available’’ due to shared memory constraints)

Table 5 Execution times (ms) for our P systems simulation on different number of GPUs. We vary the number of membranes and keep constant

the number of literals, l = 256, and membranes per CUDA block, 8

Number of membranes Number of GPUs GPU (implem. without tiling) GPU (implem. with tiling)

Tesla C1060 Tesla M2050 Tesla C1060 Tesla M2050

213 1 0.82 0.62 0.64 0.37

2 0.47 0.36 0.37 0.23

4 0.29 0.24 0.24 0.17

214 1 1.55 1.20 1.15 0.66

2 0.85 0.65 0.64 0.38

4 0.48 0.46 0.38 0.23

215 1 2.90 2.30 2.17 1.24

2 1.52 1.20 1.10 0.67

4 0.83 0.67 0.64 0.39

216 1 5.65 4.37 4.23 2.37

2 2.89 2.24 2.53 1.25

4 1.89 1.32 1.75 0.69

217 1 11.16 8.71 8.29 4.65

2 5.65 4.43 4.20 2.38

4 3.52 2.26 2.89 1.26

218 1 22.06 17.15 16.46 9.19

2 11.12 8.63 9.39 4.66

4 5.64 4.41 4.10 2.41

219 1 44.69 33.16 32.79 18.27

2 22.43 16.78 16.47 9.22

4 11.30 8.41 8.04 4.86

220 1 88.48 89.03 65.51 36.65

2 44.34 34.63 32.81 18.32

4 22.25 17.39 15.92 9.37

221 1 171.04 127.85 130.96 73.23

2 85.60 63.99 65.52 36.65

4 42.95 32.07 32.30 18.89

In general, all speed-ups increase with the problem size,
being more remarkable the scalability shown by the mul-

tiprocessor version: 3.879 when moving to four GPUs
means that we are barely 3% below the optimal line. This
outstanding behavior can find a good rationale in the

of the Tesla C1060 running at 1.296 deliver 311 GFLOPS.

Analytically, we have a 1.659 speed-up factor in raw

processing power; in practice, however, our improvement

fluctuates around 1.309 , confirming the theory that (1) our

simulations are not that demanding on arithmetic intensity

and (2) the bottleneck lies more on memory accesses.

Considering the largest problem size and amount of

parallelism we were able to expose, we reach a minimum

execution time of 18.89 ms on four Tesla M2050 GPUs,

each endowed with 448 cores for a total of 1,792 GPU

streaming cores. This represents an improvement factor of

13,1009 with respect to the departure time given by the

original simulator, that is, more than four orders of

magnitude.

7 Conclusions

Membrane Computing is an emergent branch of natural

computing inspired on the behavior of living cells,

whose devices are called P systems. They can provide a

polynomial time solution for NP-complete problems by

trading space for time because their massively parallel

and non-deterministic nature. These characteristics of P

systems make a challenge their simulation in either

known platform. Up to now, the P system simulation has

just been developed in sequential environments. This

article tackle its parallelization for a family of recognizer

P systems with active membranes, SAT problem on

different GPU platforms using the CUDA programming

model.

Our data placement analysis reveals that tiling increases

the bandwidth by taking advantage of data locality. The

effect is that performance improves between 60 and 90%

depending on the memory architecture and the way to

manage it. We also dedicate some efforts to reduce the cost

of preprocessing steps required for applying this technique.

GPUs constitute a good platform to simulate P systems

for SAT: The two levels of parallelism that P systems

exhibit, one at region level and another one at system level,

were exploited by our GPU implementation to reach speed-

up factors exceeding three orders of magnitude in our

baseline code. Taking this as a departure point, the newest

generation of many-core GPU architectures, Nvidia Fermi,

enhances the GPU with additional memory resources to

develop general purpose applications and more sophisti-

cated P systems models. This fact, combined with a good

scalability in our Tesla S2050 composed of four Fermi

GPUs, provided us an ideal framework to gain an addi-

tional order of magnitude, and thus, the largest simulation

composed of 2,097,152 membranes and 256 literals reaches

a magnificent speed-up factor of 13,1009 versus a high-

end Intel Xeon CPU.

Alternative models of P systems which could be used to

computationally replicate biological systems within the

framework of population and systems biology (i.e., prob-

abilistic/stochastic models) are well positioned to be suc-

cessfully simulated on multi- and many-core systems due

to its arithmetic intensity and large number of iterations

required to adjust the model. A high-performance imple-

mentation of those simulation models looks promising on

GPUs and we have provided some guidelines to succeed by

using the CUDA hardware architecture and its program-

ming paradigm. Moreover, the combination of cloud

computing and heterogeneous systems along with GPUs

represent another trend in modern systems to run even

larger simulations and benefit from the promising scala-

bility shown throughout our experimental study.

8 Future work

The Membrane Computing paradigm is being recently

applied to study the evolution of complex systems, and

Table 6 Summary for the execution times (ms) and speed-up attained by the set of implementations outlined in this paper

Code version Number of membranes (problem size)

213 215 217 219 221

1. CPU baseline simulator 800.47 3,382.49 14,211.80 59,521.80 247,467.00

2. Running on Tesla C1060 GPU 0.82 2.90 11.16 44.69 171.04

3. Running on Tesla M2050 GPU 0.62 2.30 8.71 33.16 127.85

4. With tiling on Tesla M2050 0.37 1.24 4.65 18.27 73.23

5. With tiling on 4 Tesla M2050 0.17 0.39 1.26 4.86 18.89

Departure GPU speed-up (2 vs. 1) 976.189 1,166.379 1,273.459 1,331.889 1,446.839

Speed-up on M2050 GPU (3 vs. 2) 1.329 1.269 1.289 1.349 1.339

Speed-up with tiling (4 vs. 3) 1.679 1.859 1.879 1.819 1.749

Speed-up on 4 GPUs (5 vs. 4) 2.179 3.179 3.699 3.759 3.879

Overall speed-up factor (5 vs. 1) 4,7089 8,6739 11,2799 12,2479 13,1009

P systems serve as a modeling tool for biological phe-

nomena, mainly within the framework of Systems Biology

and Population Dynamics (Păun and Romero-Campero

2008; Pérez-Jiménez and Romero-Campero 2006). Major

advantages of Membrane Computing as a formalism for

describing and simulating the behavior and evolution of

biological systems are the discretization and modularity of

their formal models.

In order to exploit those luring features, a P systems

based general framework for modeling ecosystems

dynamics was presented in Cardona et al. (2010a). This

tool has been used to model real ecosystems computa-

tionally, being two good exponents the scavenger birds

of the Catalan Pyrenees (Spain) (Cardona et al. 2010b)

and the zebra mussel in a reservoir at Ribarroja (Spain)

(Cardona et al. 2010a). The ultimate goal is to assist

ecologists to adopt a priori management strategies for the

real system by executing virtual experiments on a simulator

developed ad hoc for these P systems based models

(Martı́nez-del-Amor et al. 2010). Given that those simu-

lations are computationally expensive and quite demanding

on memory resources, we are developing a simulator on

CUDA to speed up the process by following similar tech-

niques to those described along this paper, which we

envision as a starting point for a significant number of

applications to benefit from our GPU acceleration methods

in the near future.

Acknowledgments This work has been jointly supported by the

Fundación Séneca (Agencia Regional de Ciencia y Tecnologı́a,

Región de Murcia) under grant 00001/CS/2007, by the Spanish

MICINN under grants TIN2009-13192 and TIN2009-14475-C04, by

the European Commission FEDER funds under grant Consolider In-

genio-2010 CSD2006-00046, and by the Junta of Andalucia of Spain

under projects P06-TIC02109 and P08-TIC04200. The authors wish

to thank anonymous reviewers for the suggestions received to

improve the quality of this article.

References

Alonso S, Fernández L, Arroyo F, Gil J (2008) A circuit implement-

ing massive parallelism in transition P systems. Int J Inf Technol

Knowl 2(1):35–42

Cardona M, Colomer MA, Margalida A, Palau A, Pérez-Hurtado I,

Pérez-Jiménez MJ, Sanuy D (2010a) A computational modeling

for real ecosystems based on P systems. Nat Comput. doi:

10.1007/s11047-010-9191-3

Cardona M, Colomer MA, Margalida A, Pérez-Hurtado I, Pérez-

Jiménez MJ, Sanuy D (2010b) A P system based model of an

ecosystem of some scavenger birds. LNCS 5957:182–195

Cecilia JM, Garcı́a JM, Guerrero GD, Martı́nez-del-Amor MA, Pérez-

Hurtado I, Pérez-Jiménez MJ (2010a) Simulating a P system

based efficient solution to SAT by using GPUs. Int J Log Alg

Prog 79(6):317–325

Cecilia JM, Garcı́a JM, Guerrero GD, Martı́nez-del-Amor MA, Pérez-

Hurtado I, Pérez-Jiménez MJ (2010b) Simulation of P systems

with active membranes on CUDA. Brief Bioinform

11(3):313–322

Cecilia JM, Garcı́a JM, Ujaldón M (2010c) CUDA 2D stencil

computation for the Jacobi method. In: Proceedings of the 10th

international workshop on state-of-the-art in scientific and

parallel computing, Reykjavik, Iceland

Cook SA (1971) The complexity of theorem-proving procedures. In

STOC ’71: Proceedings of the third annual ACM symposium on

theory of computing, New York, USA, pp 151–158

Datta K, Murphy M, Volkov V, Williams S, Carter J, Oliker L,

Patterson DA, Shalf J, Yelick K (2008) Stencil computation

optimization and auto-tuning on State-of-the-art multicore

architectures. In: Proceedings ACM/IEEE Supercomputing

2008, pp 1–12

Dı́az D, Graciani C, Gutiérrez-Naranjo MA, Pérez-Hurtado I, Pérez-

Jiménez MJ (2009) Software for P systems. In Paun Gh,

Rozenberg G, Salomaa A (eds) The Oxford handbook of

membrane computing. Oxford University Press, Oxford,

pp 437–454

Garcı́a-Quismondo M, Gutiérrez-Escudero R, Pérez-Hurtado I, Pérez-

Jiménez MJ, Riscos-Núñez A (2010) An overview of p-lingua

2.0. LNCS 5957:264–288

Krishnamoorthy S, Baskaran MM, Bondhugula U, Ramanujan J,

Rountev A, Sadayappan P (2010) Effective automatic parallel-

ization of stencil computation. In: Proceedings 2010 ACM

conference on programming languages, design and implemen-

tation, pp 235–244

Li J, Hu X, Pang Z, Qian K (2009) A parallel ant colony optimization

algorithm based on fine-grained model with GPU acceleration.

Int J Innov Comput Inf Control 5(11):3707–3715

Martı́nez-del-Amor MA, Pérez-Hurtado I, Pérez-Jiménez MJ, Riscos-

Núñez A, Colomer MA (2010) A new simulation algorithm for

multienvironment probabilistic P systems. In BIC-TA’2010:

proceedings 2010 IEEE fifth international conference on bio-

inspired computing: theories and applications, vol 1, pp 59–68

Mussi L, Cagnoni S (2009) Particle swarm optimization within the

CUDA architecture. In: GECCO conference

Nguyen V, Kearney D, Gioiosa G (2010) An extensible, maintainable

and elegant approach to hardware source code generation in

reconfig-p. Int J Log Alg Prog 79(6):383–439

NVIDIA (2008) CUDA programming guide 2.0

NVIDIA (2010) Next generation CUDA architecture. Code named

Fermi. http://www.nvidia.com/object/fermi_architecture.html

Păun G (2000) Computing with membranes. J Comput Sys Sci

61:108–143 (TUCS report no 208)

Păun G (2002) Membrane computing: an introduction. Springer,

Berlin

Păun G (2009) Active membranes. In: Păun Gh, Rozenberg G,

Salomaa A (eds) The Oxford handbook of membrane computing.

Oxford University Press, Oxford, pp 282–301

Păun G, Romero-Campero-FJ (2008) Membrane computing as a

modeling framework. LNCS 5016: 168–214

Pérez-Jiménez MJ, Romero-Campero FJ (2006) P systems, a new

computational modelling tool for systems biology. LNCS

4220:176–97

Pérez-Jiménez MJ, Romero-Jiménez Á Sancho-Caparrini F (2003)

Complexity classes in models of cellular computing with

membranes. Nat Comput 2(3):265–285

Pospichal P, Jaros J (2009) GPU-based acceleration of the genetic

algorithm. In: GECCO conference

Stutzle T (1998) Parallelization strategies for ant colony optimization.

Springer, Berlin

Qasem M (2009) WinSAT. http://users.ecs.soton.ac.uk/mqq06r/winsat

http://dx.doi.org/10.1007/s11047-010-9191-3
http://www.nvidia.com/object/fermi_architecture.html
http://users.ecs.soton.ac.uk/mqq06r/winsat

	The GPU on the simulation of cellular computing models
	Abstract
	Introduction
	Related work
	Our road towards evolutionary algorithms
	Membrane Computing and P systems
	P systems with active membranes
	The SAT problem
	P system simulation algorithm

	The parallel simulator for the P system solving the SAT problem
	Experimental setup
	Hardware features
	CUDA programming model
	Our benchmark

	The GPU implementation for the simulator
	Performance evaluation
	GPU versus CPU
	Improvements with tiling
	On a set of GPUs
	Overall performance

	Conclusions
	Future work
	Acknowledgments
	References

