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Abstract. We show that every pseudo hoop satisfies the Riesz Decomposition
Property. We visualize basic pseudo hoops by functions on a linearly ordered
set. Finally, we study normal-valued basic pseudo hoops giving a countable
base of equations for them.

1. Introduction

The Romanian algebraic school during the last decade contributed a lot to
noncommutative generalizations of many-valued reasoning which generalizes MV-
algebras by C.C. Chang [Cha]. They introduced pseudo MV-algebras, [GeIo] (in-
dependently introduced also in [Rac] as generalized MV-algebras), pseudo BL-
algebras, [DGI1, DGI2], pseudo hoops, [GLP]. We recall that pseudo BL-algebras
are also a noncommutative generalization of P. Hájek’s BL-algebras: a variety that
is an algebraic counterpart of fuzzy logic, [Haj].

However, as it was recently recognized, many of these notions have a very close
connections with notions introduced already by B. Bosbach in his pioneering pa-
pers on various classes of semigroups: among others he introduced complementary
semigroups (today known as pseudo-hoops). A deep investigation of these struc-
tures can be found in his papers [Bos1, Bos2]; more information are available in
his recent papers [Bos3, Bos4]. Nowadays, all these structures can be also studied
under one common roof, as residuated lattices, [GaTs].

Now all these structures are intensively studied by many experts. Very impor-
tant results were presented in [JiMo]. In the paper [Dvu4], it was proved that
every linearly ordered pseudo hoop is an ordinal sum of negative cones or intervals
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of lattice-ordered groups, see also [AgMo]. The paper [DGK] introduced interest-
ing classes of pseudo hoops, like systems MPH and MPHb of all pseudo hoops
(bounded pseudo hoops) M such that every maximal filter of M is normal, and the
system NVPH of normal-valued basic pseudo-hoops M such that every value in M
is normal in its cover. The latter one is inspired by analogous notions from theory
of ℓ-groups. In [DGK], there was proved that NVPH ⊂ MPH, MPHb ⊂ MPH
and NVPH, MPHb are varieties but MPH is not a variety, [DGK, Rem 4.2].

The main aim is to continue in the study of pseudo hoops, focusing on normal-
valued ones. We present an equational basis of normal-valued basic pseudo hoops.
In addition, we show that every pseudo hoop satisfies the Riesz Decomposition
Property (RDP) and we present also a Holland’s type representation of basic pseudo
hoops.

The paper is organized as follows. Section 2 gathers the basic notions and prop-
erties of pseudo hoops and Section 3 deals with basic pseudo hoops. Section 4
proves the Riesz Decomposition Property for pseudo hoops, and presents some re-
sults on filters. Some kind of the Holland Representation Theorem for basic pseudo
hoops which enables us to visualize them by functions on a linearly ordered set is
presented in Section 5. Finally, Section 6 studies normal-valued basic pseudo hoops
and presents a countable base of equations characterizing them. In addition two
open questions are formulated.

2. Basic Facts and Properties

We recall that according to [GLP], a pseudo hoop is an algebra (M ;⊙,→, , 1)
of type 〈2, 2, 2, 0〉 such that, for all x, y, z ∈ M,

(i) x⊙ 1 = x = 1⊙ x;
(ii) x → x = 1 = x x;
(iii) (x ⊙ y) → z = x → (y → z);
(iv) (x ⊙ y) z = y  (x z);
(v) (x → y)⊙ x = (y → x)⊙ y = x⊙ (x y) = y ⊙ (y  x).

We recall that ⊙ have higher priority than → or  , and those higher than ∧
and ∨, and ∧ is higher than ∨.

If ⊙ is commutative (equivalently →= ), M is said to be a hoop. If we set
x ≤ y iff x → y = 1 (this is equivalent to x  y = 1), then ≤ is a partial order
such that x ∧ y = (x → y)⊙ x and M is a ∧-semilattice.

We say that a pseudo hoop M

(i) is bounded if there is a least element 0, otherwise, M is unbounded,
(ii) satisfies prelinearity if, given x, y ∈ M, (x → y) ∨ (y → x) and (x  

y) ∨ (y  x) are defined in M and they are equal 1,
(iii) is cancellative if x⊙ y = x⊙ z and s⊙ x = t⊙ x imply y = z and s = t,
(iv) is a pseudo BL-algebra if M is a bounded lattice satisfying prelinearity.

For a pseudo BL-algebra, we define x− = x → 0 and x∼ = x  0. A pseudo
BL-algebra is said to be a pseudo MV-algebra if x−∼ = x = x∼− for every x ∈ M.

From (v) of the definition of pseudo hoops we have that a pseudo hoop is can-
cellative iff x⊙ y ≤ x⊙ z and s⊙ x ≤ t⊙ x imply y ≤ z and s ≤ t.

Many examples of pseudo hoops can be made from ℓ-groups. Now let G be an
ℓ-group (written multiplicatively and with a neutral element e). On the negative
cone G− = {g ∈ G : g ≤ e} we define: x ⊙ y := xy, x → y := (yx−1) ∧ e,
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x  y := (x−1y) ∧ e, for x, y ∈ G−. Then (G−;⊙,→, , e) is an unbounded
(whenever G 6= {e}) cancellative pseudo hoop. Conversely, according to [GLP,
Prop 5.7], every cancellative pseudo hoop is isomorphic to some (G−;⊙,→, , e).

If u ≥ e is a strong unit unit (= order unit) in G, we define on [−u, e] operations
x⊙ y := (xy) ∨ (−u), x → y := (yx−1) ∧ e, x y := (x−1y) ∧ e, for x, y ∈ [−u, e].
Then ([−u, e];⊙,→, ,−u, e) is a bounded pseudo hoop (= pseudo MV-algebra).
By [Dvu1], every pseudo MV-algebra is of the form ([−u, e];⊙,→, ,−u, e).

For any x ∈ M and any integer n ≥ 0 we define xn inductively: x0 := 1 and
xn := xn−1 ⊙ x for n ≥ 1.

A subset F of a pseudo hoop is said to be a filter if (i) x, y ∈ F implies x⊙y ∈ F,
and (ii) x ≤ y and x ∈ F imply y ∈ F. We denote by F(M) the set of all filters
of M. According to [GLP, Prop 3.1], a subset F is a filter iff (i) 1 ∈ F , and (ii)
x, x → y ∈ F implies y ∈ F (x, x  y ∈ F implies y ∈ F ), i.e., F is a deductive

system. If a ∈ M, then the filter, F (a), generated by a is the set

F (a) = {x ∈ M : x ≥ an for some n ≥ 1}.

A filter F is normal if x → y ∈ F iff x y ∈ F . This is equivalent a⊙F = F ⊙a
for any a ∈ M ; here a ⊙ F = {a ⊙ h : h ∈ F} and F ⊙ a = {h ⊙ a : h ∈ F}.
If F is a normal filter, we define xθF y iff x → y ∈ F and y → x ∈ F , then θF
is a congruence on M , [GLP, Prop 3.13], and M/F = {x/θF : x ∈ M} is again
a pseudo hoop, where x/θF is an equivalence class corresponding to the element
x ∈ M, we write also x/F = x/θF . Moreover, there is a one-to-one correspondence,
[GLP, Prop 3.15], among the set of normal filters, F, and the set of congruences.

We recall that a filter F of a pseudo hoop M is called maximal if it is a proper
subset of M and not properly contained in any proper filter of M . We recall that if
M is not bounded, then it can happen that M has no maximal filter; for example
this is true for the real interval (0, 1] equipped with s⊙t = min{s, t}, and s → t = 1
iff s ≤ t, otherwise s → t = t (s, t ∈ (0, 1]). In [Dvu3], it was proved that every
linear pseudo BL-algebra admits a unique maximal filter, and this filter is normal.

3. Basic Pseudo Hoops

A pseudo hoop M is said to be basic if, for all x, y, z ∈ M,

(B1) (x → y) → z ≤ ((y → x) → z) → z;
(B2) (x y) z ≤ ((y  x) z) z.

It is straightforward to verify that any linearly ordered pseudo hoop and hence
any representable pseudo hoop (= a subdirect product of linearly ordered pseudo
hoops) is basic.

By [GLP, Prop 4.6], every basic pseudo hoop is a distributive lattice. By [GLP,
Prop 4.6], M is a distributive lattice with prelinearity.

We note, see [GLP, Lem 2.6], that if
∨

i bi exists, then so do
∨

i(a ⊙ bi) and∨
i(bi ⊙ a), moreover, a⊙ (

∨
i bi) =

∨
i(a⊙ bi) and (

∨
i bi)⊙ a =

∨
i(bi ⊙ a).

Proposition 3.1. If a pseudo hoop M satisfies prelinearity, then ⊙ distributes ∧
from both sides, i.e. for all x, y, z ∈ M, we have

(i) z ⊙ (x ∧ y) = (z ⊙ x) ∧ (z ⊙ y),
(ii) (x ∧ y)⊙ z = (z ⊙ z) ∧ (y ⊙ z).

Proof. First of all, if a ≤ b, then a ≤ c  b and a ≤ c → b for any c ∈ M. Indeed,
a ≤ b ≤ c b.
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Second, for all a, b, c ∈ M, (a  b)  (a  c) = (b  a)  (b  c) and
(a → b) → (a → c) = (b → a) → (b → c). In fact, by [GLP, Thm 2.2], (a  b)  
(a  c) = (a ⊙ (a  b))  c = (a ∧ b)  c = (b ∧ a)  c = (b ⊙ (b  a))  c =
(b a) (b c). In the same way we prove the second equality.

By [GLP, Lem 2.5(19)], we have x  y = x  (x ∧ y) ≤ z ⊙ x  z ⊙ (x ∧ y).
Hence, by the first part, x  y ≤ (z ⊙ x  z ⊙ y)  (z ⊙ x  z ⊙ (x ∧ y)). In
a similar way, y  x ≤ (z ⊙ y  z ⊙ x)  (z ⊙ y  z ⊙ (x ∧ y)). By the second
remark of the proof, the right-hand sides of the last two inequalities are the same, we
denote it by s. Hence, x y, y  x ≤ s and prelinearity implies s = 1. Therefore,
z⊙x z⊙ y ≤ z⊙x z⊙ (x∧y) and (z⊙x)⊙ (z⊙x z⊙ y) ≤ z⊙ (x∧y), i.e.,
(z⊙x)∧ (z⊙y) ≤ z⊙ (x∧y). The converse inequality, z⊙ (x∧y) ≤ (z⊙x)∧ (z⊙y)
is obvious. Hence, (i) holds.

The proof of (ii) is similar. �

According to [GLP], we define, for all x, y ∈ M :

x ∨1 y := ((x y) → y) ∧ ((y  x) → x),

x ∨2 y := ((x → y) y) ∧ ((y → x) x).

Then x, y ≤ x ∨i y for i = 1, 2.

Proposition 3.2. If M is a pseudo hoop with prelinearity, then M is basic, M is

a lattice, and

((x y) → y) ∧ ((y  x) → x) = x ∨ y = ((x → y) y) ∧ ((y → x) x) (3.1)

for all x, y ∈ M.

Proof. Since every pseudo hoop is a ∧-semilattice, we have to show that x∨y exists
inM. Let a be the left-hand side of (3.1). Due to [GLP, Prop 2.11], a ≥ x, y. Now let
x, y ≤ c.We have a = a⊙1 = a⊙((x y)∨(y  x)) = (a⊙(x y))∨(a⊙(y  x)).
On the other hand, a ⊙ (x  y) = [((x  y) → y) ∧ ((y  x) → x)] ⊙ (x  y) ≤
((x  y) → y) ⊙ (x  y) = (x  y) ∧ y ≤ y ≤ c. In a similar way, we have
a⊙ (y  x) ≤ x ≤ c. Hence, a ≤ c.

The second equality can be proved in a similar approach.
Now applying [GLP, Prop 4.7], we have that M is basic. �

Remark 3.3. Proposition 3.2 generalizes [GLP, Prop 4.7] where it was proved that
a pseudo hoop M is basic iff ∨1 and ∨2 are associative and (x y)∨1 (y  x) = 1
for all x, y ∈ M.

Proposition 3.4. The variety of bounded pseudo hoops with prelinearity is termwise

equivalent to the variety of pseudo BL-algebras.

Proof. If M is a bounded pseudo hoop with prelinearity, according to Proposition
3.2, M is basic and due to [GLP, Prop 4.10], M is termwise equivalent to a pseudo
BL-algebra.

Now let M be a pseudo BL-algebra, then it is a bounded pseudo hoop with
prelinearity. �
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4. Filters, Prime Filters and the Riesz Decomposition Property

In this section, we extend some results on filters and we show that every pseudo
hoop satisfies the Riesz Decomposition Property. This property was known only
for pseudo MV-algebras, [Dvu1].

We are saying that a pseudo hoop M satisfies the Riesz decomposition property

((RDP) for short) if a ≥ b⊙ c implies that there are two elements b1 ≥ b and c1 ≥ c
such that a = b1 ⊙ c1. For example, (i) every pseudo MV-algebra satisfies (RDP),
(ii) every cancellative pseudo hoop (∼= G− for some ℓ-group G) satisfies (RDP),
(iii) if M0 and M1 satisfies (RDP), so does M0 ⊕ M1, (iv) every linearly ordered
pseudo hoop (thanks to the Aglianò-Montagna decomposition of linearly ordered
pseudo hoops [Dvu4]) satisfies (RDP), (v) if G is an ℓ-group, then the kite pseudo
BL-algebraG† satisfies (RDP) (for kites see e.g. [JiMo, DGK]). In what follows, we
show that all the latter examples are special cases of a more general result saying
that every pseudo hoop satisfies (RDP).

Theorem 4.1. Every pseudo hoop M satisfies (RDP).

Proof. Let a, b, c ∈ M be such that b⊙ c ≤ a. Then we denote

b′ := ((c → a) a) → a, c′ := (c → a) a.

Clearly c ≤ (c → a)  a = c′. Moreover, b ⊙ c ≤ a yields b ≤ c → a. Thus
also (c → a) a ≤ b a holds. Because pseudo hoops are residuated structures,
b⊙ ((c → a) a) ≤ a and b ≤ ((c → a) a) → a = b′ holds. Finally, we have

b′ ⊙ c′ = (((c → a) a) → a)⊙ ((c → a) a)

= ((c → a) a) ∧ a

= a.

�

If M is a pseudo hoop and a, b ∈ M, then

F (a⊙ b) = F (a) ∨ F (b) = F (b⊙ a), (4.1)

If a ∨ b exists in M , then, [GLP, Prop 3.4],

F (a ∨ b) = F (a) ∩ F (b). (4.2)

Let F be a filter of a pseudo hoop M. We say that two elements a, b ∈ M are
in a relation a ∼=F b iff a → b, b → a ∈ F. Due to [GLP, Prop 3.6], ∼=F is an
equivalence relation. Moreover, a ∼=F b iff x ⊙ a = y ⊙ b for some x, y ∈ F. We
denote by Fa := a/F the equivalent class corresponding to the element a ∈ M
with respect to ∼=F , hence F ⊙ a = {x ⊙ a : x ∈ F} ⊆ Fa and F ⊙ 1 = F1 = F.
We can introduce a partial binary operation ≤:=≤F on M/F = {Fa : a ∈ M} via
Fa ≤ Fb iff a → b ∈ F. This is equivalent to x ⊙ a ≤ b for some x ∈ F. Indeed,
let Fa ≤ Fb, set x = a → b ∈ F and then a ∧ b = (a → b) ⊙ a ≤ b. Conversely,
let x ⊙ a ≤ b for some x ∈ F. Then 1 = x ⊙ a → b = x → (a → b) which yields
x ≤ a → b so that a → b ∈ F.

Hence, the relation ≤:=≤F is a partial ordering on the set of M/F : (i) clearly
Fa ≤ Fa, (ii) if Fa ≤ Fb and Fb ≤ Fa, then Fa = Fb, and if Fa ≤ Fb, Fb ≤ Fc,
then Fa ≤ Fc because we have v1 ⊙ a ≤ b and v2 ⊙ b ≤ c for some v1, v2 ∈ F. Then
v2 ⊙ v1 ⊙ a ≤ v2 ⊙ b ≤ c.
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These quotient classes are so-called the right classes. We can define also the left
classes under the equivalence relation a F

∼= b iff a  b, b  a ∈ F, and let aF be
the equivalence class with respect to F

∼= . Then aF ≤ bF iff a ⊙ f ≤ b for some
f ∈ F.

Let F(M) be the system of all filters of a pseudo hoop M.

Proposition 4.2. The system of all filters, F(M), of a pseudo hoop M is a

distributive lattice under the set-theoretical inclusion. In addition, F ∩
∨

i Fi =∨
i(F ∩ Fi).

Proof. If {Fi} is a system of filters, then
∨

i Fi = {x ∈ M : x ≥ f1 ⊙ · · · ⊙ fn, f1 ∈
Fi1 , . . . , fn ∈ Fin , for some i1, . . . , in, n ≥ 1} ∈ F(M), and

⋂
i Fi ∈ F(M).

It is clear that F ∩
∨

i Fi ⊇
∨

i(F ∩Fi). Let x ∈ F ∩
∨

i Fi. Then x ≥ f1⊙· · ·⊙fn
where f1 ∈ Fi1 , . . . , fn ∈ Fin . Because every pseudo hoop satisfies (RDP), Theorem
4.1, x = f0

1 ⊙ · · · ⊙ f0
n where f0

j ≥ fj . Therefore, x ≤ f0
j so that f0

j ∈ F ∩ Fij and

x ∈
∨n

j=1(F ∩ Fij ) ⊆
∨

i(F ∩ Fi).
The lattice distributivity is clear from the first part of the present proof. �

A filter F of a pseudo hoop M is said to be prime if, for two filters F1, F2 on
M, F1 ∩ F2 ⊆ F entails F1 ⊆ F or F2 ⊆ F. We denote by P(M) the system of all
prime filters of a pseudo hoop M.

We note a prime filter F isminimal prime if it does not contains properly another
prime filter of M. We stress that a minimal prime filter exists always in any basic
pseudo hoop M which admits a maximal lattice ideal of the lattice reduct of M.

Proposition 4.3. Let F be a filter of a basic pseudo hoop M. Let us define the

following statements:

(i) F is prime.

(ii) If f ∨ g = 1, then f ∈ F or g ∈ F.
(iii) For all f, g ∈ M, f → g ∈ F or g → f ∈ F.
(iii’) For all f, g ∈ M, f  g ∈ F or g  f ∈ F.
(iv) If f ∨ g ∈ F, then f ∈ F or g ∈ F.
(v) If f, g ∈ M, then there is c ∈ F such that c⊙ f ≤ g or c⊙ g ≤ f.
(vi) If F1 and F2 are two filters of M containing F, then F1 ⊆ F2 or F2 ⊆ F1.
(vii) If F1 and F2 are two filters of M such that F ( F1 and F ( F2, then

F ( F1 ∩ F2.
(viii) If f, g /∈ F, then f ∨ g /∈ F.

Then all statements (i)–(viii) are equivalent.

Proof. (i) ⇒ (ii). By (4.2), F (f)∩F (g) = F (f∨g) = F (1) = {1}, so that F (f) ⊆ F
or F (g) ⊆ F, and whence f ∈ F or g ∈ G.

(ii) ⇒ (iii), and (ii) ⇒ (iii’). They follow from prelinearity.
(iii) ⇒ (iv). Let f ∨ g ∈ F. Let f → g ∈ F or g → f ∈ F. Since (f ∨ g) → g =

f → g, in the first case we have g = g ∧ (f ∨ g) = ((f ∨ g) → g)⊙ (f ∨ g) ∈ F and
similarly in the second one. In the same manner, we have (iii’) ⇒ (iv).

(iv) ⇒ (v). From prelinearity, let e.g. c := f → g ∈ F. Then c ⊙ f = (f →
g)⊙ f = f ∧ g ≤ g.

(v) ⇒ (i). Let F1 ∩ F2 ⊆ F and let F1 ( F and F2 ( F. There are f ∈ F1 \ F
and g ∈ F2 \ F. By (v), there is c ∈ F such that, say c ⊙ f ≤ g. By (4.2), we
have F (f ∨ g) = F (f) ∩ F (g) ⊆ F1 ∩ F2 ⊆ F so that f ∨ g ∈ F. Therefore,
F ∋ c⊙ (f ∨ g) = c⊙ f ∨ c⊙ g ≤ g ∈ F, a contradiction.
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(v) ⇒ (vi). Suppose that f ∈ F1 \ F2 and g ∈ F2 \ F1. Then there is c ∈ F such
that e.g. c⊙ f ≤ g giving a contradiction g ∈ F1.

(vi) ⇒ (vii). Due to the assumption, F1 ⊆ F2 or F2 ⊆ F1 thus F ( F1 ∩ F2.
Because every pseudo hoop satisfies (RDP), we have the following implications.
(vii) ⇒ (viii). By Proposition 4.2 and (4.2), we have F ( (F ∨ F (f)) ∩ (F ∨

F (g)) = F ∨ F (f ∨ g) giving f ∨ g /∈ F.
(viii) ⇒ (iv). This is evident. �

Now we present the Prime Filter Theorem for basic pseudo hoops.

Lemma 4.4. Let M be a basic pseudo hoop. If A is a lattice ideal of M and F is

a filter of M such that F ∩ A = ∅, then there is a prime filter P of M containing

F and disjoint with A.

Proof. According to Zorn’s Lemma, there is a maximal filter ofM containing F and
disjoint with A. Applying criterion Proposition 4.3(iii), we show that P is prime.
If not, there are two elements f and g such that f → g, g → f /∈ P.

Let P1 = P ∨ F (f → g) and P2 = P ∨ F (g → f). Due to the choice of P ,
there are c1 ∈ P1 ∩ A and c2 ∈ P2 ∩ A. Hence, c1 ≥

∏n

i=1(si ⊙ (f → g)) and
c2 ≥

∏n

i=1(ti ⊙ (g → f)), where si, tj ∈ P.
Set s = s1 ⊙ · · · ⊙ sn, t = t1 ⊙ · · · ⊙ tn, and u = s⊙ t ∈ P.
We recall an easy equality g ∨ (h⊙ k) ≥ (g ∨ h)⊙ (g ∨ k).
Then c1 ∨ c2 ≥

∏n

i=1(si ⊙ (f → g)) ∨
∏n

i=1(ti ⊙ (g → f)) ≥
∏

i(
∏

j(u ⊙ (f →

g))∨(u⊙(g → f))) ≥
∏

i,j(u⊙(f → g)∨u⊙(g → f)) = u2n ∈ P Hence, c1∨c2 ∈ P
that gives a contradiction. �

We recall that an element u of M is said to be a strong unit in M if the filter of
M generated by u is equal to M.

Remark 4.5. Let M be a basic pseudo hoop.
(1) The value of an element g ∈ M \ {1} is any filter V of M that is maximal

with respect to the property g /∈ V. Due to Lemma 4.4, a value V exists and it is
prime. Let Val(g) be the set of all values of g < 1. The filter V ∗ generated by a
value V of g and by the element g is said to be the cover of V.

(2) We recall that a filter F is finitely meet-irreducible if, for each two filters
F1, F2 such that F ( F1 and F ( F2, we have F ( F1 ∩ F2. Due to Proposition
4.3(vii), the finite meet-irreducibility is a sufficient and necessary condition for a
filter F to be prime.

(3) Proposition 4.3(iii) says that F is prime iff the set of quotient classes {Fa :
a ∈ M} is linearly ordered.

(4) Proposition 4.3(vi) says that the system of prime filters, P(M), is a root

system.
(5) M has a maximal filter iff M admits a strong unit u.

Importance of values can be seen from the following characterization.

Lemma 4.6. Let M be a basic pseudo hoop. Then f ≤ g if and only if V f ≤ V g
for all values V in M. Moreover, let given a ∈ M \ {1}, Va be a fixed value of a.
Then f ≤ g if and only if Vaf ≤ Vag for each a ∈ M.

Proof. First we show that given a value V, we have V (f ∧g) = V f ∧V g and if f ∨g
exists in M then V (f ∨ g) = V f ∨ V g.
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It is clear that V (f ∧ g) ≤ V f, V g and assume V h ≤ V f, V g. By definition of
right classes, there are c1, c2 ∈ V such that c1 ⊙ h ≤ f and c2 ⊙ h ≤ g. Hence,
c1 ≤ h → f, c2 ≤ h → g and c1 ∧ c2 ≤ (h → f) ∧ (h → g) = h → (f ∧ g) giving
(c1 ∧ c2)⊙ h ≤ f ∧ g.

Similarly, if V h ≥ V f, V g, there are c1, c2 ∈ V such that c1⊙f ≤ h and c2⊙g ≤ h.
Then c1 ≤ f → h and c2 ≤ g → h giving c1∧c2 ≤ (f → h)∧(g → h) = (f ∨g) → h.
Whence, (c1 ∧ c2)⊙ (f ∨ g) ≤ h.

Now suppose V f ≤ V g for all values V in M and let f 6≤ g. Then f → g < 1 and
there is a value V ′ of f → g. Then V ′(f → g) < V ′1 = V ′ and V ′(f ∧g) = V ′((f →
g)⊙ f) ≤ V ′f. We note that V ′f 6≤ V ′(f ∧ g) because then c⊙ f ≤ (f ∧ g) for some
c ∈ V ′ and c ≤ f → (f ∧ g) = f → g giving a contradiction f → g ∈ V ′. By the
first part of the proof, V ′f = V ′f ∧ V ′g = V ′(f ∧ g) < V ′f that is a contradiction.

The converse statement is obvious.
The proof of the second statement is the same as that of the first one. �

5. Visualization

This section will visualize basic pseudo hoops in a Holland’s Representation
Theorem type, see e.g. [Dar] which says that every ℓ-group can be embedded into
the system of automorphisms of a linearly ordered set. We show that this result
can be extended also for basic pseudo hoops. We will visualize a basic pseudo hoop
by a system of nondecreasing mapping of a linearly ordered set where ⊙-operation
corresponds to composition of functions, and the arrows → and  are defined in a
special way.

Let Ω be a linearly ordered set. A mapping f : Ω → Ω is said to be residutaed

provided there exists a mapping f∗ : Ω → Ω such that (x)f ≤ y iff x ≤ (y)f∗, for
all x, y ∈ Ω, and we refer to f∗ as the residual of f.

Let e = idΩ. Since (x)f ≤ (x)f we have x ≤ (x)f ◦f∗ i.e., e ≤ f ◦f∗ and similarly
f∗ ◦ f ≤ e. In addition, f = f ◦ f∗ ◦ f and f∗ = f∗ ◦ f ◦ f∗.

If f∗
1 and f∗

2 are residuals of f , then f∗
1 = f∗

2 . Indeed, we have f∗
1 = f∗

1 ◦ e ≤
f∗
1 ◦ f ◦ f∗

2 ≤ f∗
2 and by symmetry, f∗

1 = f∗
2 . Therefore, (f ◦ g)∗ = g∗ ◦ f∗.

For example, if P is a prime filter of a basic pseudo hoop, set Ω = M/P and
given a ∈ M , let fa : M/P → M/P be a mapping defined by (Px)fa := Px ⊙ a,
Px ∈ ΩP . Then the residual of fa is a mapping f∗

a such that (Px)f∗
a = P (a → x),

Px ∈ Ω.
Let Mon(Ω) be the set of all mappings α : Ω → Ω such that ω1 ≤ ω2 entails

(ω1)α ≤ (ω2)α. We say that α ≤ β iff (ω)α ≤ (ω)β for each ω ∈ Ω. Then Mon(Ω)
is a lattice ordered semigroup with the neutral element e = idΩ.

This is the main result of the present section:

Theorem 5.1. Let M be a basic pseudo hoop. Then there is a linearly ordered set

Ω and a subsystem M(M) of Mon(Ω) such that M(M) is a sublattice of Mon(Ω)
containing e and each element of it is residuated. Moreover, M(M) can be con-

verted into a basic pseudo hoop where the operations are defined pointwise and is

isomorphic to M with the ⊙-operation corresponding to composition of functions.

Proof. Let {Vg : g < 1} be a system of values, where Vg is a fixed value of g < 1.
We define a mapping φg : M → Mon(Ωg), where Ωg = M/Vg, by

(Vgx)φg(a) := Vgx⊙ a, Vgx ∈ Ωg (a ∈ M).
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Then (i) if a ≤ b, then φg(a) ≤ φg(b), (ii) φg(a)◦φg(b) = φg(a⊙ b), (iii) φg(a∨ b) =
φg(a) ∨ φg(b), (iv) φg(a ∧ b) = φg(a) ∧ φg(b). Let M0 =

∏
{Mon(Ωg) : g < 1} and

order M0 by coordinates. Define a mapping f : M → M0 by

f(a) = {φg(a) : g < 1}, a ∈ M.

By Lemma 4.6, f(a) ≤ f(b) iff a ≤ b and f is injective.
Let us totally order the elements of M \ {1} by {gt : t ∈ T }, where T is a totally

ordered set. Let us set Ωt := M/Vgt and without loss of generality we can assume
Ωs ∩ Ωt = ∅ for all s, t ∈ T such that s 6= t. Let Ω =

⋃
t∈T Ωt, and define a partial

order 4 on Ω by ω1 4 ω2 iff ω1 ∈ Ωs and ω2 ∈ Ωt and s < t or s = t and ω1 ≤ ω2

in Ωs. Then Ω is totally ordered with respect to 4.
Define a mapping f0 : M → Mon(Ω) by: given ω ∈ Ω, there is a unique t ∈ T

such that ω ∈ Ωt. Let (ω)f0(a) = (ω)(φgt)(a) ∈ Ωt. Hence, if a ∈ M , then f0(a)|Ωt

maps Ωt into Ωt for all t ∈ T. Similarly as for f , f0 is injective and it maps M onto
M(M) := f0(M). We have (i) f0(1) = idΩ =: e, (ii) f0(a) ≤ f0(b) iff a ≤ b, (iii)
f0(a) ◦ f0(b) = f0(a⊙ b), (iv) f0(a∨ b) = f0(a)∨ f0(b), (v) f0(a∧ b) = f0(a)∧ f0(b).
The residual of f0(a), f

∗
0 (a), is defined as follows: if ω ∈ Ωt then ω = Vgtx for some

x ∈ M and then we set (ω)f∗(a) = Vg(x → a).
Now we endow M(M) with the operations: f0(a) ⊙ f0(b) := f0(a) ◦ f0(b) =

f0(a ⊙ b) and f0(a) → f0(b) := f0(a → b) and f0(a)  f0(b) := f0(a  b) for all
a, b ∈ M. Then M(M) is a basic pseudo hoop that is an isomorphic image of M
under the isomorphism a 7→ f0(a), a ∈ M. �

Question 1. How we can define → and  in Theorem 5.1 to be defined by
points ? We recall that in [Dvu5], we have a representation of pseudo MV-algebras
by automorphisms defined on a linearly ordered sets where all operations, ⊙,→, 
are defined by points.

6. Normal-Valued Basic Pseudo Hoops

This is the main part of the this article, where we will study normal-valued basic
pseudo hoops. In particular, we present a countable system of equations which
completely characterize them.

Given f ∈ M, we define the left and right conjugates, λf and ρf , of x ∈ M by f
as follows

λf (x) := f  (x⊙ f), ρf (x) := f → (f ⊙ x).

Then a filter V is normal iff λf (V ) ⊆ V and ρf(V ) ⊆ V for any f ∈ M.
By [BlTs, Lem 5.2],

λf (x⊙ y) ≤ λf (x) ⊙ λf (y), ρf (x⊙ y) ≤ ρf (x)⊙ ρf(y)

for all x, y ∈ M.
Let V be a filter and f ∈ M. We define

f−1V f := {f  (v ⊙ f) : v ∈ V } = λf (V ),

fV f−1 := {f → (f ⊙ v) : v ∈ V } = ρf (V ).

Then a value V of a basic pseudo hoop is normal in V ∗ iff V f = fV for each
f ∈ V ∗ iff f−1V f ⊆ V and fV f−1 ⊆ V for each f ∈ V ∗. We say that a basic
pseudo-hoop M is normal-valued if every value V of M is normal in its cover V ∗.
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According to Wolfenstein, [Dar, Thm 41.1], an ℓ-group G is normal-valued iff
every a, b ∈ G− satisfy b2a2 ≤ ab, or in our language

b2 ⊙ a2 ≤ a⊙ b. (6.1)

Hence, every cancellative pseudo hoop M is normal-valued iff (6.1) holds for all
a, b ∈ M. Moreover, every representable pseudo hoop satisfies (6.1).

Similarly, a pseudo MV-algebra is normal-valued iff (6.1) holds, see [Dvu2, Thm
6.7].

If (6.1) holds in a pseudo hoop M, then given n ≥ 1 there is an integer kn ≥ 1
such that for all a, b ∈ M

(a⊙ b)n ≥ akn ⊙ bkn . (6.2)

Indeed, by induction, we have (a⊙ b)n+1 = (a⊙ b)n ⊙ a⊙ b ≥ akn ⊙ bkn ⊙ a⊙ b ≥
akn+2 ⊙ b2kn+1 ≥ a2kn+2 ⊙ b2kn+2.

If A,B are two subsets of M, we denote by A⊙B = {a⊙ b : a ∈ A, b ∈ B}.

Proposition 6.1. Let M be a pseudo hoop. Then (i) implies (ii), and (ii) and (iii)
are equivalent, where

(i) Condition (6.1) holds.
(ii) F (a)⊙ F (b) = F (a⊙ b) = F (b⊙ a) = F (b)⊙ F (a) for a, b ∈ M.
(iii) F ⊙G = F ∨G = G⊙ F for all filters F,G ∈ F(M).

Proof. (i) ⇒ (ii). Let x ∈ F (a ⊙ b). There exists n ≥ 1 and kn ≥ 1 such x ≥
(a⊙ b)n ≥ akn ⊙ bkn . (RDP) yields that x = a1 ⊙ b1 where a1 ≥ akn and b1 ≥ bkn

so that x = a1 ⊙ b1 ∈ F (a)⊙ F (b).
Conversely, let x ∈ F (a) ⊙ F (b). Then x = a1 ⊙ b1 for some a1 ∈ F (a) and

b1 ∈ F (b). But then x ∈ F (a)∨F (b) = F (a⊙b) when we have used (4.1). Similarly,
F (b)⊙ F (a) = F (b ⊙ a).

(ii) ⇒ (iii). It is clear that F ⊙ G ⊆ F ∨ G. Now take x ∈ F ∨ G. Then
x ≥ a1 ⊙ b1 ⊙ · · · ⊙ an ⊙ bn where ai ∈ F and bi ∈ G. (RDP) yields x = a01 ⊙ b01 ⊙
· · ·⊙a0n⊙b0n for a0i ≥ ai and b0i ≥ bi. Then x ∈ F (a1)⊙F (b1)⊙· · ·⊙F (an)⊙F (bn) =
F (a1) ∨ F (b1) ∨ · · · ∨ F (an) ∨ F (bn) = F (a1) ∨ · · · ∨ F (an) ∨ F (b1) ∨ · · · ∨ F (bn) =
F (a1 ⊙ · · · ⊙ an) ∨ F (b1 ⊙ · · · ⊙ bn) ⊆ F ∨G.

(iii) ⇒ (ii). We have F (a) ⊙ F (b) = F (a) ∨ F (b). (4.1) entails F (a ⊙ b) =
F (a) ∨ F (b) = F (b⊙ a). �

Lemma 6.2. Let M be a basic pseudo hoop. Then, for any X ⊆ M, the set

X⊥ = {x : x ∨ a = 1 ∀a ∈ X} is a filter of M.

Proof. The set X⊥ is clearly closed with respect to upper bounds. Let x, y ∈ X⊥

and a ∈ X . The equalities x ∨ a = y ∨ a = 1 hold. Now we can compute:
(x⊙ y) ∨ a = (x⊙ y) ∨ (x⊙ a) ∨ a = (x⊙ (y ∨ a)) ∨ a = (x⊙ 1) ∨ a = 1. Thus also
x⊙ y ∈ X⊥. �

Lemma 6.3. Let M be a basic pseudo hoop with a strong unit u ∈ M . Then the

inclusion

⋂
Val(u) ⊆ {a : an ≥ u for all n ∈ N}

holds.
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Proof. Let a ∈ M be such an element that there is an integer n ∈ N with the
property an 6≥ u. Thus the inequality u → an < 1 holds and the filter {u → an}⊥

is nontrivial (more precisely u → an 6∈ {u → an}⊥). Prelinearity yields an →
u ∈ {u → an}⊥. Because u is a strong unit and {u → an}⊥ is nontrivial, also
u 6∈ {u → an}⊥ holds. Due to Zorn’s Lemma, there is a value V ∈ Val(u) such that
{u → an}⊥ ⊆ V .

Let us assume to contrary that a ∈ V . Clearly also an, an → u ∈ V which gives
(an → u) ⊙ an ≤ u ∈ V which is a contradiction. Finally, a 6∈ V ⊇

⋂
Val(u) and

this finishes the proof. �

We recall the following folklore result on prime filters.

Remark 6.4. Let M be a basic pseudo hoop. Then
⋂

{F : F is a minimal prime filter} = {1}.

Proof. If x ∈ M \ {1}, then Val(x) 6= ∅ and any V ∈ Val(x) contains a minimal
prime filter VM . This yields x /∈ V ⊇ VM ⊇

⋂
{F : F is a minimal prime filter}. �

Lemma 6.5. Let M be a basic pseudo hoop and a, b, x ∈ M be such that V (a⊙b) ≤
V x for any V ∈ Val(x). Then a2 ⊙ b2 ≤ x.

Proof. We are going to prove that (a2 ⊙ b2) → x belongs to any minimal prime
filter F . Let F be a minimal prime filter. If x ∈ F, then clearly (a2 ⊙ b2) → x ∈ F .

We suppose that x 6∈ F . Thus there exists a value V ∈ Val(x) such that F ⊆ V .
There are two cases:

(i) Let a 6∈ V . Clearly, V (a⊙b2) ≤ V (a⊙b) ≤ V x. Hence, (a⊙b2) → x ∈ V holds.
Because a 6∈ V also ((a⊙b2) → x) → a 6∈ V and, moreover, ((a⊙b2) → x) → a 6∈ F .
Prelinearity of M gives (a2 ⊙ b2) → x = a → ((a⊙ b2) → x) ∈ F .

(ii) Let a ∈ V . We can compute V b = V (a ⊙ b) ≤ V x and thus b → x ∈ V .
We assert that b /∈ V, otherwise, V 1 = V (a ⊙ b) ≤ V x yields x = 1 → x ∈ V,
which is absurd. Therefore also a2 ⊙ b 6∈ V . Altogether (b → x) → (a2 ⊙ b) 6∈ V
and consequently (b → x) → (a2 ⊙ b) 6∈ F . Analogously to the previous part,
prelinearity gives (a2 ⊙ b) → (b → x) = (a2 ⊙ b2) → x ∈ F .

We have shown that (a2 ⊙ b2) → x belongs to any minimal prime filter. Due to
Remark 6.4, we obtain (a2 ⊙ b2) → x = 1 and a2 ⊙ b2 ≤ x. �

We recall that a pseudo hoop M is simple if it contains a unique proper filter.

Theorem 6.6. Let M be a normal-valued basic pseudo hoop, then the following

inequalities hold.

(i) x2 ⊙ y2 ≤ y ⊙ x.
(ii) ((x → y)n  y)2 ≤ (x y)2n → y for any n ∈ N.

(iii) ((x y)n → y)2 ≤ (x → y)2n  y for any n ∈ N.

Proof. (i) For arbitrary a, b ∈ M, let x := b⊙ a. If V ∈ Val(x), then clearly a, b ≥ x
yields a, b ∈ V ∗. Because V ∗/V is simple (see [DGK, Prop 2.3]), it is commutative
[DGK, Thm 2.4]. Then V (a⊙ b) = V (b ⊙ a) = V x. Due to Lemma 6.5, we obtain
a2 ⊙ b2 ≤ x = b⊙ a.

(ii), (iii) For all x, y ∈ M and each n ∈ N, we denote

a := (x → y)n  y,

b := (x y)n, b′ := (x → y)n.
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If y = 1, (ii) and (iii) trivially hold. Let y < 1 and let us have V ∈ Val(y).
Commutativity of the algebra V ∗/V and y, x∨y ∈ V ∗ yield V ((x → y)n) = V (((x∨
y) → y)n) = V (((x ∨ y)  y)n) = V ((x  y)n). Consequently, V b = V b′ and,
moreover, V (a⊙b) = V (b′⊙a) ≤ V y. Due to Lemma 6.5, we obtain a2⊙b2 ≤ y and
also a2 ≤ b2 → y. The second part of the theorem can be proved analogously. �

Lemma 6.7. Let M be a pseudo hoop satisfying the inequality x2⊙ y2 ≤ y⊙x and

let F be and a ∈ M be a fixed filter and an element of M , respectively. Then both

sets {x ≥ f ⊙ an : n ∈ N, f ∈ F} and {x ≥ an ⊙ f : n ∈ N, f ∈ F} are equal to the

filter generated by F and a.

Proof. If x ≥ f1 ⊙ an and y ≥ f2 ⊙ am are such that f1, f2 ∈ F and m,n ∈ N

then x⊙ y ≥ f1 ⊙ an ⊙ f2
2 ⊙ am ≥ f1 ⊙ f2 ⊙ a2n+m. Clearly, also f1 ⊙ f2

2 ∈ F and
hence presented sets are filters. Moreover, the given sets are contained in the filter
generated by F and a. This proves the lemma. �

Let us have a pseudo hoop with inequality x2 ⊙ y2 ≤ y ⊙ x. If V is a value,
then for any x ∈ V ∗ \ V, we have F (V, x) = V ∗ and thus, for any y ∈ V ∗, there are
n ∈ N and v ∈ V such that v ⊙ xn ≤ y (xn ⊙ v ≤ y, respectively). Hence, for any
x ∈ V \V ∗ and any y ∈ V ∗, there is n ∈ N such that V (xn) ≤ V y (or (xn)V ≤ yV ).

Theorem 6.8. If a basic pseudo hoop M satisfies inequalities (i)–(iii) from Theo-

rem 6.6, then M is normal-valued.

Proof. Let (i)–(iii) hold and let V be a value. Let x, y ∈ V ∗ be such that x → y 6∈ V
(and hence y 6∈ V ). Then there is n ∈ N such that V (x → y)n ≤ V y. Hence,
(x → y)n → y ∈ V and also ((x → y)n → y)2 ∈ V . Due to inequality (ii),
(x  y)2n → y ∈ V holds. Hence, we assert x  y /∈ V. If not, x  y ∈ V
yields y ≥ ((x  y)2n → y)⊙ (x  y)2n ∈ V which is a contradiction. Altogether
x → y 6∈ V yields x y 6∈ V.

The converse implication x  y 6∈ V yields x → y 6∈ V can be proved in an
analogous way. This implies M is normal-valued. �

Combining the results of Theorem 6.8 and Theorem 6.6, we have the following
corollary.

Corollary 6.9. Let M be a basic pseudo hoop. The following statements are equiv-

alent

(i) M is normal-valued.

(ii) (i)–(iii) from Theorem 6.6 hold.

Lemma 6.10. If a basic pseudo hoop M satisfies the inequality x2 ⊙ y2 ≤ y ⊙ x,
then any value V and any x ∈ V ∗ \ V such that V x > V (x2) satisfy V x ⊆ xV .

Proof. Let us have x ∈ V ∗ such that V x > V x2 and, moreover, let f ∈ V be
such that λx(f) = x  (f ⊙ x) 6∈ V . The divisibility clearly yields the equality
x ⊙ (λx(f))

n = fn ⊙ x for any n ∈ N. Because f ∈ V , we can interpret the
last equality as V ((λx(f))

n) ≥ V (x ⊙ (λx(f))
n) = V (fn ⊙ x) = V x. Hence,

λx(f) ∈ V ∗ \ V and x ∈ V ∗. There is n ∈ N such that V x2 ≥ V ((λx(f))
n) and

altogether V x2 < V x which is a contradiction. We have proved that for any f ∈ V
also λx(f) ∈ V .
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One can easily check that for any y ∈ V x, the inequality V y2 < V y holds (more
precisely, if V y2 = V y, then V y is a least element and also V x = V y is minimal
which gives a contradiction V x = V x2). Due to y ∈ V x, we obtain the equality
f1 ⊙ x = f2 ⊙ y and thus also x ⊙ λx(f1) = y ⊙ λy(f2). In the previous part, we
have proved that λx(f1), λy(f2) ∈ V and thus y ∈ xV . �

Question 2. Does inequality x2 ⊙ y2 ≤ y ⊙ x characterize the class of (basic)
normal-valued pseudo hoops ? For example, let G be an ℓ-group and let G† be the
kite corresponding to G (for kites see [JiMo, DGK]). By [DGK, Lem 4.11], the kite
G† is a normal-valued pseudo BL-algebra iff G is a normal-valued ℓ-group. Hence,
inequality (6.1) completely characterizes a kite to be normal-valued.

In what follows, we present a variety of basic pseudo hoops satisfying a single
equation such that the inequality x2 ⊙ y2 ≤ y ⊙ x is a necessary and sufficient
condition for M to be normal-valued.

We say that a bounded pseudo hoop M is good if

x−∼ = x∼−, x ∈ M, (6.3)

where x− := x → 0 and x∼ = x  0. For example, every pseudo MV-algebra is
good as well as every representable pseudo hoop is good, see [Dvu4]. On the other
hand, a kite G† is a pseudo BL-algebra which is not good whenever G 6= {e}, [DGK,
Lem 4.11].

We present a stronger equality than (6.3):

(x → y) y = (x y) → y (6.4)

for all x, y ∈ M.
For example, every negative cone of an ℓ-group and the negative interval of an

ℓ-group with strong unit satisfies (6.4). If M is a linearly ordered pseudo hoop, due
to [Dvu4, Cor 4.2], M is an ordinal sum of a system whose each component is either
the negative cone of a linearly ordered ℓ-group or the negative interval of a linearly
ordered ℓ-group with strong unit. Therefore, it satisfies (6.4), consequently every
representable bounded pseudo hoop satisfies (6.4). On the other side, no nontrivial
kite satisfies (6.4).

Lemma 6.11. Let M be a basic pseudo hoop satisfying (6.4). Then M satisfies

the identity

(x → y)n  y = (x y)n → y (6.5)

for all x, y ∈ M and for any n ∈ N.

Proof. Assume for induction that (6.5) holds for any integer k with 1 ≤ k ≤ n. We
have

(x → y)n+1  y = (x → y)n  ((x → y) y)

= (x → y)n  ((x y) → y)

= (x y) → ((x → y)n  y)

= (x y) → ((x y)n → y

= (x y)n+1 → y,

where in the third equality we have used the identity a  (b → c) = b → (a  c),
a, b, c ∈ M, see [BlTs, Lem 3.2(6)]. �
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Theorem 6.12. Let M be a basic pseudo hoop satisfying (6.4). Then M is normal-

valued if and only if x2 ⊙ y2 ≤ y ⊙ x for all x, y ∈ M.

Proof. The “if” condition holds by Theorem 6.6, so only need to show that if M
satisfies x2 ⊙ y2 ≤ y ⊙ x, then M is normal-valued. Assume M satisfies x2 ⊙ y2 ≤
y ⊙ x. By Theorem 6.8, it suffices to show that M satisfies

((x → y)n  y)2 ≤ (x y)2n → y

and

((x y)n → y)2 ≤ (x → y)2n  y

for any n ∈ N. By Lemma 6.11, it is enough to show that the first inequality of the
latter two hods, which is, by residuation, equivalent to

((x → y)n  y)2 ⊙ (x y)2n ≤ y.

Now, consider

((x → y)n  y)2 ⊙ (x y)2n = ((x → y)n  y)⊙ ((x → y)n  y)⊙ (x y)2n

= ((x → y)n  y)⊙ ((x y)n → y)⊙ (x y)2n

≤ ((x → y)n  y)⊙ y ⊙ (x y)n

≤ y

showing that the desired inequality holds. �

The following statement was proved in [DGK, Thm 3.2] in a different way, here
we use Theorem 6.12.

Corollary 6.13. Every representable pseudo hoop is normal-valued.

Proof. If M is a linearly ordered pseudo hoop, then according to the remark just
after (6.4), M satisfies (6.4). Every linearly ordered ℓ-group is normal-valued [Dar],
so is its negative cone as well as its negative interval with strong unit satisfies
the inequality x2 ⊙ x2 ≤ y ⊙ x. Consequently, every ordinal sum of such linear
components satisfies the inequality which by Theorem 6.12 entails, M is normal-
valued. �
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[AgMo] P. Aglianò and F. Montagna, Varieties of BL-algebras I: general properties, J. Pure
Appl. Algebra 181 (2003), 105–129.

[BlTs] K. Blount, C. Tsinakis, The structure of residuated lattices, Inter. J. Algebra Comput.
13 (2003), 437–461.
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