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Abstract

We give sufficient and necessary conditions to guarantee that a pseudo-effect
algebra admits an (n+1)-valued discrete state. We introduce n-perfect pseudo-
effect algebras as algebras which can be split into n+ 1 comparable slices. We
prove that the category of strong n-perfect pseudo-effect algebras is categorically
equivalent to the category of torsion-free directed partially ordered groups of a
special type.
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1 Introduction and basic definitions

Effect algebras were introduced by Foulis and Bennett in 1994 for modeling unsharp measurements

of a quantum mechanical system [20]. They are a generalization of many structures which arise in

quantum mechanics, in particular of orthomodular lattices in noncommutative measure theory and

of MV-algebras in fuzzy measure theory [16, 25, 27]. Alternative structures called difference posets,

which are categorically equivalent with effect algebras, were introduced in [26]. At the end of the 90’s,

a noncommutative version of MV-algebras, called pseudo-MV-algebras, was introduced in [22] and

independently in [28] as generalized MV-algebras, GMV-algebras. A noncommutative generalization

of effect algebras, called pseudo-effect algebras, PEAs, was introduced and studied in [17, 18].

Perfect MV-algebras, introduced by Belluce, Di Nola and Lettieri in [2], may be viewed as the

most compelling examples of non-Archimedean MV-algebras, in such a sense that they are generated

by their infinitesimals. In a perfect MV-algebra, every element belongs either to its radical or its

coradical. In [7], it is shown that for any perfect MV-algebra M , there exists an Abelian unital ℓ-

group G (lattice-ordered group), such that M is isomorphic to an interval of the lexicographic product

of the group of integers Z and G.

Especially, MV-algebras are lattice-ordered effect algebras satisfying the Riesz Decomposition

Property (RDP). For any effect algebra E with (RDP), there exists a partially ordered group G

∗E-mail: yjxie@snnu.edu.cn
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with a strong unit u such that E is isomorphic to the effect algebra Γ(G,u) := [0, u], where the effect

algebra operations are the group additions existing in [0, u]. In [13], Dvurečenskij introduced perfect

effect algebras, which are one kind of effect algebras admitting (RDP), and he proved that every

perfect algebra is an interval in the lexicographical product of the group of integers with an Abelian

directed partially ordered group with interpolation. Moreover, Dvurečenskij showed that the cate-

gory of perfect effect algebras is categorically equivalent to the category of Abelian directed partially

ordered groups with interpolation.

The principal result on a representation of GMV-algebras says that every GMV-algebra is always

an interval in a unital ℓ-group [9], i.e. an ℓ-group with strong unit. This result provides a new bridge

between different research areas, including GMV-algebras, unital ℓ-groups, noncommutative many

valued logic, soft computing and quantum structures [16]. Especially, using this result, perfect GMV-

algebras and n-perfect GMV-algebras were introduced in [6, 14]. Furthermore, the author proved that

any n-strong perfect GMV-algebra is always an interval in the lexicographical product of the group

of integers Z with an ℓ-group.

The notion of a state, as an analogue of a probability measure, is crucial for quantum mechanical

measurements. Therefore, a special attention is done in order to exhibit whether does a state exist

for the studied structure and if yes, what are its basic properties. In any Boolean algebra, we have a

lot of two-valued states, and in general, every two valued state is extremal. Every perfect MV-algebra

or every perfect effect algebra admits only a two-valued state. On the other hand, in the orthodox

example of quantum mechanics, see e.g. [8], the system L(H) of all closed subspaces of a Hilbert

space H, dimH ≥ 3, does not admit any two-valued state. A two-valued state is a special case of

an (n + 1)-valued discrete state, and in this paper we concentrate to the existence of such states.

We recall that, if dimH = n, then L(H) admits a unique (n + 1)-valued discrete state s, namely

s(M) = dimM/n, M ∈ L(H). In general, discrete states are of particular importance in many areas

of mathematics, see [24]. For example, discrete states were used in [4, Thm 3.2] in order to completely

describe monotone σ-complete effect algebras.

GMV-algebras are also PEAs, and so, n-perfect GMV-algebras are PEAs. Any n-perfect GMV-

algebra admits an (n+ 1)-valued discrete state. The main accent of the present paper is done to the

study of (n+1)-valued discrete states on PEAs and to show how they are related with n-perfect PEAs.

Therefore, we start with the study of the structure of PEAs admitting a two-valued state. Then

we present one characterization of PEAs admitting an (n+ 1)-valued discrete state. Later, we give a

definition of n-strong perfect PEAs, and we prove that any n-strong perfect GMV-algebra is always an

interval in the lexicographical product of the group of integers Z with a torsion-free partially ordered

group G such that Z
−→
× G satisfies a special type of the Riesz Decomposition Property. Finally, the

relationships between the category of n-strong perfect PEAs and the category of torsion-free directed

partially ordered groups of a special type are discussed.

The paper is organized as follows. Some basic definitions and properties about pseudo-effect

algebras are presented in Section 2. In Section 3, we study the structure of pseudo-effect algebras

with two-valued states. In Section 4, we give sufficient and necessary conditions to guarantee that
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a pseudo-effect algebra admits an (n + 1)-valued discrete state. In Section 5, we introduce the class

of n-perfect pseudo-effect algebras. In Section 6, we study the class of strong n-perfect pseudo-effect

algebras and we prove that the category of strong n-perfect pseudo-effect algebras is categorically

equivalent to the category of torsion-free directed partially ordered groups of a special type.

2 Basic definitions and facts

In this section, we give basic definitions and facts about pseudo-effect algebras which we will need in

this paper.

Definition 2.1. [19] A structure (E; +, 0), where + is a partial binary operation and 0 is a constant,

is called a generalized pseudo-effect algebra, or GPEA for short, if for all a, b, c ∈ E, the following hold.

(GP1) a+ b and (a+ b)+ c exist if and only if b+ c and a+(b+ c) exist, and in this case, (a+ b)+ c =

a+ (b+ c).

(GP2) If a+ b exists, there are elements d, e ∈ E such that a+ b = d+ a = b+ e.

(GP3) If a + b and a + c exist and are equal, then b = c. If b + a and c + a exist and are equal, then

b = c.

(GP4) If a+ b exists and a+ b = 0, then a = b = 0.

(GP5) a+ 0 and 0 + a exist and both are equal to a.

According to [19], we introduce a binary relation 6 in a GPEA E. For a, b ∈ E, we define a 6 b if

and only if there is an element c ∈ E such that a+ c = b. Equivalently, there exists an element d ∈ E

such that d+ a = b. Then 6 is a partial order on E.

We introduce two partial binary operations / and \ on a GPEA E. For any a, b ∈ E, a/b is defined

if and only if b\a is defined if and only if a 6 b, and in such a case we have (b\a) + a = a+ (a/b) = b.

Then a = (b\a)/b = b\(a/b).

By [32], a GPEA E is called a weakly commutative GPEA if it satisfies the following condition:

(C) for any a, b ∈ E, a+ b exists if and only if b+ a exists .

Definition 2.2. [17] A structure (E; +, 0, 1), where + is a partial binary operation and 0 and 1 are

constants, is called a pseudo-effect algebra, or PEA for short, if for all a, b, c ∈ E, the following hold.

(PE1) a+ b and (a+ b)+ c exist if and only if b+ c and a+(b+ c) exist, and in this case, (a+ b)+ c =

a+ (b+ c).

(PE2) There are exactly one d ∈ E and exactly one e ∈ E such that a+ d = e+ a = 1.

(PE3) If a+ b exists, there are elements d, e ∈ E such that a+ b = d+ a = b+ e.

(PE4) If a+ 1 or 1 + a exists, then a = 0 .
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Let a be an element of a PEA E and n > 0 be an integer. We define na = 0 if n = 0, 1a = a if

n = 1, and na = (n−1)a+a if (n−1)a and (n−1)a+a are defined in E. We define the isotropic index

ı(a) of the element a, as the maximal nonnegative number n such that na exists. If na exists for every

integer n, we say that ı(a) = +∞. In the following, we denote by Infinit(E) = {a ∈ E | ı(a) = +∞}.

We recall that if (E; +, 0, 1) is a PEA, then (E; +, 0) is a GPEA. If a+ b exists and a+ b = 1, then

we write b− = a, a∼ = b. Thus, two mappings a 7→ a− and a 7→ a∼ are unary operations satisfying

the following:

(i) if a 6 b, then b− 6 a−, b∼ 6 a∼.

(ii) for any a ∈ E, a−∼ = a∼− = a.

Assume that (G; +,6, 0) is a po-group (po-group for short), i.e. G is a group written additively

with a partial ordering 6 such that a 6 b implies c + a + d 6 c + b + d for any c, d ∈ G. A positive

element u ∈ G is said to be a strong unit if, given g ∈ G, there is an integer n ≥ 1 such that g 6 nu.

The pair (G,u) is said to be a unital po-group. A po-group is said to be directed if, a, b ∈ G, there is

an element c ∈ G such that a, b 6 c. For more about po-groups, see [23].

We denote by G+ := {g ∈ G | g > 0}. For any x, y ∈ G+, let x + y be the group addition of x

and y. Then (G+; +, 0) is a generalized pseudo-effect algebra. We set Γ(G,u) := {x ∈ G | 0 6 x 6 u},

and we endow Γ(G,u) with the operation + such that a+ b is defined in Γ(G,u) whenever a 6 u− b,

and in such a case, a + b in Γ(G,u) is the group addition of a and b. Then (Γ(G,u),+, 0, u) is a

pseudo-effect algebra. We say that a PEA E is an interval PEA if there exists a po-group G such that

E is isomorphic to a PEA Γ(G,u) for some strong unit u ∈ G+.

We say that a PEA E satisfies the Riesz Decomposition Property (RDP), if a1 + a2 = b1 + b2,

there are four elements c11, c12, c21, c22 such that a1 = c11 + c12, a2 = c21 + c22, b1 = c11 + c21, and

b2 = c21 + c22. If, in addition, for all x 6 c12 and y 6 c21, we have x + y, y + x exists in E and

x+y = y+x, we say that E satisfies (RDP)1. By [18], every PEA E with (RDP)1 is an interval PEA.

A PEA E satisfies (RDP)0 if, for any a, b1, b2 ∈ E such that a 6 b1 + b2, there are d1, d2 ∈ E such

that d1 6 b1, d2 6 b2 and a = d1 + d2.

We recall that (RDP)1 ⇒ (RDP) ⇒ (RDP)0, but the converse is not true, see [18].

Finally, we say a directed po-group G satisfies (RDP) or (RDP)1 if the same property as for PEA

holds also for the positive cone G+.

We recall that according to [18, Thm 5.7], for any PEA E with (RDP)1 there is a unique (up

to isomorphism of unital po-groups) unital po-group (G,u), where G satisfies (RDP)1, such that

E ∼= Γ(G,u). Moreover, there is a categorical equivalence between the category of PEAs with (RDP)1

and the category of unital po-groups (G,u), where G+ satisfies (RDP)1.

Example 2.3. Let Z be the group of integers and G = Z×Z×Z. Define for every two elements of G

(a, b, c) + (x, y, z) =

{
(a+ x, b+ y, c+ z), x is even,
(a+ x, c+ y, b+ z), x is odd,

and define (a, b, c) 6 (x, y, z) if a < x or a = x, b 6 y and c 6 z.

Then (G; +,6) is a lattice-ordered group with strong unit u = (1, 0, 0), and Γ(G, (1, 0, 0)) is a

PEA.
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Proposition 2.4. Let E be a PEA. Then E is a weakly commutative if and only if, for any a ∈ E,

a− = a∼.

Proof. Assume that, for any a ∈ E, we have that a− = a∼. If a + b exists in E for a, b ∈ E, then

b 6 a∼ = a−, which implies that b+ a exists in E. Hence, E is a weakly commutative PEA.

Conversely, assume that E is a weakly commutative PEA. Then for any a ∈ E, a− + a exists and

equals the unit 1. By the condition (C), we have that a + a− exists in E, and so a− 6 a∼. Since

the equality a + a∼ = 1 holds, we have that a∼ + a exists, and so a∼ 6 a−. Hence, we conclude

a∼ = a−.

Remark 2.5. In [11], Dvurečenskij has introduced symmetric pseudo-effect algebras as following: a

pseudo-algebra E is said to be symmetric (or, more precisely, with symmetric differences) if a− = a∼

for any a ∈ E. Now, by Proposition 2.4, the set of weakly commutative pseudo-effect algebras coincides

with the set of symmetric pseudo-effect algebras. In such a case, we set a′ = a− = a∼ and a′ is said

to be an orthosupplement of a.

Example 2.6. Let Z be the group of integers and G be a (not necessarily Abelian) po-group. Let

Z
−→
×G be the lexicographic product of Z and G, then Z

−→
×G is a directed po-group with strong unit

(1, 0). If we set E = Γ(Z
−→
×G, (1, 0)), then E is a symmetric PEA but not necessarily commutative

PEA.

Let (G; +,6, 0) be a po-group. An element c ∈ G such that x+ c = c+ x for all x ∈ G is said to

be a commutator of G. We set C(G) = {c ∈ G | c is a commutator of G}.

Example 2.7. Let G be a po-group. Assume that c ∈ G+ is a commutator, then E = Γ(Z
−→
×G, (n, c))

is a symmetric PEA. Especially, Γ(Z
−→
×G, (n, 0)) is a symmetric PEA.

Let (E; +, 0) be a GPEA. Let E♯ be a set disjoint from E with the same cardinality. Consider a

bijection a 7→ a♯ from E onto E♯ and let us denote E ∪ E♯ = Ê. Define a partial operation +∗ on Ê

by the following rules. For a, b ∈ E,

(i) a+∗ b is defined if and only if a+ b is defined, and a+∗ b := a+ b.

(ii) a+∗ b♯ is defined if and only if b\a is defined, and then a+∗ b♯ := (b\a)♯.

(iii) b♯ +∗ a is defined if and only if a/b is defined, and then b♯ +∗ a := (a/b)♯.

In [32], we have obtained the following results.

Proposition 2.8. If (E; +, 0) is a symmetric GPEA, then the structure (Ê; +∗, 0, 0♯) is a symmetric

PEA. Moreover, E is an order ideal in Ê closed under +, and the partial order induced by +∗, when

restricted to E, coincides with the partial order induced by +.

Proposition 2.9. Let (E; +, 0) be a GPEA and let the structure (Ê; +∗, 0, 0♯) be a PEA, then (E; +, 0)

is a symmetric GPEA and (Ê; +∗, 0, 0♯) is a symmetric PEA.

By Proposition 2.8 and 2.9, we immediately conclude the following result.
5



Corollary 2.10. Let (E; +, 0) be a GPEA. Then the algebraic system (Ê; +∗, 0, 0♯) is a PEA if and

only if (E; +, 0) is a symmetric GPEA.

The symmetric PEA (Ê; +∗, 0, 0♯) is usually called the unitization of a symmetric GPEA (E; +, 0),

and for any a ∈ E, a + a♯ = a♯ + a = 0♯, hence, a′ = a♯ and a♯′ = a. Since the operation +∗ on Ê

coincides with the + operation on E, it will cause no confusion if we use the notation + also for its

extension on Ê.

Definition 2.11. (i) Let E,F be two GPE-algebras. A mapping f : E → F is a morphism if the

following conditions are satisfied:

(1) f(0E) = 0F .

(2) If a, b ∈ E and a+ b exists, then f(a) + f(b) exists and f(a+ b) = f(a) + f(b).

(ii) Let E,F be two pseudo-effect algebras. A mapping f : E → F is a morphism if the following

conditions are satisfied:

(1) f(0E) = 0F , f(1E) = 1F .

(2) If a, b ∈ E and a+ b exists, then f(a) + f(b) exists and f(a+ b) = f(a) + f(b).

(iii) Let E be a PEA. Then any morphism s : E → [0, 1] is said to be a state on E. A state s is said

to be discrete if there exists an integer n such that s(E) ⊆ {0, 1

n
, . . . , 1}, where s(E) = {s(x) | x ∈ E}.

If s(E) = {0, 1

n
, . . . , 1}, we say that s is an (n+ 1)-valued discrete state.

Especially, if n = 1, then we say that s is a two-valued state.

(iv) A state s is said to be extremal if, for any states s1, s2 and α ∈ (0, 1), the equation s =

αs1 + (1− α)s2 implies s = s1 = s2.

Of course, every two-valued state is a 2-valued discrete state, and vice-versa. For example, every

two-valued state on a PEA E is extremal.

We note that if s is a state on E, then s(0) = 0 and s(1) = 1, therefore, in what follows we will

assume 0 6= 1.

Example 2.12. Let G be a directed po-group and let c ∈ G. Then Γ(Z
−→
×G, (n, c)) admits an (n+ 1)-

valued discrete state.

We recall that the real interval [0, 1] can be assumed also as an interval effect algebra Γ(R, 1).

Remark 2.13. Let E be a PEA and s : E → [0, 1] be a state with |s(E)| = n+ 1.

(i) If n = 1, then s(E) = {0, 1} is a sub-effect algebra of [0, 1] and s is a two-valued state.

(ii) If n > 1, then s(E) is not necessarily a sub-effect algebra of [0, 1]. For example, let E =

{0, a, b, 1}, we endow E with the partial operation + as follows, (1) for any x ∈ E, x+0 = 0+ x = x,

(2) a+ b = b+a = 1. Then the algebraic system (E; +, 0, 1) is an effect algebra. We define a mapping

s : E → [0, 1] as follows, s(0) = 0, s(a) = 2

5
, s(b) = 3

5
, s(1) = 1, then s is a discrete state on E and

s(E) = {0, 2
5
, 3
5
, 1}. However, s(E) is not a sub-effect algebra of [0, 1].

(iii) Let s be an (n + 1)- valued discrete state on an effect algebra. Then s is not necessarily

extremal. For example, for the effect algebra E in (ii), set s(0) = 0, s(a) = s(b) = 1

2
, s(1) = 1, then s

is a 3-valued discrete state which is not extremal. In fact, we set s1(0) = s1(a) = 0, s1(b) = s1(1) = 1,
6



and s2(0) = s2(b) = 0, s2(a) = s2(1) = 1, then s1, s1 are two states on E, and s = 1

2
s1+

1

2
s2, however,

s 6= s1, s 6= s2. In [12, Prop 8.5], Dvurečenskij has proved that if s is an extremal discrete state on an

effect algebra E with (RDP), then s is an (n+ 1)-valued discrete state.

Theorem 2.14. Let E be a PEA and s : E → [0, 1] be a state. Assume that |s(E)| = n+1 and n > 1.

Then the following statements are equivalent.

(i) s is an (n+ 1)-valued discrete state.

(ii) s(E) is a sub-effect algebra of the effect algebra [0, 1].

(iii) For any t, u ∈ s(E), if t 6 u, then there exists a v ∈ s(E), such that t+ v = u.

Proof. If n = 1, then using Remark 2.13, it is easy to see that (i), (ii) and (iii) are mutually equivalent.

Now, we assume that n > 1 and s(E) = {0, t1, . . . , tn−1, 1}, where 0 < t1 < t2 < · · · < tn−1 < 1.

(i)⇒(ii). If s is an (n + 1)-valued discrete state, then s(E) = {0, 1

n
, . . . , n−1

n
, 1} is a sub-effect

algebra of [0, 1].

(ii) ⇒ (iii). Assume that s(E) is a sub-effect algebra of the effect algebra [0, 1]. For any t, u ∈ s(E),

if t 6 u, then there exists a v ∈ s(E) such that t+ v exists and t+ v = u.

(iii) ⇒ (ii). By (iii), for any t, v ∈ s(E) with t 6 v, we have that v− t ∈ s(E). We define a partial

binary operation + on s(E) as follows: t+ v exists in s(E) iff t 6 1− v, and then t+ v is the classical

addition of two real numbers t and v. It is routine to verify that (s(E);+, 0, 1) is an effect algebra.

Further, for any t, v ∈ s(E), t+ v exists iff t+ v 6 1, which implies that (s(E);+, 0, 1) is a sub-effect

algebra of [0,1].

(ii) ⇒ (i). Assume that (ii) holds, and so (iii) holds, too. It suffices to prove that ti =
i
n
for any

i ∈ {1, . . . , n− 1}.

If n = 2, then we have that s(E) = {0, t1, 1}. By 0 < t1 < 1, there exists a real number t ∈ s(E)

such that t+ t1 = 1. Obviously, t 6= 0, 1, and so t = t1, which implies that t1 =
1

2
. Then (i) holds.

Now, we assume that n > 2. We are claiming that for any i ∈ {1, . . . , n− 1}, ti = it1.

If i = 2, then t1 < t2, and there exists a j ∈ {1, 2} such that t1 + tj = t2, and so j = 1, hence

t2 = 2t1.

Assume by induction that, for any j 6 i < n− 1, we have proved tj = jt1. Since ti < ti+1, we have

ti+1− ti ∈ {t1, . . . , ti}. If it would be ti+1− ti ≥ 2t1, then ti < ti+ t1 < ti+2t1 6 ti+ tj = ti+1 which is

impossible because between ti and ti+1 there is no element in s(E). Hence, ti+1− ti = t1 which proves

ti = it1 for any i = 1, . . . , n− 1.

Finally, 0 < 1 − tn−1 < · · · < 1 − t1 < 1 which gives 1 − tn−1 = t1 so that t1 = 1

n
, and s is an

(n+ 1)-valued discrete state.

For interest, we also give another proof. We are assuming s(E) is a sub-effect algebra of [0, 1].

Noticing that Γ(R, 1) = [0, 1], and so, by [3, Thm 2.4], there exists a subgroup G of R such that

Γ(G, 1) = s(E). By [24, Lem 4.21], there are following two cases:

(a) G is a dense subgroup of R. Then |Γ(G, 1)| = |s(E)| is infinite, which is a contradiction with

our assumption.
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(b) G is a cyclic subalgebra of R. Assume that G is generated by a positive element t, and so

G = {nt | n ∈ Z}. Thus, by Γ(R, 1) ⊆ [0, 1], we have that t ∈ (0, 1), and nt = 1. In fact, by 1 ∈ G,

there exists a natural number m such that mt = 1. Thus, we have that Γ(G, 1) = {0, 1

m
, . . . , 1}, which

implies that s(E) = {0, 1

m
, . . . , 1}. However, |s(E)| = n+1, and so m = n, hence, s(E) = {0, 1

n
, . . . , 1}.

Thus, we have proved that s(E) = {0, 1

n
, . . . , 1}.

3 Pseudo-effect algebras with two-valued states

In this section, we will study the structure of pseudo-effect algebras with two-valued states. We will

prove that a pseudo-effect algebra E admits a two-valued state if and only if there exists an ideal I

such that E = I ∪ I− = I ∪ I∼, where I− = {i− | i ∈ I}, I∼ = {i∼ | i ∈ I} and I ∩ I− = I ∩ I∼ = ∅.

We recall that a nonempty subset I of a GPEA E is called an ideal if the following conditions hold:

(i) for any a ∈ E and i ∈ I with a 6 i, we have a ∈ I;

(ii) for any i, j ∈ I if i+ j exists in E, then we have i+ j ∈ I.

If a set I is an ideal of a PEA E and 1 /∈ I, then the ideal I is called proper.

An ideal I in a GPEA E is called normal if, for any a, i, j ∈ E such that a+ i and j + a exist and

are equal, we have i ∈ I if and only if j ∈ I.

For example, if s is a state of a PEA E, then the set Ker(s) = {x ∈ E | s(x) = 0}, kernel of s, is a

normal ideal of E.

An ideal I in a GPEA E is called maximal if it is a proper ideal of E and is not included properly

in any proper ideal of E.

For example, the sets {0} and E are ideals of E. In addition, if I is an ideal of the GPEA E, then

(I; +, 0) is also a sub-GPEA of (E; +, 0).

Theorem 3.1. Let (E; +, 0, 1) be a symmetric PEA. The following two statements are equivalent.

(i) There exists a two-valued state on E.

(ii) There exists a sub-GPEA (I; +, 0) of (E; +, 0) such that E = Î , I is a maximal and normal ideal

of E.

Proof. (i)⇒(ii). Assume that a mapping s : E → {0, 1} is a state on E. If we set I = Ker(s), then

I 6= E is a normal ideal of E, and so, it is also a sub-GPEA of E.

We now have to prove that E = Î . Let I♯ be the set {a ∈ E | s(a) = 1}. Since s is a two-valued

state on E, we have that I ∩ I♯ = ∅ and E = I ∪ I♯. Define the mapping f : Î → E by f(x) = x,

f(x♯) = x′ for any x ∈ I. Then f is a bijection and f(0) = 0, f(0♯) = 1. Assume a+ b exists in Î for

a, b ∈ Î . Then there are following three cases. (1) Both a and b belong to I, then a + b ∈ I, which

implies f(a+ b) = a+ b = f(a)+ f(b). (2) Only one of a and b belongs to I, without loss of generality,

assume that a ∈ I, b ∈ I♯. Then there exists an element c ∈ I with b = c♯. By (c\a) + a+ c′ = 1, we

have that f(a + b) = f(a + c♯) = f((c\a)♯) = (c\a)′ = a + c′ = f(a) + f(c♯) = f(a) + f(b). Finally,
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(3) a, b ∈ Î but this is impossible. Hence, f is a morphism. Furthermore, assume that f(a) 6 f(b)

for a, b ∈ Î . There are following four cases. (1) If a, b ∈ I, then a 6 b by f(a) = a, f(b) = b. (2) If

a, b ∈ I♯, then there exist c, d ∈ I such that a = c♯, b = d♯, which imply that c′ 6 d′, and so d 6 c.

Hence, a = c♯ 6 d♯ = b. (3) If a ∈ E, b ∈ I♯, then there exists an element c ∈ I with b = c♯. Therefore,

a 6 c′, a 6 b. (4) If a ∈ I♯, b ∈ I, then there exists an element d ∈ I with a = d♯. Therefore, d′ 6 b,

d♯ 6 b, which is impossible. Hence, the statement f(a) 6 f(b) implies that a 6 b, which implies that

f is a monomorphism. Thus, f is an isomorphism between Î and E. Noticing that the set Î equals

E, we have the PEA Î coincides with E.

Now, if there exists an ideal J of E, such that I ⊆ J with J \ I 6= ∅, then there exists an element

i ∈ I such that i′ ∈ J, hence, 1 ∈ J, which implies that J = E.

(ii)⇒(i). Assume that PEA E = I ∪ I♯, then I is a symmetric GPEA by Proposition 2.9. Then

define a mapping s : E → {0, 1} by setting s(a) = 0, s(a♯) = 1 for any a ∈ I. Consequently, s(0) = 0,

s(1) = s(0♯) = 1. If x, y ∈ E, and x+ y exists in E, then x, y ∈ I or only exactly one of x, y belongs

to I. If x, y ∈ I, then x + y ∈ I, and so s(x + y) = s(x) + s(y) = 0. If x ∈ I and y ∈ I♯, then

x+ y ∈ I♯, and so s(x+ y) = 1 = s(x) + s(y). Similarly, if x ∈ I♯ and y ∈ I, then x+ y ∈ I♯, and so

s(x+ y) = 1 = s(x) + s(y). Thus, s is a two-valued state on E.

Example 3.2. Let Z be the group of integers and G be a po-group. Let Z
−→
×G be the lexicographic

product of Z and G. If we set E = Γ(Z
−→
×G, (1, 0)), then E is a symmetric PEA but not necessarily

commutative. Set I = {(0, g) ∈ E | g ∈ G}, then I is a maximal and normal ideal of E and it is

routine to verify that E = I ∪ I− = I ∪ I∼ and I ∩ I− = I ∩ I∼ = ∅. Thus, the symmetric PEA E

admits a two-valued state, and this state is a unique state of E.

In [29, 30], Z. Riečanová and I. Marinová studied effect algebras with two-valued (discrete) states,

and they proved that any effect algebra admitting a two-valued state is the unitization of a generalized

sub-effect algebra. Theorem 3.1 shows that any symmetric PEA admitting a two-valued state is the

unitization of a symmetric sub-GPEA, and so, it may be considered as a generalization of the results

for effect algebras proved in [29]. However, for any PEA admitting a two-valued state, if it is not

symmetric, then it is not a unitization of any sub-GPEA. In general, for a two-valued state PEA, we

have the following result.

Theorem 3.3. Let E be a PEA. Then E admits a two-valued state s if and only if there exists a

maximal and normal ideal I such that E = I ∪ I− = I ∪ I∼ and I ∩ I− = I ∩ I∼ = ∅.

Proof. Assume that E is a PEA admitting a two-valued state s, then for any x ∈ E, either s(x) = 0,

or s(x) = 1. Set I = Ker(s), we have that E = I ∪ (E \ I). For any x ∈ I, s(x−) = 1, hence, we have

that I− ⊆ E \ I. Conversely, for any y ∈ E \ I, we have that s(y) = 1, and so s(y∼) = 0, which implies

y∼ ∈ I. Noticing that y = y∼−, we have that y ∈ I−, and so E \ I ⊆ I−. Hence, E \ I = I−. Similarly,

we can prove that E \ I = I∼. It is obvious that I ∩ I− = I ∩ I∼ = ∅. In the same way as in Theorem

3.1, we can prove that I is a maximal and normal ideal of E.

Conversely, we assume that there exists a normal ideal I such that E = I ∪ I− = I ∪ I∼ and

I ∩ I− = I ∩ I∼ = ∅. Define a mapping s : E → {0, 1} as follows:
9



s(x) =

{
0, x ∈ I,
1, otherwise.

It is easy to see that s is well defined and s(0) = 0, s(1) = 1. Now, assume that x+ y exists in E

for x, y ∈ E, then there are the following three cases:

(i) x, y ∈ I. Then x+ y ∈ I, since I is an ideal of E. Therefore, s(x+ y) = s(x) + s(y) = 0.

(ii) Only one of x and y belongs to I; without loss of generality, we assume that x ∈ I and y /∈ I.

Then x+ y /∈ I, since I is an ideal of E. Consequently, s(x+ y) = s(x) + s(y) = 1.

(iii) x /∈ I and y /∈ I. Now we assume that there exist a, b ∈ I with x = a− and y = b−. Then

a− + b− exists, which implies b− 6 a−∼ = a. Hence, y = b− ∈ I, which is a contradiction with y /∈ I.

Thus, if x+ y exists in E, then at least one of x and y belongs to I.

Hence, we have proved that for x, y ∈ E, s(x+ y) = s(x) + s(y), whenever x+ y exists in E. This

yields that the mapping s is a two-valued state on E.

Example 3.4. Let E be the PEA Γ(G, (1, 0, 0)) in Example 2.3. Assume that s : E → [0, 1] is a

state on E. Notice that, for any (0, b, c) ∈ E, n(0, b, c) exists in E for any n ∈ N. Hence, we have

s(0, b, c) = 0. Then Ker(s) = {(0, b, c)|(0, b, c) ∈ E} which is a normal ideal of E. Furthermore, for

any (0, b, c) ∈ E, it is easy to see that (0, b, c)− = (1,−b,−c)), (0, b, c)∼ = (1,−c,−b)), which implies

that E = Ker(s) ∪ (Ker(s))− = Ker(s) ∪ (Ker(s))∼ and Ker(s)∩ (Ker(s))− = Ker(s)∩ (Ker(s))∼ = ∅.

Therefore, the state s of E is two-valued, and this state is a unique state of E.

4 Pseudo-effect algebras with (n+ 1)-valued discrete states

In this section, we give sufficient and necessary conditions in order a pseudo-effect algebra admits an

(n + 1)-valued state. In addition, some properties of pseudo-effect algebras having an (n + 1)-valued

state are studied.

Let E be a PEA and A,B ⊆ E. In the following, we write (i) A 6 B iff a 6 b for all a ∈ A, and

all b ∈ B, (ii) A+B := {a+ b | a ∈ A, b ∈ B and a+ b exists in E}. It can happen that a+ b exists

in E for any a ∈ A and any b ∈ B. Then we are saying that A+B exists in E.

We write 1A := A. If A + A exists, then we denote 2A = A + A. If iA exists, and iA + A exits,

then we denote (i+ 1)A = iA+A for i > 2.

Theorem 4.1. Let (E; +, 0, 1) be a PEA. Then the following two statements are equivalent.

(i) There exists an (n+ 1)-valued discrete state on E.

(ii) There exist nonempty subsets E0, E1, . . . , En of E such that

(a) Ei ∩ Ej = ∅, for any i, j ∈ {0, 1, . . . , n} with i 6= j,

(b) E = E0 ∪ E1 ∪ · · · ∪ En,

(c) E−

i = E∼

i = En−i for any i ∈ {0, 1, . . . , n},

(d) if x ∈ Ei, y ∈ Ej and x+ y exists in E, then i+ j 6 n and x+ y ∈ Ei+j for i, j ∈ {0, 1, . . . , n}.

Proof. Assume that s is an (n + 1)-valued discrete state on E, then we set Ei = s−1({ i
n
}) for any

i ∈ {0, 1, . . . , n}. It is easy to see that (a) and (b) hold. For (c), x ∈ Ei if and only if s(x) = i
n
if and
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only if s(x−) = s(x∼) = n−i
n

, which entails that the statement (c) holds. For (d), assume that x ∈ Ei,

y ∈ Ej and x+y exists in E, then we have that s(x) = i
n
, s(y) = j

n
and s(x+y) = s(x)+s(y) = i+j

n
6 1,

which implies that i+ j 6 n and x+ y ∈ Ei+j.

Conversely, define a mapping s : E → [0, 1] by s(x) = i
n
if x ∈ Ei. It is clear that s is well-defined

and s(E) = {0, 1

n
, . . . , n−1

n
, 1}. Take x, y ∈ E such that x+ y is defined in E. Then there are unique

integers i and j such that x ∈ Ei and y ∈ Ej . By (d), we have that i + j 6 n and x + y ∈ Ei+j.

Hence, s(x+ y) = s(x) + s(y). Furthermore, there is a unique i ∈ {0, 1, . . . , n} such that 0 ∈ Ei. For

any x ∈ En, x + 0 and 0 + x exist, and so, by (d) i + n 6 n, which implies i = 0. Thus, 0 ∈ E0 and

1 ∈ En by (c). Hence, s(0) = 0, and s(1) = 1. Thus, s is an (n+ 1)-valued discrete state on E.

Let E be a PEA and n ≥ be an integer. If subsets E0, . . . , En of E satisfy the conditions (a)–(d) in

Theorem 4.1, we say that E0, . . . , En is an n-decomposition of E and we shall denote it by (E0, . . . , En).

Let Dn(E) = {(E0, . . . , En) | (E0, . . . , En) is an n-decomposition of E} and Sn(E) = {s | s is an

(n+ 1)-valued discrete state on E}.

Theorem 4.2. Let (E; +, 0, 1) be a PEA and n ≥ 1 be an integer. Then there is a bijective mapping

between Dn(E) and Sn(E).

Proof. We define a mapping f : Dn(E) → Sn(E) as follows: for any D = (E0, . . . , En) ∈ Dn(E),

f(D) = s, where s : E → [0, 1] is a state such that s(Ei) =
i
n
for any i ∈ {0, . . . , n}. Assume that there

exists another state s1 on E such that s1(Ei) =
i
n
for any i ∈ {0, . . . , n}. For any x ∈ E, there exists a

unique i ∈ {0, . . . , n} such that x ∈ Ei which implies that s(x) = s1(x). Thus, f is defined well. Now,

for any D = (E0, . . . , En), and D1 = (F0, . . . , Fn), if f(D) = f(D1) = s, then s(Ei) = s(Fi) =
i
n
for

any i ∈ {0, . . . , n}. Hence, s−1({ i
n
)} = Ei = Fi for any i ∈ {0, . . . , n}, and so D = D1, which implies

that f is injective. By Theorem 4.1, f is surjective. Thus, f is bijective.

Corollary 4.3. Let (E; +, 0, 1) be a PEA. If (E0, E1, . . . , En) is an n-decomposition of E, then E0 is

a normal ideal.

Proof. By Theorem 4.1, there exists an (n+ 1)-valued discrete state s such that E0 = Ker(s), and so

it is a normal ideal.

Remark 4.4. Assume that a PEA (E; +, 0, 1) admits an (n + 1)-valued discrete state, s, then by

Theorem 4.2, there exists a unique n-decomposition (E0, E1, . . . , En) of E such that s(Ei) = i
n
,

i = 0, 1, . . . , n. We note that:

(i) For i, j ∈ {0, 1, . . . , n} with i 6 j, Ei 6 Ej does not hold in general. For example, the four

element Boolean algebra E = {0, a, a′, 1} admits a 2-valued discrete state s such that s(0) = s(a) =

0, s(a′) = s(1) = 1. Set E0 = {0, a}, E1 = {0, a′}, then E0 66 E1.

(ii) In general, for i, j ∈ {0, 1, . . . , n}, Ei + Ej does not exist when i+ j < n. Even E0 + E0 does

not exist. For example, the four element Boolean algebra E = {0, a, a′, 1} admits a two-valued state

s such that s(0) = s(a) = 0, s(a′) = s(1) = 1. Set E0 = {0, a}, E1 = {0, a′}, then E0 + E0 does not

exists in E.
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(iii) By Theorem 3.3, if n = 1, then the ideal E0 is maximal. However, if n > 2, then E0 is

not necessarily maximal. For example, the four element Boolean algebra E = {0, a, a′, 1} admits a

3-valued discrete state s such that s(0) = 0, s(a) = s(a′) = 1

2
, s(1) = 1. But E0 = {0} is not a maximal

ideal of E.

Theorem 4.5. Let (E0, E1, . . . , En) be an n-decomposition of a PEA E. Then E0 6 E1 6 · · · 6 En

if and only if Ei + Ej exists in E whenever i+ j < n for any i, j ∈ {0, . . . , n}.

In such a case,

(i) E0 = Infinit(E) and Infinit(E) is a normal ideal.

(ii) Ei + Ej = Ei+j whenever i+ j < n.

(iii) For any x ∈ Ei, y ∈ Ej = Ei+j , if i+ j > n, then neither x+ y nor y + x exists.

Proof. By Theorem 4.1, there is a unique discrete (n + 1)-valued state s such that s(Ei) = i
n

for

i = 0, 1, . . . , n.

Assume E0 6 E1 6 · · · 6 En. For any i, j ∈ {0, . . . , n− 1} with i+ j < n, we have that i < n− j,

and so Ei 6 E−

j , which implies that Ei + Ej exists and so Ei + Ej = Ei+j . In fact, for any a ∈ Ei,

b ∈ Ej , then s(a + b) = i+j
n
, which implies that a + b ∈ Ei+j. Conversely, let c ∈ Ei+j. For any

a ∈ Ei, we have that a 6 c. Then there exists an element b ∈ E such that a + b = c. Whence,

s(a+ b) = s(a) + s(b) = i+j
n
, then s(b) = j

n
, which implies that b ∈ Ej . We have also proved (ii).

Conversely, let Ei + Ej exist in E for i+ j < n.

(i) For any x, y ∈ E0, we have that x+y exists in E. Then s(x+y) = s(x)+s(y) = 0 and x+y ∈ E0

which implies E0 ⊆ Infinit(E). Conversely, let x ∈ Infinit(E), we have that mx is defined in E for

each integer m ≥ 1. Then s(mx) = ms(x) 6 1 which implies s(x) = 0 and x ∈ Ker(s), and so x ∈ E0.

For i, j ∈ {0, 1, . . . , n−1}, if i+ j < n, then Ei+Ej exists in E, and so Ei 6 E−

j = En−j. Now, for

i ∈ {0, 1, . . . , n− 1}, set j = n− i− 1, we have that i+ j < n, and so we have that Ei 6 E−

n−j = Ei+1,

which proves E0 6 E1 6 · · · 6 En.

(iii) Assume that a ∈ Ei and b ∈ Ej for i + j < n. Then a + b exists and s(a + b) = i+j
n
, and

so a + b ∈ Ei+j . Conversely, let z ∈ Ei+j, then for any x ∈ Ei, x 6 z, so that z = x + (x/z), by

s(z) = s(x) + s(x/z), which implies that x/z ∈ Ej .

(iv) Assume that i+ j > n, x ∈ Ei, y ∈ Ej = Ei+j, either x+ y or y + x exists, then s(x+ y) > 1

or s(y + x) > 1, which is absurd.

Example 4.6. Let D be the set {0, a, b, 1}. Let a partial operation +D on B be defined as follows:

a +D a = b +D b = 1, 0 +D a = a +D 0 = a, 0 +D b = b +D 0 = b, 1 +D 0 = 0 +B 1 = 1.

Then the algebraic system (D; +D, 0, 1) is an effect algebra, which is usually called the diamond. Let

E0 = {(0, i) | i ∈ Z+}, E1 = {(a, i) | i ∈ Z} ∪ {(b, j) | j ∈ Z}, E2 = {(1,−i) | i ∈ Z+}, and

E = E0 ∪ E1 ∪ E2. We define a partial binary operation + on E as follows:

(i) for any x = (0, i), y = (0, j) ∈ E0, x+ y = (0, i + j).

(ii) for any x = (0, i) ∈ E0, y = (a, j) ∈ E1, then x+ y = y+x = (a, i+ j). For any x = (0, i) ∈ E0,

z = (b, j) ∈ E1, then x+ z = z + x = (b, i+ j).
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It is routine to verify that (E; +, 0, 1) is an effect algebra, where 0 and 1 denote (0, 0) and (1, 0),

respectively. A mapping s : E → [0, 1] such that s(Ei) =
i
2
for i = 0, 1, 2 is a 3-valued discrete state.

The following statements are true.

(1) E0 = E0 + E0, E1 = E0 + E1.

(2) Any of the following sum E0 + E2, E1 + E1, E1 + E2 does not exist.

(3) E0 6 E1 6 E2.

(4) E0 = Infinit(E) and E0 is a maximal ideal.

Example 4.7. Let B be the set {0, a, b, 1}. Let a partial operation +B on B be defined as follows:

a +B b = b +B a = 1, 0 +B a = a +B 0 = a, 0 +B b = b +B 0 = b, 1 +B 0 = 0 +B 1 = 1. Then

the algebraic system (B; +B, 0, 1) is an effect algebra. Let (G,u) be a po-group with strong unit u.

Let E0 = {(0, i) | i ∈ G+}, E1 = {(a, i) | i ∈ G} ∪ {(b, j) | j ∈ G}, E2 = {(1,−i) | i ∈ G+}, and

E = E0 ∪ E1 ∪ E2. We define a partial binary operation + on E as follows:

(i) for any x = (0, i), y = (0, j) ∈ E0, x+ y exists and x+ y = (0, i + j),

(ii) for any x = (a, i), y = (b, j) ∈ E1, if i+ j 6 0, then x+ y exists and x+ y = (1, i + j),

(iii) for any x = (0, i) ∈ E0, y = (a, i), z = (b, j) ∈ E1, x + y, y + x, x + z, and z + x exist, and

x+ y = (a, i + j), y + x = (a, j + i), x+ z = (b, j), z + x = (b, j + i).

It is routine to verify that (E; +, 0, 1) is a PEA, where 0 and 1 denote (0, 0) and (1, 0), respectively.

It is easy to see that Ei +Ej exists for i+ j < 2.

We have E0 = Infinit(E), however, E0 is not a maximal ideal. If we set Ia = E0 ∪ {(a, i) | (a, i) ∈

E1} and Ib = E0 ∪ {(b, j) | (b, j) ∈ E1}, then both Ia and Ib are proper normal ideals, and E0 ( Ia,

E0 ( Ib. In fact, {Ia, Ib} is the set of maximal ideals of E, and E0 = Ia ∩ Ib.

5 n-perfect PEA

We now give the definition of n-perfect PEAs as follows.

Definition 5.1. Let (E; +, 0, 1) be a PEA. We say that E is an n-perfect PEA if

(i) there exists an n-decomposition (E0, E1, . . . , En) of E.

(ii) Ei + Ej exists if i+ j < n.

(iii) E0 is the unique maximal ideal of E.

We recall that according to Corollary 4.3, E0 is a unique maximal ideal of E and it is normal.

Example 5.2. Let Z be the group of integers and G be a po-group. Let Z
−→
×G be the lexicographic

product of Z and G, and let u = (n, 0). If we set E = Γ(Z
−→
×G, (n, 0)), then E is a PEA. If we set

E0 = {(0, g) | g ∈ G+}, for i ∈ {1, . . . , n − 1}, Ei = {(i, g) | g ∈ G}, and En = {(0,−g) | g ∈ G+},

then E is an n-perfect PEA.
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We recall the following two definitions used in [14]. Let E be a PEA. We denote by M(E) and

N (E) the set of maximal ideals and the set of normal ideals of E, respectively. We define (i) the

radical of a PEA E, Rad(E), as the set

Rad(E) =
⋂

{I | I ∈ M(E)},

and (ii) the normal radical of E, via

Radn(E) =
⋂

{I | I ∈ M(E) ∩N (E)}.

It is obvious that Rad(E) ⊆ Radn(E) holds in any PEA E.

Lemma 5.3. Let (E; +, 0, 1) be an n-perfect PEA. Then E0 = Infinit(E) = Rad(E) = Radn(E).

Proof. By Theorem 4.5, E0 = Infinit(E). By (iii) of Definition 5.1, we have that Rad(E) = E0.

Furthermore, E0 is also a normal ideal and so Rad(E) = Radn(E).

Definition 5.4. An ideal I in a GPEA E is called an R1-ideal, if the following condition holds:

(R1) if i ∈ I, a, b ∈ E and a + b exists, i 6 a + b, then there exist j, k ∈ I such that j 6 a, k 6 b

and i 6 j + k.

An R1-ideal I is called a Riesz ideal, if the following two conditions hold:

(R2) if i ∈ I, a, b ∈ E, i 6 a and (a\i) + b exists, then there exists j ∈ I such that j 6 b and

a + (j/b) exists; if i ∈ I, a, b ∈ E, i 6 a and b + (i/a) exists, then there exists j ∈ I such that j 6 b

and (b\j) + a exists.

Let A be a subset of a partially ordered set E. We say that A is downwards (upwards) directed if

for any x, y ∈ A, there exists z ∈ A such that z 6 x, y (x, y 6 z). If E is a po-group or a PEA, then

E is upwards directed iff it is downwards directed; then we say simply that E is directed.

Proposition 5.5. [31] In an upwards directed GPEA E, an ideal I is a Riesz ideal if and only if I

is R1-ideal.

Proposition 5.6. Let (E; +, 0, 1) be an n-perfect PEA for some integer n ≥ 1. Then E0 is a Riesz

ideal.

Proof. Since the PEA E is upwards directed, by Proposition 5.5, it suffices to show that E0 satisfies

the condition (R1). Assume that i ∈ E0, a, b ∈ E, a+ b exists, and i 6 a+ b. There are the following

three cases: (1) Both a and b belong to E0; then the condition is trivial. (2) Only one of a, b belongs

to E0, without loss of generality, we assume that a ∈ E0 and b /∈ E0. By Theorem 4.5 (ii), i 6 b,

thus i 6 a + i 6 a + b. (3) Neither a nor b belongs to E0, then by Theorem 4.5 (ii), i 6 a, b, and so

i 6 i+ i 6 a+ b, and i ∈ E0.

Definition 5.7. For an ideal I in a GPEA E, we define a ∼I b if there exist i, j ∈ I, i 6 a, j 6 b such

that a \ i = b \ j.
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Theorem 5.8. [31] Let I be a normal Riesz ideal in a GPEA E. Then E/ ∼I is a linear GPEA if

and only if I satisfies the following condition:

(L) For any a, b ∈ E, there exists a c ∈ E such that a+ c ∼I b or b+ c ∼I a.

Lemma 5.9. [31] If ∼ is a Riesz congruence in a PEA E, then for any a ∈ E the equivalence class

[a] is both upwards directed and downwards directed.

Lemma 5.10. [10] If I is an ideal of PEA E satisfying (RDP)0 and a is an element of E, then the

ideal I0(I, a) generated by I and a is given by I0(I, a) = {x ∈ E | x = x1 + a1 + · · · + xn + an, xi ∈

I, ai 6 a, 1 6 i 6 n, n > 1}. If I is a normal ideal, then I0(I, a) = {x ∈ E | x = x1+a1+ · · ·+an, y ∈

I, ai 6 a, 1 6 i 6 n, n > 1}.

Proposition 5.11. Let (E; +, 0, 1) be an n-perfect PEA. Then E0 and En are both upwards and

downwards directed.

Proof. By 0 ∈ E0, E0 is downwards directed. For any x, y ∈ E0, x + y exists in E and x + y ∈ E0,

thus E0 is upwards directed. By En = E∼

0 , we have that En is both upwards directed and downwards

directed.

Proposition 5.12. Let (E; +, 0, 1) be an n-perfect PEA satisfying (RDP)0. Then E satisfies the

following condition

(e) for any i ∈ {0, 1, . . . , n}, Ei is both upwards directed and downwards directed.

Proof. By Proposition 5.11, if n = 1, then the result holds. Now, assume that n > 1. By Ei = E−

i =

E∼

i , it suffices to prove that Ei is downwards directed, for any i ∈ {1, . . . , n− 1}.

Assume that x, y ∈ E1. Then the ideal I(E0, x), which is generated by the normal ideal E0 and

x, is equal to E, since E0 is a maximal ideal. Thus, there exists a ∈ E0, and z1, . . . , zm ∈ E1 with

z1, . . . , zm 6 x such that y = a+ z1+ · · ·+ zm by Lemma 5.10. By y ∈ E1, we have that m = 1. Thus,

z1 6 x, y and z1 ∈ E1 and E1 is downwards directed.

By Theorem 4.5, Ei = iE1 for any i ∈ {1, . . . , n− 1}. Now, assume that x, y ∈ Ei, then there exist

x1, . . . , xi ∈ E1, and y1, . . . , yi ∈ E1, such that x = x1 + · · · + xi and y = y1 + · · · + yi. Since E1 is

downwards directed, there exists a z ∈ E1 such that z 6 x1, . . . , xi and z 6 y1, . . . , yi. Thus, iz ∈ Ei

and iz 6 x, y. Hence, Ei is downwards directed for any i ∈ {1, . . . , n− 1}.

For a, b ∈ E with a 6 b, we define an interval [a, b] := {x ∈ E | a 6 x 6 b}.

Proposition 5.13. Let (E; +, 0, 1) be an n-perfect PEA satisfying the condition (e). If any decreasing

chain in E1 has a lower bound in E1, then

(i) There exists a smallest element c ∈ E1.

(ii) For any i ∈ {0, 1, . . . , n}, ic is a smallest element in Ei.

(iii) For any i ∈ {0, 1, . . . , n}, (ic)∼ = (ic)− and it is the largest element in En−i.

(iv) For any i ∈ {0, 1, . . . , n}, Ei = [ic, ((n − i)c)∼].
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(v) E = {0, c, . . . , nc}.

Proof. By Zorn’s Lemma, there exists a minimal element c in E1. Since E1 is downwards directed,

and so the minimal element c is also the smallest element in E1.

Now, by Theorem 4.5 (iii), for any i ∈ {1, . . . , n}, Ei = iE1. For i ∈ {1, . . . , n}, x ∈ Ei, there exist

x1, . . . , xi ∈ E1 such that x = x1 + · · ·+ xi, which implies that ic 6 x, since c is the smallest element

in E1. Hence, for any i ∈ {0, 1, . . . , n}, ic is the smallest element in Ei. Thus, (ic)
∼ and (ic)− are the

largest elements in En−i, and so (ic)∼ = (ic)−. Hence, Ei = [ic, ((n − i)c)∼], for any i ∈ {0, 1, . . . , n}.

Since (nc)− is the largest element of E0, (nc)
−+(nc)− exists and (nc)−+(nc)− ∈ E0, then we have

that (nc)− = 0, which implies that nc = 1. Thus, we have that ic = ((n− i)c))∼, for i ∈ {0, 1, . . . , n}.

By Ei = [ic, ((n − i)c)∼], we have that Ei = {ic}, i ∈ {0, 1, . . . , n}.

Recall that for any state s : E → [0, 1] on a PEA E, we can define a binary operation ∼s as follows:

x ∼s y if and only if s(x) = s(y), for x, y ∈ E.

Proposition 5.14. Let (E; +, 0, 1) be an n-perfect PEA satisfying the condition (e) and let s be a

state s : E → [0, 1] such that s(Ei) =
i
n
for any i ∈ {0, 1, . . . , n}. Then:

(i) For x, y ∈ E, x ∼s y if only if there exists a unique i ∈ {0, 1, . . . , n} such that x, y ∈ Ei.

(ii) For x, y ∈ E, x ∼s y if only if x ∼E0
y.

Proof. (i) It is obvious.

(ii) For x, y ∈ E, if x ∼E0
y, then there exist a, b ∈ E0 such that x\a = y\b, thus s(x\a) = s(y\b).

By s(E0) = 0, we have that s(x) = s(y), and so x ∼s y.

Conversely, if x ∼s y, then there is a unique i ∈ {0, 1, . . . , n} such that x, y ∈ Ei. Now, if i = 0,

then x ∼E0
y. If i = n, then 1 \ x, 1 \ y ∈ E0, and so 1 \ x ∼E0

1 \ y, hence, x ∼E0
y. If n = 1, we have

finished the proof. Assume that n > 1 and i ∈ {1, . . . , n − 1}. Since Ei is downwards directed, there

exists z ∈ Ei such that z 6 x, y. Thus, z = x\(z/x) = y\(z/y) and z/x, z/y ∈ E0, which implies that

x ∼E0
y.

Proposition 5.15. Let (E; +, 0, 1) be an n-perfect PEA and a state s : E → [0, 1] such that s(Ei) =
i
n

for any i ∈ {0, 1, . . . , n}. If for x, y ∈ E, x ∼s y if only if x ∼E0
y, then E satisfies the condition (e).

Proof. By the assumption, we have that for any i ∈ {0, 1, . . . , n}, Ei is the equivalent class of E with

respect to the Riesz congruence ∼E0
. Thus, by Lemma 5.9, for any i ∈ {0, 1, . . . , n}, Ei is both

upwards directed and downwards directed.

Theorem 5.16. Let (E; +, 0, 1) be an n-perfect PEA satisfying the condition (e). Then E/ ∼E0
is

isomorphic to the effect algebra {0, 1

n
, . . . , n−1

n
, 1}.

Proof. For any x, y ∈ E, there exist unique i, j ∈ {0, 1, . . . , n} such that x ∈ Ei, y ∈ Ej. Without

loss of generality, we assume that i 6 j. Assume that i = j. By Theorem 4.1, there exists a state

s : E → {0, 1

n
, . . . , n−1

n
, 1} such that s(Ei) =

i
n
, for i ∈ {0, 1, . . . , n}. By Proposition 5.14, E/ ∼E0

=
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{E0, E1, . . . , En}, then x ∼E0
y. If i < j, then x < y, and so there exists z ∈ E such that y = x+ z,

and so x+ z ∼E0
y. By Theorem 5.8, E/ ∼E0

is a linear PEA.

For any a ∈ E1, we have ma exists and ma ∈ Em for m ∈ {1, . . . , n − 1} by Definition 5.1. Now,

(n − 1)a + ((n − 1)a)∼ = 1, and ((n − 1)a)∼ ∈ E1. However, since E1 is downwards directed, and

so, there exists an element c ∈ E1 such that c 6 a, ((n − 1)a)∼. Whence, for i ∈ {0, 1, . . . , n}, ic

exists and ic ∈ Ei. Thus, Ei = (ic)/ ∼E0
, for i ∈ {0, 1, . . . , n}. Hence, we can define the mapping

φ : E/ ∼E0
→ {0, 1

n
, . . . , 1} by φ(Ei) =

i
n
for any i ∈ {0, 1, . . . , n}, which is an isomorphism between

effect algebras.

6 Representation of strong n-perfect PEA

In [33], the author studied the structure of non-Archimedean effect algebras and gave some conditions

such that a non-Archimedean effect algebra E is isomorphic to the lexicographical product of one

Archimedean effect algebra with a linearly ordered group. We recall that a PEA E is Archimedean if

Infinit(E) = {0}.

In this section, we introduce a stronger class of n-perfect PEAs, called strong n-perfect PEAs.

We will give conditions such that any strong n-perfect PEA is isomorphic with the n-perfect PEA

Γ(Z
−→
× G, (n, 0)), where G is a torsion-free po-group such that Z

−→
× G satisfies (RDP)1. In addition, we

will study a categorical equivalence of the category of strong n-perfect PEAs with a special category

of torsion-free directed po-groups.

Let (E; +, 0, 1) be a PEA and (G; +,6) be a directed po-group with a fixed element h ∈ G. Let

E
−→
×hG be the set {(0, g) | g ∈ G+}∪{(a, g) | a ∈ E \{0, 1}, g ∈ G}∪{(1, g) | g 6 h, g ∈ G}, and define

a partial addition +∗ on E
−→
×hG componentwise just as following, for any (a, x), (b, y), (c, z) ∈ E

−→
×hG,

(a, x) +∗ (b, y) exists and equals to (c, z) if and only if a + b = c, x + y = z. It is routine to prove

that (E
−→
×hG; +∗, (0, 0), (1, h)) is a pseudo-effect algebra. The set (E

−→
×hG; +∗, (0, 0), (1, h)) is called

the lexicographical product of the pseudo-effect algebra E with the po-group G and with respect to the

element h of G. We recall that E
−→
×hG can be also expressed via the Γ functor as Γ(E

−→
×G, (1, h)) :=

{(a, g) | (0, 0) 6 (a, g) 6 (1, h)}.

It is routine to verify the following proposition.

Proposition 6.1. Let (E; +, 0, 1) be the effect algebra {0, 1

n
, . . . , 1} and (G; +,6) be a directed po-

group. Then the lexicographical product (E
−→
×hG; +∗, (0, 0), (1, h)) of the effect algebra E and the

po-group G with respect to the element h is the n-perfect PEA Γ( 1
n
Z
−→
×G, ), (1, h)).

Proposition 6.2. Let (E; +, 0, 1) be an n-perfect PEA. Then there exists a unique directed po-group

G such that G+ = E0.

Proof. By Theorem 4.5, E0 = Infinit(E). Furthermore, E0 + E0 exists and E0 + E0 = E0. Hence, for

any x, y ∈ E0, x+ y ∈ E0, and (E0; +, 0) is a semigroup. For any x, y ∈ E0, the equation x+ y = 0,

implies that x = y = 0. For any x, y, z ∈ E0, the equation x + y = x + z implies that y = z, and

equation y + x = z + x implies that y = z. Then (E0; +, 0) is a cancellative semigroup satisfying the
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conditions of Birkhoff, [21, Thm II.4], which guarantees that E0 is the positive cone of a unique (up

to isomorphism) po-group G. Without loss of generality, we can assume that G is generated by the

positive cone E0, so that G is directed, see [21, Prop II.5].

Proposition 6.3. Let (E; +, 0, 1) be an n-perfect PEA and H be a partially ordered group with strong

unit u. Assume that E = Γ(H,u). Then the following statement holds.

(∗) For x, y ∈ E\E0, a, b, c, d, e, f, g, h ∈ E0, if x\a = y\b and x\c = y\d, then b/a = d/c and

a/b = c/d hold in G. If e/x = f/y and g/x = h/y, then e\f = g\h and f\e = h\g hold in H.

Proof. We assume that (E0, . . . , En) is an n-decomposition of E andG is a unique po-group determined

by E such that G+ = E0. Since E is an interval PEA, we assume there exists a positive element u of

a po-group (H; +, 0) such that Γ(H,u) = E. Thus, G is a subgroup of H with G+ ⊆ H+.

If x\a = y\b and x\c = y\d, then we have that x = y+(−b)+a = y+(−d)+c, y = x\a+b = x\c+d

and so −y + x = (−b) + a = (−d) + c, −x + y = −a + b = −c + d, which implies y/x = b/a = d/c,

x/y = a/b = c/d. The proof of the rest is similar.

Proposition 6.4. Let (E; +, 0, 1) be an n-perfect PEA with an n-decomposition (E0, . . . , En). If there

exists an element c ∈ E1 such that nc = 1, then, for any x ∈ E, x+ c exists if and only if c+x exists.

Proof. Since nc = 1, we have that c∼ = c−. Then x + c exists if and only if x 6 c− if and only if

x 6 c∼ if and only if c+ x exists.

The following notions were defined for GMV-algebras in [14], and cyclic elements were defined also

in [15].

Let n > 0 be an integer. An element a of a PEA E is said to be cyclic of order n > 0 if na exists

in E and na = 1. If a is a cyclic element of order n, then a− = a∼, indeed, a− = (n− 1)a = a∼.

We say that a group G is torsion-free if ng 6= 0 for any g 6= 0 and every nonzero integer n. For

example, every ℓ-group is torsion-free, see [23, Cor 2.1.3]. We recall that if G is torsion-free, so is

Z
−→
×G.

We recall that a group G enjoys unique extraction of roots if, for all positive integers n and g, h ∈ G,

gn = fn implies g = h. We recall that every linearly ordered group, or a representable ℓ-group, in

particular every Abelian ℓ-group enjoys unique extraction of roots, see [23, Lem. 2.1.4].

We say that a PEA E enjoys unique extraction of roots of 1 if a, b ∈ E and na, nb exist in E,

and na = 1 = nb, then a = b. Then every Γ(Z
−→
× G, (n, 0)) enjoys unique extraction of roots of 1

for any n ≥ 1 and any torsion-free directed po-group G. Indeed, let k(i, g) = (n, 0) = k(j, h). Then

ki = n = kj which yields i = j > 0, and kg = 0 = kh implies g = 0 = h.

Definition 6.5. Let E be an n-perfect PEA satisfying (RDP)1. We say that E is a strong n-perfect

PEA if

(i) there exists a torsion-free unital po-group (H,u) such that E = Γ(H,u),

(ii) there exists an element c ∈ E1 such that (a) nc = u, and (b) c ∈ C(H).
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The element c from (ii) is said to be a strong cyclic element of order n.

Lemma 6.6. Any strong cyclic element c of order n is a unique element d ∈ E = Γ(H,u) such that

nd = u implies c = d whenever H is torsion-free.

Proof. Indeed, since c ∈ C(H) and d ∈ H, we have c + d = d + c in the group H. Then n(c − d) =

nc− nd = 0 so that c = d.

Theorem 6.7. Let E be a PEA and let n ≥ 1 be an integer. Then E is a strong n-perfect PEA if

and only if there exists a torsion-free directed po-group G such that Z
−→
× G satisfies (RDP)1, and E is

isomorphic to Γ(Z
−→
×G, (n, 0)).

If it is a case, G is unique and satisfies (RDP)1.

Proof. If there exists a torsion-free directed po-group G such that E is isomorphic to Γ(Z
−→
×G, (n, 0)),

then E is an n-perfect PEA with a unique strong cyclic element (1, 0) of order n. Hence, E is a strong

n-perfect PEA.

Conversely, assume that E is a strong n-perfect PEA with an n-decomposition (E0, . . . , En) and

E = Γ(H,u) for a torsion-free unital po-group (H,u) satisfying (RDP)1. By [18, Thm 5.7], (H,u) is a

unique (up to isomorphism of unital po-groups) unital po-group with (RDP)1. By Lemma 6.6, there

exists a unique strong cyclic element c ∈ E1 such that nc = u and c+ g = g + c for any g ∈ H. Thus,

Ei = (ic)/ ∼E0
for i ∈ {0, 1, . . . , n}. Furthermore, by Proposition 6.2, there exists a directed po-group

G such that G is a subgroup of H and E0 = G+ ⊆ H+.

We define a mapping ϕ : E → Γ(Z
−→
×G, (n, 0)) as follows, if x ∈ Ei, then ϕ(x) = (i, (ic)/x),

i ∈ {0, 1, . . . , n}. Since E is an interval PEA, by Proposition 6.3, the condition (∗) holds, which

implies that φ is defined well, and ϕ(0) = (0, 0), ϕ(u) = (n, 0).

Assume x+y exists in E for x, y ∈ E. Then there exist unique i, j ∈ {0, 1, . . . , n} such that x ∈ Ei,

y ∈ Ej , and so x+ y ∈ Ei+j . By the definition of ϕ, we have that ϕ(x+ y) = (i+ j, ((i+ j)c)/(x+ y)).

Since for any g ∈ H, c + g = g + c, we have that −c + g = g − c, which implies ((i + j)c)/(x + y)

= (ic + jc)/(x + y) = −(ic + jc) + x + y = −jc − ic + x + y = −ic + x − jc + y = (ic)/x + (jc)/y,

and so (i + j, ((i + j)c)/(x + y)) = (i + j, (ic)/x + (jc)/y) = (i, (ic)/x) + (j, (jc)/y), which implies

ϕ(x + y) = ϕ(x) + ϕ(y). Thus, ϕ is a morphism between pseudo-effect algebras. Assume ϕ(x) =

(i, (ic)/x), ϕ(y) = (j, (jc)/y), and ϕ(x) 6 ϕ(y). There are the following two cases. (i) If i = j, then

(ic)/x 6 (jc)/y, and so x 6 y. (ii) If i < j, then x ∈ Ei, y ∈ Ej, which implies that x < y by Theorem

4.5 (ii). Thus, ϕ is a monomorphism. For any g ∈ G+, ϕ−1((0, g)) = g ∈ E0, ϕ
−1((n,−g)) = g− ∈ En.

Assume that (i, g) ∈ Γ(Z
−→
×G, (n, 0)) and i ∈ {1, . . . , n − 1}. Then ic + g = ϕ−1((i, g)). Thus, ϕ is

surjective.

Hence, ϕ is an isomorphism from the strong n-perfect pseudo-effect algebra E onto the PEA

Γ(Z
−→
×G, (n, 0)). Since (H,u) is a unique unital po-group with (RDP)1 such that E = Γ(H,u) and

E is isomorphic with Γ(Z
−→
× G, (n, 0)), we have by [18, Thm 5.7] that (H,u) and (Z

−→
× G, (n, 0)) are

isomorphic unital po-groups with (RDP)1 and whence, Z
−→
× G is torsion-free. We show that also G is

torsion-free. Indeed, assume that, for some integer n 6= 0 and some element g ∈ G, we have ng = 0.

But ng belongs also to the torsion-free po-group H, whence, g = 0.
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Finally, since Z
−→
× G satisfies (RDP)1, then clearly so does G.

It is worthy to recall that we do not know whether if a directed po-group G has (RDP)1, does have

(RDP)1 also Z
−→
× G ? This is know only for Abelian po-group, see [24, Cor 2.12].

Corollary 6.8. Let E be a strong n-perfect PEA. Then:

(i) There exists a unique strong cyclic element of order n in E.

(ii) There exists a unique n-decomposition (E0, . . . , En) of E.

(iii) The state s : E → [0, 1] such that s(Ei) =
i
n
for i ∈ {0, . . . , n} is extremal.

(iv) E is a symmetric PEA.

Proof. By Theorem 6.7, there exists a torsion-free directed po-group G such that E is isomorphic to

Γ(Z
−→
×G, (n, 0)).

(i) The element (1, 0) is a unique strong cyclic element of order n of Γ(Z
−→
×G, (n, 0)), which implies

that there exists a unique strong cyclic element of order n in E, see see Lemma 6.6.

(ii) The pseudo-effect algebra Γ(Z
−→
×G, (n, 0)) admits a unique n-decomposition (E0, . . . , En), where

E0 = {(0, g) | g ∈ G+}, En = {(n,−g) | g ∈ G+}, Ei = {(i, g) | g ∈ G}, for i ∈ {0, . . . , n− 1}.

(iii) It easy to see that a function s : Γ(Z
−→
×G, (n, 0)) → [0, 1] such that s(i, g) = i

n
for i ∈ {0, . . . , n}

is a unique state on Γ(Z
−→
×G, (n, 0)). Indeed, let s1 be a state on Γ(Z

−→
×G, (n, 0)). It is clear that

E0 = Infinit(E) ⊆ Ker(s1). On the other hand Ker(s1) ⊆ E0 because, E0 is a maximal ideal, which

yields Ker(s1) = E0. Moreover, 1 = s1(n(1, 0)) = ns1(1, 0) which gives s1(1, 0) = 1/n. Let g > 0,

then (1, g) = (1, 0) + (0, g) which yields s1(1, g) = 1/n. Let g ∈ G be arbitrary. Since G is directed,

every element g = g1 − g2 for some g1, g2 > 0. Hence, (1, g) 6 (1, g1) which entails s1(1, g) 6
1

n
, and

similarly, s1(i, g) 6
i
n
for i = 1, . . . , n− 1. Therefore, 1 = s1(1, g)+ s1(n− 1,−g) 6 1

n
+ n−1

n
= 1 which

implies s1(1, g) =
1

n
and s1(Ei) =

i
n
for any i = 0, 1, . . . , n.

Hence, E admits a unique state s such that s(Ei) =
i
n
for i ∈ {0, . . . , n}, and so it is also extremal.

(iv) The PEA Γ(Z
−→
×G, (n, 0)) is a symmetric PEA, and so E is also symmetric.

Theorem 6.9. Let E and F be two strong n-perfect PEAs, and (E0, . . . , En) and (F0, . . . , Fn) be

n-decompositions of E and F , respectively. If f : E → F is a homomorphism between E and F and

if G and H are two directed po-groups which are determined by E and F, respectively, by the property

G+ = E0 and H+ = F0, then

(i) f(Ei) ⊆ Fi, for i ∈ {0, 1, . . . , n},

(ii) there exists a unique homomorphism f̂ : G → H such that for any g ∈ G+, f̂(g) = h iff f(g) = h.

Proof. Since E and F are two strong n-perfect PEAs, by Theorem 6.7, there exist unique directed

torsion-free po-groups G and H with (RDP)1 such that E and F are isomorphic to Γ(Z
−→
×G, (n, 0))

and Γ(Z
−→
×H, (n, 0)). Thus, we can assume that E = Γ(Z

−→
×G, (n, 0)) and F = Γ(Z

−→
×H, (n, 0)), and

E0 = {(0, g) | g ∈ G+}, En = {(0,−g) | g ∈ G+}, F0 = {(0, h) | h ∈ H+}, Fn = {(0,−h) | h ∈ H+},

and for any i ∈ {1, . . . , n− 1}, Ei = {(i, g) | g ∈ G}, Fi = {(i, h) | h ∈ H}.
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(i) For any (0, g) ∈ E0 = Infinit(E) and any integer k ≥ 1, k(0, g) = (0, kg) ∈ E0, we have

f(0, kg) = kf(0, g), we conclude f(0, g) ∈ F0 = Infinit(F ). Thus, we have that f(E0) ⊆ F0. Further,

by En = E−

0
and Fn = F−

0
, we have that f(En) ⊆ Fn.

Assume n > 1. For (1, 0) ∈ E1, by n(1, 0) = (n, 0), we have that nf(1, 0) = (n, 0), which implies

that f(1, 0) ∈ F1. For any (1, g), there exists g1, g2 ∈ G+ such that g = g1−g2 and so (1, g) = (0, g1)+

(1,−g2). Now, f(1,−g2) 6 f(1, 0) which entails f(1,−g2) ∈ F0∪F1. But f(1, 0) = f(1,−g2)+f(0, g2) ∈

F1 and f(0, g2) ∈ F0, so that f(1,−g2) ∈ F1. Consequently, f(1, g) = f(0, g1)+ f(1,−g2) ∈ F1 for any

g ∈ G.

In the same way, we can show that f(i, g) ∈ Fj for some j = 0, 1, . . . , i < n. In any rate, we state

f(1, g) ∈ F1. If not, then f(1, g) ∈ F0 and f(n − 1, g) ∈ Fj for some j = 0, 1, . . . , i. But f(n, 0) ∈ Fn

and f(n, 0) = f(1, g) + f(n− 1,−g) ∈ F0 + Fj = Fj ⊆ E \ Fn, which is absurd.

Since for any i ∈ {1, . . . , n− 1}, Ei = iE1, and so we have that f(Ei) ⊆ Fi.

(ii) We define f1 : G
+ → H+ as follows: for g ∈ G+, f1(g) = h iff f(0, g) = (0, h). Obviously, f1 is

defined well and f(0, g) = (0, f1(g)) for g ∈ G+. Furthermore, for any g1, g2 ∈ G+, by f(0, g1 + g2) =

f(0, g1) + f(0, g2) and f(0, g) = (0, f1(g)), we have that f1(g1 + g2) = f1(g1) + f1(g2).

We now define f̂ : G → H as follows: for any g ∈ G, we f̂(g) = f1(g1) − f1(g2) whenever

g = g1 − g2, where g1, g2 > 0. We assert that f̂ is a well-defined mapping. Indeed, if g = −h1 + h2

for some h1, h2 > 0, then g = g1 − g2 = −h1 + h2, and h1 + g1 = h2 + g2, which implies that

f1(h1 + g1) = f1(h2 + g2), and so f1(g1)− f1(g2) = −f1(h1) + f1(h2). Thus, f̂ is defined well.

For g, h ∈ G, we want to verify that f̂(g + h) = f̂(g) + f̂(h). We assume that g = −g1 + g2,

h = h1 − h2, and g + h = k1 − k2, then g2 + h1 − h2 = g1 + k1 − k2, which entails that g2 + h1 − h2 =

g1+k1−k2, and so, f1(g2)+ f1(h1)− f1(h2) = f1(g1)+ f1(k1)− f1(k2), hence, f̂(g+h) = f̂(g)+ f̂ (h).

Thus, f̂ is a group homomorphism. Moreover, if g > 0, then f̂(g) > 0. Furthermore, by the definition

of f̂ , we have that f̂(G+) ⊆ H+, and g ∈ G+, f̂(g) = h.

Now, if k : G → H is a homomorphism such that for g ∈ G+, f̂(g) = h iff f(0, g) = (0, h). Then

f̂ |G+= kG+ , since G is directed, we have that f̂ = k.

Let G be the category whose objects are torsion-free directed po-groups G such that Z
−→
× G satisfies

(RDP)1 and morphisms are po-group homomorphisms. Let SPPEAn be the category whose objects

are strong n-perfect PEAs and morphisms are homomorphisms of PEAs.

We define a functor En : G → SPPEAn as follows: for G ∈ G, let En(G) := Γ(Z
−→
×G, (n, 0)) and if

h is a group homomorphism with domain G, we set

En(h)(x) = (i, h((ic)/x)),

where c is a unique strong cyclic element of order n in E.

Theorem 6.10. The functor En is a faithful and full functor from the category G of directed po-groups

into the category SPPEAn of n-perfect PEAs.

Proof. Let h1 and h2 be two morphisms from G1 into G2 such that E(h1) = E(h2). Since both G1

and G2 are directed, it suffice to prove that h1(g) = h2(g) for all g ∈ G+

1
. By E(h1) = E(h2), then

(0, h1(g)) = (0, h2(g)) for all g ∈ G+

1
, and hence h1 = h2.21



Let f : Γ(Z
−→
×G1, (n, 0)) → Γ(Z

−→
×G2, (n, 0)) be a PEA homomorphism. Then for any x ∈ G+

1
,

there exists a unique y ∈ G+

2
such that f(0, x) = (0, y). Define a mapping h : G+

1
→ G+

2
by h(x) = y

iff f(0, x) = (0, y). Note for any x1, x2 ∈ G+

1
, h(x1 +x2) = h(x1)+ h(x2). Since G1 is directed, for any

x ∈ G1, there exists x1, x2, g1, g2 ∈ G+

1
such that x = x1−x2 and x = −g1+g2, then g1+x1 = g2+x2,

and so h(g1) + h(x1) = h(g2) + h(x2), which implies that h(x1) − h(x2) = −h(g1) + h(g2). This

shows that the assignment h(x) = h(x1)− h(x2) is a well-defined extension of h to the whole directed

po-group G1, and h is a po-group homomorphism.

We say that a universal group for a PEA E is a pair (G, γ) consisting of a directed po-group G

and a G-valued measure γ : E → G (i.e., γ(a + b) = γ(a) + γ(b) whenever a + b exists in E) such

that the following conditions hold: (i) γ(E) generates G, and (ii) if H is a group and φ : E → H

is an H-valued measure, then there exists a (unique) group homomorphism φ∗ : G → H such that

φ = φ∗ ◦ γ.

Theorem 6.11. Let E be a strong n-perfect PEA. Then the directed po-group Z
−→
×G from Theorem

6.7 together with the isomorphism γ : E → Γ(Z
−→
× G, (n, 0)) ⊂ Z

−→
× G is a universal group of E.

Proof. Let E be a strong n-perfect PEA. By Theorem 6.7, there is a unique torsion-free directed

po-group G such that E is isomorphic with Γ(Z
−→
× G, (n, 0)). Set G = Z

−→
×G, and γ : E → Z

−→
×G be

the embedding mapping, then:

(i) γ(E) generates the group G and because (1, 0) is a strong unit, G is directed.

(ii) Assume φ : E → K is aK-valued measure. Then φ(0, 0) = 0H . Notice that E is symmetric, and

so for any g ∈ G+, φ(1,−g) = φ((1, 0)\(0, g)) = φ((0, g)/(1, 0)), which implies that φ(1, 0)−φ((0, g) =

−φ((0, g) + φ(1, 0). Define a mapping φ∗ : G → H, as follows, for any g, h ∈ G+,

(a) φ∗(0, g) = φ(0, g),

(b) φ∗(0,−g) = −φ(0, g),

(c) φ∗(0, g − h) = φ(0, g) − φ(0, h),

(d) φ∗(0,−g + h) = −φ(0, g) + φ(0, h),

(e) φ∗(1, g − h) = φ(1, 0) + φ∗(0, g − h),

(f) φ∗(m, g − h) = mφ(1, 0) + φ∗(0, g − h).

For g ∈ G, if there exist g1, g2, h1, h2 ∈ G+, such that (0, g) = (0, g1 − g2) = (0, h1 − h2), then

there exist k1, k2 ∈ G+, such that g = −k1 + k2, since G is a directed po-group. Thus, we have that

k1 + g1 = k2 + g2, k1 + h1 = k2 + h2, which implies that φ(0, k1) + φ(0, g1) = φ(0, k2) + φ(0, g2),

φ(0, k1) + φ(0, h1) = φ(0, k2) + φ(0, h2), thus, −φ(0, k1) + φ(0, k2) = φ(0, g1) − φ(0, g2) = φ(0, h1) −

φ(0, h2). Consequently, φ
∗ is defined well.

For any g1, g2, h1, h2 ∈ G+, there exists k1, k2 ∈ G+ such that −g2 + h1 = k1 − k2, and so

(0, g1−g2)+(0, h1−h2) = (0, g1+k1−k2−h2).Hence, φ
∗((0, g1−g2)+(0, h1−h2)) = φ∗(0, g1+k1−k2−h2)

= φ(0, g1 + k1)− φ(0, h2 + k2) = φ(0, g1) + φ(0, k1)− φ(0, k2)− φ(0, h2) = φ(0, g1 + k1)− φ(0, h2 + k2)

= φ(0, g1)+φ(0, k1)− φ(0, k2)−φ(0, h2) = φ(0, g1)+φ∗(0, k1 − k2)−φ(0, h2) = φ(0, g1)+φ∗(0,−g2 +

h1) − φ(0, h2) = φ(0, g1) − φ(0, g2) + φ(0, h1) − φ(0, h2) = φ(0, g1) − φ(0, g2) + φ(0, h1) − φ(0, h2)

= φ∗(0, g1 − g2) + φ∗(0, h1 − h2).
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Since for any g ∈ G+, we have that φ(1, 0) − φ(0, g) = −φ(0, g) + φ(1, 0), which implies that

φ(0, g) + φ(1, 0) − φ(0, g) = φ(1, 0), and so φ(0, g) + φ(1, 0) = φ(1, 0) + φ(0, g). Thus, for any g ∈ G,

we have that φ(1, 0) + φ∗(0, g) = φ∗(0, g) + φ(1, 0).

For g1, g2, h1, h2 ∈ G+, (i, g1 − g2) + (j, h1 − h2) = (i + j, g1 − g2 + h1 − h2), and so, φ∗((i, g1 −

g2) + (j, h1 − h2)) = φ∗(i+ j, g1 − g2 + h1 − h2) = (i+ j)φ(1, 0) + φ∗(0, g1 − g2 + h1 − h2) = iφ(1, 0) +

jφ(1, 0) + φ∗(0, g1 − g2) + φ∗(0, h1 − h2) = iφ(1, 0) + φ∗(0, g1 − g2) + jφ(1, 0) + φ∗(0, h1 − h2) =

φ∗(i, g1 − g2) + φ∗(j, h1 − h2).

Thus, φ∗ is a group homomorphism with φ = φ∗ ◦ γ.

Recall that a functor E from a category A into a category B is said to be left-adjoint provided that

for every B-object B there exists an E-universal arrow with domain B, see [1].

Theorem 6.12. The functor En has a left-adjoint.

Proof. By Theorem 6.7, for any strong n-perfect PEA E, there exists a unique torsion-free directed

po-group G such that Z
−→
× G has (RDP)1, and by Theorem 6.11, (Z

−→
×G, γ) is a universal group for E.

Now, for a strong n-perfect PEA F = En(G1), where G1 is a torsion-free directed po-group such

that Z
−→
× G has (RDP)1, assume that f ′ : E → En(G1) is a homomorphism between PEAs. There

exists a unique group homomorphism f1 : Z
−→
×G → Z

−→
×G1 such that f ′ = f1 ◦ γ. Now, we define

f : G → G1 as f(g) = h iff f1(0, g) = (0, h) for any g ∈ G+, since G is directed, it is routine to verify

that f is a homomorphism between G and G1. By Theorem 6.9, f is a unique homomorphism between

G and G1 such that f(g) = h iff f1(0, g) = (0, h) for any g ∈ G+, which implies that it is also a unique

homomorphism such that f ′ = E(f) ◦ γ.

We define a functor Pn : SPPEAn → G as follows: if G ∈ G, let

Pn(Γ(Z
−→
×G, (n, 0))) := G,

where (Z
−→
×G, γ) is a universal group of the strong n-perfect PEA Γ(Z

−→
×G, (n, 0)).

Theorem 6.13. The functor Pn is a left-adjoint of the functor En.

Proof. It follows from Theorem 6.12 and the definition of Pn.

Recall that a functor F from a category A into a category B is called a categorical equivalence

provided that it is full, faithful, and isomorphism-dense in the sense that for any B-object B there

exists some A-object A such that F(A) is isomorphic to B, see [1].

Theorem 6.14. The functor En is a categorical equivalence of the category G of directed torsion-free

po-groups G such that Z
−→
× G has (RDP)1 and the category SPPEAn of n-strong perfect pseudo-effect

algebras.

Proof. It suffices to prove that for a strong n-perfect pseudo-effect algebra E, there is a torsion-free

directed po-group G such that Z
−→
× G has (RDP)1 and such that En(G) is isomorphic to E. To show

that, we take a universal group (Z
−→
×G, γ). Then En(G) and E are isomorphic.
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[4] D. Buhagiar, E. Chetcuti, A. Dvurečenskij, Loomis-Sikorski representation of monotone σ-

complete effect algebras, Fuzzy Sets and Systems 157 (2006), 683–690.
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