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Abstract Outsourcing of personal health record (PHR) has attracted considerable

interest recently. It can not only bring much convenience to patients, it also allows

efficient sharing of medical information among researchers. As the medical data in

PHR is sensitive, it has to be encrypted before outsourcing. To achieve fine-grained

access control over the encrypted PHR data becomes a challenging problem. In this

paper, we provide an affirmative solution to this problem. We propose a novel PHR

service system which supports efficient searching and fine-grained access control for

PHR data in a hybrid cloud environment, where a private cloud is used to assist

the user to interact with the public cloud for processing PHR data. In our proposed

solution, we make use of attribute-based encryption (ABE) technique to obtain fine-

grained access control for PHR data. In order to protect the privacy of PHR owners, our

ABE is anonymous. That is, it can hide the access policy information in ciphertexts.

Meanwhile, our solution can also allow efficient fuzzy search over PHR data, which

can greatly improve the system usability. We also provide security analysis to show
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that the proposed solution is secure and privacy-preserving. The experimental results

demonstrate the efficiency of the proposed scheme.

1 Introduction

A personal health record (PHR) is a collection of individual’s health related informa-

tion, which is created and managed by himself. Recently there has been a remarkable

upsurge in activity surrounding the adoption of personal health record (PHR) systems

for patients [14]. There are many potential benefits that would promote the use of

PHRs. PHR offers a large number of trusted health information, data, and knowledge

to patients, who can rely on that to easily manage and monitor their health and dis-

eases. PHR can also provide a continuous connection between patients and physicians,

which substantially shortens the time to solve problems that may arise. On the other

hand, accumulated information from different patients’ PHR can help physicians to

make better decisions. Despite of various advantages, the PHR data contains very sen-

sitive information. Secure storage and access to PHR is a must in the design of such

system.

Cloud computing, an emerging technology in information system industry, makes

on-demand computing resources a reality. Nowadays cloud service providers can of-

fer both high-available storage services and massive parallel computing resources at

relatively low costs [10]. With the rapid adoption of cloud storage services, more and

more PHR data are being centralized into the cloud. By outsourcing their data in the

cloud, data owners can obtain high quality data storage services, while reducing the

burden of data storage and maintenance. Due to the fact that data owners and cloud

server are not in the same trusted domain, in order to securely store PHR data on an

untrusted cloud server, it should be encrypted before outsourcing [11]. However, it is

intractable to search PHR data in the server efficiently. One of the most popular meth-

ods is to selectively retrieve files through keyword-based search instead of retrieving

all the encrypted files back, which is known as searchable encryption technology.

Although searchable encryption allows secure and efficient searching among en-

crypted data, the existing schemes do not suit for cloud computing scenario since they

support only exact keyword search. To overcome this drawback, Li et al. [9] proposed

a new way to enable fuzzy keyword search over encrypted data by introducing the

concept of edit distance in the encrypted keywords. However, they have not considered

the construction in a multi-user system with different searching privileges.

1.1 Contribution

In this paper, we propose a novel PHR service system that allows efficient search and

fine-grained access control to PHR data in a hybrid cloud environment. In our proposed

construction, users are able to utilize the private cloud as a proxy to securely deploy

their PHR data to the public cloud. Our system mainly consists of two aspects: 1)

To achieve secure and fine-grained access control for PHR data, we deploy anonymous

attribute-based encryption technique to encrypt a symmetric key which is then used

to encrypt the PHR files. Thus it can hide the access policy information in ciphertexts.

2) To improve system usability, PHR data can be efficiently retrieved by exploiting

the fuzzy keyword search technique. Based on the constructed fuzzy keyword sets, we
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further propose an advanced symbol-based trie-traverse search technique for efficiency

enhancement.

1.2 Related Work

Searchable encryption is a broad concept that deals with searches in encrypted data.

The goal is to outsource encrypted data and be able to conditionally retrieve or query

data without having to decrypt all data records [2]. The first practical searchable en-

cryption scheme was proposed by Song et al. [13] in 2000. Later, various searchable

encryption schemes [4], [5], [6], [7], [8] have been proposed in recent years. To achieve

more efficient search, Goh [8] proposed to use Bloom filters to construct the index

for each file. The index makes the search scheme independent of the file encryption.

Moreover, the complexity of each search request is roughly proportional to the number

of files in the collection. Chang et al. [6] developed a similar per-file index scheme.

Curtmola et al. [7] presented the formal security notion of searchable encryption. Fur-

thermore, they proposed similar “index” approaches, where a single encrypted hash

table index is built for the entire file collection. In the index table, each entry con-

sists of the trapdoor of a keyword and an encrypted set of related file identifiers. As

a complementary approach, Boneh et al. [4] proposed a searchable encryption scheme

in asymmetric setting in 2004, where anyone with the public key can encrypt data but

only the authorized users with the private key are able to search. Subsequently, Ab-

dalla et al. [1] proposed a novel public-key encryption with temporary keyword search.

Compared to symmetric searchable encryption, public key solutions are usually more

computational expensive. Note that the above schemes are efficient in general, but they

can only support single-keyword queries. Thus they may not be suitable for real-world

PHR search applications.

To achieve scalable and fine-grained access control, attribute-based encryption

(ABE) [12] has been proposed. Using this technique, differential yet flexible access

rights can be assigned to individual users. Specifically, ciphertext-policy attribute-based

encryption (CP-ABE) [3] enables data owners to specify an access policy over an uni-

verse of attributes and encrypt the data under the access policy with the corresponding

public key components. Though ABE can be directly applied to design secure access

control, there is an increasing need to protect the privacy of user’s access policy (that

is, to hide the access policy information) in access control systems. In order to address

this problem, anonymous-ABE was introduced in [15]. In an anonymous CP-ABE, a

user obtains his attribute secret key and if the attribute set associated with the secret

key does not satisfy the access policy in the ciphertexts, the user cannot decrypt and

guess what access policy was specified by the data owner. We notice that anonymous

CP-ABE is especially suitable for the PHR scenario, which is used to address the

privacy-preserving PHR search problem in our work.

1.3 Organization

The rest of paper is organized as follows: Section 2 gives the system overview and

security model of the proposed scheme. Section 3 provides the detailed description of

our proposed scheme. Section 4 presents the security analysis. In Section 5 we report

on our performance analysis. Finally, Section 6 concludes the paper.
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Fig. 1 Architecture for PHR system

2 Problem Formulation

2.1 Overview

We consider a PHR service system in a cloud environment. There are four entities

defined in our system: data owners/users, trusted authority (TA), private cloud and

public cloud. The owners refer to the patients who create their encrypted PHR data

and upload them to the public cloud. Moreover, the owners can specify the ciphertext-

policy such that only users whose attributes satisfy the policy are able to decrypt the

ciphertext. Users refer to those who want to access the encrypted PHR data, such as

family, friends, clinicians and researchers. The TA generates private key for all users.

The public cloud stores all encrypted PHRs in their database and performs the search

for users. The private cloud is additionally introduced to facilitate users for secure

usage of cloud service. In addition, the ciphertext policy is kept hidden. Users are able

to check whether their attributes satisfy the ciphertext-policy or not.

More specifically, the data owner stores his encrypted PHR data on the public cloud

and shares the files with those users whose attributes satisfy the specific access policy.

Since the computing resources at user side are restricted and the public cloud is not

fully trusted in practice, the private cloud is able to provide users with an execution

environment and an interface between users and the public cloud. The interface offered

by the private cloud allows users to securely submit files. Queries can be also securely

stored and computed.

The fuzzy keyword search algorithm returns the search results according to the

following rules: 1) if the user’s searching input exactly matches the pre-set keyword,

the server is expected to return the files containing the keyword; 2) if there exist typos

and/or format inconsistencies in the searching input, the server will return the closest

possible results based on pre-specified similarity semantics. The architecture of PHR

system is shown in Fig. 1.
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2.2 System Definition

Our system includes seven algorithms, which are defined as follows:

– Setup(1λ) : The setup algorithm is run by the TA. It takes a security parameter λ

as input and outputs a public key PK and a master key MSK.

– KeyGen(PK,MSK,Ω) : The key extraction algorithm is run by the TA. It takes a

public key PK, an attribute set Ω and a master key MSK as inputs and outputs

the a private key SKΩ .

– Encrypt(PK,K,P) : The encryption algorithm is run by the data owner. It takes

a public key PK, a random symmetric encryption key K and an access policy P

as inputs and outputs a ciphertext CTP .

– KeywordIndexGen(P , F ID,W ): The algorithm is run by the private cloud to gen-

erate a keyword index set corresponding to a file identifier FID. It takes a file

identifier FID, an access policy P and a distinct keyword set W = {wi} (which

may contain different keywords wi) as inputs and outputs a set of keyword indexes

{Iwi} where wi ∈ W .

– SearchQueryGen(Ω,w): The algorithm is run by the private cloud to generate a

search query for all fuzzy keywords of a user-input keyword w. It takes attributes

Ω and a query keyword w as inputs and outputs a search query SRH.

– Search(T ,SRH): This algorithm is run by the public cloud to search for files in its

database that contain keyword w. It takes a table of keywords T (which contains all

keyword indexes) and a search query SRH as inputs and outputs the corresponding

file identifiers {FID}.
– Decrypt(PK,CTP , SKΩ) : The decryption algorithm is run by the user. It takes a

public key PK, a ciphertext CTP which was encrypted under the access policy P
and a private key SKΩ . It outputs a symmetric encryption key K if Ω satisfies the

policy P (denoted as P(Ω) = 1), otherwise outputs the error symbol ⊥.

2.3 Security Model

In our system, we assume both the public cloud and the private cloud are “honest-but-

curious”. That means the servers will honestly follow our proposed protocol, but try

to find out as much secret information in the encrypted PHR data as possible. Users

would try to access data files beyond their privileges. To do this, they may collude

with other users, or even with the cloud server. Therefore, two kinds of adversaries are

considered in our system: 1) external attackers, including the cloud servers and other

unauthorized users, who try to learn security information as much as possible; and 2)

internal attackers who share their privileges with other users who do not have these

privileges. Without loss of generality, we assume the TA is trusted.

Index Privacy: Due to the computation of index and query of the same keyword,

we only consider the index privacy. That means the cloud cannot learn additional

knowledge of the keyword. It should be noted that the index is only sensitive for the

public cloud, where the private cloud is allowed to know the keyword.

IND-sCP-CPA: The goals of an adversary in an anonymous CP-ABE system include

extracting information of a plaintext from the ciphertext and distinguishing underlying

access policies in ciphertexts, which can be integrated into the following IND-sCP-CPA

game involving an adversary A and a challenger S .
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1. Initial: The adversary A commits to the challenge ciphertext policies W ∗
0 ,W

∗
1 .

2. Setup: The challenger S chooses a sufficiently large security parameter λ, and runs

the Setup algorithm to get a master key SK and the corresponding public key PK.

It retains MSK and gives PK to A.
3. Phase 1: In addition to hash queries, the adversary A issues a polynomially bounded

number of queries to the following key generation oracle:

– KeyGen oracle OKeyGen: The adversary A submits an attribute list Ω, if (Ω |=
W ∗

0 ∧ Ω |= W ∗
1 ) or (Ω 6|= W ∗

0 ∧ Ω 6|= W ∗
1 ) (we use the notation L |= W to

represent the fact that L satisfies W , and the case of L does not satisfy W is

denoted by L 6|= W ), the challenger S gives A the secret key SKΩ . Otherwise,

it outputs ⊥.

4. Challenge: Once A decides that Phase 1 is over, it outputs two equal length messages

M0, M1 from the message space, on which it wishes to be challenged with respect

to W ∗
0 and W ∗

1 . It is required that M0 = M1 if any secret key on Ω satisfying

Ω |= W ∗
0 ∧ Ω |= W ∗

1 has been queried. The challenger S randomly chooses a bit

ν ∈ {0, 1}, computes CTW∗
ν
= Encrypt(PK,Mν ,W

∗
ν ) and sends CTW∗

ν
to A.

5. Phase 2: The same as Phase 1.

6. Guess: The adversary A outputs a guess bit ν′ ∈ {0, 1} and wins the game if ν′ = ν.

The advantage of an adversary A in the IND-sCP-CPA game is defined as

AdvIND-sCP-CPA
CP-ABE (A) =

∣∣Pr[ ν′ = ν ]− 1
2

∣∣ .

3 Constructions of Fuzzy Keyword Search with Anonymous-ABE

3.1 Preliminaries

We first describe some preliminaries required in our system.

Definition 1 (Edit Distance) Edit distance is a measure of similarity between two

strings. The edit distance ed(w1, w2) between two words w1 and w2 is the minimum

number of operations required to transform one to the other. There are three primitive

operations. 1) Substitution: changing one character to another in a word; 2) Deletion:

deleting one character from a word; 3) Insertion: inserting a single character into a word.

Given a keyword w, we letWw,d denote the set of keywords w′ satisfying ed(w,w′) < d

for a certain integer d.

Definition 2 (Access Structure) Let {P1, P2, . . . , Pn} be a set of parties. A col-

lection A ⊆ 2{P1,P2,...,Pn} is monotone if ∀B,C : if B ∈ A and B ⊆ C then

C ∈ A. An access structure (respectively, monotone access structure) is a collection

(respectively, monotone collection) A of non-empty subsets of {P1, P2, . . . , Pn}, i.e.,
A ⊆ 2{P1,P2,...,Pn}\{∅}. The sets in A are called the authorized sets, and the sets not

in A are called the unauthorized sets.

In our construction, we consider access structures consisting of AND-gates supporting

multi-value attributes.

Definition 3 (Decision BDH)Given g, gx, gy, gz ∈ G1 for random exponents x, y, z ∈

Z
∗
p and Z ∈ GT , the DBDH assumption says that no polynomial-time algorithm can

decide whether Z = e(g, g)xyz or Z is a random element chosen from GT with non-

negligible probability.
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Definition 4 (Decision Linear) Given g, gz1 , gz2 , gz1z3 , gz2z4 , Z ∈ G1 for random

exponentsz1, z2, z3, z4 ∈ ZP , The D-Linear assumption is that no polynomial-time

algorithm can decide whether Z = gz3+z4 or Z is a random element chosen from G1

with non-negligible probability.

Definition 5 (Bilinear Pairings) Let G1,G2 be the cyclic groups of prime order

p, let g be a generator of G1, and e : G1 × G1 → G2 be a map with the following

properties.

1. Bilinearity: e(ga, gb) = e(g, g)ab, a, b ∈ Zp.

2. Non-degeneracy: There exist x, y ∈ G1 such that e(x, y) 6= 1.

3. Computable: For all x, y ∈ G1, e(x, y) has to be computable in an efficient manner.

3.2 The Proposed Construction

Initialization. In our proposed system, we construct fuzzy keyword set with the

wildcard-based method [9]. Different from the straightforward method of listing all

the variants of the keywords, we use a wildcard to denote edit operations at the same

position. The wildcard-based fuzzy set of keyword w with edit distance d can be denoted

as Ww,d = {w′
w,d}, where w′

w,d denotes a fuzzy keyword of w with d wildcards. For

example, for the keyword cat with the pre-set edit distance 1, its wildcard-based fuzzy

keyword set can be constructed as Wcat,1 = {cat, ⋆cat, ⋆at, c ⋆ at, c ⋆ t, ca ⋆ t, ca⋆, cat⋆}.
Furthermore, we define a map as follow: f : Ω → PΩ , where Ω and PΩ represent user’s

attributes and the corresponding access policy respectively.

– Setup(1λ): Let G,GT be cyclic multiplicative groups of prime order p, and ê :

G ×G → GT be a bilinear map. Define two hash functions H : {0, 1}∗ → G and

h : {0, 1}∗ → {0, 1}l for some security parameter l. Assume there are n attributes in

universe. Let U = {u1, · · · , un} denotes the universe of attributes. Each attribute

has multiple values. Let Si = {vi,1, vi,2, · · · , vi,ni
} be the multi-value set for ui.

The TA chooses y ∈R Zp, g1, g2 ∈R G, then computes Y = ê(g1, g2)
y. The system

public key is published as PK = (g, g1, g2, Y ) and the master key MSK is y.
– KeyGen(PK,MSK,Ω): To generate the attribute secret key for the user who has

the attribute set Ω = {Ω1, Ω2, · · · , Ωn}. TA randomly picks r1, r2, · · · , rn−1 ∈R Zp

and computes rn = y −
∑n−1

i=1 ri mod p. Furthermore, it randomly chooses r ∈R
Zp and {r̂i, λi, λ̂i ∈R Zp}1≤i≤n, sets r̂ =

∑n
i=1 r̂i, and computes

(
D0, D∆,0

)
=

[gy−r̂
2 , gr1]. For 1 ≤ i ≤ n, the TA computes

(
D∆,i, Di,0, Di,1, D̂i,0, D̂i,1

)
=

(
g
r̂i
2

H(i||vi,ki
)
r
, g

λi
2

, g
ri
1

H(0||i||vi,ki
)
λi , g

λ̂i
1

, g
ri
2

H(1||i||vi,ki
)
λ̂i

)
,

where Ωi = vi,ki
. The secret key is

SKΩ =
(
D0, D∆,0, {D∆,i, Di,0, Di,1, D̂i,0, D̂i,1}1≤i≤n

)
.

– Encrypt(PK,K,P): To encrypt a symmetric key K ∈ GT under a ciphertext policy

P = {P1, · · · , Pn}, data owner chooses s, s′, s′′ ∈R Zp, and computes C̃ = KY s,

C∆ = ê(g, g)sY s′ , C0 = gs, Ĉ0 = gs
′

1 , C1 = gs
′′

2 , Ĉ1 = gs−s′′

1 . Then for 1 ≤ i ≤ n

and 1 ≤ t ≤ ni, he computes
(
Ci,t,∆, Ci,t,0, Ĉi,t,0

)
as follows:
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1. If vi,t ∈ Pi, then
[
Ci,t,∆, Ci,t,0, Ĉi,t,0

]
=

(
H(i||vi,t)

s′ ,H(0||i||vi,t)
s′′ ,H(1||i||vi,t)

s−s′′
)
.

2. If vi,t /∈ Pi, then
[
Ci,t,∆, Ci,t,0, Ĉi,t,0

]
are random elements in G.

Then the ciphertext of K with respect to P is

CTP=〈C∆, C0, Ĉ0, C̃, C1, Ĉ1,

{{Ci,t,∆, Ci,t,0, Ĉi,t,0}1≤t≤ni
}1≤i≤n〉.

– KeywordIndexGen(P , FID, W ): After running Encrypt(PK,K,P), the data owner

uploads the ciphertext CTP to the public cloud and obtains the file identifier FID.

Then, the data owner sends (P , F ID,W ) to the private cloud to generate indexes

for the set of keywords W . For every wi ∈ W , the private cloud computes the

indexes {Tw′
i,P

= h(P , w′
i)}w′

i∈Wwi,d
.1 The set of keyword indexes denoted as{

Iwi =
{
{Tw′

i,P
}w′

i∈Wwi,d
, F ID

}}

wi∈W

is outsourced to the public cloud. The

public cloud stores the keyword index set into the table T .
– SearchQueryGen(Ω,w): To search with keyword w, the user sends (Ω,w) to the

private cloud, who gets the corresponding access policy PΩ ← f(Ω) and generates

the search query as {SRH = h(PΩ , w′
w,d)}w′

w,d∈Ww,d
.2 Next, the private cloud

sends the search queries {SRH} to the public cloud.

– Search(T , {SRH}): Upon receiving the search queries {SRH}, the public cloud com-

pares them with the indexes in the table T with the search queries and returns the

corresponding matched file identifiers {FID} to the private cloud.

– Decrypt(PK,CTP , SKΩ): The ciphertext CTP is tested and decrypted by a user

with secret key SKΩ as follows:

1. Matching Phase: The user checks whether Ω |= P . To be specific, Ω |= P if and

only if Equality (1) holds:

C∆

ê(g,C0)
=

ê
(
Ĉ0, D0

∏n
i=1 D∆,i

)

ê
(∏n

i=1 Ci,t,∆, D∆,0

) , (1)

where Ωi = vi,t. If Ω 6|= P , it returns ⊥. Otherwise, it initiates the Decryption

Phase.

2. Decryption Phase: The user decrypts and computes the symmetric K as follows:

K =
C̃
∏n

i=1 ê
(
Ci,t,0, Di,0

)
ê
(
Ĉi,t,0, D̂i,0

)

∏n
i=1 ê

(
C1, Di,1

)
ê
(
Ĉ1, D̂i,1

) ,

where Ωi = vi,t.

1 We assume that the edit distance d is implicitly defined by the private cloud.
2 Here we assume that the edit distance d is implicited defineded by the private cloud. If it

is dynamically set by the user, SearchQueryGen further takes d as an additional input.
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Indeed, for a valid ciphertext that satisfies Ω |= P , we have

ê
(
Ĉ0, D0

∏n
i=1 D∆,i

)

ê
(∏

n
i=1 Ci,t,∆, D∆,0

)

=
ê
(
gs′

1 , g
y−r̂
2

∏n
i=1

(
g
r̂i
2 H(i||vi,t)

r
))

ê
(∏

n
i=1 H(i||vi,t)s

′
, gr

1

)

= ê

(
g
s′

1 , g
y−r̂
2

(
n∏

i=1

g
r̂i
2

))
= ê

(
g
s′

1 , g
y−r̂
2 g

r̂
2

)

= ê
(
g
s′

1 , g
y
2

)
= ê (g1, g2)

ys′

=
C∆

ê(g, C0)
.

On the other hand, the plaintext K can be successfully recovered as follows:

C̃
∏n

i=1 ê (Ci,t,0, Di,0) ê
(
Ĉi,t,0, D̂i,0

)

∏n
i=1 ê (C1, Di,1) ê

(
Ĉ1, D̂i,1

)

=

C̃
∏n

i=1 ê
(
H(0||i||vi,t)

s′′ , g
λi
2

)
ê

(
H(1||i||vi,t)

s−s′′ , g
λ̂i
1

)

∏n
i=1 ê

(
gs′′
2 , g

ri
1 H(0||i||vi,t)λi

)
ê
(
gs−s′′

1 , g
ri
2 H(1||i||vi,t)λ̂i

)

=
KY s

∏n
i=1 ê

(
gs′′
2 , g

ri
1

)
ê
(
g
s−s′′

1 , g
ri
2

)

=
Kê(g1, g2)

ys

∏
n
i=1 ê (g1, g2)

sri
=

Kê(g1, g2)
ys

ê (g1, g2)
ys

= K.

3.3 Efficient Fuzzy Search Scheme based on Symbol-based Trie

To enhance the search efficiency, we utilize a symbol-based trie to build the index and

store it in the public cloud. We construct, a multi-way tree for storing the fuzzy keyword

set {w′
w,d} ∈ Ww,d over a finite symbol set. Each index (hash value) is divided into

l/ℓ parts and each part can be denoted by ℓ bits where ℓ is some security parameter.

Assume ∆ = {αi} is a predefined symbol set, where the number of different symbols

is |∆| = 2ℓ. Thus each part of the search query can be denoted as a specific symbol.

The improved keyword search scheme works as follows:

– KeywordIndexGen(P , FID, W ): Upon receiving (P , F ID,W ) from the data owner,

the private cloud generates the index with the following steps.

1) The private cloud computes each Tw′
i,P

= h(P , w
′

i) for each w′
i ∈ Wwi,d and

each wi ∈ W . It then divides each index into αi1 , · · · , αil/ℓ where |αij | = 2ℓ,

for j ∈ [1, l/ℓ].

2) The private cloud builds a tree TW covering all fuzzy keywords wi ∈ W based

on the predefined symbol set ∆. In the initialization phase, a root of the TW
denoted as Φ is created. Then the first symbol α1 of the sequence is added into

TW as the child of the root, if there is no existing node equal to the symbol.

Subsequently, the current node is moved to the node of the child of the root.

The algorithm is carried out recursively. When the last symbol is performed,

the corresponding identifier FID is attached the last node as a leaf node.
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– SearchQueryGen(Ω,w): To search with keyword w, the user sends (Ω,w) to the

private cloud, who transforms Ω into the corresponding access policy PΩ and gen-

erates the trapdoor set {SRH}w′
w,d∈Ww,d

. Next, the policy translates the search

query set {SRH} into symbol sequence and sends them to the public cloud.

– Search(TW , {SRH}): Upon receiving the search request, the public cloud performs

search in the index tree TW (instead of the table T in previous setting) and returns

all the matched file identifiers {FID} to the private cloud.

4 Security Analysis

Data Privacy: The file contents are separately encrypted with symmetric cryptogra-

phy. By using a cryptographic strong cipher, it is sufficient to assume that encrypted

files leak zero information. This implies even if the PHR database is compromised,

the adversary learns nothing about the PHR data contained in the server without the

relevant symmetric keys. Since the system requires a trusted authority to issue private

keys, the security of the system relies on the trust and reliability of the authority.

Besides, since privacy-preserving query can be understood as a collection of l−length
strings, the confidentiality of which are guaranteed by the underlying hash function.

Search Privacy: The proposed scheme is based on the original fuzzy keyword search

scheme, which is proved to have searchable privacy under random oracle model [9]. That

is, any computationally bound adversary does not obtain the underlying information

of keyword from the index. In other words, the adversary cannot obtain a search query

that distinguishes two ciphertexts of keywords unless it obtains the key K. Thus, the

searchable privacy is obtained. Note that the private cloud is allowed to know the

plaintext of keyword. As the private cloud in practice may be maintained by some

organizations themself, the leakage of keyword information is innocuous.

Secure Fine-grained Access for PHR Data: In our system it is sufficient to assume

that the encrypted PHR data is accessed securely as we deploy ABE mechanism. In

other words, any attackers cannot learn additional information about the underlying

trapdoors of any keyword. Specifically, for the external attacker, such as the cloud

server, they do not have the attributes that satisfy the access policy, thus they cannot

get any information about the user attribute key. As a result, they are not able to

decrypt any encrypted PHR data. On the other hand, for the internal attacker, such

as a user who shares the privileges with others without such ones, they may combine

their attributes for obtaining additional privilege that they do not have. Due to a secure

ABE scheme can resist the collusion attack, no user can combine their attributes to

obtain additional privilege.

Since the access privilege need to be protected in some scenarios, we adopt anony-

mous ABE scheme in this work. The proposed scheme is proven to be selective cipher-

text policy and chosen plaintext secure under the Decisional Bilinear Diffie-Hellman

assumption and the Decisional Linear assumption, which is described in [16]. For more

efficient decryption, a matching phase is added before the decryption phase. It can

perform the matching test if the attribute private key matches the hidden attributes

policy in ciphertexts without decryption.
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5 Performance Analysis

To facilitate the description, we introduce some marks. We denote |Ω| as the number of

user attributes, Exp and P denote the exponentiation multiply and pairing operation

respectively. In the proposed construction, TA runs the setup and keygen algorithm, In

setup, the need just one Exp and P operation, which is very efficient. To generate the

privacy key for some user, the computations of keygen is 8*|Ω|+2 Exp. Consider that

the process is just once for each user, it is can be acceptable. The keywordindexgen,

searchquerygen and search algorithms are run by the private public cloud. Consider

that the high computation capacity of cloud, it will not influence the efficiency of

system, so we omit it in our discuss.
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Fig. 2 Efficiency Analysis of Encrypt and Decrypt

The encrypt and decrypt algorithms run by the data owner user. It should be

pointed out that the proposed construction enjoys the desirable property of match-

then-decrypt, and hence can be used to alleviate the computation overload of users. In

order to precisely measure the overhead of user side, all experiments were performed

on the same machine with Intel Core 3 i5-3470 3.20 GHz CPU and 4G memory running

Linux. In experiments, we assume multi-value of each attribute ni = 3 and vary the

number of attributes |Ω| in the universe from 10 to 50.

Fig 2(a) shows the overload of encrypt at user side. From this figure, we find that

the overload grows linearly as the number of attributes. This is because the data owner

must generate increased number of variables of ciphertext.

The efficiency evaluation of decrypt algorithm is shown in Fig. 2(b). It can clearly

be seen that the time cost in matching phase keeps constant with the variation of

attribute number Ω, which is far less than the overload in decrypt phase. That is,

by introducing the matching phase, user can efficiently decide before full decryption

whether the hidden policy in a ciphertext matches his attributes, many unnecessary

decryption operations are saved. The result is that our construction is more suitable

to be applied for the resource constrained environment.
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6 Conclusion

In this paper, we investigated the fuzzy search and fine-grained access control of per-

sonal health record in cloud environment. In our construction, the user can use different

access privileges to control data access through anonymous attribute-based encryption

scheme. In addition, the access privilege is hidden in the ciphertext so that the user

privacy is also protected. We further exploit a fuzzy keyword search mechanism. Users

can search the ciphertext for some keywords, without needing to decrypt all ciphertexts

in the database. We also suggested a symbol-tree to realize the fuzzy keyword search

more efficiently. Through security and efficiency analysis, we show that the proposed

solution is secure and privacy-preserving, while it can achieve efficient fuzzy keyword

search and fine-grained access control over the encrypted PHR data.
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