
Computational efficiency and universality of timed P systems
with membrane creation

Bosheng Song1 · Mario J. Pérez-Jiménez2 · Linqiang Pan1

Abstract P systems are a class of distributed parallel com-
puting models inspired by the structure and the functioning
of a living cell, where the execution of each rule is
completed in exactly one time unit (a global clock is
assumed). How-ever, in living cells, the execution time of
different biological processes is difficult to know precisely
and very sensi-tive to environmental factors that might be
hard to control. Inspired from this biological motivation, in
this work, timed polarization P systems with membrane
creation are intro-duced and their computational efficiency
and universality are investigated. Specifically, we give a
time-free semi-uniform solution to the SAT problem by a
family of P systems with membrane creation in the sense
that the correctness of the solution is irrelevant to the times
associated with the involved rules. We also prove that time-
free P systems with membrane creation are computationally
universal.

Keywords P system · Membrane creation · Time-free
solution · SAT problem · Universality

B Linqiang Pan
lqpan@mail.hust.edu.cn

1 Key Laboratory of Image Information Processing and
Intelligent Control, School of Automation, Huazhong
University of Science and Technology, Wuhan 430074,
Hubei, China

2 Research Group on Natural Computing, Department of
Computer Science and Artificial Intelligence, University of
Sevilla, Avda. Reina Mercedes s/n, 41012 Sevilla, Spain

1 Introduction

Membrane computing is a vivid branch of natural computing,
which was initiated by Păun (2000). The aim of mem-
brane computing is focused to abstract computing concepts
from the structure and the functioning of living cells and
the ways in which cells are organized in tissues and higher
order biological structures. All classes of computing devices
considered in the framework of membrane computing are
usually called P systems, which are distributed and parallel
models. In recent years,manyvariants of P systems have been
proposed (Pan and Păun 2010; Pan et al. 2011; Zhang et al.
2012). For general information in membrane computing, one
may consult Păun (2000) and Păun et al. (2010), and for the
current developments in the area of membrane computing,
please refer to the P systems website http://ppage.psystems.
eu.

The present work deals with a class of cell-like P sys-
tems, called P systems with membrane creation, introduced
in Mutyam and Krithivasan (2001), inspired by the fact that
when a compartment becomes too large, it often happens
that new membranes appear inside it, more or less spon-
taneously or during biological evolution (Păun 2000). P
systems with membrane creation have similar types of rules
as P systems with active membranes (Păun 2001) except that
membrane division rules are substituted with membrane cre-
ation rules. A membrane creation rule has no replication of
objects into the newmembrane, which becomes a daughter of
the original membrane (the depth of the membrane structure
increases). Usually, the rules of P systems with membrane
creation are applied in a non-deterministic maximally paral-
lel way, that is, in one step, one object of a membrane is used
by at most one rule (chosen in a non-deterministic way), but
any object which can evolve by one rule of any form must
evolve.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00500-015-1732-3&domain=pdf
http://ppage.psystems.eu
http://ppage.psystems.eu

maa (1997). Here, we directly introduce some notations and
basic definitions used in this work.

For an alphabet V , V ∗ denotes the set of all strings over V
(ordered finite sequences of elements in V), with the empty
string denoted by λ, and the set of all nonempty strings over
V is denoted by V+.

ByNwe denote the set of non-negative integers. A multi-
set over a finite alphabet V = {a1, a2, . . . , an} is a mapping
m : V → N. The support of a multiset m over V is the set of
elements x ∈ V such that m(x) > 0. A multiset is finite if
its support is a finite set. We denote by M f (V) the set of all
finite multisets over V .

For a family FL of languages (over a given alphabetV), we
denote by PsFL the family of Parikh images of languages in
FL. By PsREwe denote the family of recursively enumerable
sets of vectors of natural numbers; this is equal to the family
of Parikh sets of recursively enumerable languages.

A matrix grammar with appearance checking is a con-
struct G = (N , T, S, M, F), where N , T are disjoint
alphabets, S ∈ N , M is a finite set of sequences of the form
(A1 → x1, . . . , An → xn), n ≥ 1, of context-free rules over
N ∪ T (with Ai ∈ N , xi ∈ (N ∪ T)∗, in all cases), and F is
a set of occurrences of rules in M (we say that N is the non-
terminal alphabet, T is the terminal alphabet, S is the axiom,
while the elements of M are called matrices).

For w, z ∈ (N ∪ T)∗, we write w ⇒ z if there is a
matrix (A1 → x1, . . . , An → xn) in M and the strings
wi ∈ (N ∪T)∗, 1 ≤ i ≤ n+1, such thatw = w1, z = wn+1,
and for all 1 ≤ i ≤ n, eitherwi = w′

i Aiw
′′
i , wi+1 = w′

i xiw
′′
i ,

for some w′
i , w

′′
i ∈ (N ∪ T)∗, or wi = wi+1, Ai does not

appear in wi , and the rule Ai → xi appears in F . (The rules
of a matrix are applied in order, possibly skipping the rules
in F if they cannot be applied; we say that these rules are
applied in the appearance checking mode.)

We denote by ⇒∗ the reflexive and transitive closure of
the relation ⇒. The language generated by G is defined by
L(G) = {w ∈ T ∗ | S ⇒∗ w}. The family of languages of
this form is denoted by MATac. It is known that MATac =
RE.

A matrix grammar G = (N , T, S, M, F) is said to be in
the binary normal form if N = N1 ∪ N2 ∪ {S, #}, with these
three sets mutually disjoint, and the matrices in M are of one
of the following forms:

1. (S → X A), with X ∈ N1, A ∈ N2,
2. (X → Y, A → x), with X, Y ∈ N1, A ∈ N2, x ∈

(N2 ∪ T)∗,
3. (X → Y, A → #), with X, Y ∈ N1, A ∈ N2,
4. (X → λ, A → x), with X ∈ N1, A ∈ N2, x ∈ T ∗.

Moreover, there is only one matrix of type 1 and F consists
exactly of all rules A → # appearing in matrices of type
3; # is a trap symbol, once introduced, it is never removed.

P systems with membrane creation are proved to be uni-
versal (Mutyam and Krithivasan 2001) and have been used
to solve computationally hard problems (Gut-iérrez-Naranjo
et al. 2005, 2006, 2007). All these above mentioned P
systems with membrane creation work in a parallel and syn-
chronized way (a global clock is assumed to mark the time for
the system); in each tick of the global clock, all the applicable
rules are applied simultaneously, and the execution of rules
takes exactly one time unit. However, in biological reality,
the execution time of a chemical reaction might be difficult to
know precisely and usually such a parameter is very sensitive
to environmental factors that might be hard to control. With
this biological motivation, timed P systems were introduced
in Cavaliere and Sburlan (2005), where a natural number
representing the execution time is associated with each rule.
In Cavaliere and Sburlan (2005), a class of systems, called
time-free P systems, was also introduced and proved compu-
tationally universal, where such P systems always produce
the same result, independent from the execution times of the
rules.

Time-free solutions to computationally hard problems
were proposed as open problems in Gheorghe et al. (2013).
In Song et al. (2014), a family of P systems with active
membranes was designed for a time-free solution to the SAT
problem in the sense that the correctness of the solution does
not depend on the precise timing of the involved rules, but
the newly generated membranes can have the different labels
with their parent membrane. An improved result was pre-
sented in Song et al. (2015b), where the newly generated
membranes have the same label with their parent membrane.
A time-free uniform solution to the SAT problem using P sys-
tems with active membranes was given in Song et al. (2015a).
Several variants of P systems were also considered to time-
freely solve NP-complete problems: tissue P systems were
used to solve the subset sum problem (Song et al. 2015c) and
in Song et al. (2013), a family of P systems with d-division
was designed for solving the Hamiltonian path problem.

In this work, we focus on timed P systems with membrane
creation, where the computational efficiency and universality
of such P systems are investigated. Specifically, we present a
time-free solution to the SAT problem using P systems with
membrane creation in the sense that the correctness of the
solution is irrelevant to the times associated with the involved
rules, but this result is obtained on the condition that the
membranes are polarized. We also prove that time-free P
systems with membrane creation with electrical charges on
membranes are computationally universal.

2 Formal language theory preliminaries

The reader is assumed to have some familiarity with (basic
elements of) language theory, e.g., from Rozenberg and Salo-

A matrix of type 4 is used only once, at the last step of a
derivation.

It is known that for eachmatrix grammar there is an equiv-
alent matrix grammar in the binary normal form; hence each
language in RE can be generated by a grammar in the binary
normal form.

3 Timed P systems with membrane creation

3.1 Timed and time-free polarization P systems
with membrane creation

In this subsection, we directly give the definitions of timed
and time-free P systems with membrane creation. For the
notion of P systems with membrane creation, please refer to
Păun (2000) and Păun et al. (2010).

Definition 1 A timed polarization P system with membrane
creation of degree m ≥ 1 is a construct

Π(e) = (O, H, μ,w1, . . . , wm, R, iout, e),

where O is a finite alphabet of objects; H is a finite set
of labels for membranes; μ is an initial membrane struc-
ture, consisting of m membranes; membranes are labelled
(not necessarily in an injective way) with elements of H ;
w1, . . . , wm are finite multisets over O , describing the ini-
tial multisets of objects placed in the m regions of μ; iout ∈
{0, 1, . . . ,m} is the output region (0 is the label represent-
ing the environment); e is a mapping from the finite set of
rules R into the set of natural numbers N, which represent
the execution time of the rules; R is a finite set of rules of the
forms:

(a) [a → v]α
h , h ∈ H, α ∈ {+,−, 0}, a ∈ O, v ∈ M f (O)

(object evolution rules), associated with membranes and
depending on the label and the charge of the membranes.

(b) a[]α1
h → [b]α2

h , h ∈ H, α1, α2 ∈ {+,−, 0}, a ∈ O, b ∈
O ∪ {λ} (send-in communication rules). An object is
sent into the membrane, possibly modified during this
process; also the polarization of the membrane can be
modified, but not its label.

(c) [a]α1
h → []α2

h b, h ∈ H, α1, α2 ∈ {+,−, 0}, a ∈ O, b ∈
O ∪ {λ} (send-out communication rules). An object is
sent out of the membrane, possibly modified during this
process; also the polarization of the membrane can be
modified, but not its label.

(d) [a]α
h → b, h ∈ H, α ∈ {+,−, 0}, a ∈ O, b ∈ O ∪ {λ}

(dissolving rules). In reaction with an object, a mem-
brane can be dissolved, while the object specified in the
rule can be modified.

(e) [a → [v]α2h2]
α1
h1
, h1, h2 ∈ H, α1, α2, α3 ∈ {+,−, 0},

a ∈ O , v ∈ M f (O) (creation rules). In reaction with
an object, a new membrane is created, maybe of differ-
ent polarization. This new membrane is placed inside
of the membrane of the object which triggers the rule
and has associated an initial multiset, a label and a
polarization.

A timed P system with membrane creation Π(e) works
in the following way: An external clock is assumed, which
marks time-units of equal length, starting from instant 0.
According to this clock, the step t of computation is defined
by the period of time that goes from instant t − 1 to instant
t . If a membrane i contains a rule r from types (a)–(e)
selected to be executed, then the execution of such rule
takes e(r) time units to complete. Therefore, if the execu-
tion is started at instant j , the rule is completed at instant
j + e(r) and the resulting objects become available only at
the beginning of step j + e(r)+ 1. When a rule r from types
(a)–(e) is started, then the occurrences of symbol-objects sub-
ject to this rule cannot be subject to other rules until the
implementation of the rule completes. In timed P systems
with membrane creation, only halting computations give a
result, which is encoded by the objects present in the output
region.

Note that the rules of a timed polarization P system with
membrane creation are applied according to usual principles
of timed P system with membrane creation as mentioned
above. We only emphasize that in timed polarization P sys-
tem with membrane creation, several rules can be applied
to different objects in the same membrane simultaneously if
the polarization of the membrane is not modified during the
applications of these rules.

Definition 2 AP systemwithmembrane creationΠ is time-
free if and only if every timed P system with membrane
creation in the set {Π(e) | e : R → N − {0}} produces the
same set of vectors of natural numbers.

The set of vectors generated by a time-free P sys-
tem with membrane creation Π is denoted by Ps(Π). By
PsOPfree(list-of-rules) we denote the families of the sets of
vectors generated by time-free P systemswithmembrane cre-
ation, using rules as specified in the list-of-rules; free stands
for time-free.

Definition 3 A recognizer timed (polarization) P system
with membrane creation of degree m ≥ 1 without input is a
tuple Π = (O, H, μ, w1, . . . , wm, R, iout, e), such that

• the tuple (O, H, μ,w1, . . . , wm, R, iout, e) is a timed
(polarization) P system with membrane creation;

• the working alphabet contains two distinguished ele-
ments yes and no;

• all the computations halt;
• if C is a computation of the system, then either object
yes or object no (but not both) must appear in the envi-
ronment when the system halts.

3.2 Time-free solutions to decision problems by P
systems with membrane creation

In timed (polarization) P systems with membrane creation,
we use rule starting step (RS-step, for short) to define the
computation step (Song et al. 2014).

Definition 4 In timed (polarization) P systems with mem-
brane creation, a computation step is called an RS-step if at
this step at least one rule starts its execution, that is, steps
in which some objects “start” to evolve or some membranes
“start” to change.

A decision problem, X , is a pair (IX ,ΘX) such that IX is
a language over a finite alphabet (whose elements are called
instances) and ΘX is a total Boolean function (that is, pred-
icate) over IX .

Definition 5 Let X = (IX ,ΘX) be a decision problem. We
say that X is solvable in polynomial RS-steps by a family of
recognizer (polarization) P systems with membrane creation
� = {Πu, u ∈ IX }, in a time-free manner, if the following
items are true:

• the family � is polynomially uniform by a Turing
machine; that is, there exists a deterministic Turing
machine working in polynomial time which constructs
the system Πu from the instance u ∈ IX ;

• the family � is time-free polynomially bounded; that is,
there exists a polynomial function p(n) such that for any
time-mapping e and for each u ∈ IX , all computations in
Πu(e) halt in, at most, p(|u|) RS-steps;

• the family � is time-free sound (with respect to X);
that is, for any time-mapping e, the following property
holds: for each instance of the problem u ∈ IX such that
there exists an accepting computation of Πu(e), we have
ΘX (u) = 1;

• the family � is time-free complete (with respect to X);
that is, for any time-mapping e, the following property
holds: for each instance of the problem u ∈ IX such that
ΘX (u) = 1, every computation of Πu(e) is an accepting
computation.

4 A time-free solution to the SAT problem by P
systems with membrane creation

The SAT problem is the well-known NP-complete prob-
lem (Garey and Johnson 1979). It asks whether for a given
formula in the conjunctive normal form there is a truth-
assignment of variables or not such that makes the formula
evaluate to be true.

The following theorem shows that the SAT problem can
be solved in polynomial RS-steps by a family of polarization
P systems with membrane creation in a time-free manner.

Theorem 1 The SAT problem can be solved in polynomial
RS-steps by a family of polarization P systems with mem-
brane creation with rules of types (a)–(e) in a time-free
manner.

Proof Let us consider a propositional formula C = C1 ∧
C2 ∧ · · · ∧ Cm, with Ci = yi,1 ∨ · · · ∨ yi,pi , for some m ≥
1, pi ≥ 1, and yi, j ∈ {xk,¬xk | 1 ≤ k ≤ n}, for each
1 ≤ i ≤ m, 1 ≤ j ≤ pi , where ¬xk is the negation of a
propositional variable xk , and the two connections ∨,∧ are
or, and, respectively.

For the given propositional formula C , we construct the
polarization P systems with membrane creation

ΠC = (O, H, μ,w1, w2, R, iout),

where O = {ai , ti , fi | 1 ≤ i ≤ n} ∪ {ri , r ′
i , ri,t , ri, f , b

(1)
i ,

b(2)
i , b(3)

i , b(4)
i , c′

i | 1 ≤ i ≤ m} ∪ {a(1)
i , a(2)

i , a(3)
i | 2 ≤ i ≤

n + 1} ∪ {ci | 2 ≤ i ≤ m + 1} ∪ {a(4)
i | 3 ≤ i ≤ n +

1} ∪ {yes,no, an+1, rm+1,t , d, e1, e2, e3} is the alphabet,
H = {−1, 0, 1, 2, . . . , n + m + 1} is the set of labels of
the membranes, μ = [[]02]01 is initial membrane structure,
w1 = no is the initial multiset contained in membrane 1,
w2 = a1 is the initial multiset contained in membrane 2,
iout = 0, and the set R contains the following rules:

G1 : [a1 → t1 f1d]02.
G2 : [d]02 → λ.

G3 : [t1 → [rh1,1,t rh1,1, f . . . rh1, j1,t rh1, j1, f a
(1)
2]+

2]+
1 , and the

clauses Ch1,1 , . . . ,Ch1, j1
contain the literal x1.

G4 : [f1 → [rh1,1,t rh1,1, f . . . rh1, j1,t rh1, j1, f a
(2)
2]+

2]+
1 , and the

clauses Ch1,1 , . . . ,Ch1, j1
contain the literal ¬x1.

G5 : [a(1)
2]+

2 → []+
2 a

(1)
2 .

G6 : [a(2)
2]+

2 → []+
2 a

(2)
2 .

G7 : [a(1)
2 → []00]+

1 .

G8 : a(2)
2 []00 → [a(2)

2]00.
G9 : [a(2)

2]00 → a(3)
2 .

G10 : [a(3)
2 → a22]+

1 .
G11 : a2[]+

2 → [a2]02.
G12,i : [ai → ti fi]0i , 2 ≤ i ≤ n.

We also say that the family � provides a time-free semi-
uniform efficient solution to the decision problem X .

G13,i : [ti → [rhi,1,t rhi,1, f . . . rhi, ji ,t rhi, ji , f a
(1)
i+1]+

i+1]0i , 2 ≤
i ≤ n−1, and the clausesChi,1, . . . ,Chi, ji

contain the literal
xi .
G14,i : [fi → [rhi,1,t rhi,1, f . . . rhi, ji ,t rhi, ji , f a

(2)
i+1]−

i+1]0i , 2 ≤
i ≤ n−1, and the clausesChi,1, . . . ,Chi, ji

contain the literal
¬xi .
G15 : [tn → [rhn,1 . . . rhn, jn

a(1)
n+1]+

n+1]0n , and the clauses
Chn,1 , . . . ,Chn, jn

contain the literal xn .

G16 : [fn → [rhn,1 . . . rhn, jn
a(2)
n+1]−

n+1]0n , and the clauses
Chn,1 , . . . ,Chn, jn

contain the literal ¬xn .

G17,i : [a(1)
i]+

i → []+
i a

(1)
i , 3 ≤ i ≤ n + 1.

G18,i : [a(2)
i]−

i → []−
i a

(2)
i , 3 ≤ i ≤ n + 1.

G19,i : [a(1)
i+1 → []00]0i , 2 ≤ i ≤ n.

G20,i : a(2)
i []00 → [a(2)

i]00, 3 ≤ i ≤ n + 1.

G21,i : [a(2)
i]00 → a(3)

i , 3 ≤ i ≤ n + 1.

G22,i : [a(3)
i+1 → [r1,t a(4)

i+1]0−1]0i , 2 ≤ i ≤ n.

G23,i : [a(4)
i → []+

i]0−1, 3 ≤ i ≤ n + 1.
G24,i, j : r j,t []+

i → [r j]+
i , 3 ≤ i ≤ n, 1 ≤ j ≤ m.

G25,i, j : [r j → r j,t r j, f b
(1)
j]+

i , 3 ≤ i ≤ n, 1 ≤ j ≤ m.

G26,i, j : [b(1)
j]+

i → []+
i b

(1)
j , 3 ≤ i ≤ n + 1, 1 ≤ j ≤ m.

G27, j : [b(1)
j → b(2)

j]0−1, 1 ≤ j ≤ m.

G28,i, j : b(2)
j []+

i → [b(2)
j]−

i , 3 ≤ i ≤ n + 1, 1 ≤ j ≤ m.

G29,i, j : [b(2)
j]−

i → []−
i r j, f , 3 ≤ i ≤ n + 1, 1 ≤ j ≤ m.

G30,i, j : r j, f []−
i → [r j]−

i , 3 ≤ i ≤ n, 1 ≤ j ≤ m.

G31,i, j : [r j → r j,t r j, f b
(3)
j]−

i , 3 ≤ i ≤ n, 1 ≤ j ≤ m.

G32,i, j : [b(3)
j]−

i → []−
i b

(3)
j , 3 ≤ i ≤ n + 1, 1 ≤ j ≤ m.

G33, j : [b(3)
j → b(4)

j]0−1, 1 ≤ j ≤ m.

G34,i, j : b(4)
j []−

i → [b(4)
j]+

i , 3 ≤ i ≤ n + 1, 1 ≤ j ≤ m.

G35,i, j : [b(4)
j]+

i → []+
i r j+1,t , 3 ≤ i ≤ n + 1, 1 ≤ j ≤ m.

G36, j : r j,t []+
n+1 → [r ′

j]+
n+1, 1 ≤ j ≤ m.

G37, j : [r ′
j → r j b

(1)
j]+

n+1, 1 ≤ j ≤ m.

G38, j : r j, f []−
n+1 → [r ′

j]−
n+1, 1 ≤ j ≤ m.

G39, j : [r ′
j → r j b

(1)
j]−

n+1, 1 ≤ j ≤ m.

G40,i : rm+1,t []+
i → [e1]+

i , 3 ≤ i ≤ n + 1.
G41,i : [e1]+

i → e1, 3 ≤ i ≤ n + 1.
G42 : [e1]0−1 → e1.
G43,i : e1[]−

i → [e1]−
i , 3 ≤ i ≤ n + 1.

G44,i : [e1]−
i → []+

i e2, 3 ≤ i ≤ n + 1.
G45,i : [e2 → a2i+1e3]0i , 2 ≤ i ≤ n.
G46,i : ai []+

i → [ai]0i , 3 ≤ i ≤ n + 1.
G47,i : [e3]0i → λ, 2 ≤ i ≤ n.
C1 : [an+1 → [c′

1]0n+2]0n+1.
C2, j : [c j → [c′

j]0n+1+ j]0n+1, 2 ≤ j ≤ m.

C3, j : r j []0n+1+ j → [r ′
j]+

n+1+ j , 1 ≤ j ≤ m.

C4, j : [c′
j]+

n+1+ j → c j+1, 1 ≤ j ≤ m.

O1 : [no]01 → []+
1 no.

O2 : no[]−
1 → [no]−

1 .

O3 : [cm+1]0n+1 → []0n+1yes.
O4 : [yes]+

1 → []−
1 yes.

In what follows, we show how the above constructed
system ΠC gives a solution to the propositional formula
C . Generally, the computation process can be divided into
three phases: generation phase, checking phase, and output
phase.

Generation phase At the beginning of the computation,
we have object no in membrane 1, object a1 in membrane 2,
and the object a1 corresponds to variable x1. At step 1, rule
G1 is applied, the object a1 evolves to the objects t1, f1, d in
membrane 2. For any given time-mapping e, the execution
of rule G1 completes in e(G1) steps. As we will see below,
at step 1, exception for the application of rule G1, the appli-
cation of rule O1 also starts, object no exits the membrane 1,
changing the polarization from neutral to positive, and from
step 2 to step e(G1), there is no rule starting. Thus, during the
execution of rule G1 (i.e., from step 1 to step e(G1)), there
is one RS-step. Note that the number of RS-steps during the
execution of rule G1 is independent of the time-mapping e.

After the execution of rule G1 completes, rule G2 is
enabled and applied, membrane with label 2 is dissolved,
and the objects t1, f1 will present in membrane 1 at the same
step. At this moment, if the execution of rule O1 is not yet
completed, then no rule can be started in the system. When
the polarization of membrane 1 is changed to positive, the
applications of rules G3 and G4 start at the same step, of
course, the executions of rules G3 and G4 may complete at
different steps due to the fact that the execution time asso-
ciated with rules G3 and G4 can be different. The execution
of rule G3 (resp. G4) corresponds to the process of looking
for the clauses satisfied by the truth-assignment true (resp.
false) of variable x1. Note that in each of the new gener-
ated membrane 2, if the clause Ch1, j1

is satisfied, the objects
rh1, j1,t , rh1, j1, f are produced, which will evolve to rh1, j1 , and
enter the membrane 3 having polarization positive and neg-
ative, respectively.

When the execution of rule G3 (resp. G4) completes, the
application of rule G5 (resp. G6) starts, object a

(1)
2 (resp.

a(2)
2) exits the membrane with label 2. Rules G5 and G6 may
start at different steps, since the executions of rules G3 and
G4 may finish at different steps.

With the appearance of object a(1)
2 in membrane 1, rule

G7 is enabled and used, a new membrane with label 0 is
generated in membrane 1. Since rule G8 can be used only
when the object a(2)

2 presents in membrane 1 and there is
a membrane 0 having polarization neutral, that is, rule G8

can be used only when the applications of both rules G6 and
G7 have completed. By using rule G8, object a

(2)
2 enters the

membrane 0. So, the rule G8 has a synchronization function
because e(G3)+e(G5)+e(G7)may not be equal to e(G4)+
e(G6).

When the execution of rule G8 finishes, the application of With the appearance of membrane 3 in membrane−1, the
application of rule G24,3,1 starts, object r1,t evolves to r1,
and object r1 enters the membrane 3. When the execution of
rule G24,3,1 finishes, rule G25,3,1 is used, object r1 evolves
to objects r1,t , r1, f , b

(1)
1 . If the object b(1)

1 presents in mem-

brane 3, the application of rule G26,3,1 starts, and object b
(1)
1

exits the membrane 3. When the execution of rule G26,3,1

completes, rule G27,1 is used, and object b
(1)
1 evolves to b(2)

1 .

If the object b(2)
1 appears in membrane −1, the application

of rule G28,3,1 starts, and object b
(2)
1 enters the membrane 3,

changing the polarization from positive to negative. After the
execution of rule G28,3,1 finishes, rule G29,3,1 is enabled and
applied, object b(2)

1 evolves to r1, f , and object r1, f exits the
membrane. When the execution of rule G29,3,1 completes,
the application of rule G30,3,1 starts, object r1, f evolves to
r1, and object r1 enters the membrane 3. With the appear-
ance of object r1 inmembrane 3 having polarization negative,
rule G31,3,1 is used, and object r1 evolves to r1,t , r1, f , b

(3)
1 .

If the object b(3)
1 presents in membrane 3, the application

of rule G32,3,1 starts, and object b(3)
1 exits the membrane.

After the execution of rule G32,3,1 finishes, rule G33,1 is
enabled and used, and object b(3)

1 evolves to b(4)
1 . When the

execution of rule G33,1 completes, rule G34,3,1 is used, and
object b(4)

1 enters the membrane, changing the polarization
from negative to positive. When the execution of ruleG34,3,1

completes, the application of rule G35,3,1 starts, object b(4)
1

evolves to r2,t , and object r2,t exits the membrane. With the
appearance of object r2,t in membrane −1, rule G24,3,2 is
enabled and used. Using the rules from G24,3,2 to G35,3,2

one by one, two copies of objects r2,t , r2, f will be gener-
ated in membrane 3, which is contained in membrane −1.
Note that the applications of rules Gk,3,1 (24 ≤ k ≤ 26,
28 ≤ k ≤ 32, k = 34, 35), G27,1,G33,1 in all membranes
−1 start and complete at the same step, since the executions
of these rules in all membranes −1 take the same time for
a given time-mapping e. We also note that the rules Gk,3,1

(24 ≤ k ≤ 26, 28 ≤ k ≤ 32, k = 34, 35), G27,1,G33,1

in membrane −1 are used to ensure that all the objects r j,t
(resp. r j, f) (if they exist) contained inmembrane 2 have been
entered the membrane 3 having polarization positive (resp.
negative).

The system continues to generate the objects r3,t r3, f , . . . ,
rm,t rm, f in each membrane 3, which is contained in mem-
brane −1. When the execution of rule G35,3,m completes,
the computation takes at most 16m + 19 RS-steps: the
processes of assigning truth-assignment of variable x1 aswell
as looking for the clauses satisfied by the truth-assignment of
variable x1 take at most 10 RS-steps; the applications of rules
G25,3, j ,G26,3, j ,G31,3, j ,G32,3, j in membrane−1 andmem-
brane 2 may start at different steps; hence, there are at most
4m RS-steps during the applications of rulesG25,3, j ,G26,3, j ,

rule G9 starts, object a(
2
2) evolves to a(

2
3), and membrane 0 is

dissolved. With the appearance of object a(
2
3) in membrane 1,

rule G10 is enabled and used, one copy of object a(
2
3) evolves

to two copies of object a2. When the execution of rule G10
completes, rule G11 is enabled and applied, each object a2
enters a membrane 2 changing its polarization from positive
to neutral (this is due to the fact that there are two copies of
object a2 and two membranes 2 with positive polarization in
membrane 1, and the system works in a maximally parallel
manner). In summary, when the execution of rule G11 com-
pletes, the computation takes at most 10 RS-steps, which is
independent of any time-mapping e, and the system finishes
assigning truth-assignment of variable x1, and looking for
the clauses satisfied by the truth-assignment of variable x1.

After the execution of rule G11 completes, rule G12,2 is
enabled and used in each membrane 2 at the same step, since
the execution of rule G11 in all membranes 2 takes the same
time e(G11) for a given time-mapping e. When the execu-
tion of rule G12,2 completes, rules G13,2 and G14,2 are used
at the same step, but they may complete at different steps
due to the fact that the execution time associated with rules
G13,2 and G14,2 can be different. The execution of rule G13,2
(resp. G14,2) corresponds to the process of looking for the
clauses satisfied by the truth-assignment true (resp. false) of
variable x2. When the execution of rule G13,2 (resp. G14,2)
completes, the applications of the rule G17,3 (resp. G18,3)
and the rules G24,3, j (resp. G30,3, j) [all the object r j,t (resp.
r j, f) presented in membrane 2 will enter the membrane 3
having polarization positive (resp. negative)] start at the same
step, of course, they may complete at different steps because
the execution time associated with these rules can be differ-
ent. As we will see below, we use the rules from G24,3, j to
G35,3, j to ensure that all the possible objects r j,t , r j, f pre-
sented in membrane 2 have entered the membrane 3. With

the appearance of object a(
3
1) in membrane 2, the application

of rule G19,2 starts, a new membrane with label 0 is gener-
ated. However, the rule G20,3 is enabled only when the rules
G18,3, G19,2 have started and completed their executions.

When the object a(
3
2) appears in membrane 0, rule G21,3 is

enabled and used, object a(
3
2) evolves to a(

3
3), and membrane 0

is dissolved. With the appearance of object a(
3
3) in membrane

2, rule G22,2 is enabled and applied, a new membrane with
label −1 is generated, which contains the objects r1,t , a(

3
4).

When the execution of rule G22,2 completes, rule G23,3 is

enabled and used, the object a(
3
4) creates a new membrane

with label 3. Note that the executions of rules G12,2, G13,2,
G14,2, G17,3, G18,3, G19,2, G20,3, G21,3, G22,2, G23,3 in all
membranes 2 start and complete at the same step (there are
at most 9 RS-steps), since the executions of the correspond-
ing rules in all membranes 2 take the same time for a given
time-mapping e.

G31,3, j , G32,3, j in membrane 2; and in membrane −1, the
process of applications of rules from G24,3, j to G35,3, j takes
at most 12m RS-steps.

With the appearance of object rm+1,t inmembrane−1, the
application of rule G40,3 starts, object rm+1,t evolves to e1,
and object e1 enters the membrane 3. If object e1 presents in
membrane 3, rule G41,3 is enabled and used, membrane 3 is
dissolved, and object e1 will appear in membrane −1 (note
that the membranes 3, which are contained in membrane
2, can not be dissolved, because the object rm+1,t cannot
be generated in membrane 2). If the object e1 appears in
membrane −1, the application of rule G42 starts, membrane
−1 is dissolved, and object e1 will present in membrane 2.
When the execution of rule G42 completes, rule G43,3 is
used, and object e1 enters the membrane 3 having polariza-
tion negative. With the appearance of object e1 in membrane
3, rule G44,3 is enabled and applied, object e1 evolves to
e2, and object e2 exits the membrane, changing the polar-
ization from negative to positive. After the execution of rule
G44,3 completes, rule G45,2 is used, and object e2 evolves
to one copy of e3 and two copies of a3. When the execu-
tion of rule G45,2 finishes, the applications of rules G46,3

and G47,2 start at the same step. Using the rule G46,3, all the
objects a3 enter membrane 3 changing the polarization from
positive to neutral at the same step (there are two copies of
object a3 and two copies of membrane with label 3 in each
membrane 2; each object a3 enters a membrane 3 using the
rule G46,3 in a maximally parallel manner). Using the rule
G47,2, object e3 dissolves the membrane with label 2. In this
process, rules G40,3,G41,3,G42,G43,3,G44,3,G45,2,G46,3

are used one by one, there are seven RS-steps. Hence, when
the execution of rule G46,3 completes, the computation takes
at most 16m + 26 RS-steps, and the system finishes assign-
ing truth-assignment of variables x1, x2, and looking for the
clauses satisfied by the truth-assignment of variables x1, x2.
Thus, the processes of assigning truth-assignment of variable
x2 as well as looking for the clauses satisfied by the truth-
assignment of variable x2 take at most 16m + 16 RS-steps.

When the object a3 presents in membrane 3, rule G12,3 is
enabled and applied. Note that the application of ruleG12,3 in
all membranes 3 starts and completes at the same step, since
the execution of ruleG12,3 in all membranes 3 takes the same
time e(G12,3) for a given time-mapping e. The applications of
rulesG13,3 andG14,3 start at the same step, butmay complete
at different steps. Furthermore, the applications of rules from
G17,4 to G35,4, j and rules from G40,4 to G46,4 may start and
complete at different steps. Similar with the case of variable
x2, the processes of assigning truth-assignment of variable
x3 as well as looking for the clauses satisfied by the truth-
assignment of variable x3 take at most 16m + 16 RS-steps.

The system continues to assign the truth-assignment of
variables x4, x5, . . . , xn and look for the clauses satisfied by
the truth-assignment of variables. Note that when the system

1

n+ 1 n+ 1 n+ 1

2n copies of membrane with label n+ 1

Fig. 1 The membrane structure at the moment when generation phase
completes

assigns truth-assignment of variable xn , and looks for the
clauses satisfied by the truth-assignment of variable xn , one
copy of object r j generated in membrane n + 1 is enough if
the clause C j is satisfied; hence, in this case, when the sys-
tem looks for the clauses satisfied by the truth-assignment
of variable xn , rules G15,G16 are used. It is important to
note that when all of the objects r j,t , r j, f enter the mem-
brane n + 1, they will finally evolve to r j using the rules
r36, j , r37, j , r38, j , r39, j .

In general, when the system completes the processes of
assigning truth-assignment of variable xn and checking for
the clauses satisfied by the truth-assignment of variable xn ,
2n copies of membrane with label n+1 are generated, which
are placed in the membrane 1 (see Fig. 1 for the membrane
structure at the moment when the generation phase com-
pletes). Note that at the output phase, we will check whether
the applications of all rules G47,i (2 ≤ i ≤ n) complete. The
generation phase takes at most 10 + (16m + 16)(n − 1) =
16mn + 16n − 16m − 6 RS-steps.

Checking phase After the generation phase completes,
each membrane with label n + 1 contains some of objects
from the set {r1, r2, . . . , rm} whose elements denote the cor-
responding clauses satisfied by the truth assignments of the
variables. If there is at least one membrane with label n + 1
that contains all objects r1, r2, . . . , rm , this means that the
truth assignment from that membrane satisfies all clauses;
hence it satisfies formulaC . Otherwise, if no membrane with
label n+ 1 contains all objects r1, r2, . . . , rm , the formula C
is not satisfiable.

When the execution of ruleG45,n completes, all the object
an+1 enter membrane n + 1, changing the polarization from
positive to neutral at the same step (in eachmembranen, there
are two copies of object an+1 and two copies of membrane
with label n + 1, each object an+1 enters a membrane n +
1 using the rule G46,n+1 in a maximally parallel manner).
Hence, the object an+1 presents in each membrane n + 1
at the same step. After the generation phase completes, the
system starts to check whether object r1 presents in each
membrane with label n + 1.

Using the rule C1, the object an+1 creates a new neutral
membrane n + 2, which contains the object c′

1. If the object
r1 exists, rule C3,1 is enabled and used, object r1 evolves

to r ′
1, and object r ′

1 enters the membrane n + 2, changing
its polarization from neutral to positive. When the execution
of rule C3,1 completes, the application of rule C4,1 starts,
object c′

1 evolves to c2, and the membrane with label n+2 is
dissolved. The appearance of object c2 means that the clause
C1 is satisfied, and the system starts to check whether the
object r2 appears in amembrane n+1 (i.e., checkingwhether
the corresponding true assignment satisfies the clause C2).

After the execution of rule C4,1 completes, the applica-
tion of rule C2,2 starts, and object c2 creates a new neutral
membrane n+3, which contains the object c′

2. The object c3
appears only if the corresponding membrane n + 1 contains
object r2.

The system continues to check whether the objects
r3, r4, . . . , rm appear in membranes n + 1. If the membrane
n+1 does not contain the object r j , j = 1, 2, . . . ,m, then the
computation in this membrane stops at the time when C3, j is
supposed to be applied. In general, the checking phase takes
at most 3m RS-steps (if there is a membrane n+1 containing
all objects r1, r2, . . . , rm , the process takes 3m RS-steps).

Output phaseAt step 1, the rule O1 is used, and object no
exits the skin membrane 1, changing its polarization from
neutral to positive. When the checking phase completes, we
have the following two cases:

• If no object cm+1 presents in any membrane with label
n + 1, then the rule O3 and rule O4 cannot be applied,
and thus, rule O2 cannot be applied. In this case, when the
computation halts, object no remains in the environment,
telling us that the formula is not satisfiable.

• If there exists at least one membrane with label n + 1 that
contains object cm+1, then the rule O3 will be applied,
object cm+1 evolves to yes, and object yes exits the
membrane. At this moment, if the executions of all rules
G47,i (2 ≤ i ≤ n) have not yet completed, then no rule
can be started in the system before the executions of all
rules G47,i complete. Only when the executions of all
rules G47,i complete, the rule O4 is enabled. By applying
the rule O4, object yes exits the membrane with label 1,
changing its polarization from positive to negative. There-
fore, the other objects yes remaining in membrane 1 are
not able to continue exiting into the environment. After
the execution of rule O4 completes, the rule O2 is enabled
and applied, object no enters membrane 1. In this case,
when the computation halts, one copy of yes appears in
the environment, telling us that the formula is satisfiable.
This process takes three RS-steps.

By the above checking of the computation process, we
have the following facts:

• For any time-mapping e, the object yes appears in the
environment when the computation halts if and only if

the formula C is satisfiable; and the object no appears in
the environment when the computation halts if and only
if the formula C is not satisfiable. Thus, the system ΠC is
time-free sound and time-free complete.

• If the formula C is satisfiable, the computation takes
16mn + 16n − 13m − 3 RS-steps: it takes 16mn + 16n −
16m − 6 RS-steps to generate 2n membranes with label
n + 1; it takes 3m RS-steps to check whether all clauses
are satisfied by an assignment; the output phase takes 3
RS-steps, and the systemhalts. If the formulaC is not satis-
fiable, the computation takes atmost 16mn+16n−13m−6
RS-steps (it takes no RS-step at the output phase), and the
system halts. Thus, the family of constructed P systems is
time-free polynomially bounded.

The family Π is polynomially uniform because the con-
struction of P systems described in the proof can be done in
polynomial time by a Turing machine:

• size of the alphabet: 7n + 10m + 7;
• initial number of membranes: 2;
• initial number of objects: 2;
• number of evolution rules: 10mn + 17n − 5m − 1;
• the maximal length of a rule (the number of symbols nec-
essary to write a rule, both its left and right sides, the
membranes, and the polarizations of membranes involved
in the rule): 2m + 6.

Therefore, theSAT problem can be solved in a polynomial
RS-steps by a family of recognizer polarization P systems
with membrane creation in a time-free manner. �

5 Universality of time-free P systems
with membrane creation

In this section, we prove that time-free P systems with mem-
brane creation are universal by simulating a matrix grammar
with appearance checking in the binary normal form.

Theorem 2 PsOPfree((a), (b), (c), (d), (e)) = PsRE.

Proof Consider a matrix grammar G = (N , T, S, M, F)

with appearance checking in the binary normal form, with
N = N1 ∪ N2 ∪ {S, #} and matrices of the four forms men-
tioned in Sect. 2. Each type 4 matrix of the form (X →
λ, A → x), X ∈ N1, A ∈ N2, x ∈ T ∗ can be replaced
by (X → Z , A → x), where Z is a new symbol. The
obtained grammar is denoted byG ′. Assume that M contains
n + 1 matrices, injectively labelled with m0,m1, . . . ,mn .
Let us also assume that we have n1 matrices of the form
mi = (X → Y, A → x), 1 ≤ i ≤ n1, with X ∈ N1, Y ∈
N1 ∪ {Z}, A ∈ N2, x ∈ (N2 ∪ T)∗, and n2 matrices of the

form mi = (X → Y, A → #), n1 + 1 ≤ i ≤ n, with
X, Y ∈ N1, A ∈ N2, such that n1 + n2 = n.

We construct the time-free P system with membrane cre-
ation

Π = (V, T, H, μ,w0, R, iout),

where

V = N1 ∪ N2 ∪ T ∪ {Z , †} ∪ {X ′, X ′′ | X ∈ N1}
∪ {di , xi | 1 ≤ i ≤ n1},

H = {0, 1, 2, . . . , 2n1 + n2},
μ = []00,
w0 = X A, for the initial matrix ofG,

iout = 0,

and the set R of rules is as follows.
Let e be arbitrary time-mapping from R toN, representing

the execution times of the rules in R.

• For each matrix mi = (X → Y, A → x), 1 ≤ i ≤ n1,
with X ∈ N1, Y ∈ N1 ∪ {Z}, A ∈ N2, x ∈ (N2 ∪ T)∗, we
introduce the following rules:

r1 : [X → [X ′]0i]00,
r2 : A[]0i → [xi]+

i ,
r3 : [xi → di x]+

i ,
r4 : [di → []0n+i]+

i ,
r5 : X ′[]0n+i → [Y]0n+i ,
r6 : [Y]0n+i → Y ,
r7 : [Y]+

i → Y .

• For each matrixmi = (X → Y, A → #), n1+1 ≤ i ≤ n,
with X, Y ∈ N1, A ∈ N2, we introduce the following
rules:

r8 : [X → [X ′]0i]00,
r9 : [X ′]0i → []−

i X ′′,
r10 : A[]−

i → [†]0i ,
r11 : [X ′′ → Y]00.

• We also consider the following rules:

r12 : [† → †]0i , n1 + 1 ≤ i ≤ n,
r13 : [a]00 → []00a, for all a ∈ T ,
r14 : [α → α]00, for all α ∈ N1 ∪ N2.

In what follows, we show how the above constructed P
system Π simulates the matrix grammar G.

The simulation of a matrix mi = (X → Y, A → x), 1 ≤
i ≤ n1, with X ∈ N1, Y ∈ N1∪{Z}, A ∈ N2, x ∈ (N2∪T)∗,
is done as follows.

At some step, rule r1 is used, the object X creates a new
neutral membrane with label i , where the object X ′ is placed.

For any time-mapping e, the membrane i containing object
X ′ will appear in membrane 0, which is independent of the
execution time of rule r1.

When the execution of rule r1 completes, the applications
of rule r2 starts, only one copy of object A evolves to xi , and
object xi enters the membrane i , and changing the polariza-
tion from neutral to positive. For any time-mapping e, the
execution time of the rule r2 has no influence on the appear-
ance of the object xi in membrane i .

When the execution of rule r2 completes, rule r3 starts to
use, object xi evolves to di , x . For any time-mapping e, the
appearance of objects di , x in membrane i is independent of
the execution time of rule r3.

With the appearance of object di in membrane i , rule r4 is
enabled and used, object di is consumed, and a new neutral
membrane with label n+ i is created. For any time-mapping
e, the generation of membrane n + i is independent of the
execution time of rule r4.

After finishing the execution of rule r4, rule r5 is enabled
and applied, object X ′ evolves to Y , which enters the mem-
brane n+ i . Clearly, for any time-mapping e, the appearance
of object Y in membrane n + i is independent of the execu-
tion time of rule r5.

When the execution of rule r5 completes, the application
of rule r6 starts, the membrane with label n + i is dissolved.
With the appearance of object Y in membrane i , rule r7 is
enabled and used, membrane i is dissolved, and objects Y, x
appear in membrane 0 at the same step. Note that in any
moment, there is at most one and only one copy of object
from the set N1 in membrane 0, and object Y is available
in membrane 0 only after completing the simulation of the
matrix. For any time-mapping e, the execution times of the
rules r6, r7 have no influence on the appearance of the objects
Y, x in membrane 0.

We remark that in the simulation of a matrix mi = (X →
Y, A → x), the rules may have different execution times
for different time-mapping e; however, before the execu-
tion of the current rule completes (before the corresponding
objects appear or membranes generate by the current rule),
the follow-up rules cannot be used, and this guarantees the
robustness of the system in the sense of time-independency,
which is also used in the following simulations of matrix
mi = (X → Y, A → #).

The simulation of a matrix mi = (X → Y, A →
#), n1 + 1 ≤ i ≤ n, with X, Y ∈ N1, A ∈ N2, is done as
follows:

At some step, rule r8 is used, the object X creates a new
neutral membrane with label i , which contains the object X ′.
When the execution of rule r8 completes, the application of
rule r9 starts, and object X ′ evolves to X ′′, which is sent out
of the membrane i , changing the polarization from neutral to
negative. When the execution of rule r9 completes, we have
the following two cases:

• if the object A presents in membrane 0, then after the
execution of rule r9 completes, the applications of rules
r10 and r11 start at the same time, but they may complete
at different steps due to the fact that the execution time
associated with rules r9 and r10 can be different. Using the
rule r10, object A evolves to the trap object †, and object
† enters the membrane i . Once the object † appears in
membrane i , rule r12 is enabled and used, the computation
will never stop. Using the rule r11, object X ′′ evolves to
object Y . In this process, we can check that for any time-
mapping e, only when the generation of corresponding
objects and the membranes finish, the follow-up rules can
be applied, and the appearance of object † inmembrane i is
independent of the execution times of rules r8, r9, r10, r11.

• If the object A does not appear in membrane 0. In this
case, when the execution of rule r9 finishes, only the rule
r11 is enabled. Using rule r11, object X ′ evolves to X ′′. In
this process, we can check that for any time-mapping e, the
rules r8, r9, r11 are used one by one, and the appearance of
object Y in membrane 0 does not depend on the execution
times of rules r8, r9, r11.

Therefore, the simulation of the matrix mi = (X →

proved that time-free P systems with membrane creation are
computationally universal.

The solution to the SAT problem in this work is semi-
uniform in the sense that P systems with membrane creation
are constructed from the instances of the problem. It remains
open how we can construct a uniform time-free solution to
the SAT problem in the sense that P systems with membrane
creation are constructed from the size of instances of the
problem.

The P systems constructed in Sect. 4 and in Sect. 5 have
polarizations on membranes. It remains open whether P sys-
temswithmembrane creation can still solve theSAT problem
or the universality result still holds in the time-free context.

The P systems with membrane creation constructed in
Theorem 1 and in Theorem 2 have rules of all types. It is
of interest to investigate whether the types of rules in Theo-
rem 1 and in Theorem 2 are optimal.

Acknowledgments This is an extended version of a manuscript pre-
sented at the conference BIC-TA 2014. The work of L. Pan was
supported byNationalNatural Science Foundation ofChina (61033003,
91130034 and 61320106005), Ph.D. Programs Foundation of Ministry
of Education of China (20100142110072 and 20120142130008), and
Natural Science Foundation of Hubei Province (2011CDA027). The
work ofM.J. Pérez-Jiménezwas supported by “Ministerio de Economía
y Competitividad” of Spanish government (TIN2012-37434), cofunded
by FEDER funds.

References

Cavaliere M, Sburlan D (2005) Time-independent P systems. In: Mauri
G, Păun Gh, Pérez-Jiménez MJ, Rozenberg G, Salomaa A (eds),
Membrane Computing. Lecture notes in computer science, vol
3365, pp 239–258

Garey MR, Johnson DJ (1979) Computers and intractability: a guide to
the theory of NP-completeness. W. H Freeman, New York

Gheorghe M, Păun G, Pérez-Jiménez MJ (2013) Research frontiers of
membrane computing: open problems and research topics. Sec-
tion 12 Cavaliere M, time-free solutions to hard computational
problems. Int J Found Comput Sci 24(5):579–582

Gutiérrez-Naranjo MA, Pérez-Jiménez MJ, Romero-Campero FJ
(2005)A linear solution of subset sumproblembyusingmembrane
creation. In: Mira J, Álvarez JR (eds), Mechanisms, symbols, and
models underlying cognition. Lecture notes in computer science,
vol 3561, pp 258–267

Gutiérrez-Naranjo MA, Pérez-Jiménez MJ, Romero-Campero FJ
(2006) A linear time solution for QSAT with membrane creation.
In: Freund R, Păun Gh, Rozenberg G, Salomaa A (eds), Mem-
brane computing. Lecture notes in computer science, vol 3850, pp
241–252

Gutiérrez-Naranjo MA, Pérez-Jiménez MJ, Romero-Campero FJ
(2007)A uniform solution to SATusingmembrane creation. Theor
Comput Sci 371:54–61

Mutyam M, Krithivasan K (2001) P systems with membrane creation:
universality and efficiency. In: Margenstern M, Rogozhin Y (eds),
Machines, computations, and universality. Lecture notes in com-
puter science, vol 2055, pp 276–287

Pan L, Păun G (2010) Spiking neural P systems: an improved normal
form. Theor Comput Sci 411:906–918

Pan L, Zeng X, Zhang X (2011) Time-free spiking neural P systems.
Neural Comput 23:1–23

Păun G (2000) Computing with membranes. J Comput Syst Sci
61(1):108–143 (Also in Turku Center for Computer Science-
TUCS, Report 208, November 1998)

Păun G (2001) P systems with active membranes: attacking NP-
complete problems. J Auto Langua Comb 6(1):75–90

PăunG (2002)Membrane computing: an introduction. Springer Science
& Business Media, Berlin

Păun G, Rozenberg G, Salomaa A (eds) (2010) The Oxford handbook
of membrane computing. Oxford University Press, New York

Rozenberg G, Salomaa A (eds) (1997) Handbook of formal languages.
Springer, New York

Song T, Macías-Ramos LF, Pan L, Pérez-Jiménez MJ (2014) Time-free
solution to SAT problem using P systems with active membranes.
Theor Comput Sci 529:61–68

Song B, Pan L (2015a) Computational efficiency and universality
of timed P systems with active membranes. Theor Comput Sci
567:74–86

Song B, Song T, Pan L (2015b) Time-free solution to SAT problem by
P systems with active membranes and standard cell division rules.
Nat Comput. doi:10.1007/s11047-014-9471-4

Song B, Song T, Pan L (2015c) A time-free uniform solution to subset
sum problem by tissue P systems with cell division. Math Struct
Comput Sci. doi:10.1017/S0960129515000018

Song T, Wang X, Zheng H (2013) Time-free solution to Hamilton path
problems using P systems with d-division. J Appl Math Article ID
975798

Zhang X, Luo B, Fang X, Pan L (2012) Sequential spiking neural P
systems with exhaustive use of rules. BioSystems 108:52–62

http://dx.doi.org/10.1007/s11047-014-9471-4
http://dx.doi.org/10.1017/S0960129515000018

	Computational efficiency and universality of timed P systems with membrane creation
	Abstract
	1 Introduction
	2 Formal language theory preliminaries
	3 Timed P systems with membrane creation
	3.1 Timed and time-free polarization P systems with membrane creation
	3.2 Time-free solutions to decision problems by P systems with membrane creation

	4 A time-free solution to the SAT problem by P systems with membrane creation
	5 Universality of time-free P systems with membrane creation
	6 Conclusions and remarks
	Acknowledgments
	References

