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Big data: the key to energy efficiency in smart buildings

M. Victoria Moreno1 · Luc Dufour2 · Antonio F. Skarmeta1 · Antonio J. Jara2 ·
Dominique Genoud2 · Bruno Ladevie3 · Jean-Jacques Bezian3

Abstract Due to the high impact that energy consumption
by buildings has at global scale, energy-efficient buildings to
reduce CO2 emissions and energy consumption are needed.
In this work we present a novel approach to energy saving
in buildings through the identification of the relevant para-
meters and the application of Soft Computing techniques to
generate predictive models of energy consumption in build-
ings. Using such models it is possible to define strategies
for optimizing the day-to-day energy consumption of build-
ings. To verify the feasibility of this proposal, we apply our
approach to a reference building for which we have con-
textual data from a complete year of monitoring. First, we
characterize the building in terms of its contextual features
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and energy consumption, and then select the most appropri-
ate techniques to generate the most accurate model of our
reference building charged with estimating the energy con-
sumption, given a concrete set of inputs. Finally, considering
the energy usage profile of the building, we propose specific
control actions and strategies to save energy.

Keywords Internet of things · Big data · Smart buildings ·
Energy efficiency

1 Introduction

By 2020 there will be 7.5 billion people in the world and
consumption will increase by 75 % compared to 2000,
equally split between developing and developed countries.
This means an increase of 37.5 % in energy consumption
every 10 years. These factors have driven research on sus-
tainability in energy production, distribution, storage and
consumption.

Furthermore, there are theEuropean20-20-20objectives1:
to decrease by 20 % gas emissions with greenhouse effect
(GHG); to decrease by 20 % the energy consumption; and
to increase by 20 % the production of renewable energy. It
is important to highlight that buildings are responsible for
40 % of total EU energy consumption and generate 36 % of
GHG(Petersen et al. 2009). This indicates the need to achieve
energy-efficient buildings to reduce their CO2 emissions and
their energy consumption. Moreover, the building environ-
ment affects the quality of life and work of all citizens. Thus,
buildings must be capable of not only providing mechanisms
to minimize their energy consumption (even integrating their

1 http://ec.europa.eu/clima/policies/package/index_en.htm.



own energy sources to ensure their energy sustainability), but
also improving occupant experience and productivity.

Analysis of the energy efficiency of the built environment
has received growing attention in the last decade (Agarwal
et al. 2010; Lindberg et al. 2004). Various approaches have
addressed the energy efficiency of buildings using predic-
tive models of energy consumption based on usage profile,
climate data and building characteristics. Nevertheless, most
of the approaches proposed to date only provide partial solu-
tions to the overall problem of energy efficiency in buildings,
where different factors are involved in a holistic way, but
until now have been addressed separately or even neglected
by previous proposals. This division is frequently due to the
uncertainty and lack of data and inputs included in the mod-
eling process, so that analysis of how energy is consumed in
buildings is incomplete (Voss et al. 2010).

The integration and development of systems based on
Information and communication technologies (ICT), and
more specifically, the internet of things (IoT) (Perera et al.
2014), are important enablers of a broad range of applica-
tions, both for industries and the general population, helping
make smart buildings a reality. But most of the approaches to
the problem of energy efficiency in smart buildings present
partial solutions regarding monitoring, data collection from
sensors and control actions. The IoT has provided vast
amounts of data that can be analyzed deeply to reveal inter-
esting relationships, which can be used to generate models
able to anticipate and respond efficiently to certain events.
Methods, techniques and tools from diverse disciplines can
be combined to help analyze such datasets (Berthold et al.
2012). In that sense, Big data and IoT are a perfect combi-
nation that can be applied to Smart Buildings scenarios for
energy efficiency.

The approachof this paper involves applying insights from
Big data algorithms to sensed data in smart buildings. We
select the most suitable soft computing (SC) techniques to
manage these data with the aim of enabling real-time systems
anticipation and optimization of the energy consumption in
buildings. We propose a solution for data processing to gen-
erate energy consumption models of buildings which can
be used to select the optimal measurements and strategies
to save energy. First, we analyze what the main drivers
of the energy consumed in buildings are. For this analy-
sis, we use the data measured by sensors installed in the
building and thus generate the predictive model that esti-
mates its daily energy consumption. As a real case where
energy saving must be achieved, we present an industrial
building with high levels of monthly energy consumption
involved in thermal comfort provision. In this building, the
first stages of experimentation have been already carried out
following the approach proposed in thiswork.Analysis of the
generated models has led to energy saving strategies being
applied.

The structure of this paper is as follows: Sect. 2 reviews
some related work proposed in the literature. Section 3
describes the key issues involved in energy efficiency in
buildings. Among these issues, relevant parameters affect-
ing the energy consumed in buildings are described and
proposed as input data of the building energy consump-
tion model. Finally, this section presents our approach to
propose optimum strategies and actions to save energy in
buildings. Section 4 details the energy usage characteriza-
tion of our reference building, the process of generation of its
energy consumption model and the analysis extracted from
suchmodels. Finally, Sect. 5 provides conclusions and future
directions of our work.

2 Related work

As regards the analysis of buildings to understandhowenergy
is consumed, initial solutions were mainly focused on using
non-deterministic models based on simulations. A number
of simulation tools are available with varying capabilities.
In Al-Homoud (2001) and Crawley et al. (2008) a compre-
hensive comparison of existing simulation tools is provided.
Among these tools are ESP-r (Clarke et al. 2002) and Energy
Plus (Crawley et al. 2001). However, this type of approach
relies on very complex predictive models based on static per-
ceptions of the environment. For example, a multi-criteria
decision model to evaluate the whole life cycle of a build-
ing is presented in Chen et al. (2006). The authors tackle the
problem from a multi-objective optimization viewpoint and
conclude that finding an optimal solution is unreal, and that
only an approximation is feasible.

With the incessant progress made in the field of ICT and
sensor networks, new applications based on using extensive
number of different sensors tomonitor building environments
are being proposed to improve energy efficiency of build-
ings through the integration of huge volume of data. For
instance, in office spaces, timers and motion sensors provide
a useful tool to detect and respond to occupants,while provid-
ing them with feedback information to encourage behavioral
changes. The solutions based on these approaches are aimed
at providing models based on real sensor data and contextual
information.

Nevertheless, some current monitoring systems, such as
automated lighting systems, have limitations such as those
identified in Garg and Bansal (2000). In these proposals, the
time delay between the response of the automated system
and the actions performed can reduce any energy saving,
while an excessively fast response of the system can pro-
duce inefficient actions. These monitoring systems, while
contributing toward energy efficiency, require significant
investment in an intelligent infrastructure that combines sen-
sors and actuators to control and modify the overall energy



consumption. The cost and difficulty involved in deploying
such networks often constrain their viability. In this sense,
rather than solving the above drawbacks, the approach of
this paper involves predictive models based on a combina-
tion of real data and predictive patterns that represent the
evolution of the parameters affecting energy consumption of
buildings.

We propose to generate accurate predictive models of
energy building consumption to be used to select the best
strategies for saving energy in light of the specific charac-
teristics of each building. Closely reflecting our work there
are approaches that have aimed to improve control beyond
what off-the-shelf products currently offer. For example,
Mozer et al. describe a “Neurothermostat” which utilizes
a hybrid occupancy predictor, making use of an available
daily schedule and a neural network which was trained using
5 consecutive months of occupancy data (Scott et al. 2011).
Lu et al. (2010) formulate a hidden Markov model (HMM)
to predict occupancy and to control heating, ventilation and
air conditioning (HVAC) systems. They collected occupancy
data in eight US households for 1–2 weeks. Using leave-one-
out cross-validation to train and test the HMM, they evaluate
their solution and the energy savings for each day in a week
using the EnergyPlus simulator.

In Hagras et al. (2003) the authors propose an intelligent
system able to manage the main comfort services provided
in the context of a smart building, i.e. HVAC and lighting,
while user preferences concerning comfort conditions are
established according to the occupants’ locations. Never-
theless, the authors only propose the inputs of temperature
and lighting to make decisions, while many more factors
are really involved in energy consumption and should be
included to provide an optimal and more complete solution
to the problem of energy efficiency in buildings. Further-
more, no automation platform is proposed as part of the
solution. In Severini et al. (2013) end-user comfort con-
straints are addressed for the home thermal characterization.
This is accomplished by a nonlinear model relating the
energy demand with the required temperature profile. A
genetic algorithm based on such a model is then used to opti-
mally allocate the energy request to match the user thermal
constraints, and therefore to allow the mixed-integer deter-
ministic optimization algorithm to determine the remaining
energymanagement actions. And, as a last example of related
work, in Costa and La Neve (2015) the authors present the
application of a neuro-fuzzy system (ANFIS) for air condi-
tioning systems to reduce electricity consumption.

As can be noted, most of the approaches proposed to
date only provide partial solutions to the overall problem
of energy efficiency in buildings. No solutions have been
proposed tackling the full integration of information related
with all the relevant aspects directly involved in the energy
consumption of buildings (which are described in Sect. 3).

Therefore, a more integral vision is required to provide accu-
rate models of the energy consumed in buildings.

3 Approach to design optimum strategies
for energy efficiency in buildings

Optimizing energy efficiency in buildings is an integrated
task that covers the whole life cycle of the building. For
buildings to have an impact at city level in terms of energy
efficiency, different challenges have been identified in the
building value chain2 (from design to end-of-life). During
these phases it is necessary to continuously re-engineer the
indexes that measure energy efficiency to adapt the energy
consumption profile to the building’s conditions. Hereinafter,
we refer only to electrical energy consumption since other
kinds of energy such as fuel oil, gas or water are beyond the
scope of this work.

The energy performance model for buildings proposed by
the CEN Standard EN15251 (British Standards Institution
2007) proposes criteria for dimensioning the energymanage-
ment of buildings, while indoor environmental requirements
are maintained. According to this standard, there are static
and dynamic conditions that affect the energy consumption
of buildings. Therefore, it is first necessary to identify the
main drivers of energy use in buildings. After monitoring
these parameters and analyzing the associated energy con-
sumed, we can model their impact on energy consumption,
and then propose control strategies to save energy. The main
idea of this approach is to provide anticipated responses to
ensure energy efficiency in buildings.

During the monitoring phase, information from hetero-
geneous sources is collected and analyzed before specific
actions are proposed to minimize energy consumption. Since
buildings with different functionalities have different energy
use profiles, it is necessary to carry out an initial charac-
terization of the main contributors to their energy use. For
instance, in residential buildings, the energy consumed is
mainly due to the indoor services provided to their occu-
pants (associated to comfort), whereas in industrial buildings
energy consumption is associated mostly with the opera-
tion of industrial machinery and infrastructures dedicated
to production processes. Considering this, and taking into
account the models for predicting the comfort response of
building’s occupants given by theASHRAE (Berglund 1977),
we describe below the main parameters that must be mon-
itored and analyzed before selecting optimum strategies to
save energy. From this set of parameters affecting energy
consumption in buildings, we can extract the input data to be
included in the mechanism to generate predictive models of
the energy consumption of buildings.

2 http://www.ectp.org/.



1. Electrical devices always connected to the electrical net-
work In buildings, it is necessary to characterize the
minimum value of energy consumption due to electri-
cal devices that are always connected to the electrical
network.

2. Electrical devices occasionally connected to the electri-
cal network Depending on the kind of building under
analysis, different electrical devices may be used with
different purposes. Whatever the case, recognition of the
operation pattern of devices must be included in the final
system responsible for estimating the daily electrical con-
sumption of the building. To obtain these patterns, it is
necessary to monitor previously the associated energy
consumption of every device or appliance. To monitor
each component separately in the total power consump-
tion in a household or an industrial site over time,
cost-effective and readily available solutions includenon-
intrusive load monitoring (NILM) techniques Zoha et al.
(2012).

3. Occupants’ behavior Energy consumption of buildings
due to the behavior of their occupants is one of the most
critical points in every building energy management sys-
tem. This ismainly because occupant behavior is difficult
to characterize and control due to its uncertain dynamic.

4. Environmental conditions Parameters such as tempera-
ture, humidity, pressure, and natural lighting have a direct
impact on the energy consumption of buildings.

5. Information about the energy generated in the building
Sometimes, alternative energy sources can be used to bal-
ance the energy consumption of the building. Information
about the amount of daily energy generated and its asso-
ciated contextual features can be used to estimate the total
energy generated in the future. This information allows us
to design optimal energy distribution or/and strategies of
consumption to ensure the energy-efficient performance
of the building.

6. Information about energy consumed in the building
Knowing the real value of the energy consumed hourly or
even daily permits the performance and accuracy of the
building energy management program to be evaluated,
and makes it possible to identify and adjust the system in
case of any deviation between the consumption predicted
and the real value. In addition, providing occupants with
this information is crucial to make them aware of the
energy that they are using at any time, and encourages
them to make their behavior more responsible.

Our approach to design optimum strategies to save energy
in buildings proposes to monitor the contextual conditions
of buildings to identify what parameters (among those
presented in the previous section) are involved in energy
consumption. In this way, from this set of parameters affect-
ing energy consumption, we can extract the input data to

be included in the estimation of the target building energy
consumption model.

Bearing in mind all these parameters, it is possible to
design optimum strategies to save energy taking into account
both the evolution of the affecting parameters and the conse-
quence of such evolution in the energy consumption of the
target building. Therefore, the approach proposed to design
optimum strategies of energy saving in buildings is the fol-
lowing:

1. Analyze the energy consumption profile associated to
each service provided in the building. In this way, it is
possible to identify variables affecting the energy con-
sumption of each service.

2. Analyze the relation among the evolution of such vari-
ables and the energy consumed. Thus, it is possible to
select variables with the most relevant impact in the
energy consumption.

3. Provide behavior patterns of the variables identified
as relevant, including their uncertainty. We propose to
include as inputs of the model such behavior patterns
together with the associated sensed data.

4. Implement a predictive building model able to estimate
the evolution of the energy consumption given such a set
of inputs.

5. Designoptimumstrategies of control to save energy in the
building based on the estimated evolution of the energy
consumption.

Regarding the 4th step of our approach, which proposes
to implement predictive models of the energy consumption
of buildings, in this paper we propose a procedure based on
applying different SC techniques according to the specific
goal to be achieved. This general procedure will be instanced
later into the specific case of our reference building used for
experimentation. After carrying out these steps, an estimator
is able to predict the energy consumption of the analyzed
building in an on-line way using the building model gener-
ated.

4 Application and evaluation

To verify the feasibility of the approach presented in the pre-
vious section to propose optimum strategies to save energy in
buildings, we apply it to a reference building used for exper-
imentation. There are available contextual data associated to
the energy consumption for thermal comfort of this building.

First, we provide a complete characterization of the build-
ing in terms of both its context and its energy consumption,
and thengenerate the buildingmodel able to predict its energy
consumption in the future given a concrete set of inputs (con-
sidering the steps described in Sect. 3), and based on these













reducing dimensionality in high-dimensional data,
identifying the directions in which the observations
most vary. If we consider EC(i) asmulti-dimensional
observations and u as an arbitrary direction in this
multi-dimensional space, the principal components
are calculated by optimizing the following equation:

1
m

·
m∑

i=1

(EC(i)T · u)2 (2)

Dimensionality reduction is accomplished by choos-
ing a sufficient number of vectors to account for a
given percentage of the variance in the original data
(by default 0.95). With the aim of reducing the final
computational load of the estimation mechanism, we
searched the optimum number of attributes to repre-
sent the energy consumption profile of our reference
building. After this analysis, we found that outdoor
temperature, humidity and pressure were the features
selected by the ranked feature combination technique
used by the PCA mechanism implemented in the
WEKA toolkit.3 Therefore, the number of features
was reduced from the initial proposal of 6–3. Which
will be denoted as f 1, f 2, f 3. Note that indoor envi-
ronmental conditions are directly the consequence of
outdoor conditions, which is why not all of them are
selected as principal features by the PCA. So, the
energy consumption associated to thermal comfort
of our reference building is due to outdoor environ-
mental changes.
Considering this vector of features, Eq. (1) can be
rewritten as:

{[ f 1(t), f 2(t), f 3(t)], Zt }, t = 1, 2, . . . , N (3)

At this point, we generate the maps of the building
based on the selected features. The stages described
below refer to the mechanism based on such building
maps.

3. Clustering During this stage, the input data division
according to the distribution of the values of these fea-
tures is carried out, the data being grouped according to
the identified clusters, whose centroids are associated to
landmarks.
We compared two techniques commonly used for clus-
tering, the simple expectation maximization (EM) and
the simple K means McGregor et al. (2004) in terms of
success in classification by different classifiers (that is
the next stage). These techniques were evaluated with
tenfold cross-validation over our dataset, in which the

3 http://www.cs.waikato.ac.nz/ml/weka/.

Table 2 Classification success rate of different clustering and classifi-
cation techniques when occupancy is constant

Classification EM (%) Simple K means (%)

Decorate 94.7 92.6

LogitBoost 95.7 91.7

Bagging 92.8 89.2

J48 94.7 91.3

Random forest 94.5 91.1

Random tree 94.9 91.6

Table 3 Classification success rate of different clustering and classifi-
cation techniques when occupancy is variable

Classification EM (%) Simple K means (%)

Decorate 96.9 93.4

LogitBoost 97.1 94.2

Bagging 96.7 93.2

J48 97.5 95.2

Random forest 97.9 93.1

Random tree 98.5 95.4

original sample was randomly partitioned into 10 equal-
size subsamples, a single subsample being retained as the
validation data for testing the model, and the remaining
nine subsamples used as training data. The results are
found in Tables 2 and 3. These results show that the use
of EM clustering yields a better classification. We then
selected EM for our implementation.
EM assigns a probability distribution to each instance,
indicating the probability of belonging to one of the iden-
tified clusters. EMcan decide howmany clusters to create
by cross-validation, although the number of clusters to be
generated can also be specified a priori. We propose an
automatic search for the number of clusters that opti-
mizes both classification success and accuracy in the
energy consumption estimation (carried out later). For
this, we follow a similar approach to that presented in
Luna et al. (2011). Each one of the generated clusters
is a vector of mean values of the outdoor environmental
conditions forming the centroid of the cluster, and a vec-
tor of deviation values associated to the clusters. These
vectors can be represented mathematically as: µCi =
[µ f 1, µ f 2, µ f 3, µZ ], and σCi = [σ f 1, σ f 2, σ f 3, σZ ];
where µCi and σCi denote the mean and deviation of
the centroid of the landmark i , respectively.

4. Landmark classifierThe landmark classifier assigns each
new vector of features to a specific landmark previ-
ously determined by the clustering algorithm. To select a
suitable classification technique, we analyzed the perfor-
mance of different classifiers. The corresponding results
are summarized in Tables 2 and 3. As can be seen from



the table, the meta-classifier LogitBoost (Friedman et al.
2000) provided the highest classification success rate for
the case of constant occupancy, and the tree-classifier
random tree (Breiman 2001) when the occupancy is
variable. Both evaluations are performed with tenfold
cross-validation over the input dataset.
After classifying the energy consumption landmark for
each newmeasurement, we can focus on the outdoor tem-
perature characterization of such landmark and ignore the
rest of the sensed values to carry out the energy consump-
tion estimation.

5. Energy consumption estimator The next step consists of
carrying out an energy consumption estimation using the
knowledge available for the associated landmark. For
this, a Radial basis functions network (Haykin 1999)
for each landmark is computed as regression technique,
which uses all training data associated to every landmark
to estimate the energy consumption according to its asso-
ciated outdoor temperature vector.
RBF networks find approximate solutions in the form
of weighted sums of basis functions based on reference
data. Themain advantages of using RBF to solve our esti-
mation problem are its scalability and easy deployment
under different contextual conditions; when a variable
number of centroids have been identified previously.
In our case, for each energy building consumption divi-
sion associated to one landmark, an RBF network is
implemented.
The input space P of our RBF is the vector of the mean
values of the outdoor environmental parameters. These
data can be denoted as

P ∈ R, P = {pi }, ∀pi =
[
p1, p2, . . . , pn

]
(4)

where n is the number of measurements gathered and
classified within the chosen subset associated to a land-
mark. The target class Z represents the energy consump-
tion. This is denoted as

Z ∈ Rk, Z = {zki },∀zki =
[
zk1, z

k
2, . . . , z

k
n
]

(5)

where k is the dimension. In our case: k = 1. Then, given
the training values {(pi , zki ), . . . , (pn, z

k
n)}, our goal is to

find a function that will allow us to classify themonitored
energy consumption (zi ), giving its vector of features
(pi = [ f 1i , f 2i , f 3i ]).
The vector p j is provided as input to all functions of our
RBF network, and the output f (p j ) is given by

f (p j ) =
c∑

i=1

wi · ϕ(∥ p j − ci ∥) (6)

where ∥ p j − ci ∥ is the Euclidean distance between p j
and the RBF function with center ci .
The number of RBFs is C , and wi are the weights of
the network. The value of β specifies the width of the
basis functions and allows their sensitivity to be adjusted.
As β decreases, the basis functions become wider and
overlapping may increase. An appropriate value of β is
usually selected experimentally based on the reference
data, and this can be further adjustedwhen testing data are
available. Another common practice is to use a heuristic
method to set the width β according to Eq. (7), where
dmax =∥ p j − ci ∥ for i = 1, . . . , L .

β = 1
2 · dmax

(7)

From this equation it is deducted that when the distance
between centers in input features increases, the value ofβ
is reduced to ensure that the basis functions still overlap
sufficiently to produce accurate energy consumption esti-
mates. In our implementation, and following this scheme,
the value of β is easily adjusted to provide a high level
of accuracy, even when a variable number of inputs are
used.
The proper values for C and the centers ci are not unim-
portant since they affect the performance of the RBF
network. A common practice is to use each reference
feature value to define the centers, so if there are L vec-
tors of input features, there will be L basis functions.
However, this architecture has high memory require-
ments when there are many reference fingerprints. In
such cases, the computational complexity is high, both
for the calculation ofwi and energy consumption estima-
tion. Nevertheless, in our system the number of reference
inputs per cluster is low, meaning that there are no
problems related to computational complexity, and it is
possible to use the centroids obtained previously during
clustering phase to provide the center of our basis func-
tions. For these reasons, our RBF system has one solution
and its design guarantees the exact fitting of all reference
data.

The reference input values and their corresponding energy
consumption estimations (ECi ) are used to train the network
and adjust the weights each time new information is regis-
tered. Thus, given a target vector of features p j associated to
the energy consumption z j , the output of the RBF network
may be expressed as a weighted sum of normalized basis
functions:

z(p j ) =
c∑

i=1

wi ·
ϕ(∥ p j − ci ∥)

∑c
k=1 ϕ(∥ p j − ck ∥) (8)





Table 4 Number of training data (ND), maximal energy consumption
(maxEC), number of clusters (NC), mean percentage of success in clas-
sification (µPSC), deviation of success in classification (δPSC), average

estimation error (µEE) and deviation of estimation error (δEE) for each
building model

Models ND maxEC (kW) NC µPSC (%) δPSC (%) µEE (kW) δEE (kW)

Constant occupancy 490 195.4 8 95.7 2.3 8.8 3.0

Variable occupancy 735 186.8 5 98.5 1.6 20.5 4.3

so that the model loses accuracy in the estimation, which is
translated into a greater error in the estimation. The results
obtained for these models demonstrate the suitability of the
techniques finally selected for implementing the mechanism
proposed to generate energy building consumption models.

After proposing these models, and according to the results
obtained from them, the optimal strategies to save energy
in the target building can be selected. Some examples of
strategies to save energy, and which are being performed
currently, are enumerated below for the two cases proposed
in this problem.

– When the building is empty, the indoor temperature nec-
essary inside the building to ensure the good state of the
different products can have a value in the confidence
interval: [5, 25 ◦C]. Then, depending on the outdoor
temperature measured, the indoor temperature can be
configured with the most similar value to this, always
being within the mentioned comfort interval, and consid-
ering the expected timewhen the comfort conditionsmust
change, ensuring the energy conservation in the building
for the minimum associated energy consumption. For
this, the energy consumption building management is
able to reason over a set of rules based on the current
contextual data processing carried out. Therefore, when
it is known that the building is empty according an oper-
ational time scheduling, some rules are activated, and the
corresponding commands are configured in the HVAC
system of this building.

– When the building is occupied, depending on the energy
consumption estimated by the implemented model of the
building for the next hour, different strategies to save
energy can be carried out, such as:

1. Adjusting the work of people to shorten the periods
of time with a variable occupancy in the building.

2. Providing occupants with comfort conditions that
save energywhilemaintaining suitable levels of com-
fort. For this, it must be considered that when the
building is not empty, the indoor temperature that
must be present in this building should have a value
within to the confidence interval: [16, 26 ◦C]. Then,
depending on the estimated energy consumption, we
select the value most similar to the outdoor temper-

ature for establishing the indoor temperature while
taking into account comfort conservation at the same
time.

3. If there is a source of renewable energy, its optimum
distribution in the building should be designed in
accordance with any expected abrupt changes in the
outside environmental conditions, and consequently,
in the energy consumption.

5 Conclusion and future work

Energy buildingmanagement is recognized as a fundamental
piece for ensuring energy sustainability in modern cities and
the planet as a whole. The solutions put forward to date con-
cerning the great amount of energy consumed by buildings
have numerous limitations and many are extremely compli-
cated to undertake.

The many advances made in ICT, and especially IoT, rep-
resent a great potential as regards the quantity of real-world
information that can be generated and, at the same time, per-
mit interaction with the environment to change behavior and
provide more efficient services.

In this work, we analyze the main parameters affecting
energy consumption of buildings. Such an analysis permits
us to propose an optimum prediction concerning the hourly
energy consumed in buildings by integrating the most rele-
vant input data involved in energy consumption.

For the extraction of relevant knowledge from all the
sensed data, we apply sophisticated SC techniques to model
the energy consumption profile of buildings. Thus, our
approach to address energy efficiency in buildings is based
on using the data measured by sensors installed in the build-
ing to generate the predictive model that estimates the energy
consumption of the same.

Once energy usage profiles have been extracted, we can
design and implement actions to save energy; for instance,
proposing strategies to adjust the operation time and config-
uration of the involved appliances or devices, selecting the
optimal distribution of energy to maximize the use of alter-
native energies, etc.

As a real use case where energy saving must be achieved,
we present a scenario where the first stages of experimenta-
tion have been carried out following the approach proposed



in this work. From this, accurate predictive models of the
energy usage of a reference building have been obtained.
For the generation of such predictive models, we carry out
an exhaustive selection of the data mining techniques that
provide the optimum results, taking into account the data
collected during a monitored year. Then, considering such
models, we propose some measurements of control to save
energy in the building taken as reference.

At present we are carrying out experiments to analyze
the impact of implementing the strategies proposed to save
energy in the building under experimentation. Furthermore,
we are testing the performance of our predictorwhenweather
forecast is included as input of the model for making pre-
diction of the energy consumed by the building during next
hours or days, and in this way, it is possible to anticipate and
design the optimum strategies to save energy. As future work
we will apply the approach proposed in this paper to other
buildings, with the aim of demonstrating its applicability in
different contexts.
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