Noname manuscript No.
(will be inserted by the editor)

A Two-layer Surrogate-assisted Particle Swarm
Optimization Algorithm

Chaoli Sun - Yaochu Jin - Jianchao
Zeng - Yang Yu

Received: date / Accepted: date

Abstract Like most Evolutionary Algorithms (EAs), Particle Swarm Opti-
mization (PSO) usually requires a large number of fitness evaluations to obtain
a sufficiently good solution. This poses an obstacle for applying PSO to com-
putationally expensive problems. This paper proposes a two-layer surrogate-
assisted PSO (TLSAPSO) algorithm, in which a global and a number of local
surrogate models are employed for fitness approximation. The global surrogate
model aims to smooth out the local optima of the original multimodal fitness
function and guide the swarm to fly quickly to an optimum. In the meantime,
a local surrogate model constructed using the data samples near the particle
is built to achieve a fitness estimation as accurate as possible. The contribu-
tion of each surrogate in the search is empirically verified by experiments on
uni- and multi-modal problems. The performance of the proposed TLSAPSO
algorithm is examined on ten widely used benchmark problems, and the ex-
perimental results show that the proposed algorithm is effective and highly
competitive with the state-of-the-art, especially for multimodal optimization
problems.

C. Sun

Complex System and Computational Intelligence Laboratory, Taiyuan University of Science
and Technology, Taiyuan, Shanxi 030024, China

E-mail: clsun1225@163.com

Y. Jin
Department of Computing, University of Surrey, Guildford GU2 7XH, United Kingdom
E-mail: yaochu.jin@surrey.ac.uk

J. Zeng

Complex System and Computational Intelligence Laboratory, Taiyuan University of Science
and Technology, Taiyuan, Shanxi 030024, China

E-mail: zengjianchao@263.net

Y. Yu

National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing
200093, China

E-mail: yuy@lamda.nju.edu.cn

2 Chaoli Sun et al.

Keywords Particle Swarm Optimization - Surrogate-assisted optimization -
Computationally expensive optimization problems

1 Introduction

As a population-based meta-heuristic search algorithm, Particle Swarm Op-
timization (PSO) has achieved great success on many real-world application
problems, such as mechanical design optimization [1], shop scheduling problem
[2] and electric power systems [3]. However, many engineering design optimiza-
tion problems involve the use of high fidelity simulation methods such as Finite
Element Analysis (FEA), Computational Fluid Dynamics(CFD) and Compu-
tational Electro Magnetics (CEM) for quality evaluations, which is often com-
putationally expensive, ranging from several minutes to days of supercomputer
time [4]. Since PSO typically requires thousands of evaluations to achieve an
acceptable optimum solution, the application of PSO to this class of expensive
problems becomes intractable. One promising approach to reduce computation
time for optimization of highly time-consuming optimization problems is to
employ computationally cheap approximation models (surrogates) to replace
in part the computationally expensive exact function evaluations. Over the
recent years, surrogate model assisted evolutionary algorithms (SAEAs) have
received increasing attention for addressing expensive optimization problems,
because the computational effort required to build and use surrogates is usu-
ally much lower than that for expensive evaluations [4]. A variety of surrogate
models (also called metamodels or approximation models) have been proposed
to be used in EAs, such as Polynomial Regression (PR, also known as response
surface method) [5], Artificial Neural Network (ANN) [6], Radial Basis Func-
tion (RBF) [7], and Gaussian Process (GP) (also referred to Kriging) [8].

In the context of EAs, various approaches for solving computationally ex-
pensive problems using surrogate models have been reported. Global-surrogate
models are often proposed for EAs to approximate the expensive objective
function in the early stage. Ratle [9] examined strategies for integrating evo-
lutionary search with global surrogate models based on Kriging. Jin et al.
[10] employed an artificial neural network to construct global surrogate mod-
els and an empirical criterion was proposed to switch between the expensive
exact fitness function and the surrogate model during the search. Ulmer et
al. [11] and D. Buche et al. [12] proposed different strategies using Gaussian
Process (GP) surrogate models. Liu et al. [13] proposed a GP-assisted evolu-
tionary algorithm, in which a high-quality global surrogate model was built
using dimension reduction techniques for solving medium-scale computation-
ally expensive optimization problems. However, since constructing accurate
surrogate models is less likely due to the curse of dimensionality, building lo-
cal surrogate models has only been more intensively explored recently. Ong
et al. [14,15] combined an evolutionary algorithm with a sequential quadratic
programming solver in the spirit of Lamarckian learning, in which the trust-
region method for interleaving exact models for the objective and constraint

A Two-layer Surrogate-assisted Particle Swarm Optimization Algorithm 3

functions with computationally cheap surrogate models during local search
was employed. Fitness inheritance, which was first proposed by Smith et al.
[16], can be seen as a special local surrogate technique, where the fitness of
the individual is inherited from its parents or other individuals. Fonseca et
al. [17] introduced three inheritance surrogate models in genetic algorithms.
Recently, many researchers proposed to ensemble different surrogate models
[18-21] and it has been shown from these studies that ensemble models gener-
ally outperform most of the individual surrogates. Zhou et al. [22] proposed a
hierarchical surrogate-assisted evolutionary algorithm, in which GP and Poly-
nomial regression are used as global surrogate models, for solving computa-
tionally expensive optimization problems. The global surrogate model served
to pre-screen the EA population for promising individuals, which will then
undergo a local search in the form of Lamarckian learning using online local
surrogate models. An extension of [22] was reported in [23], which presented
a novel surrogate management framework for solving computationally expen-
sive problems. Tenne and Armfield [24] proposed a memetic algorithm using
variable global and local surrogate-models for optimization of expensive func-
tions. The method also employed the trust-region approach but replaced the
quadratic models with the RBF network.

While they are widely used to assist evolutionary algorithms, surrogate
models have relatively less often been used to assist PSO for computationally
expensive problems. Praveen et al. [25] used a radial basis function metamodel
to reduce the cost of PSO in two 20-D aerodynamic shape optimization prob-
lems. Parno et al. [26] used a Kriging surrogate to improve the efficiency of
PSO for simulation-based problems and applied it to a 6-D groundwater man-
agement problem. Bird and Li [27] incorporated a regression model into PSO
algorithm in order to improve local convergence. Tang et al. [28] used a hy-
brid global surrogate model consisting of a quadratic polynomial and an RBF
model to develop a surrogate-based PSO method, which was applied to low-
dimensional test problems and engineering design problems. Regis [29] utilized
an RBF surrogate model to identify the most promising trial position for each
particle in the swarm. Hendtlass [30] adopted the fitness inheritance strategies
in PSO and added a reliability measure to enhance estimation accuracy. Mar-
garita and Coello [31] incorporate 15 fitness inheritance techniques and four
approximation techniques into a multi-objective particle swarm optimization.
Sun et al. [32] proposed a new fitness inheritance strategy, called FESPSO, in
which the fitness value of an individual was inherited not only from its parents,
but also its progenitors and brothers. In order to reduce the evaluation times,
Sun et al. [33] subsequently added a similarity-based strategy for improving
estimation quality.

In this paper, a two-layer surrogates-assisted particle swarm optimiza-
tion (TLSAPSO) algorithm is suggested for solving computationally expensive
problems. We believe such techniques are of great interest for further under-
standing surrogate-assisted optimization, as the search mechanisms and search
dynamics of PSO are very different from those of local search methods and
selection-based population meta-heuristics, where a combination of global and

4 Chaoli Sun et al.

local model has mostly been examined. In TLSAPSO, the surrogate model
in the top layer is expected to smooth out of local optima of the objective
function and guide the swarm to fly to a region where the global optimum is
potentially located. To this end, this surrogate should be able to learn rough
contour of the fitness landscape in a wide search space, which is therefore
termed a global model. Meanwhile, the surrogate models in the bottom layer,
built using data in the neighborhood of each particle, aim to approximate the
local fitness landscape as accurately as possible. Therefore, these models are
called local surrogate models. Note that the global model is shared by all par-
ticles in the swarm, whilst individual local surrogates are built for different
particles. Different to the EAs assisted by global and local surrogate models
reported in [4,22,23], in our propose method, no local search is employed.

The paper is organized as follow. Section 2 provides a brief overview of
the related techniques. In Section 3, the two-layer surrogate assisted PSO is
presented. The algorithm is evaluated empirically in Section 4 on ten widely
benchmark problems. Section 5 concludes the paper with a summary and some
ideas for future work.

2 Related Techniques
2.1 Particle swarm optimization

Consider the following optimization problem:

minimize: f(x)
subject to: x; < x < x, (1)

where f(x) is a scalar-valued objective function, x € R is a vector of contin-
uous decision variables, x; and x,, are vectors of the lower and upper bounds
of search space, respectively.

The PSO algorithm, simulating the behavior of bird flocking or fish school-
ing, was originally proposed by Kennedy and Eberhart [34] in 1995 for solving
unconstrained optimization problems. It has been successfully applied to a
wide range of problems because of its simplicity and attractive search effi-
ciency. The algorithm starts with a population of particles randomly posi-
tioned in the search space, each of which has its own position and velocity. At
each iteration, the position and velocity of a particle are updated as

Via(t + 1) = via(t) + c1r1(pia(t) — zia(t)) + cara(pgalt) — wia(t))
{L'id(t +].) = {Eid(t) + 'Uid(t + 1) 3)

where v;(t) = (v;1(t), vi2(t), ..., v;p(t)) and x;(t) = (241 (), zi2(t), ..., x:ip(t)

are the velocity and position of particle ¢ at iteration ¢ ,respectively. p;(t) =
(pi1(t), pia(t), ..., pip(t)) is the best historical position found by particle 4
(known as the personal best), py(t) = (pg1(t),pg2(t),...,pgn(t)) is the best
historical position of the swarm (the global best), 1 and ro are two uniformly

(2)
(

A Two-layer Surrogate-assisted Particle Swarm Optimization Algorithm 5

generated random numbers in the range [0,1], ¢; and c2 are positive constant
called acceleration coefficients.

A number of variants of PSO have been proposed to improve the conver-
gence of the algorithm. Two most commonly used PSO variants modify the
velocity updating rule in Equation 2, one proposed by Shi [35] (called the in-
ertia weight model) and the other by Clerc [36] (called the constriction factor
model). In the inertia weight model, the velocity is updated as follows:

via(t + 1) = wia(t) + c1r1(pia(t) — ia(t)) + cara(pga(t) — ia(t)) (4)

where w is called inertia weight. Similarly, the constriction factor model uses
following equation for updating the velocity

vig(t + 1) = x(via(t) + p1(Pia(t) — zia(t)) + w2(pgalt) — xia(t))) (5)

with
2k
Yo V4o
where 1 = c171, Y2 = caTe, ¢ = 1 + co. Generally, ¢ > 4, and therefore, ¢;
and ¢y are usually set to 2.05. k is a real number in the range (0,1].

Eberhart and Shi [37] compared the performance of PSO using the inertia
weight model of PSO and the constriction factor model, and their experimental
results showed a PSO using constriction factor while limiting the maximum
velocity vmax to the maximum position xy,ayx on each dimension performed the
best. So in this paper, we use Eq. (5) to update the velocity.

(6)

2.2 Radial Basis Function Network (RBFN)

RBFN is one of the most commonly used approximation models, which has
successfully been used for function approximation, time series prediction and
control [38]. It can be seen as a variant of artificial neural network that uses
radial basis functions as the activation function. RBFN is conceptually sim-
ple and can perform both interpolation and extrapolation from the known
data-points [38]. So in this paper, we adopt RBFNs both for global and local
surrogate models.

A radial basis function is a real-valued function ¢ : R" — R, with its
value depending only on the distance from some point ¢, called center, so that
d(x) = ¢(x4 — c). The point c is a parameter of the function and the point
X4 is a query point to be estimated. The norm is usually Euclidean, so x, — ¢
is the Euclidean distance between ¢ and x4. There are several types of RBF
functions, including Gaussian, Multiquadric, Inverse Quadratic and Inverse
Multiquadric. In this paper, the following Gaussian function is used.

2
Xq—C
202

$(x) = exp(—) (7)

6 Chaoli Sun et al.

Where o > 0 is the width of the Gaussian. Radial basis functions are typically
used to build function approximation of the following form:

N
y(x) = wo + sz‘¢(xq —c;) (8)

where N is the number of radial basis functions, each associated with a differ-
ent center c;, a width 3;, and weighted by a coefficient w; , plus a bias term
wp. In principle, an RBFN can approximate any continuous function with an
arbitrary accuracy, if a sufficiently large number N of radial basis function is
used. The bias wg can be set to the mean of the values of the known data-
points from the training set that are used to train the surrogate model, or set
to 0.

3 Two-layer Surrogate-Assisted PSO (TLSAPSO)

As suggested in Lim et al. [4], approximation errors introduced by surrogate
models in the evolutionary algorithms can have both negative and positive
impacts. The negative impact, called 'curse of uncertainty’ indicates the phe-
nomenon that inaccurate surrogates may lead to EA to a false optimum. By
contrast, the positive impact, called ’bless of uncertainty’, refers to the po-
tential benefit achieved by the use of surrogates in removing local optimums.
In order to mitigate the ’curse of uncertainty’ and benefit from the ’bless of
uncertainty’, the authors suggested to conduct local search using both a local
surrogate and well as a global surrogate.

Inspired by the idea in [4], in this paper, a two-layer surrogate model is
proposed to assist the search in PSO. The surrogate model in the top layer
serves to smooth out local optimums, thus speeding up the search. Fig. 1 gives
an example to show the positive impact using a global surrogate. Due to the
smoothing effect of the global surrogate, the search on the surrogate can be
much faster than on the exact fitness function. Note that for constructing the
global surrogate, data samples distributed in a large search should be used,
however, with relative lower approximation accuracy. On the other hand, the
local surrogate models are constructed to approximate fitness landscape locally
but more accurately. For an accurate local approximation, many data points
that lie in the vicinity of the concerned particle are required, as illustrated in
Fig. 2. By properly combining the global surrogate model with local surrogate
models, we hope that PSO can find the global optimum quickly and accurately.

Algorithm 1 gives an overview of the proposed two-layer surrogate-assisted
PSO. In Algorithm 1, p; is the personal best historical position of particle
i, pg is the best historical position of the swarm, and f (x;) represents the
approximated value on position x;. A global database is used to store all
particles evaluated using the original fitness function, including positions and
corresponding fitness values. The data samples in the global database that are
most relevant to the position of the current swarm will be used to build the

A Two-layer Surrogate-assisted Particle Swarm Optimization Algorithm 7

Exact function
------------ Approxiamtion function

[} Data point

(x)

kg Exact local optimum

A Approximated local optimum

Fig. 1 An example to show the smoothing effect of a global surrogate model. Training
data should spread in a wide search space.

Exact function
Approximation function
Data point

Exact fitness

Approximated fitness

Fig. 2 An example to show the local approximation of a local surrogate model. Many data
samples near the concerned particle are needed.

global surrogate. A local database of a fixed memory size is set up for each
particle to store the neighboring particles that have been evaluated using the
original fitness function in recent generations, part of which will be used to
build a local surrogate for each particle. The global and local surrogates are
embedded in the PSO with a constriction factor (CPSO). In the following, we
present the details of the TLSAPSO.

3.1 Fitness Approximation Strategy

The initial population of the PSO is generated using the Latin hypercube
sampling method. All particles will be evaluated using the original fitness
function to create the initial samples, which are stored in the global database.
Then, an RBFN for the global surrogate model is trained using all data in
the global database. Note however, that from the second generation onward
it is likely that only part of the data in the global database will be employed
for training the global surrogate to reduce the computation time on the one
hand, and to ensure the global nature of the surrogate on the other hand. For

8 Chaoli Sun et al.

Algorithm 1 The two-layer surrogate-assisted PSO algorithm

1: Initialize a population;

2: Evaluate the fitness of all particles using the real objective function;

3: Archive all positions and fitness values into both the global database and the local one;
4: Determine the personal best historical position p; for each particle ;

5: Determine the best historical position pgy of the swarm

6: while the stopping criterion is not met do

7: Update velocity and position of each particle ¢ using Eq. (5) and (3);

8: Approximate fitness values using surrogate models for each particle;

9: if there exists at least a particle that f(x;) < f(p;) then
10: Calculate the fitness value of each particle ¢ that f(x;) < f(pi) using the real

objective function;
11: else
12: Calculate fitness values using the real objective function for all particles in the
current swarm;

13: end if
14: if the global database or the local database is needed to be updated then
15: Update the global database or the local one;
16: end if
17: Determine the personal best historical position p; for each particle ;
18: Determine the best historical position pgy of the swarm;

19: end while

example in Fig. 3, particles of the current swarm are located in a sub-region of
the whole search space, while the data in the global database are distributed
in a much wider space. Even though a global surrogate is targeted, it is not
necessary to use all data to build the surrogate. In the proposed TLSAPSO
approach, the subspace in which the data samples are used for training is
adapted according to the current positions of the swarm. Let

maxdg = max({x;q(t +1),i=1,2,...,n}) (9)

mindg = min({z;q(t + 1),i=1,2,...,n}) (10)

where maxdy and mindy refer to the maximum and minimum values of the
current swarm on dth dimension at iteration ¢ + 1. n is the swarm size. Then
we define a subspace where

sp_xmazq(t + 1) = min{mazdy + a(maxdy — mindy), rmaxq} (11)

spaxming(t + 1) = max{mindy; — a(maxdy — mindy), xming} (12)

where xmaxg and xming are the maximum and minimum values of the whole
search space on dimension d, sp_xmaxq(t + 1) and sp_xming(t + 1) are the
maximum and minimum values of the subspace on d-th dimension at iteration
t+ 1. a is a spread coefficient between 0 and 1 to allow the surrogate to use
data samples that are outside the space occupied by the current swarm, as
illustrated in Fig. 3. As a result, the global surrogate model is constructed
using the data samples in the whole decision space in the beginning and as
the search proceeds only part of the samples in the global database that are
near the location of the current swarm will be used for training.

A Two-layer Surrogate-assisted Particle Swarm Optimization Algorithm 9

® Particles in the
current swarm

O Samples

(X))

sp_rming mendg maxd; SP_TINGT

Fig. 3 Determination of the range of data samples for training the global surrogate

Once it is available, the global surrogate model is used to estimate the fit-
ness of all particlesin the swarm. The fitness values of the particles estimated
by the global surrogate model are denoted as fg. As previously discussed,
the global surrogate model may have a large approximation error and cannot
accurately approximate the fitness values of all particles due to the curse of
dimensionality or ill distribution and limited number of training samples [39].
However, if there are adequate of data samples around the particle, it is de-
sirable to create a local surrogate for more accurate fitness estimation. Given
the local surrogate model, the fitness of this particle can also be estimated
by its local surrogate model, which is denoted as f;. The size of a particle’s
neighborhood is also adaptively set according to the size of the current swarm
as follows:

local_sizeq = B(maxdy — mindy) (13)

Note that the local surrogate models of different particles may often differ
with each other because data samples around each particle are usually not the
same.

The question now is, if a local surrogate is available to a particle, whether
the fitness estimated using the global surrogate or the one using the local sur-
rogate should be used. Algorithm 2 shows the surrogate management strategy
used in TLSAPSO. As we can see, if there are not enough historical data
around a particle, the fitness value of this particle can be approximated by
the global surrogate model, that is f(x) = f,(x). In case both estimates are
available, we choose the better one (smaller one for minimization problem) to
be the final fitness value of the particle in order not to leave out any poten-
tially promising position. From Algorithm 2, we can also see that the surrogate
models can be categorized into layers, where the global surrogate model is on
the top layer and the local surrogate models are on the bottom layer. Conse-
quently, we call our proposed method a two-layer surrogate-assisted particle
swarm optimization (TLSAPSO) algorithm.

10 Chaoli Sun et al.

Algorithm 2 The management of the two-layer surrogate

1: Construct a global surrogate model;

2: Approximate a fitness value for each individual in the swarm using the global surrogate
model;

3: for each particle ¢ in the swarm do

4 Find its neighbors in the local database;

5 if there are enough samples to construct a local surrogate then

6: Construct a local surrogate model;

7

8

Approximate the fitness of particle ¢ using the local surrogate model;

F(xi) = min{fy (%), fi(x:)}

9: else _

10: f(xi) = fg(x:)
11: end if

12: end for

3.2 Surrogate update and database management

To prevent the PSO from converging to a false optimum, the surrogate mod-
els need to be used together with the original fitness function. In PSO, the
personal best positions as well as the global best positions play a central
role in ensuring the whole swarm to converge to a true optimum. Therefore,
TLSAPSO always computes the fitness of all personal best and global best
particles using the real fitness function to guarantee a correct convergence.
Algorithm 3 describes the overall strategies for updating the surrogates, the
global database as well as the local archives, which corresponds to lines 9 to
16 in Algorithm 1.

Algorithm 3 Fitness evaluation and updating of database

1: for each particle i in the population do

2:if f(xi(t+ 1)) < f(pi(t)) then

3: Calculate the fitness of particle ¢ using the real objective function;

4: Update personal best historical position: p;(¢t + 1) = min{f(x;(¢t + 1)), f(pi(¢))};
5: end if

6: end for

7: if none of particle is real fitness calculated then

8: Calculate the fitness of each particle ¢ using real objective function;

9: Update the personal best historical position for each particle i: p;(t + 1) =

min{f(xi(t + 1)), F(ps(t)};
10: end if
11: for each particle ¢ in the population do
12: if the fitness is calculated with real objective function then ,
13: if on all dimension d, z;q(t + 1) — a::i < 61 and % > 62 then
14: Store the position and corresponding fitness into the local database;
15: end if
16: if f(xi<t}L(l)Zj(;i<1’;§(t+l)) > §> then
17: Archive the positional information and corresponding fitness into the global
database;

18: end if
19: end if

20: end for

A Two-layer Surrogate-assisted Particle Swarm Optimization Algorithm 11

In Algorithm 3, x;(t + 1) is the current position of particle i, f(x;(t +
1)) and f(x;(t + 1)) are its real and approximate fitness values, respectively.
X = (x},%y,...,2p) is a position the swarm has visited and f(x') is its
corresponding fitness value. Both x and f (xl) are saved in the local database
of particle 7. 61 and &5 are two given threshold used to judge whether the
data of a new position should be added into the local database or the global
database.

In Algorithm 3, it can happen that no particle will be evaluated using the
real fitness function because all approximated fitness value of the swarm are
worse than the current personal best position. In this case, all particles will be
re-evaluated using the real fitness function in order to guarantee the correct
convergence of the TLSAPSO.

4 Experimental Studies

In order to evaluate the performance of our proposed algorithm, 10 widely
used benchmark problems suggested in [40] are adopted. The dimension of all
the problems is set to D = 30. The characteristics of these test problems are
listed as in Table 1.

The parameters of the TLSAPSO used in our experiments are set as follows:
the size of the swarm is 60, the cognitive and social parameters are both set
to 2.05. The maximum velocity vmax is set to the maximum position Tpyax
on each dimension. The maximum number of real fitness evaluations is set to
10000, which is the same as used in [41]. All compared algorithms perform
10 independent runs on each test problem in Matlab®2009. In TLSAPSO,
the surrogate models are built using the "newrb” function provided in the
toolbox of Matlab. The desired mean squared errors of the global and the local
surrogate models are set to 0.1 and 0.01, respectively, the maximum number of
hidden neurons in the RBFNs is set to 20 for both kinds of surrogate models.
The actually used number of hidden nodes is adapted according to the desired
accuracy. The parameter SPREAD in "newrb” function, which corresponds to
the parameter ¢ in Eq. 7, is important, as too large a spread requires a lot of
neurons to fit a rugged fitness function, while too small a spread means many
neurons will be required to fit a smooth function and the network may not
be able to generalize well. Considering the above factors, the SPREAD is set
adaptively according to the samples used to construct a surrogate model.

SPREAD = min{max{max{samples,;} — min{samples;},0},d =1,2,..., D}

(14)
where samples, represents the values on the dth dimension of the data set in
a given range. « in Eq. (9) and (10) is set to 0.25, 5 in Eq. (13) is set to 0.5,
5, and &5 are both set to 1073.

In order to verify our hypothesis that in TLSAPSO, the global surrogate
model is able to smooth out the local optimums while the local ones are ex-
pected to accurately approximate the local fitness landscape, we at first con-
ducted experiments on two selected test problems, one unimodal (F1) and the

12 Chaoli Sun et al.

Table 1 Characteristics of 10 benchmark problems

Benchmark prob- Characteristics Decision space Fitness
lems Global Optimum
F Shifted Sphere Unimodal x € [—100, 100]D f1(x*) = —450
Function
Fy Shifted Schwefels Unimodal x € [—100, 100]D fa(x*) = —450
Problem 1.2
F3 Shifted Rotated Unimodal x € [—100,100]P f3(x*) = —450

High Conditioned
Elliptic Function

Fy Shifted Schwefels Unimodal x € [~100, 100]P fa(x*) = —450

Problem 1.2 with
Noise in Fitness

Fs Schwefels Problem Unimodal x € [-100,100]P f5(x*) = =310
2.6 with Global
Optimum on
Bounds

Fs Shifted Rosen- Multimodal, having x € [~100,100]P fe(x*) =390
brocks Function a very narrow valley

from local optimum to
global optimum

Fr Shifted Rotated Multimodal, no bounds Initialize population in f7r(x*) = —180

Griewanks Func- for variables [0,600]7, global opti-
tion without mum is outside of ini-
Bounds tialization range
Fy Shifted Rotated ~ Multimodal, global op- x € [—32,32]P fe(x*) = —140

Ackleys Function timum on the bound
with Global Opti-
mum on Bounds

Fy Shifted Rastrigins ~Multimodal, local op- x € [-5,5]” fo(x*) = =330
Function tima’s number is huge
Fio Shifted Rotated Multimodal, local op- x € [-5,5]P fro(x*) = =330

Rastrigins ~ Func- tima’s number is huge
tion

other multimodal (F6) using the above settings. Table 2 gives the comparative
results of the four algorithms: CPSO is the particle swarm optimization algo-
rithm with a constriction factor without using surrogate, CPSO_L is the CPSO
algorithm with local surrogate models only, CPSO_G is the CPSO algorithm
with the global surrogate model only, TLSAPSO is the proposed PSO using
two-layer surrogate models. ”Opt.” represents the optimal solution currently
known for each problem, ”Best”, "Mean” and ”Worst” represent the best,
the mean and the worst values of optimal solutions achieved in 10 indepen-
dent runs. ”Std.” stands for the standard deviation of the obtained optimal
solutions in the 10 runs. Fig. 4 and 5 present the convergence profile of the
compared algorithms on these two functions.

From the results presented in Table 2 and Figs. 4-5, we can draw the follow-
ing conclusions. First, use of local surrogates only cannot effectively speed up
the PSO search, neither on unimodal nor on multimodal optimization prob-
lems. Second, use of a global surrogate only can accelerate the search both

A Two-layer Surrogate-assisted Particle Swarm Optimization Algorithm 13

Table 2 Comparative results on F1 and F6

Opt. Approach Best Mean Worst Std.

CPSO 4.2760e+02 2.7140e+4-03 7.1566e4+03 2.1724e+03
CPSO_L 7.2905e+-01 2.7903e+-03 7.3201e+03 2.2028e-+03
CPSO_G -4.5000e+4-02 -2.5742e+02 2.2923e+02 2.5074e+-02

TLSAPSO -4.5000e+02 -4.5000e+02 -4.4999e+02 3.9000e-03

CPSO 1.2944e+06 2.6445e+4-08 7.4144e4-08 2.5924e+08
CPSO_L 2.5734e+06 1.6365e+08 6.3167e+08 2.2317e+08
CPSO_G 1.0673e+03 4.6523e+06 2.5662e+-07 8.8134e+06

TLSAPSO 5.8234e+02 1.5715e+03 6.4199e4-03 1.7562e+03

F1 -4.50e4-02

F6 3.90e4-02

=@=TLSAPSO

- (P50 il
i = CPS0 with glabal surrogate

=== CPSO with local surrogate ||

=—@=TLSAPSO
- P50

A = CPS0 with glabal sunogate
=== CPS0 with local surrogate

o
[§]

™
=]

i

Bl

=

o

=

Mean Fitness value (Natural Log)

Mean Fitness value (Natural Log)

O-8-0- @

)
@

8

a 1EI‘EIEI ZEI‘EIEI 3EIIEIEI AEIIEIEI EEI‘EIEI BEI‘EIEI 7EI‘EIEI EEI‘EI[I HEIIEIEI 10000 EEI WEI‘EIEI 2EIIEIEI EEI‘EIEI AEI‘EIEI SEIIEIEI EEI‘EI[I 7EI‘EIEI BEIIEIEI BD‘EI[I 10000
Exact Fithess Evaluations Exact Fitness Evaluations

Fig. 4 The convergence profile on F1 Fig. 5 The convergence profile on F6

on unimodal and multimodal functions, although in the multimodal case, a
global surrogate only may fail to find the global optimum. Third, a combi-
nation of a global surrogate and local surrogates can take advantage of the
benefits brought by both the global and local models, therefore can work well
on both unimodal and multimodal optimization problems.

To gain deeper insight into the individual contributions of the global and
local surrogates to the improvement of the fitness during the search, we again
use function F1 and F6 as two representative examples to examine how much
fitness improvement has been achieved when the global surrogate or local
surrogates are used for fitness evaluation. The fitness gain of a surrogate is
calculated in the following way: If an estimated fitness is better than the cur-
rent pbest, and the fitness after re-evaluation using the real fitness function
is indeed better, this fitness improvement is attributed to the surrogate. If
this better fitness was predicted by the global surrogate, this fitness improve-
ment is attributed to the global model; If this better fitness was predicted by
the local surrogate, the fitness improvement will be attributed to the local
surrogate, refer to Algorithm 3. Fig. 6-7 plot the individual as well as the
aggregated contributions of the local and global surrogates for function F1
and F6, respectively. From Fig. 6, we can see for the unimodal function F1,
the global surrogate contributes more than local one in the early stage of the
search, refer to Fig. 6(b). However, as the search proceeds, the local surrogate

14

Chaoli Sun et al.

&
¥ 10 x 10
10 T T T T T T T 10— T T T T T T T T
q == (lobal surrogate 9 == Global surrogate
| ocal surrogate | ocal surrogate
8 === (5lobal surrogate sum 8 === G|obal surrogate sum
7 e | ocal SUTOQETS SUM 7 = | ocal sUTOgELE SUM
g ° g ° P —
6 4 o 4 -
(=5 (=8 -
g 3 g a3t #
L=} = ’
2 b1 ¥
{ q
1 1
0 O - v
T , . \ , , . . b . . , . \ . \ .
100 200 300 400 500 600 OO 2 4 5 8 mo12 14 16 18 20
Generations Generations
(a) (b)

Fig. 6 Results on F1.(a) Contributions to fitness improvement in the whole search process;

(b) Contributions in the first 20 generations.

12

13
20" 12 : : L ——
=8 Clobal surrogate =—@— Global surrogate
18 = Local surogate 8 == Local surrogate
16 === (lobal surrogate sum 16 === (tlobal surrogate sum
- == | ocal surrogate sum 5 =T ocal surrogats surm
é i g e e e e e e é 13
i o e e
g0 12 JEPSELL L
]] -
= 8 - = -
= gosr ¢
E E
06 i'
44 /
0.44
2
02
0
R P
200 400 600 800 1000 2 4 6 8 o 12 14 16 18 20
Generations Generations
(a) (b)

Fig. 7 Results on F6.(a) Contributions to fitness improvement in the whole search process;
(b) Contributions in the first 20 generations.

contributes more than the global one, and the total contribution of the local
models are larger than the global model, as shown in Fig. 6(a). Interestingly,
the global surrogate contributes more than the local surrogates in the whole
search process for the multimodal function F6, as shown in Fig. 7(a). These
results agree with our conjecture that global surrogate may speed up search
for multimodal functions by smoothing out the local optimums, in particular
in the early stage of the search. On the other hand, local surrogate may be
more important for unimodal functions or when the search is approaching the
optimum.

In the following, we compare the TLSAPSO with the CPSO without using
surrogates, and the FESPSO [32] on the ten benchmark problems listed in
Table 1. FESPSO is a PSO algorithm assisted by fitness estimation using
the inheritance strategy. Based on the results presented above, PSO with the

A Two-layer Surrogate-assisted Particle Swarm Optimization Algorithm 15

Table 3 Comparative results from TLSAPSO, FESPSO [32] and CPSO

Opt. Approach Best Mean Worst Std.

CPSO 4.2760e+02 2.7140e+-03 7.1566e+4-03 2.1724e+03

F1 -4.50e+02 FESPSO 4.7899e+02 2.4010e+-03 5.1174e4+03 1.7986e+03
TLSAPSO -4.5000e+-02 -4.5000e+02 -4.4999e+4-02 3.9000e-03

CPSO 4.8460e+03 7.9951e+03 1.1362e+04 2.2039e+03

F2 -4.50e+02 FESPSO 9.8467e+02 3.0824e+03 6.0068e+03 1.7129e+03
TLSAPSO 3.5734e+03 5.7497e4-03 7.9880e4-03 1.4364e+03

CPSO 1.0616e+07 3.0398e+07 9.9308e+07 2.5642e+4-07

F3 -4.50e+02 FESPSO 8.3308e+06 5.5926e4-07 2.2536e4-08 6.7418e+07
TLSAPSO 5.6473e+06 1.5712e+07 3.0107e+07 7.7189e+4-06

CPSO 8.5185e+03 1.6597e+04 2.7170e4-04 5.3545e+03

F4 -4.50e+02 FESPSO 9.0492e+03 1.8508e+04 2.9075e+04 7.2387e+03
TLSAPSO 1.0451e+04 1.7458e+04 2.55637e4+04 3.8397e+03

CPSO 6.1334e+03 1.1940e+04 2.0313e4+-04 3.9721e+03

F5 -3.10e+4-02 FESPSO 7.9465e4-03 1.2036e+04 1.6727e+04 2.8412e+-03
TLSAPSO 5.2499e+03 1.0082e+04 1.5392e+04 2.9308e4-03

CPSO 1.2944e+06 2.6445e4-08 7.4144e4+-08 2.5924e+08

F6 3.90e+02 FESPSO 3.7162e+06 5.3199e4-08 1.4675e+09 4.7445e4-08
TLSAPSO 5.8234e+02 1.5715e+03 6.4199e+03 1.7562e+-03

CPSO -1.7649e4+-02 -1.7348e+02 -1.6622e4-02 3.1381e+00

F7 -1.80e+02 FESPSO -1.7893e+02 -1.7713e+02 -1.7407e+02 1.5909e+00
TLSAPSO -1.7879e+02 -1.7765e+02 -1.7528e+02 1.0289e+-00

CPSO -1.1900e+-02 -1.1891e+02 -1.1881e+402 8.2500e-02

F8 -1.40e+02 FESPSO -1.1956e+02 -1.1937e+02 -1.1907e4+02 1.4340e-01
TLSAPSO -1.1900e4+02 -1.1892e+02 -1.1885e402 4.9300e-02

CPSO -2.5433e+02 -2.1893e+02 -1.8760e+02 2.4030e+01

F9 -3.30e+402 FESPSO -2.8216e+02 -2.3747e+02 -1.9489e+02 2.9339e+01
TLSAPSO -2.7336e+02 -2.2924e402 -2.0043e4+02 2.3965e+-01

CPSO -2.1180e4-02 -1.5538e+02 -9.9515e4-01 3.4173e+01

F10 -3.30e+02 FESPSO -2.1098e+02 -1.5694e+02 -6.0503e+02 5.0590e+01
TLSAPSO -2.6029e¢+02 -1.9114e+02 -1.1391e4+02 4.9602e+01

global and local surrogates only will be left out from the comparison in the
following experiments.

Table 3 shows the comparative of results obtained by CPSO, FESPSO and
TLSAPSO on the ten test problems using the same experimental settings.
Fig. 8 to Fig. 17 plot the convergence profiles of the compared algorithms over
the number of real fitness evaluations. In order to make a fair comparison, the
initial population of the FESPSO is also generated using the Latin hypercube
sampling method, and the velocity is updated using Eq. (5).

From these results, we can see that TLSAPSO can obtain competitive or
better results than CPSO on 10000 fitness evaluations on all the 10 benchmark
problems. Compared to CPSO, the 'bless of uncertainty’ brought by the global
surrogate model can be highlighted in the optimization of the multi-model
problems except for F8. To understand why TLSAPSO failed to perform well
on F8, let us take a closer look into this optimization problem. We find that
the global optimum of F8 is on the boundary of the search space and is located
in a very narrow region, while most local optimums are almost equally good.
We also find that in the search, neither CPSO nor TLSAPSO can find the

16

Chaoli Sun et al.

ST

s ——TLSAPSO
10 ===CP50
FESPSO

Mean Fitness value (Natural Log)

n

=—®—TLSAPSO

@
T

Mean Fitness value (Natural Log)

Exact Fitness Evaluations

Fig. 8 The convergence profile on F1

™
[}

g L L L L L L L L L
0 1000 2000 3000 4000 5000 6000 7000 G000 9000 10000

Exact Fitness Evaluations

Fig. 9 The convergence profile on F2

5 L L L L L L L L L
0 1000 2000 3000 4000 5000 6000 7000 GOOO 9000 10000

N

== TL5APS0

)
=]

Mean Fitness value (Natural Log)

=@ TLSAPS0

Mean Fitness value (Natural Log)

WED 1DbU QDbU 30‘00 ADIUD 5060 EDbD 7DbU EUbU BDIUD 10000 950 1060 ZDIUD SDbU 4060 SDIUD EDbU 7060 BDIUD BUbU 10000
Exact Fithess Evaluations Exact Fitness Evaluations
Fig. 10 The convergence profile on F3 Fig. 11 The convergence profile on F4

i

=
o

== TL5APS0

=]
=

=
=

w @
m o o

Mean Fithess value (Natural Log)

s
5

5]
f=

=@ TLSAPS0

NN
=]

@

E

Mean Fitness value (Natural Log)

@
¥
o

Exact Fitness Evaluations

Fig. 12 The convergence profile on F5

L L L L L L L L
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

)
o

Exact Fitness Evaluations

Fig. 13 The convergence profile on F6

L L L L L L L L L
1000 2000 3000 4000 5000 BOOO 7000 8000 S000 10000

A Two-layer Surrogate-assisted Particle Swarm Optimization Algorithm 17

0 4P T T T T T T T T

AN —8—TLSAPSO =—®—TLSAPSO
Eis === CPS0 3 ===cps0 ||
lﬁ% =) - FESPS0 A o = 0 FESPSO

B '%% 1
B -4.778 =)
Ve
L LY

-4779

-4.78

-4.781

& "\ 1 -4.782 ‘| J

S
P T
N e

Mean Fitness value (Natural Log)
Mean Fitness value (Natural Log)

5 L L L L L L L L L 4763 L L L L L L L L L
0 1000 2000 3000 4000 5000 6000 7000 G000 9000 10000 0 1000 2000 3000 4000 5000 6000 7000 G000 9000 10000

Exact Fitness Evaluations Exact Fitness Evaluations
Fig. 14 The convergence profile on F7 Fig. 15 The convergence profile on F8
B 8
=—@=TLSAPS0 == TLSAPSO

=—=CPS0

===CP50
¥ < FESPSO -0

¥ -FESPSO |

Mean Fitness value (Natural Log)
Mean Fitness value (Natural Log)

-
-
S

IR TMOR R e

VED 1DbU QDbD 30‘00 ADIUD SUbD BDbD 7DbD 8000 BDIUD 10000 VED WUbD ZDIUD SDbD AUbD SDIUD EDbD TUbD BDIUD BDbD 10000
Exact Fitness Evaluations Exact Fitness Evaluations
Fig. 16 The convergence profile on F9 Fig. 17 The convergence profile on F10

global optimum. Instead, they oscillate between different local optimums. By
contrast, TLSAPSO converges much faster than CPSO on other multimodal
problems, refer to Fig. 13, 14, 16 and 17.

Comparing TLSAPSO with FESPSO on the multimodal problems, we can
find that the former performed better than the latter on F6, F7 and F10, while
comparably on F9 and worse on F8. This is an interesting observation, and the
reason might be attributed to the fact that the fitness approximation strategy
in FESPSO may not be local, when two particles are similar (close to each
other) in the search space but have very different fitness values, e.g., F8 near
the global optimum. In this case, FESPSO may outperform TLSAPSO.

Different from multimodal problems, the global surrogate cannot accelerate
search by smoothing out local optimums for unimodal problems. Presumably,
if the global fitness landscape of a unimodal fitness function is easy to approx-
imate using a small number of samples, e.g., if the function is symmetric, use
of a global model will also help locate the global optimum more quickly. This
has also been empirically confirmed by our empirical results. For example,
TLSAPSO performed much better than CPSO on F1 (sphere function), refer
to Fig. 8. However, if the fitness landscape of a unimodal function becomes

18 Chaoli Sun et al.

more complicated, it will be very difficult to approximate in a high-dimensional
space using a small number of samples. One consequence is that the optimum
of the surrogate is different from that of the real fitness function. As a re-
sult, TLSAPSO assisted by a global surrogate only may fail to locate at the
real global optimum of unimodal problem. For example, it is difficult to build
a correct global surrogate model for F5, especially in the early stage of the
evolution, because its global optimum is on the boundary. In this case, the
achieved performance enhancement by the global surrogate is less significant
than on other unimodal functions, such as F1.

Comparing the results in Figs. 4 and 5 with those in Figs. 8 and 13, we
can see that the contribution of the surrogates in FESPSO is similar to that
in CPSO-L, because the fitness estimation strategy suggested in FESPSO is
in some certain sense a local estimation strategy. Among the five unimodal
test functions, TLSAPSO outperformed FESPSO on F1, F3 and F5. How-
ever, FESPSO performed better than TLSAPSO on F2. The three compared
algorithms performed similarly on F4.

To further demonstrate the effectiveness of TLSAPSO, a second set of
experiments has been conducted comparing TLSAPSO with state-of-the-art
surrogate-assisted differential evolution(DE) algorithms [41], one is a regression-
assisted DE and the other is a classification-assisted DE. DE is chosen for com-
parison here because DE has been demonstrated to be an efficient method for
optimizing continuous multimodal function [42]. The parameter settings for
TLSAPSO are the same as in the first set of experiments. The comparative
results are shown in Table 4.

From Table 4, it can be clearly seen that for all multimodal problems, the
optima found by TLSAPSO are much better than both surrogate-assisted DE
algorithms presented in [41], which further confirms that our TLSAPSO algo-
rithm is highly suited for solving multimodal optimization problems. For uni-
modal problems, TLSAPSO can find better or competitive results compared
to the surrogate-assisted DE algorithms except for F5, whose global optimum
is located on the boundary of the search space. As previously, surrogates are
less helpful for such problems.

5 Conclusion and Future Work

A two-layer surrogate-assisted particle swarm optimization algorithm (TL-
SAPSO) is proposed to solve computationally expensive optimization prob-
lems. In TLSAPSO, a global surrogate model is used to smooth out the local
optimums of the original multimodal fitness function and a local surrogate
modal is employed to achieve accurate local fitness estimations. The contribu-
tions of these surrogates to the performance improvement on uni- and multi-
modal problems are empirically examined and the experimental results agree
with our conjecture. Our experimental results show the effectiveness of the pro-
posed TLSAPSO compared with the CPSO, FESPSO and two state-of-the-art
surrogate-assisted DE algorithms, especially for multimodal problems.

A Two-layer Surrogate-assisted Particle Swarm Optimization Algorithm 19

Table 4 The comparative results fromTLSAPSO and surrogate-assisted DE [41]

Opt. Approach Best Mean Worst Std.

TLSAPSO -4.5000e+02 -4.5000e+02 -4.4999e+402 3.9000e-03
F1 -4.50e+02 SVR-DE 4.56e-01 6.32e-01 8.58e-01 9.19e-02
SVC-DE 6.37e-02 1.07e-01 2.24e-01 3.67e-02

TLSAPSO 3.5734e+03 5.7497e+403 7.9880e+03 1.4364e+03

F2 -4.50e+-02 SVR-DE 6.72e+4-03 1.64e+04 2.45e+4-04 4.87e+03
SVC-DE 1.72e+03 3.54e+03 7.12e+03 1.33e+03

TLSAPSO 5.6473e+06 1.5712e+07 3.0107e+07 7.7189e+06

F3 -4.50e+02 SVR-DE 5.82e+07 1.10e+08 1.68e+4-08 2.75e4-07
SVC-DE 7.38e+4-06 1.80e+4-07 3.42e+07 5.75e4-06

TLSAPSO 1.0451e+404 1.7458e+04 2.5537e4+04 3.8397e+03

F4 -4.50e+02 SVR-DE 1.20e+4-04 2.70e+04 3.83e+04 7.06e+4-03
SVC-DE 3.67e+03 7.71e+03 1.27e+404 2.77e+03

TLSAPSO 5.2499e+03 1.0082e+04 1.5392e+04 2.9308e+03

F5 -3.10e+02 SVR-DE 7.30e+02 2.24e+03 3.28e+03 5.69e+02
SVC-DE 1.49e+03 2.39e+03 3.27e+03 5.71e+02

TLSAPSO 5.8234e+-02 1.5715e+4-03 6.4199e+03 1.7562e4-03

F6 3.90e+02 SVR-DE 5.11e+06 2.32e+07 7.16e4-07 1.43e+4-07
SVC-DE 1.08e+-02 2.54e+03 1.04e+004 3.11e+03

TLSAPSO -1.7879e+02 -1.7765e+02 -1.7528e+402 1.0289e+00
F7 -1.80e+02 SVR-DE 1.02e4-00 1.06e4-00 1.12e4-00 2.35e-02
SVC-DE 1.17e-01 4.03e-02 4.40e-03 3.15e-02

TLSAPSO -1.1900e+02 -1.1892e+02 -1.1885e402 4.9300e-02
F8 -1.40e+02 SVR-DE 2.09e4-01 2.11e4-01 2.12e4-01 6.39e-02
SVC-DE 2.09e+01 2.08e+01 2.12e+01 6.61e-02

TLSAPSO -2.7336e402 -2.2924e+02 -2.0043e+02 2.3965e+01
F9 -3.30e+02 SVR-DE 1.79e+02 2.01e+402 2.17e+402 1.14e+01
SVC-DE 1.84e4-02 2.09e+02 2.27e+02 1.31e401

TLSAPSO -2.6029e+02 -1.9114e+02 -1.1391e+02 4.9602e-+01
F10 -3.30e+02 SVR-DE 1.80e+-02 2.15e+02 2.34e+02 1.29e+01
SVC-DE 1.93e+4-02 2.15e4-02 2.38e4-02 1.37e+01

However, much work remains for future study. For example, TLSAPSO
contains a few parameters to be specified, including those for updating the
RBFN models and for maintaining the databases. An optimal set up of these
parameters may be challenging, although our results indicate that the per-
formance of TLSAPSO is relatively insensitive to these parameters. Second,
selecting data sampling for training the global model as well as the local surro-
gates is critical for the success of surrogate-assisted PSO algorithms. Therefore,
integration of advanced learning techniques such as semi-supervised learning
[43] into surrogate-assisted PSO is another promising topic of our future work.

Acknowledgements This work was supported in part by Youth Foundation of Shanxi
Province of China under Grant No. 2011021019-3, the Doctoral Foundation of Taiyuan Uni-
versity of Science and Technology under Grant No. 20122010, and the State Key Laboratory
of Software Engineering, Nanjing University, China, Project no. KFKT2013A05.

20

Chaoli Sun et al.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

S. He, E. Prempain, and Q. Wu, “An improved particle swarm optimizer for mechanical
design optimization problems,” Engineering Optimization, vol. 36, no. 5, pp. 585—605,
2004.

. D. Sha and C.-Y. Hsu, “A new particle swarm optimization for the open shop scheduling

problem,” Computers € Operations Research, vol. 35, no. 10, pp. 3243-3261, 2008.

. A. Abou El-Ela, T. Fetouh, M. Bishr, and R. Saleh, “Power systems operation using par-

ticle swarm optimization technique,” FElectric Power Systems Research, vol. 78, no. 11,
pp- 1906-1913, 2008.

. D. Lim, Y. Jin, Y.-S. Ong, and B. Sendhoff, “Generalizing surrogate-assisted evolution-

ary computation,” IEEE Transactions on Evolutionary Computation, vol. 14, no. 3, pp.
329-355, 2010.

. Y. Lian and M.-S. Liou, “Multiobjective optimization using coupled response surface

model and evolutionary algorithm.” AIAA journal, vol. 43, no. 6, pp. 1316-1325, 2005.

. M. Farina, “A neural network based generalized response surface multiobjective evolu-

tionary algorithm,” in Proceedings of the 2002 Congress on Evolutionary Computation,

vol. 1. IEEE, 2002, pp. 956-961.

. Y.-S. Ong, P. B. Nair, and K. Y. Lum, “Max-min surrogate-assisted evolutionary al-

gorithm for robust design,” IEEE Transactions on Evolutionary Computation, vol. 10,
no. 4, pp. 392-404, 2006.

. V. R. Joseph, Y. Hung, and A. Sudjianto, “Blind kriging: A new method for developing

metamodels,” Journal of mechanical design, vol. 130, p. 031102, 2008.

. A. Ratle, “Kriging as a surrogate fitness landscape in evolutionary optimization,” Al

EDAM, vol. 15, no. 01, pp. 37-49, 2001.

Y. Jin, M. Olhofer, and B. Sendhoff, “A framework for evolutionary optimization
with approximate fitness functions,” IEEE Transactions on Evolutionary Computation,
vol. 6, no. 5, pp. 481-494, 2002.

H. Ulmer, F. Streichert, and A. Zell, “Evolution strategies assisted by gaussian pro-
cesses with improved preselection criterion,” in The 2003 Congress on Evolutionary
Computation, 2003. CEC’03., vol. 1. IEEE, 2003, pp. 692-699.

D. Buche, N. N. Schraudolph, and P. Koumoutsakos, “Accelerating evolutionary algo-
rithms with gaussian process fitness function models,” IEEE Transactions on Systems,
Man, and Cybernetics, Part C: Applications and Reviews, vol. 35, no. 2, pp. 183—-194,
2005.

B. Liu, Q. Zhang, and G. Gielen, “A gaussian process surrogate model assisted evolution-
ary algorithm for medium scale expensive optimization problems,” IEEE Transactions
on Evolutionary Computation, 2013.

Y. S. Ong, P. B. Nair, and A. J. Keane, “Evolutionary optimization of computationally
expensive problems via surrogate modeling,” AIAA journal, vol. 41, no. 4, pp. 687—696,
2003.

Y. S. Ong, P. Nair, A. Keane, and K. Wong, “Surrogate-assisted evolutionary optimiza-
tion frameworks for high-fidelity engineering design problems,” in Knowledge Incorpo-
ration in Evolutionary Computation. Springer, 2005, pp. 307-331.

R. E. Smith, B. A. Dike, and S. Stegmann, “Fitness inheritance in genetic algorithms,”
in Proceedings of the 1995 ACM symposium on Applied computing. ACM, 1995, pp.
345-350.

L. G. Fonseca, A. C. Lemonge, and H. J. Barbosa, “A study on fitness inheritance
for enhanced efficiency in real-coded genetic algorithms,” in 2012 IEEE Congress on
Evolutionary Computation (CEC). 1EEE, 2012, pp. 1-8.

T. Goel, R. T. Haftka, W. Shyy, and N. V. Queipo, “Ensemble of surrogates,” Structural
and Multidisciplinary Optimization, vol. 33, no. 3, pp. 199-216, 2007.

E. Acar and M. Rais-Rohani, “Ensemble of metamodels with optimized weight factors,”
Structural and Multidisciplinary Optimization, vol. 37, no. 3, pp. 279-294, 2009.

Y. Jin and B. Sendhoff, “Reducing fitness evaluations using clustering techniques and
neural network ensembles,” in Genetic and Evolutionary Computation-GECCO 2004.
Springer, 2004, pp. 688—-699.

A Two-layer Surrogate-assisted Particle Swarm Optimization Algorithm 21

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

J. Lu, B. Li, and Y. Jin, “An evolution strategy assisted by an ensemble of local gaus-
sian process models,” in Proceeding of the fifteenth annual conference on Genetic and
evolutionary computation conference. ACM, 2013, pp. 447-454.

Z. Zhou, Y. S. Ong, M. H. Nguyen, and D. Lim, “A study on polynomial regression and
gaussian process global surrogate model in hierarchical surrogate-assisted evolutionary
algorithm,” in The 2005 IEEE Congress on Evolutionary Computation, 2005., vol. 3.
IEEE, 2005, pp. 2832-2839.

Z. Zhou, Y. S. Ong, P. B. Nair, A. J. Keane, and K. Y. Lum, “Combining global and
local surrogate models to accelerate evolutionary optimization,” IEEE Transactions on
Systems, Man, and Cybernetics, Part C: Applications and Reviews, vol. 37, no. 1, pp.
66-76, 2007.

Y. Tenne and S. W. Armfield, “A framework for memetic optimization using variable
global and local surrogate models,” Soft Computing, vol. 13, no. 8-9, pp. 781-793, 2009.
C. Praveen and R. Duvigneau, “Low cost pso using metamodels and inexact pre-
evaluation: Application to aerodynamic shape design,” Computer Methods in Applied
Mechanics and Engineering, vol. 198, no. 9, pp. 1087-1096, 2009.

M. Parno, T. Hemker, and K. Fowler, “Applicability of surrogates to improve efficiency
of particle swarm optimization for simulation-based problems,” Engineering Optimiza-
tion, vol. 44, no. 5, pp. 521-535, 2012.

S. Bird and X. Li, “Improving local convergence in particle swarms by fitness approx-
imation using regression,” in Computational Intelligence in Expensive Optimization
Problems. Springer, 2010, pp. 265—-293.

Y. Tang, J. Chen, and J. Wei, “A surrogate-based particle swarm optimization algorithm
for solving optimization problems with expensive black box functions,” FEngineering
Optimization, vol. 45, no. 5, pp. 557-576, 2013.

R. G. Regis, “Particle swarm with radial basis function surrogates for expensive black-
box optimization,” Journal of Computational Science, 2013.

T. Hendtlass, “Fitness estimation and the particle swarm optimisation algorithm,” in
IEEE Congress on Evolutionary Computation. IEEE, 2007, pp. 4266-4272.

M. Reyes-Sierra and C. A. C. Coello, “A study of fitness inheritance and approxima-
tion techniques for multi-objective particle swarm optimization,” in The 2005 IEEE
Congress on Evolutionary Computation, vol. 1. TEEE, 2005, pp. 65—72.

C. Sun, J. Zeng, J. Pan, S. Xue, and Y. Jin, “A new fitness estimation strategy for
particle swarm optimization,” Information Sciences, vol. 221, pp. 355-370, 2012.

C. Sun, J. Zeng, J. Pan, and Y. Jin, “Similarity-based evolution control for fitness esti-
mation in particle swarm optimization,” in 2018 IEEE Symposium on Computational
Intelligence in Dynamic and Uncertain Environments (CIDUE). IEEE, 2013, pp. 1-8.
R. Eberhart and J. Kennedy, “A new optimizer using particle swarm theory,” in Pro-
ceedings of the Sixth International Symposium on Micro Machine and Human Science.
IEEE, 1995, pp. 39-43.

Y. Shi and R. Eberhart, “A modified particle swarm optimizer,” in The 1998 IEEE In-
ternational Conference on Evolutionary Computation Proceedings, 1998. IEEE World
Congress on Computational Intelligence. IEEE, 1998, pp. 69-73.

M. Clerc and J. Kennedy, “The particle swarm-explosion, stability, and convergence in
a multidimensional complex space,” IEEE Transactions on Evolutionary Computation,
vol. 6, no. 1, pp. 5873, 2002.

R. C. Eberhart and Y. Shi, “Comparing inertia weights and constriction factors in
particle swarm optimization,” in Proceedings of the 2000 Congress on Ewvolutionary
Computation, vol. 1. IEEE, 2000, pp. 84—88.

A. Kattan and E. Galvan, “Evolving radial basis function networks via gp for estimat-
ing fitness values using surrogate models,” in 2012 IEEE Congress on Evolutionary
Computation (CEC). 1EEE, 2012, pp. 1-7.

Y. Jin, “A comprehensive survey of fitness approximation in evolutionary computation,”
Soft computing, vol. 9, no. 1, pp. 3—12, 2005.

P. N. Suganthan, N. Hansen, J. J. Liang, K. Deb, Y. Chen, A. Auger, and S. Tiwari,
“Problem definitions and evaluation criteria for the cec 2005 special session on real-
parameter optimization,” KanGAL Report, vol. 2005005, 2005.

22

Chaoli Sun et al.

41.

42.

43.

X. Lu, K. Tang, and X. Yao, “Classification-assisted differential evolution for compu-
tationally expensive problems,” in 2011 IEEE Congress on Evolutionary Computation
(CEC). IEEE, 2011, pp. 1986-1993.

R. Storn, “On the usage of differential evolution for function optimization,” in 1996 Bi-
ennial Conference of the North American Fuzzy Information Processing Society, 1996.
NAFIPS. 1EEE, 1996, pp. 519-523.

X. Sun, D. Gong, Y. Jin, and S. Chen, “A new surrogate-assisted interactive genetic
algorithm with weighted semisupervised learning,” IEEE Transactions on Cybernetics,
vol. 43, no. 2, pp. 685-698, 2013.

