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Abstract. The universal algebraic literature is rife with generalisations of dis-
criminator varieties, whereby several investigators have tried to preserve in more
general settings as much as possible of their structure theory. Here, we modify
the definition of discriminator algebra by having the switching function project
onto its third coordinate in case the ordered pair of its first two coordinates be-
longs to a designated relation (not necessarily the diagonal relation). We call these
algebras factor algebras and the varieties they generate factor varieties. Among
other things, we provide an equational description of these varieties and match
equational conditions involving the factor term with properties of the associated
factor relation. Factor varieties include, apart from discriminator varieties, several
varieties of algebras from quantum and fuzzy logics.

1. Introduction

A discriminator variety [32] is a variety V with a quaternary term s(x, y, z, w) that
realises the switching function

s(a, b, c, d) =

{
c if a = b
d, otherwise

on any subdirectly irreducible member of V . Over the years, the idea of discriminator
variety has proved immensely successful: on the one hand, in fact, it is a unifying
notion for many important classes of algebras arising in algebra and logic, including
the varieties of Boolean algebras, monadic algebras, n-dimensional cylindric algebras,
Post algebras, and n-valued MV algebras. On the other hand, discriminator varieties
are very convenient to work with, and are characterised by extremely useful and
strong algebraic properties, such as a Boolean product representation.

The universal algebraic literature is rife with generalisations of this concept in differ-
ent directions, whereby several investigators have tried to preserve in more general
settings as much as possible of the structure theory of discriminator varieties. By way
of example, we mention here dual discriminator varieties [16], binary discriminator
varieties [10], varieties with a ternary deductive term [5], fixedpoint discriminator
varieties [5], quasi-discriminator varieties [25].
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The very definitions of switching term and switching function, however, suggest a
natural move. The switching function projects onto its third coordinate whenever
its first two coordinates are identical, else onto its fourth coordinate. One could
meaningfully wonder what happens if the role of the identity relation in this definition
is played by a generic binary relation R. In other words, we could define a factor
function on a set A as a function u : A4 → A such that

u (a, b, c, d) =

{
c if (a, b) ∈ R
d, otherwise

and define a factor variety as a variety V with a quaternary term u(x, y, z, w) (called
factor term) that realises the factor function on any subdirectly irreducible member
of V .

This notion is not motivated only by a drive for ever more general abstractions of the
concept of discriminator variety. There are, in fact, at least two additional motives
of interest behind this concept:

• On the one hand, factor varieties are closely tied to decomposition operations.
Given a type ν and a quaternary term u of type ν, a variety V of type ν is a
factor variety with common factor term u iff the binary function fx,y (a, b) =
uA (x, y, a, b) is a decomposition operation for all A ∈ V and all x, y ∈ A.
This paper, in a sense, can thus be seen as a first step towards an abstract
theory of decomposition operations.

• On the other hand, we will see that the class of factor varieties includes
notable examples of varieties arising both in fuzzy logic (Gödel algebras,
product algebras, the variety of MV algebras generated by Chang’s algebra)
and in quantum logics (Jauch-Piron orthomodular lattices with states, the
varieties of modular ortholattices generated by MOk for k ∈ N).

The paper is organised as follows: in §2 we go over several preliminary notions, partly
concerning the terminology and the notation to be used in the sequel, partly regarding
the key concepts that features prominently in the rest of the paper, namely, Church
algebras and skew Boolean algebras. In §3 and §4 we introduce factor algebras and
varieties, providing some examples and proving some elementary properties of these
notions. We also show under what conditions the quaternary factor function can be
equivalently replaced by a ternary one. In §5 we develop a sort of “correspondence
theory”, matching equational conditions involving the factor term and properties of
the associated factor relation. In particular, we give an equational description of
factor varieties along the lines of the one suggested by Vaggione for discriminator
varieties [31]. In §6 we investigate one-pointed and double-pointed factor varieties.
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We show that (i) a double-pointed variety is a (0, 1)-factor variety if, and only if, it is
a semi-Boolean-like variety with a binary term d satisfying some natural conditions
(see Theorem 38); (ii) a one-pointed variety is a 0-factor variety if, and only if, it
is a variety of skew Boolean algebras with additional regular operations and with
a binary term d satisfying the identities d(x, 0) = x and d(0, 0) = 0 (see Theorem
41). One-pointed and double-pointed discriminator varieties are also characterized
in terms of factor varieties. We conclude the paper by investigating pure factor
algebras, that have the factor term and nothing else in their type.

2. Preliminaries

2.1. Terminology and Notation. In this subsection we clarify some terminology
and notation that will be frequently used throughout the paper. All the unexplained
notions and symbols are in keeping with the standard universal algebraic jargon (see
e.g. [7]). Superscripts marking the difference between an operation and an operation
symbol will be dropped whenever this does not prejudice clarity.

Con(A) and Con∗(A) will respectively denote the set (occasionally, the lattice) of
congruences of an algebra A, and the set Con(A) \ {∆,∇}. The monolith of the al-
gebra A is the congruence µA =

⋂
Con∗(A); A is subdirectly irreducible if, and only

if, µA 6= ∆. The notation θ(a, b) refers to the least congruence including (a, b).

If V is a variety, then Vdi (resp. Vsi, Vs) denotes the class of all directly indecompos-
able (resp. subdirectly irreducible, simple) members of V .

We recall that, due to a result by Vaggione, discriminator varieties can be equation-
ally described in terms of conditions on the switching term. In fact:

Theorem 1. [31] A variety V of type ν is a discriminator variety iff there is a
quaternary term u satisfying the following identities:

(D1) u(x, x, y, z) ≈ y;

(D2) u(x, y, z, z) ≈ z;

(D3) u(x, y, u(x, y, v, w), z) ≈ u(x, y, v, z) ≈ u(x, y, v, u(x, y, w, z));

(D4) u(x, y, σ(v), σ(w)) ≈ σ(u(x, y, v1, w1), . . . , u(x, y, vn, wn)) (for all σ ∈ ν)

(D5) u(x, y, x, y) ≈ y.

If A is an algebra of type ν and u is a quaternary term, then, for all a, b ∈ A, the
binary function uA(a, b,−,−) is a decomposition operation (see [24, Thm. 4.33]) iff
A |= D2, D3, D4.
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2.2. Church Algebras. The key observation motivating the introduction of Church
algebras [23] is that many algebras arising in completely different fields of mathe-
matics — including Heyting algebras, rings with unit, or combinatory algebras —
have a term operation q satisfying the fundamental properties of the if-then-else
connective:

q (1, x, y) ≈ x and q (0, x, y) ≈ y.

As simple as they may appear, these properties are enough to yield rather strong
results. This motivates the next definition.

Definition 2. An algebra A of type ν is a Church algebra if there are term definable
elements 0A, 1A ∈ A and a term operation qA s.t., for all a, b ∈ A

qA
(
1A, a, b

)
= a and qA

(
0A, a, b

)
= b.

A variety V of type ν is a Church variety if every member of V is a Church algebra
with respect to the same term q (x, y, z) and the same constants 0, 1.

Examples of Church algebras include FLew-algebras (commutative, integral and
double-pointed residuated lattices, for which see [17]) and, in particular, Heyting
algebras and thus also Boolean algebras; ortholattices; rings with unit; combinatory
algebras. Expanding on an idea due to Vaggione [30], we also define:

Definition 3. An element e of a Church algebra A is called central if the pair
(θ (e, 0) , θ (e, 1)) is a pair of complementary factor congruences on A. A central
element e is nontrivial if e /∈ {0, 1}. By Ce (A) we denote the centre of A, i.e. the
set of central elements of the algebra A.

It is proved in [28] that Church algebras have Boolean factor congruences and that,
by defining

(1) x ∧ y = q(x, y, 0), x ∨ y = q(x, 1, y) and x′ = q(x, 0, 1),

we get:

Theorem 4. Let A be a Church algebra. Then c [A] = (Ce (A) ,∨,∧,′ , 0, 1) is a
Boolean algebra which is isomorphic to the Boolean algebra of factor congruences of
A.

It clearly follows that a Church algebra is directly indecomposable iff Ce (A) = {0, 1}.
This result, together with theorems by Comer [13] and Vaggione [30], implies:
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Theorem 5. Let A be a Church algebra, S be the Boolean space of maximal ideals
of c [A] and f : A→ ΠI∈SA/θI be the map defined by

f(a) = (a/θI : I ∈ S),

where θI =
∨
e∈I

θ(0, e). Then we have:

(1) f gives a weak Boolean representation of A.

(2) f provides a Boolean representation of A iff, for all a 6= b ∈ A, there exists
a least central element e such that q(e, a, b) = a (i.e., (a, b) ∈ θ(0, e)).

In general, not much can be said about the factors in this representation. However,
these factors are guaranteed to be directly indecomposable provided that the d.i.
members of V form a universal class. In fact, following [30], it is shown in [28]
that:

Theorem 6. Let V be a Church variety of type ν. Then, the following conditions
are equivalent:

(i) For all A ∈ V, the stalks A/θI (I ∈ S a maximal ideal) are directly indecom-
posable.

(ii) The class Vdi of directly indecomposable members of V is a universal class.

In a generic Church algebra, of course, there is no need for the set of central elements
to comprise all elements of the algebra — not any more than an arbitrary ortholattice
needs to be a Boolean algebra, or a ring with unit a Boolean ring. In [28], Church
algebras where the set of central elements comprises all elements of the algebra were
introduced and investigated under the label of Boolean-like algebras, while the name
of semi-Boolean-like algebras was reserved for the concept defined below:

Definition 7. We say that a Church algebra A of type ν is a semi-Boolean-like alge-
bra (or a SBlA, for short) if it satisfies the following conditions, for all e, a, a1, a2 ∈
A, for every n-ary g ∈ ν, and for every b, c ∈ An:

Ax0. q(1, a, b) = a = q(0, b, a)

Ax1. q(e, a, a) = a

Ax2. q(e, q(e, a1, a2), a) = q(e, a1, a) = q(e, a1, q(e, a2, a))

Ax3. q(e, g(b), g(c)) = g(q(e, b1, c1), . . . , q(e, bn, cn)).

If A satisfies Ax 0-Ax 3 plus
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Ax4. q(a, 1, 0) = a

then we say that A is a Boolean-like algebra (or a BlA, for short).

Definition 8. A variety V of type ν is a (semi-)Boolean-like variety if every member
of V is a (semi-)Boolean-like algebra with respect to the same term q (x, y, z) and
the same constants 0, 1.

Semi-Boolean-like algebras and varieties were further investigated in [20]. It turns
out that, if we define c (x) = q(x, 1, 0), an element a in a SBlA is central just in case
c (a) = a. By Ax4, therefore, BlAs are precisely those SBlAs where every element is
central. Moreover:

Proposition 9. For a Church variety V (w.r.t. the term q), the following are equiv-
alent:

(1) V is semi-Boolean like;

(2) V satisfies the conditions:

(i): for all a, b, c ∈ A ∈ V, q (a, b, c) = q (c (a) , b, c);

(ii): for all a ∈ A ∈ V, c (a) is central;

(3) V satisfies the condition 2(i) and the universal formula c(0) ≈ 0 Z c(1) ≈
1 Z ∀x(c(x) ≈ 0 Y c(x) ≈ 1) holds in every subdirectly irreducible member of
V.

The “pure semi-Boolean-like” variety SBlA0, consisting of all the term reducts of the
form (A, q, 0, 1) of SBlAs, and axiomatised by Ax0-Ax3 above, is of independent in-
terest. We say that a term t is V-idempotent if V �t (t (x)) ≈ t (x), and V-compatible
in case tA is an endomorphism in every A ∈ V . It can be shown that the term c is
SBlA0-compatible and SBlA0-idempotent and thus, if A is a member of SBlA0, c[A]
is a retract of A. SBlA0 is generated by the algebras in the next two examples:

Example 10. Let 3 = ({0, 1, 2}, q, 0, 1) be the Church algebra completely specified by
the stipulation that q(0, a, b) = q(2, a, b) for all a, b ∈ {0, 1, 2}. It can be checked that
3 is semi-Boolean-like. However, c(2) = q(2, 1, 0) = 0 6= 2. Moreover, 3 is a nonsim-
ple subdirectly irreducible algebra, with the middle congruence corresponding to the
partition {{1}, {0, 2}}. Therefore V(3) is not a discriminator variety, although it
is a binary 1-discriminator variety in the sense of [10] with binary 1-discriminator
term y′ ∨ x.

Example 11. Let 3′ = ({0, 1, 2} , q, 0, 1) be the Church algebra completely specified by
the stipulation that q(1, a, b) = q(2, a, b) for all a, b ∈ {0, 1, 2}. It can be checked that
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3′ is semi-Boolean-like. However, c(2) = q(2, 1, 0) = 1 6= 2. Moreover, 3′ is a non-
simple subdirectly irreducible algebra, with the middle congruence corresponding to
the partition {{0} , {1, 2}}. Therefore V(3′) is not a discriminator variety, although
it is a binary 0-discriminator variety with binary 0-discriminator term y′ ∧ x.

A semi-Boolean-like variety is said to be meet-idempotent if it satisfies the iden-
tity

Ax5 : x ∧ x ≈ x.

Double-pointed discriminator varieties coincide with 0-regular meet-idempotent semi-
Boolean-like varieties (see [28, Theorem 5.6]).

2.3. Skew Boolean Algebras. Weakenings of lattices where the meet and join
operations may fail to be commutative attracted from time to time the attention of
various communities of scholars, including ordered algebra theorists (for their connec-
tion with preordered sets) and semigroup theorists (who viewed them as structurally
enriched bands possessing a dual multiplication). Here we will review some basic
definitions and results on one such generalisation, probably the most interesting and
successful: the concept of skew lattice [21], in fact, along with the related notion
of skew Boolean algebra, has important connections with discriminator varieties; the
interested reader is referred to [22, 29, 14] for far more comprehensive accounts.

Definition 12. A skew lattice is an algebra A = (A,+, ·) of type (2, 2) satisfying:

• Associativity: x+ (y + z) ≈ (x+ y) + z; x(yz) ≈ (xy)z

• Idempotence: xx ≈ x ≈ x+ x

• Absorption: x+ xy ≈ x ≈ x(x+ y); yx+ x ≈ x ≈ (y + x)x

It is not difficult to see that the absorption condition is equivalent to the following
pair of biconditionals:

x+ y ≈ y iff xy ≈ x; and x+ y ≈ x iff xy ≈ y.

In any skew lattice A we define a partial ordering as follows:

a ≤ b iff ab = a = ba.

Observe that aba ≤ a ≤ a+ b+ a for every a, b.
Now, define

pxq = {y : y ≤ x} and xxy = {y : y ≥ x}.
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It can be seen that pxq = {xyx : y ∈ A} and xxy = {x + y + x : y ∈ A} are
subalgebras of A, by means of which we can identify two interesting subclasses of
skew lattices:

Definition 13. A skew lattice A is normal if pxq is a lattice for every x; it is Boolean
if pxq is a Boolean lattice for every x ∈ A.

Normal skew lattices are a variety, axiomatised relative to skew lattices by the equa-
tion

xyzx ≈ xzyx.

In any skew lattice A we define a preorder:

a ≤d b iff aba = a iff b+ a+ b = b.

Observe that ab ≤d a ≤d a+ b and ba ≤d a ≤d b+ a, for every a, b. The equivalence
induced by ≤d, denoted as D, is in fact a congruence, and A/D is the maximal lattice
image of A. The D-equivalence class Da of an element a is {a} iff, for all b ∈ A,
ab = ba. Remark that Da ⊆ Db iff aba = a.

Two further preorders can be defined on a skew lattice:

(1) x ≤l y iff xy = x;

(2) x ≤r y iff yx = x.

The equivalences L andR, respectively induced by ≤l and ≤r, are again congruences;
moreover, L is the minimal congruence making A/L a right-zero skew lattice.

Definition 14. A skew lattice is left-handed (right-handed) if L = D (R = D).

Lemma 15. The following conditions are equivalent for a skew lattice A:

(1) A is left-handed;

(2) for all a, b ∈ A, aDb implies ab = a;

(3) for all a, b ∈ A, aba = ab.

If we expand skew lattices by a subtraction operation and a constant 0, we get the
following noncommutative variant of Boolean algebras.

Definition 16. A skew Boolean algebra (SBA, for short) is an algebra A = (A,+, ·,−, 0)
of type (2, 2, 2, 0) such that:

• its reduct (A,+, ·) is a normal skew lattice satisfying the identities x(y+z) ≈
xy + xz and (y + z)x ≈ yx+ zx;
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• 0 is left and right absorbing w.r.t. multiplication;

• the operation − satisfies the identities

xyx+ (x− y) ≈ x ≈ (x− y) + xyx;
xyx(x− y) ≈ 0 ≈ (x− y)xyx.

Definition 17. An algebra of type ν is a SBA with additional operations if it is a
SBA satisfying the following identity for every g ∈ ν:

(x · g(ȳ)) + (g(z̄)− x)) ≈ g((x · y1) + (z1 − x), . . . , (x · yn) + (zn − x)).

One-pointed discriminator varieties coincide with varieties of 0-regular right-handed
SBAs with additional operations (see [14]).

We conclude the section by introducing the notion of a semicentral right Church
algebra. In [14] it is shown that the variety of right-handed SBAs with additional op-
erations is term equivalent to the variety of semicentral right Church algebras.

Definition 18. A pointed algebra A of type ν is called a semicentral right Church
algebra (SRCA, for short) if it admits a ternary term operation q satisfying the
following identities:

q(0, x, y)) ≈ y. q(x, x, 0)) ≈ x. q(x, y, y)) ≈ y.
q(w, q(w, x, y), z)) ≈ q(w, x, z)) ≈ q(w, x, q(w, y, z)).
∀w, q(w,−,−) : A× A→ A is a homomorphism w.r.t. the ν-operations.

Lemma 19. Let A be an SRCA. Then A is a directly indecomposable if, and only
if, for all x, y, z ∈ A:

q(x, y, z) =

{
y if x 6= 0;

z if x = 0.

3. Factor Algebras

The aim of this section is introducing the concept of a factor algebra and proving
some basic results thereabout.

Definition 20. An algebra A of a given type ν is a factor algebra if there is a
quaternary term u of type ν (called a factor term) s.t. the following condition is
satisfied for all x, y ∈ A:

∀ab(u(x, y, a, b) = a) Y ∀ab(u(x, y, a, b) = b).



10 ANTONINO SALIBRA, ANTONIO LEDDA, FRANCESCO PAOLI

Observe that in any factor algebra A the binary relation

Ru =
{

(a, b) : uA(a, b, c, d) = c for all c, d ∈ A
}

is well-defined. The function uA and the relation Ru are interdefinable. (Note that
we could define another binary relation

Su =
{

(a, b) : uA(a, b, c, d) = d for all c, d ∈ A
}

but then Ru ∪ Su = A2 and Ru ∩ Su = ∅, so Su = A2 \ Ru and then the relation
Su is rendundant). The relation Ru is called the factor relation of u, while the
term operation uA is called the factor function of A. We denote by Ru the relation
A2 \Ru.

Discriminator algebras are, of course, factor algebras where the switching function
acts as a factor function; in this particular case Ru = ∆.

A factor algebra A is:

• proper if ∅ ⊂ Ru ⊂ A2;

• degenerate if either Ru = ∅ or Ru = A2;

• reflexive (resp. co-reflexive) if ∆ ⊆ Ru (resp. ∆ ⊆ Ru);

• diagonal if Ru ⊆ ∆;

• antisymmetric (resp. symmetric, transitive, compatible, equivalential, con-
gruential, ordered) if the factor relation is antisymmetric (resp. symmetric,
transitive, compatible, an equivalence, a congruence, a partial ordering).

If ā = a0, . . . , an−1 is a sequence and 0 ≤ i ≤ n − 1, then we write ā[b/i] for the
sequence a0, . . . , ai−1, b, ai+1, . . . , an−1.

Definition 21. Let A be a factor algebra. We say that a pair (b, c) ∈ A2 splits A if
there exists ā = (a0, a1) ∈ A2 and 0 ≤ i ≤ 1 such that u(ā[b/i], x, y) = u(ā[c/i], y, x)
for all x, y.

Note that a pair (b0, b1) ∈ A2 splits A if there exists a ∈ A and 0 ≤ i ≤ 1 such that
either ((a, bi) ∈ Ru ⇔ (a, b1−i) ∈ Ru) or ((bi, a) ∈ Ru ⇔ (b1−i, a) ∈ Ru).

Lemma 22. Let (a1, a2), (b1, b2) ∈ A2. If A |= u(a1, a2, x, y) = u(b1, b2, y, x), then
there exists 1 ≤ i ≤ 2 such that (ai, bi) splits A.

Proof. If a1 6= b1 and u(a1, a2, x, y) = u(b1, a2, y, x) then the pair (a1, b1) splits A.
Otherwise, we have u(a1, a2, x, y) = u(b1, a2, x, y); thus u(b1, a2, x, y) = u(b1, b2, y, x)
and (a2, b2) splits A. �



FACTOR VARIETIES 11

A pair is unsplitting if it does not split A. We denote by εA the set of all unsplitting
pairs of A.

Proposition 23. Let εA be the set of all unsplitting pairs.

(1) The set εA is a congruence of the algebra (A, uA).

(2) εA = A× A if, and only if, A is degenerate.

(3) Every proper congruence of A is contained within εA (In symbols,
⋃

Con(A)∗ ⊆
εA).

(4) If Ru is reflexive, then εA ⊆ Ru.

(5) If Ru is an equivalence relation, then εA = Ru.

(6) If Ru 6= ∇ is a congruence, then εA = Ru is the unique coatom of Con(A).

(7) If Ru is antisymmetric, then (εA \∆) ⊆ Ru.

Proof. (1) The relation εA is trivially an equivalence relation. We now show that
it is compatible with respect to u. If aiεAbi and xiεAyi (i = 0, 1), then by
Lemma 22 u(a0, a1, x0, x1) = xi iff u(b0, b1, y0, y1) = yi.

(2) By Lemma 22.

(3) Let φ be a proper congruence. If bφc and (b, c) splits A, then there exists
ā ∈ A2 and i such that u(ā[b/i], x0, x1) = u(ā[c/i], x1, x0). Then we get

xj = u(ā[b/i], x0, x1)φu(a[c/i], x0, x1) = x1−j;

thus φ = ∇.

(4) If (b, c) ∈ Ru then by (b, b) ∈ Ru we get x = u(b, b, x, y) = u(b, c, y, x). It
follows that (b, c) splits A. Then εA ⊆ Ru.

(5) If (b, c) ∈ Ru splits A then there exist ā = (a0, a1) ∈ A2 and i such that
u(ā[b/i], x0, x1) = u(ā[c/i], x1, x0). Without loss of generality, we assume
i = 1. Then (a0, b) ∈ Ru iff (a0, c) ∈ Ru. By simmetry and transitivity of Ru

and by (b, c) ∈ Ru we get the contradiction (a0, b) ∈ Ru iff (a0, c) ∈ Ru.

(6) By (3).

(7) If (a, b) ∈ Ru with a 6= b then (b, a) ∈ Ru and u(a, b, x, y) = u(b, a, y, x).
From Lemma 22 it follows that (a, b) splits A. �

Proposition 24. If A is a directly decomposable factor algebra then A is degenerate.
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Proof. Let (φ, φ̄) be a pair of nontrivial complementary factor congruences. By
Proposition 23(3) we have φ∪φ̄ ⊆ εA. Assume, by the way of contradiction, that A is
not degenerate. Then by Proposition 23(2) there exist c, d ∈ A such that (c, d) splits
A. This means that, for example, u(a, c, x, y) = u(a, d, y, x) for some a ∈ A and all
x, y. Since φ ◦ φ̄ = ∇, then there exists z such that cφzφ̄d. Since (c, z), (z, d) ∈ εA
and εA is an equivalence, then we get the contradiction (c, d) ∈ εA. �

4. Factor Varieties

In full analogy with the case of discriminator algebras, it is natural to lift the concept
of factor algebra to the level of varieties, along the following lines:

Definition 25. If K is a class of factor algebras with a common factor term u, the
variety V(K) generated by K is called a factor variety.

If V is a factor variety, then it is consistent to mimick our previous notational con-
ventions and denote by Vfa the class of factor algebras in V . Henceforth, we will also
say that a factor variety V has the property P (e.g. reflexivity) if the factor relation
of every subdirectly irreducible member of V has the property P .

Next, we list some examples of factor varieties.

Example 26. [25] Let V be a variety whose type ν includes a unary term 2. More-
over, suppose that 2 is V-idempotent and V-compatible. V is a quasi-discriminator
variety w.r.t. 2 if there exists a quaternary term s such that, for every subdirectly
irreducible member A of V and for all a, b, c, d ∈ A,

s(a, b, c, d) =

{
c if 2a = 2b;

d otherwise.

Quasi-discriminator varieties include discriminator varieties as well as many non-
discriminator examples, like (1) Glivenko MTL algebras with the Boolean retraction
property [12], hence in particular Gödel algebras, Product algebras [19], and the vari-
ety of MV algebras generated by Chang’s algebra [11]; (2) regular Nelson residuated
lattices [9]; (3) Jauch-Piron orthomodular lattices with states [15].

Clearly, every quasi-discriminator variety is a congruential factor variety, with s as
a factor term and ker2 = Rs.

Example 27. Varieties V of SBlAs (§ 2.2), where c is V-compatible, are congruential
factor varieties with u(x, y, a, b) = q(c(x)⊕ c(y), b, a) and Ru = ker c.
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Example 28. For k ≥ 2, let MOk be the modular ortholattice of height 3 with 2k
atoms [8, 27, 2]. The subdirectly irreducible members of V (MOk) are the 2-element
Boolean algebra and MOl, for all l s.t. 2 ≤ l ≤ k. Recall that in any ortholattice
the commutation relation C is defined as follows:

C = {(a, b) : a = (a ∧ b) ∨ (a ∧ b′)} ,

while the commutator of the elements a and b is

γ (a, b) = (a ∧ b) ∨ (a ∧ b′) ∨ (a′ ∧ b′) ∨ (a′ ∧ b) .

Now, it is easy to see that in any MOk we have that

C = {(a, b) : a ∈ {0, 1} or b ∈ {0, 1}} ,

and that

γ (a, b) =

{
0 if aCb
1 otherwise.

Therefore, for all k ≥ 2, V (MOk) is a symmetric factor variety with factor term

u (x, y, w, z) = (γ (x, y) ∧ z) ∨
(
γ (x, y)′ ∧ w

)
.

Observe that, if V is a factor variety, then Vfa is axiomatised, relative to V , by the
universal formula

∀xy[∀zv(u(x, y, z, v) = z) Y ∀zv(u(x, y, z, v) = v)],

whence

Vs ⊆ Vsi ⊆ Vdi ⊆ Vfa.
In an arbitrary factor variety, however — as witnessed by the examples mentioned in
Example 26 — the classes of factor algebras, simple members, subdirectly irreducible
members, and directly indecomposable members need not coincide with one another,
a fact that marks a contrast with the discriminator case. In some special cases,
nonetheless, we are in a position to regain, at least in part, this property.

Lemma 29. Vfa is closed under subalgebras, ultraproducts and homomorphic images.

Proof. Since Vfa is a universal class, then it is closed under subalgebras and ultraprod-
ucts. Let A be a nontrivial factor algebra and φ be a proper congruence. Assume,
by the way of contradiction, that A/φ is not a factor algebra. Then there exist
x, y, a, b ∈ A such that a/φ 6= b/φ, c/φ 6= d/φ, u(x/φ, y/φ, a/φ, b/φ) = a/φ, and
u(x/φ, y/φ, c/φ, d/φ) = d/φ. Then u(x, y, a, b) = a and u(x, y, c, d) = d. Contradic-
tion. �
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Proposition 30. (1) If a factor variety V is antisymmetric and reflexive, then
V is semisimple and Vfa = Vdi = Vsi = Vs is a universal class.

(2) If a factor variety V is proper and congruential, then Vdi = Vfa is a universal
class and every subdirectly irreducible algebra in the variety is either simple
or has a unique coatom in its congruence lattice.

Proof. (1) Let A ∈ V be a factor algebra. Then, by Proposition 23(4-6) we have that
εA = ∆; thus every pair (a, b) (a 6= b) splits A. It follows that A is simple. Then V
is semisimple and Vs ⊆ Vsi ⊆ Vdi ⊆ Vfa ⊆ Vs; our observation above implies that Vs
is a universal class.

(2) By hypothesis and by Proposition 23(5) εA = Ru is a congruence in every factor
algebra A ∈ V . Since A is proper, Ru is the unique coatom of Con(A). Then
Vdi = Vfa and, again, Vdi is a universal class. Any nonsimple subdirectly irreducible
member of V is a factor algebra and thus has a unique coatom in its congruence
lattice. �

Example 31. The concept of an ordered algebra is a direct generalisation of the
classical notion of an algebra (see [6]): an ordered algebra of type ν is a pair (A,≤A),
where A is an algebra of type ν, (A,≤A) is a poset and fA : An → A is a monotone
operation for every f ∈ ν of arity n. There exists a bijective correspondence between
the class of ordered algebras (A,≤A) of type ν and the class of ordered factor algebras
(A, uA) of type ν ′ = ν ∪ {u}, where uA is the factor function defined as follows:

uA(x, y, z, t) =

{
z if x ≤A y;

t otherwise.

By Proposition 30(1) the factor variety generated by all ordered factor algebras of
type ν ′ is semisimple.

4.1. The ternary factor term. Discriminator varieties admit another equivalent
definition (actually, the customary one) in terms of a ternary discriminator, to be
used in place of the switching term. An analogous possibility is available for the
framework of equivalential factor varieties.

Definition 32. Let A be an algebra of type ν. A function tA : A3 → A is called a
ternary factor function if there is a relation RtA such that

tA(x, y, z) =

{
z if (x, y) ∈ RtA ;

x otherwise.
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The relation RtA is called the ternary factor relation associated with tA. We call
a ternary factor function equivalential iff its associated factor relation is such. A
ternary term t of type ν that realises the ternary factor function on A is called the
ternary factor term for A.

Lemma 33. An algebra A is an equivalential factor algebra iff it has an equivalential
ternary factor function.

Proof. (⇐) Given a ternary factor term t, define quaternary terms p and q by

p(x, y, z, w) = t(w, t(x, y, w), t(x, y, z)) and q(x, y, z, w) = t(w, t(y, x, w), t(y, x, z)).

Then it can be checked that

u(x, y, z, w) = t(p(x, y, z, w), x, q(x, y, z, w))

is the quaternary factor term.
(⇒) Just set, as in the case of discriminator varieties, t(x, y, z) = u(x, y, z, x). �

5. Correspondence Theory

The term “correspondence theory” is widely employed, in the Kripke-style semantics
for modal logic, to describe associations between modal axioms and formulas of a
first order language that includes individual variables for possible worlds and a binary
predicate for the accessibility relation of Kripke frames (see e.g. [1], [18]). Below,
we try to develop something vaguely related for factor varieties — namely, we match
properties of the factor relation Ru and equational conditions involving the factor
term u.

By Theorem 1 discriminator varieties can be equationally described in terms of con-
ditions on the switching term. It is therefore to be expected that an equational
characterisation is available for factor varieties as well. Indeed, this is precisely the
case. We have that:

Proposition 34. The following conditions are equivalent for a variety V:

(1) V = V(K) is a factor variety (resp. reflexive factor variety, diagonal factor
variety, discriminator variety) w.r.t. a class K of factor algebras with a
common factor term u;

(2) V satisfies (D2-D4) (resp. D1-D4, D2-D5, D1-D5).

Proof. (1 ⇒ 2) Let A ∈ K be a factor algebra. We show that the identities (D2-D4)
are satisfied by A.
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(D2) u(b, c, a, a) = a because the factor function projects either to its third or to its
fourth component.

(D3) If (x, y) /∈ Ru then u(x, y, a, u(x, y, b, c)) = u(x, y, a, c) = u(x, y, u(x, y, a, b), c) =
c. If (x, y) ∈ Ru then u(x, y, u(x, y, a, b), c) = u(x, y, a, c) = u(x, y, a, u(x, y, b, c)) =
a.

(D4) If (x, y) /∈ Ru then u(x, y, σ(a), σ(b)) = σ(u(x, y, a1, b1), . . . , u(x, y, an, bn)) =
σ(b). If (x, y) ∈ Ru then u(x, y, σ(a), σ(b)) = σ(u(x, y, a1, b1), . . . , u(x, y, an, bn)) =
σ(a).

Moreover, if Ru is reflexive, then by definition of factor function u(c, c, a, b) = a for
all a, b, c ∈ A, and therefore D1 is satisfied. If Ru ⊆ ∆, then u(a, b, a, b) = b for all
a, b ∈ A, taking care of D5.

(2 ⇒ 1) Let A ∈ Vdi and let x, y ∈ A. Since the operation f(a, b) = u(x, y, a, b) is
a decomposition operation and A is d.i., then either {(a, b) : u(x, y, a, b) = b} = A2

or {(a, b) : u(x, y, a, b) = a} = A2. Moreover, if u(c, c, a, b) = a for all c ∈ A, then
(c, c) ∈ Ru for all c, so that Ru is reflexive. If u(a, b, a, b) = b for all a, b ∈ A, then
(a, b) ∈ Ru for all a 6= b, so that Ru ⊆ ∆. �

Proposition 34 gives an equational characterisation of four classes of factor varieties.
Notice however that the identities (D1-D4) are satisfied by setting u to be the pro-
jection onto the third argument, and (D2-D5) are satisfied by setting u to be the
projection onto the fourth argument. This shows that every variety V is a diago-
nal factor variety as well as a reflexive factor variety, so it suggests that a further
narrowing of the notion is necessary. The notion of a factor variety is a terminolog-
ical convenience, to be supplemented by further demands in the main results of the
paper.

Corollary 35. Let A be an algebra in a factor variety and x, y ∈ A. Then we have
for all a0, a1 ∈ A:

u(x, y, a0, a1) = ai ⇔ u(x, y, a1, a0) = a1−i

Proof. It follows from Proposition 34 because f(a0, a1) = u(x, y, a0, a1) is a decom-
position operation and {(a0, a1) : u(x, y, a0, a1) = ai} (i = 0, 1) is a pair of comple-
mentary factor congruences. �

Proposition 34 provides us with a start. The next proposition yields additional
matches.

Proposition 36. Let V be a factor variety.
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(1) V is symmetric iff V |= u(x, y, z, w) ≈ u(y, x, z, w);

(2) V is transitive iff

V |= u(u(x, y, x, y), u(y, z, z, y), w1, u(x, y, w2, w1)) ≈ w1;

(3) V is antisymmetric iff

V |= u(x, y, x, y) ≈ u(y, x, y, u(x, y, x, y));

(4) if V is equivalential, then V is congruential iff, for any n-ary term f , any
i ≤ n, and sequences s̄ = s1 . . . si−1, t̄ = ti+1 . . . tn of distinct variables, we
have

V |= f(s̄, u(x, y, z, w), t̄) ≈ u(f(s̄, x, t̄), f(s̄, y, t̄), u(x, y, f(s̄, z, t̄), f(s̄, w, t̄)), f(s̄, w, t̄))

(5) if V is ordered, then V is compatible at coordinate i ≤ k of the function symbol
g of arity k iff

V |= u(g(z1, . . . , zi−1, x, zi+1, . . . , zk), g(z1, . . . , zi−1, y, zi+1, . . . , zk), w, u(x, y, t, w)) = w.

Proof. (1) Suppose that V is symmetric and A ∈ Vfa. Notice that, if Ru is symmetric,
then Ru is also symmetric. Then, if (a, b) ∈ Ru, c = u(a, b, c, d) = u(b, a, c, d).
A similar reasoning works if (a, b) ∈ Ru. Conversely, if (a, b) ∈ Ru, then c =
u(a, b, c, d) = u(b, a, c, d), i.e. (b, a) ∈ Ru.

(2) Let V be transitive and A ∈ Vfa. Then, for a, b, c, d, e ∈ A, the following cases
are possible:

• if (a, b), (b, c) ∈ Ru, then by transitivity u(u(a, b, a, b), u(b, c, c, b), d, u(a, b, e, d)) =
u(a, c, d, e) = d;

• if (a, b) ∈ Ru and (b, c) 6∈ Ru, then u(u(a, b, a, b), u(b, c, c, b), d, u(a, b, e, d)) =
u(a, b, d, e) = d;

• if (a, b) 6∈ Ru and (b, c) ∈ Ru, then u(u(a, b, a, b), u(b, c, c, b), d, u(a, b, e, d)) =
u(b, c, d, d) = d;

• if (a, b), (b, c) 6∈ Ru, then u(u(a, b, a, b), u(b, c, c, b), d, u(a, b, e, d)) = u(b, b, d, d) =
d.

Conversely, suppose A ∈ Vfa is s.t. Ru is not transitive. Then, for a, b, c ∈
A, (a, b), (b, c) ∈ Ru, but (a, c) 6∈ Ru. Now, if A is nontrivial, we can consider
distinct d, e ∈ A and argue as follows: u(u(a, b, a, b), u(b, c, c, b), d, u(a, b, e, d)) =
u(a, c, d, e) = e 6= d.
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(3) Let V be antisymmetric and A ∈ Vfa. Then, for a, b ∈ A, the following cases are
possible:

• if (a, b), (b, a) ∈ Ru, then u(a, b, a, b) = a and u(b, a, b, u(a, b, a, b)) = b, and
by antisymmetry a = b;

• if (a, b) ∈ Ru and (b, a) 6∈ Ru, then u(a, b, a, b) = a, and u(b, a, b, u(a, b, a, b)) =
u(a, b, a, b) = a;

• if (a, b) 6∈ Ru and (b, a) ∈ Ru, then u(a, b, a, b) = b, and u(b, a, b, u(a, b, a, b)) =
b;

• if (a, b), (b, a) 6∈ Ru, then u(a, b, a, b) = b, and u(b, a, b, u(a, b, a, b)) = b.

On the other hand, suppose A ∈ Vfa is s.t. Ru is not antisymmetric. Then, for some
distinct a, b ∈ A, u(a, b, a, b) = a, and u(b, a, b, u(a, b, a, b)) = b.

(4) Let V be congruential and A ∈ Vfa. Then, for a, b ∈ A and f a unary polynomial
over A, the following cases are possible:

• if (a, b), (f(a), f(b)) ∈ Ru, then f(u(a, b, c, d)) = f(c) and

u(f(a), f(b), u(a, b, f(c), f(d)), f(d)) = u(a, b, f(c), f(d)) = f(c);

• if(a, b) 6∈ Ru, (f(a), f(b)) ∈ Ru, then f(u(a, b, c, d)) = f(d) and also

u(f(a), f(b), u(a, b, f(c), f(d)), f(d)) = f(d).

• if (a, b), (f(a), f(b)) 6∈ Ru, then f(u(a, b, c, d)) = f(d) and

u(f(a), f(b), u(a, b, f(c), f(d)), f(d)) = f(d).

On the other hand, let A ∈ Vfa be s.t. Ru is equivalential but not congruential. So,
there are distinct a, b ∈ A and a unary polynomial f over A such that (a, b) ∈ Ru

and (f(a), f(b)) 6∈ Ru. Since f yields a counterexample to congruentiality, then there
are c, d ∈ A for which f(c) 6= f(d). Therefore,

f(u(a, b, c, d)) = f(c) 6= f(d) = u(f(a), f(b), u(a, b, f(c), f(d)), f(d)).

(5) Let V be ordered and compatible. We show that V satisfies the identity

u(g(z1, . . . , zi−1, x, zi+1, . . . , zk), g(z1, . . . , zi−1, y, zi+1, . . . , zk), w, u(x, y, t, w)) = w.

If (x, y) /∈ Ru then the conclusion is trivial because u(x, y, t, w) = w. If (x, y) ∈
Ru then by hypothesis (g(z1, . . . , zi−1, x, zi+1, . . . , zk), g(z1, . . . , zi−1, y, zi+1, . . . , zk)) ∈
Ru, so that we get the conclusion.
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Let V be ordered satisfying the above identity. We show that g is compatible at
coordinate i. Let (x, y) ∈ Ru. Then u(x, y, t, w) = t, so that we have:
u(g(z1, . . . , zi−1, x, zi+1, . . . , zk), g(z1, . . . , zi−1, y, zi+1, . . . , zk), w, t) = w. Then
(g(z1, . . . , zi−1, x, zi+1, . . . , zk), g(z1, . . . , zi−1, y, zi+1, . . . , zk)) ∈ Ru. �

6. Pointed factor varieties

Recall that a double-pointed variety is a variety with two residually distinct constants
0, 1 in its type. In the double-pointed case, some interesting connections between
factor and semi-Boolean-like varieties can be pointed out.

Definition 37. A double-pointed variety is called a (1, 0)-factor variety if it is a
factor variety satisfying one of the following equivalent conditions:

(1) V |= u(1, 0, y, x) = x = u(0, 0, x, y).

(2) (0, 0) ∈ Ru and (1, 0) ∈ Ru in every factor member of V .

A semi-Boolean-like variety is called a d-semi-Boolean-like variety if there is a binary
term d satisfying the following conditions, for every A ∈ V , and every x, y ∈ A:

cA(dA(x, y)) = dA(x, y); dA(0, 0) = 0 and dA(1, 0) = 1.

By Proposition 9 the identity cA(dA(x, y)) = dA(x, y) implies that dA(x, y) is a
central element.

Theorem 38. A double-pointed variety V is a (1, 0)-factor variety iff it is a d-semi-
Boolean-like variety. Moreover we have that V is:

(1) a reflexive (1, 0)-factor variety iff it is a d-semi-Boolean-like variety satisfying
d(x, x) ≈ 0.

(2) a symmetric (1, 0)-factor variety iff it is a d-semi-Boolean-like variety satis-
fying d(x, y) ≈ d(y, x).

(3) a transitive (1, 0)-factor variety iff it is a d-semi-Boolean-like variety satisfy-
ing d(x, y) ≈ 0, d(y, z) ≈ 0⇒ d(x, z) ≈ 0.

(4) a diagonal (1, 0)-factor variety iff it is a d-semi-Boolean-like variety satisfying
d(x, y) ≈ 0⇒ x ≈ y.

(5) a double-pointed discriminator variety iff it is a d-semi-Boolean-like variety
satisfying d(x, y) ≈ 0⇒ x ≈ y and d(x, x) ≈ 0 (i.e., 0-regular).
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Proof. (⇒) Define q(e, x, y) = u(e, 0, y, x). Then by hypothesis we have q(0, x, y) =
u(0, 0, y, x) = y and q(1, x, y) = u(1, 0, y, x) = x. Thus V is a Church variety. By
(D2) we have q(e, x, x) = u(e, 0, x, x) = x. By (D3) we have q(e, q(e, x, y), z) =
u(e, 0, z, u(e, 0, y, x)) = u(e, 0, z, x) = q(e, x, z). Similarly for the other identities
characterizing SBlAs. Finally, define d(x, y) = u(x, y, 0, 1). It is easy to show that

c(d(x, y)) = u(d(x, y), 0, 0, 1)
= u(u(x, y, 0, 1), 0, 0, 1)
= u(x, y, u(0, 0, 0, 1), u(1, 0, 0, 1)) by (D4)
= u(x, y, 0, 1) by hypothesis
= d(x, y).

Moreover, we have: d(0, 0) = u(0, 0, 0, 1) = 0 and d(1, 0) = u(1, 0, 0, 1) = 1.

(⇐) Define

u(x, y, z, w) = (d(x, y) ∧ z) ∨ (d(x, y)′ ∧ w),

where x∨ y = q(x, 1, y), x∧ y = q(x, y, 0) and x′ = q(x, 0, 1), as in Conditions (1) on
page 4. Since in every directly indecomposable algebra A of V we have that the sole
central elements of A are 0, 1, then dA(x, y) ∈ {0, 1} and V is a factor variety.

The “moreover” part is easy. �

Algebras in (1, 0)-factor varieties are amenable to weak Boolean product representa-
tions.

Theorem 39. Every algebra in a (1, 0)-factor variety V is representable as a weak
Boolean product of directly indecomposable algebras.

Proof. By Theorem 38 an element x ∈ A ∈ V is central if and only if q(x, 1, 0) =
u(x, 0, 0, 1) = x; thus the class of all subdirectly irreducible members of V is ax-
iomatised by the universal formula ∀x(q(x, 1, 0) = x → (x = 1 ∨ x = 0)). Then the
conclusion follows from Theorem 6. �

In the one-pointed case, some interesting connections between factor varieties and
the variety of skew Boolean algebras (see [4, 14]) can be pointed out.

Definition 40. A one-pointed variety is called a 0-factor variety if it is a factor
variety satisfying one of the following equivalent conditions:

(1) V |= u(0, 0, y, x) = y = u(y, 0, 0, y).

(2) (0, 0) ∈ Ru and ∀y(y 6= 0⇒ (y, 0) ∈ Ru) in every factor member of V .
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A variety of skew Boolean algebras with additional operations is called a d-SBA-
variety if there is a binary term d satisfying the following conditions, for every A ∈ V ,
and every x ∈ A: dA(0, 0) = 0 and dA(x, 0) = x.

Theorem 41. A one-pointed variety V is a 0-factor variety iff it is a d-SBA-variety.
Moreover we have that V is:

(1) a reflexive 0-factor variety iff it is a d-SBA-variety satisfying d(x, x) ≈ 0.

(2) a symmetric 0-factor variety iff it is a d-SBA-variety satisfying d(x, y) ≈
d(y, x).

(3) a transitive 0-factor variety iff it is a d-SBA-variety satisfying d(x, y) ≈
0, d(y, z) ≈ 0⇒ d(x, z) ≈ 0.

(4) a diagonal 0-factor variety iff it is a d-SBA-variety satisfying d(x, y) ≈ 0 ⇒
x ≈ y.

(5) a one-pointed discriminator variety iff it is a d-SBA-variety satisfying d(x, y) ≈
0⇒ x ≈ y and d(x, x) ≈ 0.

Proof. In [14] the variety of skew Boolean algebras with additional operations has
been shown equivalent to the variety of SRCAs (see Definition 18). Without loss of
generality, in this proof we use SRCAs.

(⇒) Define q(e, x, y) = u(e, 0, y, x). Then by hypothesis we have q(0, x, y) = u(0, 0, y, x) =
y and q(x, x, 0) = u(x, 0, 0, x) = x. From (D2)-(D4) it follows the other conditions
defining semicentral right Church algebras. Finally, define d(x, y) = u(x, y, 0, x).
By definition of 0-factor variety we immediately have d(0, 0) = 0 and d(x, 0) =
u(x, 0, 0, x) = x.

(⇐) Define
u(x, y, z, w) = q(d(x, y), w, z).

We have: u(0, 0, x, y) = q(d(0, 0), y, x) = q(0, y, x) = x and u(x, 0, 0, x) = q(d(x, 0), x, 0) =
q(x, x, 0) = x. By Lemma 19 in every directly indecomposable algebra A of V we
have that

q(x, y, z) =

{
y if x 6= 0;

z if x = 0.

Then in every directly indecomposable algebra A of V we have:

u(x, y, z, w) =

{
w if d(x, y) 6= 0;

z if d(x, y) = 0

and V is a factor variety.
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The “moreover” part is easy. �

7. Pure Factor Algebras

A pure factor algebra is a pair (A, uA), where A is a set and uA : A4 → A is a factor
function. In other words, there exists a binary relation Ru ⊆ A2 such that:

uA(x, y, z, w) =

{
z if (x, y) ∈ Ru;

w if (x, y) /∈ Ru.

Pure factor algebras are on a par with pure semi-Boolean-like algebras (§ 2.2) or with
pure discriminator algebras (see e.g. [3] or [4]) insofar as they enjoy extra properties
above and beyond those of ordinary factor algebras. In this short section, we make
a note of a few facts about these algebras.

For a start, just observe that if A is a pure factor algebra with factor function u,
then every subset of A is a subalgebra of A, and

θ(a, b) =

{
∇, if (a, b) splits A;

{(a, b), (b, a)}} ∪∆, otherwise.

Therefore Con(A) is an atomic lattice, whose atoms are the principal congruences.
Upon recalling that every algebra of cardinality 2 is simple, we further obtain from
the previous observation that:

Proposition 42. Let A be a pure factor algebra of cardinality > 2. Then we have:

(1) A is simple iff every pair (a, b) (a 6= b) splits A iff εA = ∆;

(2) If A is reflexive, then A is simple iff it is antisymmetric;

(3) If A is congruential, then A is simple iff A is a discriminator algebra.

A characterisation of subdirectly irreducible pure factor algebras is readily forthcom-
ing.

Proposition 43. Let A be a pure factor algebra. Then the following conditions are
equivalent:

(1) A is subdirectly irreducible;

(2) Either εA = ∆ or εA = ∆ ∪ {(a, b), (b, a)} for some a 6= b;

(3) Con(A) is isomorphic to either the three-element chain or the two-element
chain;
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(4) Either A is simple or there exists a, b such that A \ {a, b} is a simple subal-
gebra.

Proof. We just prove the equivalence between (1) and (2), because the remaining
items immediately follow given our previous description of principal congruences.
Let A be subdirectly irreducible but not simple, and let µ be its monolith. If a, b are
distinct elements such that (a, b) ∈ µ, then µ = θ(a, b) = ∆ ∪ {(a, b), (b, a)}}. Let
(c, d) 6= (a, b), (b, a). Since (a, b), (b, a) ∈ θ(c, d), then by the above characterization
of θ(c, d) this is possible only if θ(c, d) = ∇. The converse is clear. �

We round off this subsection with two results concerning the pure factor variety PF ,
generated by all pure factor algebras and its subvarieties.

Theorem 44. PF is locally finite.

Proof. By [26, Theorem 1], it suffices to show that there exists a fixed integer-valued
function f such that, for each nonnegative integer n, it is the case that every n-
generated subdirectly irreducible algebra has at most f(n) elements. This is certainly
the case for PF , since any n-generated subdirectly irreducible algebra has cardinality
n. �

Lemma 45. Let V be a subvariety of PF . V admits a non-trivial discriminator
subvariety iff there exists a subdirectly irreducible member A of V s.t. for at least
two distinct element a, b ∈ A: (a, b), (b, a) 6∈ Ru.

Proof. If V admits a non-trivial discriminator subvariety, then there is at least a
non-trivial subdirectly irreducible member A of V where u is the switching term.
Hence, there are distinct elements a, b ∈ A s.t. u(a, b, x, y) = u(b, a, x, y) = y, i.e.
(a, b), (b, a) 6∈ Ru. Conversely, suppose that there exists a subdirectly irreducible
member A of V s.t. for at least two distinct elements a, b ∈ A, (a, b), (b, a) 6∈ Ru.
Then one can readily verify that the set {a, b} is closed w.r.t. the factor function.
Therefore, 〈{a, b}, u〉 is a discriminator algebra. �
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[19] Hájek P., Metamathematics of Fuzzy Logic, Kluwer, Dordrect, 1998.
[20] Ledda A., Paoli F., Salibra A., “On Semi-Boolean like algebras”, Acta Univ. Palack. Olomuc.,

52, 1, 2013, pp. 101-120.
[21] Leech J., “Skew lattices in rings”, Algebra Universalis, 26, 1989, pp. 48–72.
[22] Leech J., “Recent developments in the theory of skew lattices”, Semigroup Forum, 52, 1996,

pp. 7-24.
[23] Manzonetto G., Salibra A., “From λ-calculus to universal algebra and back”, in MFCS’08,

volume 5162 of LNCS, 2008, pp. 479-490.
[24] McKenzie R.N., McNulty G.F., Taylor W.F., Algebras, Lattices, Varieties, Volume I.

Wadsworth Brooks, Monterey, California, 1987.
[25] Paoli F., Ledda A., Kowalski T., Spinks M., “Quasi-discriminator varieties”, submitted for

publication.
[26] Raftery J., “Representable idempotent commutative residuated lattices”, Transactions of the

AMS, 359, 9, 2007, pp. 4405-4427.
[27] Roddy M., ”Varieties of modular ortholattices”, Order, 3, 4, 1987, pp. 405-426.



FACTOR VARIETIES 25

[28] Salibra A., Ledda A., Paoli F., Kowalski T., “Boolean-like algebras”, Algebra Universalis, 69,
2, 2013, pp. 113-138.

[29] Spinks M., On the Theory of Pre-BCK Algebras, PhD Thesis, Monash University, 2003.
[30] Vaggione D., “Varieties in which the Pierce stalks are directly indecomposable”, Journal of

Algebra, 184, 1996, pp. 424-434.
[31] Vaggione D., “Equational characterization of the quaternary discriminator”, Algebra Univer-

salis, 43, 2000, pp. 99-100.
[32] Werner H., Discriminator Algebras, Studien zur Algebra und ihre Anwendungen, Band 6,

Akademie-Verlag, Berlin, 1978.


	1. Introduction
	2. Preliminaries
	2.1. Terminology and Notation
	2.2. Church Algebras
	2.3. Skew Boolean Algebras

	3. Factor Algebras
	4. Factor Varieties
	4.1. The ternary factor term

	5. Correspondence Theory
	6. Pointed factor varieties
	7. Pure Factor Algebras
	References

