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Abstract In this paper a novel motion learning method is introduced: Fast
Marching Learning (FML). While other learning methods are focused on op-
timising probabilistic functions or fitting dynamical systems, the proposed
method consists on the modification of the Fast Marching Square (FM?) path
planning algorithm. Concretely, FM? consists of expanding a wave through the
environment with a velocity directly proportional to the distance to the clos-
est obstacle. FML modifies these velocities in order to generalise the taught
motions and reproduce them. The result is a deterministic, asymptotically
globally stable learning method free of spurious attractors and unpredictable
behaviours. Along the paper, detailed analysis of the method, its properties
and parameters are carried out. Comparison against a state-of-the-art method
and experiments with real data are also included.

Keywords Fast Marching - motion learning - path planning - kinesthetic
teaching

1 Introduction

The development of human-like robots has led to an increase in the number of
degrees of freedom, which makes the planning and control tasks very difficult
to be accomplished in real time. Nowadays, it is common to have redundant
manipulators carrying out complex tasks in which conventional control over
the inverse kinematics is not enough for successfully completing a given motion.
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The main trend to overcome this problem is the use of learning techniques.
Learning algorithms try to identify and generalise the relevant features of a
motion in order to be able to reproduce previously given experience, even if
the environment has changed or the motion query is not the same as the one
taught.

In this paper we focus on programming by demonstration (PbD): the robot
is given a set of demonstrations as an input for the learning algorithm. In PbD
the demonstrations can be provided either by observing a demonstrator doing
a task or by physical guiding of the robot during the task (kinesthetic teach-
ing). While the first method requires the system to handle the re-targeting
problem, the kinesthetic teaching method simplifies the problem using the
same embodiment for both demonstration and reproduction. At the end, a set
of motions (usually given as point-to-point trajectories) is given as input to
the learning algorithm.

The motion learning objectives is commonly to execute a specific task
as it was previously taught to the robot. Two different task types can be
distinguished: 1) to execute a motion in which accuracy is not a critical point
but the motion dynamics is, 2) to execute a motion which surely reaches
a specific point of the space (the importance of dynamics depends on the
problem).

The first task type focuses on teaching the robot how to complete a given
task with no specific initial or final points, e. g. ball-in-a-cup game [21] or hit-
ting a table tennis over the net [20]. In these cases, Dynamic Motion Primitives
(DMP) [29,23], a set of nonlinear differential equations which creates smooth
control policies have become very popular [22]. For learning the primitives,
reinforcement learning has played an important role during the last years [15].
A more recent approach based on the motion primitives idea is proposed in
[16], where the primitives learning is carried out using incremental kinesthetic
teaching by means of Hidden Markov Models (HMM).

The second task type consists of completing a given motion in which there
exists a specific goal but the initial states can change. Concretely, it faces the
problem of showing the robot how to perform a discrete motion (i.e. point-
to-point trajectories). The Stable Estimator of Dynamical Systems (SEDS)
approach [13] is able to generalise and reproduce the demonstrations even
when spatial and temporal perturbation appear. Calinon goes a step further
proposing a control strategy for a robotic manipulator operating in unstruc-
tured environments while interacting with human operators [3]. Such situations
are starting to be common in manufacturing applications. In fact, dynamical
systems have shown to be a powerful alternative to model robot motions [9,
12] and different statistical approaches have been proposed: Gaussian Process
Regression [27], Locally Weighted Projection Regression [28] and so on.

Other approaches have been proposed in order to leverage previous robot
experience. For instance, obstacle rearrangement for faster replanning in a
new environment [19] or the creation of a collision-free paths database so that
paths can be reused in the future to speed up the planning process [2]. In these
cases, the objective is to reduce the computational time when planning in a
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high-dimensional space by previously training the robot with environment-
path information. The consequence is that the computed paths will be similar
to those given during the training phase. Other example is trajectory predic-
tion [10,11] which is also able to adapt path initialisations to new environments
for optimal planning.

Most of the previous approaches have shown a good performance [1], but
their underlying mathematical model is usually based on probabilistic terms,
causing the learning to be stochastic. Depending on the problem to solve, this
stochasticity may not be a desirable property since with the same demonstra-
tions different solutions are given each time. It may also not converge to a solu-
tion, becoming unstable under certain conditions since stochastic optimization
algorithms are used to solve the learning. Besides, most of these approaches
are based on learning motion control parameters. To include changes in the
environment becomes challenging [14].

This paper largely extends our previous work on motion learning [7]. We
are introducing the Fast Marching Learning (FML) method: a deterministic,
asymptotically globally stable motion learning algorithm designed from a path
planning point of view, using the Fast Marching Square (FM?) [4] algorithm
as the underlying path planning method. Concretely, in this paper we improve
the formulation of the approach and extend the application of the algorithm
to non-static environments. Also, a deep study about its characteristics is
included and the analysis of the results is also extended.

The rest of the paper is organised as follows. Next section describes the
FM?2 path planning method in which the FML method relies on. The main
contributions are detailed in section 3, in which the FML algorithm is detailed
and some simulation results are shown. Section 4 includes an in-depth analysis
of the proposed method, its characteristics and parameters. Experimental eval-
uation and comparison against SEDS method are shown in section 5. Finally,
section 6 outlines the main conclusions of the paper and the future work.

2 Fast Marching Methods in Path Planning

The Fast Marching Square (FM?) method is a robust, efficient algorithm to
compute safe and smooth trajectories [4]. The powerfulness of this algorithm
has been shown during the last years since it has been successfully applied to
many different motion planning problems such as robot formations planning,
motion learning, roadmap generation, etc. [32,6]. It has also been applied to
underwater autonomous robot path planning [24] or creation of shape features
vectors [26] by fast geodesic extraction [25]. Since this method is well described
in the literature, we will outline the basis in the following lines.

The FM? method consists on applying twice the Fast Marching Method
(FMM) proposed by J. A. Sethian [30]. The objective of the FMM is to approx-
imate distances maps. In other words, given a point in a space, it computes
the distance from this point to the rest of the points in the space. It pro-
vides a fast, approximated solution by simulating a wave front propagation
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through non-homogeneous media, in which the propagation speed depends on
the current position of the wave front.

Let us assume a 2-dimensional binary grid map. The wave source is given
a value Ty = 0. FMM solves T; ; for each grid cell using the discrete Eikonal

equation [32]:
T—n02+ T—BOQ_ 1 W
mag | —x—, max Ay =

5]

where Az and Ay are the grid spacing in the 2 and y directions, F; ; is the
wave propagation speed for grid cell (¢, 7) and

T'=T;
Ty = min(Ti—1,5, Tit1,5) (2)
Ty = min(T; j—1,Ti j+1)

The first step of FM?2 is to compute the velocitiy map F. Each point of
the space is given a relative velocity directly proportional to the distance to
the closest obstacle. In order to calculate F efficiently, the FMM method is
applied to the whole workspace, using obstacles as wave sources. In fact, an
approximation to the distance transform by applying the FMM is computed
[5].

The second step is to apply the FMM from the goal point and expand the
wave until it reaches the current robot position (initial point). In this case,
the distances map created is interpreted as a time-of-arrival map T, in which
every point of the space is assigned a value which represents the time it took
to the wave to reach this point from the source point while being restricted to
F.

The final path is obtained by applying gradient descent on T from the
initial point until the goal point (global minimum) is reached. Since T has no
local minima, the goal point will be always reached. Figure 1 illustrates the
different steps of the proposed algorithm.

The main properties of the paths computed with the FM? method are:
smoothness, free of local minima and sub-optimal obstacle clearance. Assuming
that the robot moves at a relative speed according to the velocitiy map, the
provided path is optimal in terms of execution time [32].

Assuming that F contains relative velocities between 0 and 1, it is possible
to trim (saturate) this velocitiy map. With this small modification, the safety
and smoothness of the computed paths is still ensured (except for saturation
values close to 0), while obtaining trajectories closer to the optimal one in
terms of distance. Examples are shown in figure 2.

3 Path Planning Learning with Fast Marching Square

The FM? paths tend to go through those places in which the propagation
velocity is higher, since it means that the total path can be covered in less
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(a) (b)

Fig. 1 Steps of the FM? algorithm. a) Initial binary map. b) velocitiy map generated with
FMM. c),d) Wave propagation from the goal point. e) Final path shown over the time-of-
arrival map.

time. This fact can be exploited by forcing the path to take a specific direc-
tion if the map F is carefully modified. Therefore, the objective is to encode
the experience given to the robot by an expert in the velocitiy map. The con-
sequence is that the final paths could be completely different to those given
by the standard FM?2 method. However, the main characteristics of the FM?
method will remain, such smoothness and local-minima-free.

(a) Saturation: 0.75  (b) Saturation: 0.5  (c) Saturation: 0.25 (d) Saturation: 0

Fig. 2 FM? saturated variation: modification of the path depending on the saturation value.

This paper is focused on point-to-point demonstrations: taught trajectories
are codified as points in the workspace. Therefore, the principal objective of
motion learning is to be able to successfully reproduce the taught motion
when the robot is asked for a similar plan. The experience is expected to
be generalised while improving the motion taught by making it faster, more
efficient, smoother, etc.

3.1 Fast Marching Learning Method

The algorithm described next takes as input data gathered during a kinesthetic
teaching process. Although it is applicable to any number of dimensions, end-
effector’s Cartesian coordinates will be used in order to help the reader to
understand the methodology. In this case, the re-targeting problem is avoided,
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as the dataset (set of end-effector’s positions) is recorded in Cartesian coordi-
nates. Every taught path P will contain a set of N three-dimensional points
p(x,y, z) sampled with a constant cycle time T. If K paths are taught to the
system, the experience E can be codified then as:

E = (P, Py, ..., Px) (3)

where
P; = (pi,1,pi2, - Di,N,) (4)

The environment representation is the same as for FM?2, an n-dimensional
cell grid. An empty workspace is assumed. However, obstacles can be directly
included in the algorithm as shown in sections 3.2 and 4.1.4. Hence, the steps
of the Fast Marching Learning (FML) method are the following:

1. All the points contained in E are labelled as 1 (white) in an workspace
with no data (represented in black, value 0). This workspace is denoted as
Fp.

2. Apply the dilation operation on Fy, by the size aoi, measured in pixels (or

voxels), which defines the area of influence of the taught data.
These two steps divide the workspace into two different zones: those af-
fected by the previous experience, and those not influenced (where the
algorithm will behave as a regular path planner). The aoi parameter sets
the size of these zones since it is responsible for dilating the initial demon-
strations.

3. The FMM is applied as done in the first step of the FM? method, so that
F,, is converted into a velocitiy map. All the zero-valued points of Fy are
used as wave sources.

4. By linearly rescaling Fp, in order to be within the bounds defined by [sat, 1]
the final velocitiy map F is obtained. This second parameter sat is a sat-
uration which weights the importance of the new data against the rest of
the environment.

At this point, F contains a generalisation of the demonstrations. Those
areas with higher value (lighter) represent, in an intuitive manner, the
center of the demonstrations.

5. Apply FMM over the entire workspace using as unique wave source point
the centroid of the final point of all the trajectories P; € E, and considering
the velocitiy map F.

This algorithm is formalised in algorithm 1. DILATE(map,s) applies the
morphological dilation operation on map with a structuring element with
size s, given in pixels (px) or voxels (vx). Any shape of this structuring ele-
ment is valid. For the examples of this paper the ball shape has been used.
FASTMARCHING (F,zg) applies the FMM using the velocitiy map V and the
point s as wave source (s can be an array with more than one wave source).
RESCALE(map,min,max) linearly rescales map between min and mazx val-
ues. Finally, CENTROID(FE) takes as input a set of trajectories and output
the centroid of the first point of all the demonstrations. Lines 1-11 create the
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velocitiy map according to the demonstrations, as shown in figure 3. This way,
the second FMM wave (lines 12-13) can travel through areas with no experi-
ence but with less priority to those affected by DILATE. In case of new path
queries, paths will be attracted towards areas with experience since the second
FM? wave will expand faster as depicted in figure 4.

Algorithm 1 The Fast Marching Learning algorithm

Input: Experience E = (P1, Pa, ..., Pk).
Output: Modified velocitiy map F, reproduction field T.
¢ Fp « {0};
: for i=1to K do
for j=1to N; do
T < Pi’j;
Fp(z) :=1;
end for
end for
: Fp < DILATE(Fp, aoi);
9: zg + {Vz € Fp|Fp(z) = 0};
10: Fp < FASTMARCHING(Fp, zg);
11: F <+ RESCALE(Fp, sat, 1);
12: xg < CENTROID(E);
13: T « FasTMARCHING(F, zg);
14: return F, T

QNP W

(a) Demonstrations (b) Initial Fp (c) Dilated Fp

Fig. 3 Fast Marching Learning steps. sat = 0.1 and aoi = 25px.

3.2 Including Obstacles in the Workspace

In case that the workspace is not completely free, obstacles are required to be
included. Obstacles can either be part of the workspace from the beginning or
appear once after demonstrations were done. Thanks to the FM? underlying
method, both methods can be easily addressed.

Let us assume that the robot has been given an experience E and a velocitiy
map F has been already computed. Let also assume that the initial workspace
‘W, is not obstacle-free, or that it was free in the beginning but new obstacles
appear. In this case, the velocitiy map of the workspace Fo sat has to be
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Fig. 4 Left: FM? time-of-arrival map T using the modified F. Right: streamlines (set of
possible reproductions) of T with parameters sat = 0.1 and aoi = 25pzx.

computed by saturating at level sat. Finally, in order to compute the final
velocitiy map F, the following update step is necessary for all those points in
which Fg gat is not saturated:

F .= min(Fo,sata F) Vi € Fo,sat|Fo,sat (Z) < sat (5)

This operation has to be repeated any time a new obstacle appears. The
T needs also to be updated by propagating an FMM wave from the target
point. It will take into account the demonstrations given to the robot as much
as possible while avoiding the new obstacles. However, it would be worthy
to recompute F from scratch with different, more restrictive parameters sat
and aoi because the new obstacles will deviate the reproductions and the
behaviour of the solution could change. The algorithm is detailed in figure 5
and its results are shown in figure 6.

4 Analysis of the Fast Marching Learning Method

In this section an in-depth analysis of the FML and its characteristics is carried
out.

"

(a) Demonstrations (b) F (c) Fo,sat (d) Updated F

Fig. 5 Fast Marching Learning obstacles update steps. sat = 0.1 and aoi = 25pz.
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Fig. 6 Left: map of times using the propagation velocities learned. Right: result of the
learning method with parameters sat = 0.1 and aoi = 25px.

4.1 FML Main Characteristics
4.1.1 Duality

Let us suppose that the taught paths have a starting point close a region A
of the workspace and the final points are close to any region B of the same
workspace. Usually, motion learning algorithms are designed supposing that
the new queries (reproductions of the robot) will be in the same direction
A — B. In the case of a query which ask for a plan in the opposite direction,
B — A, the behaviour of other learning algorithms could be unexpected.
However, in the case of FML the same motion as taught will be performed but
in the opposite direction. Although this property could become a limitation
under some circumstances, it allows to predict the behaviour of the robot
which is a very desirable property regarding safety.

4.1.2 Determinism

The FMM is a deterministic method. This means that the output will remain
always the same if the input does not change. Since FML is based on FMM,
and the way F is computed is deterministic, FML is also deterministic. This is
an important factor since the behaviour is easy to be predicted and no spurious
behaviours will occur, which is common in probabilistic, optimization-based
learning methods.

4.1.8 Behaviour with no experience

In other learning algorithms, if a motion query is done from a point far away
from the given experience, the behaviour is often unpredictable. In those cases,
the FML method will provide the fastest path from the starting point to the
goal point according to the metrics given by the velocitiy map F. Since it has
a constant value of sat in those places away from the experience, the fastest
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path also means the shortest path to the goal point in terms of distance. This
is shown in figure 7.

4.1.4 One-shot Learning

One-shot learning refers to the characteristic of a learning system to be able
to successfully reproduce and generalise the experience when only one demon-
stration has been given [18]. This is a desirable characteristic from the point
of view of the final user of the system.

When many demonstrations are given to the FML method, the dilation
step of the algorithm brings all these demonstrations together into one area of
influence of the learning (depending on the aoi parameter). Therefore, many
demonstrations act as just one demonstration with a larger aoi. If the robot is
going to be taught with only one demonstration, then the aoi parameter has
to be set with a larger value than when many demonstrations are provided.

Figure 8 shows an example of FML one-shot learning in an environment
with one obstacle. Notice that in both cases, it is possible that the generated
reproduction fields are very similar.

| == Reproductions ®e®ee Demonstrations @ Initial Points % Target Point

300 o

Fig. 7 Behaviour of the Fast Marching Learning algorithm in zones with no experience,
and its evolution when new experience is included. sat = 0.1 and aoi = 20vz.

| = Reproductions ®e®ee Demonstrations @ Initial Points % Target Point‘

\MJJ

Fig. 8 One-shot against many demonstrations. Workspace: 300x500pz.

(a) sat = 0.1 and aoi = 50pz (b) sat = 0.1 and aoi = 25px
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4.2 Stability Analysis

Although the FML method is not based on dynamical systems, we analyse its
stability with and analogy to the the Lyapunov Stability theorem [31].This
theorem expresses that a function & = f(x) is asymptotically stable at the
point x4 if a continuous and continuously differentiable Lyapunov function
V(z) can be found such that it is always positive, its derivative is always
negative and V(z,) = V(z,) = 0.

Let us consider as Lyapunov function the one generated when expanding
the second wave of FM?, T'(x), shown in equation (1). This function starts
at the goal point of the robot x4, where the T(x4) value is 0. Given the
fact that this wave expands always with non-negative velocities, the value of
T'(x) will be higher (positive) as the wave gets farther from z,. Finally, the
derivative of the function is always the same sign since T'(z) is free of local
minima. Actually, the derivative of equation (1) is always positive as the time is
always increasing from the wave source point. However, when running gradient
descent from a given point, the path generated will follow the direction in which
the time decreases the most. Therefore, in this case the Lyapunov conditions
are satisfied to ensure a globally asymptotically stable system. In other words,
all the motion reproductions of the FML will converge to the same point as
the T'(x) function has a unique minimum.

Conceptually, FML is really close to the work presented in [17], where
vector fields are created using different Lyapunov function candidates. Qual-
itatively, their results are close to the SEDS algorithm [13], but prone to
have local attractors and unexpected behaviours. However, FML guarantees a
globally stable system by numerically computing the Lyapunov function with
FMM. This Lyapunov function is modified by parameters sat and aos.

4.3 Parameters Analysis

The proposed FML method counts with two parameters whose configuration
changes the behaviour of the learning procedure. In this section an intuitive
explanation of their influence is given. Also, figure 9 includes the learning
results when the same demonstrations but different set of parameters are given.

4.8.1 Saturation, sat

The possible values of the saturation are sat € (0,1]. This is the value of F in
those places where no experience is given, which represents the propagation
velocity of the FMM wave. According to the design of the FML algorithm,
the places with experience have a higher propagation velocity. Therefore, the
places with experience will be reached earlier by the wave.

The reproductions will only ignore the experience when it takes less time
for the wave to reach the target points by propagating through the zones with
no experience. Hence, the saturation parameter acts as a weighting factor
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between the importance of the experience given to the robot and the rest of
the space. Since the objective is for the robot to reproduce the motions that
have been taught, this factor is usually close to zero. When an excessively high
value is given to this parameter, the reproductions will ignore the experience
(top row of figure 9). On the other hand, a extremely low value will result in a
very greedy learning, where reproductions will always go to those zones with
experience (bottom row of figure 9). Experimentally, good results are given
when sat € [0.05,0.1].

4.8.2 Area of influence, aoi

This is the size used in the dilation step of the FML, where all the recorded
points are enlarged in order to give connectivity to the demonstrations and
its spatial surroundings. It is measured in cells (pixels or voxels) and directly
depends on the size of the workspace. Experimentally, it has been found that
a good value for this parameter is around 5% for multiple demonstrations and
10% for one-shot learning (percentage given over the smallest dimension of the
workspace).

This parameter affects the generalisation of the learning. When an exces-
sively low value is given, the algorithm will not generalise and it will follow the
taught trajectories strictly (left column of figure 9). In the opposite case, the
reproductions will generalise too much and the shape of the demonstrations
will be lost (right columns of figure 9).

Special attention is required by the aoi parameter when working in dimen-
sions which are not in the same domain. This paper is focused on working in
end-effector’s Cartesian coordinates, so the three dimensions are in the same
spatial domain. However, when using other dimensions, i. e. velocities or an-
gles, the size of this parameter has to be coherent with the desired result.

Figure 10 shows examples of learning results with wrong parameters. In
figure 10 a) reproduction queries are demanded from points which are close
to the target point. In this case the weight of the experience has to be very
high in relation to the rest of the space, so that by decreasing the value of sat
the learning becomes successful (figure 10 b) ). A different example is given
in figure 10 ¢). In this case the excessively high value of aoi converts the N-
shaped path into a much smoother shape. By decreasing the size of the aort it
is possible to keep the shape of the demonstrations, as shown in figure 10 d).

5 Experimental Evaluations

This section includes several demonstrations of the FML performance using
real and simulated data. Since the proposed method does not include dynam-
ics, it is not possible to carry out an exhaustive comparison against those
learning methods based on dynamical systems. However, a brief comparison
against the SEDS method [13] is included. It has been carried out over the
handwriting motions described in the SEDS paper: 24 different handwriting
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Fig. 9 Analysis of the results using different parameter settings. Workspace: 2502185pz.

motions collected with a Tablet-PC. Each motion is composed by three demon-
strations with a uniform sampling time 7" = 0.02s.

Figure 11 shows the results of FML over 9 of the motions in the dataset.
The last row of the figure is worthy to mention since it is composed by multi-
model motions, in which the motion to learn changes completely depending
on the area of the workspace. FML is able to generalise the demonstrations.

Examples in a three-dimensional space are shown in figure 12. The demon-
strations given in this case are simulated, manually introduced.

The FML-SEDS comparison, shown in figure 13, focuses on the reproduc-
tion field of these methods. Both are running in two dimensions, in a workspace
of 250x185px. The parameter set in SEDS is: 4 Gaussian distributions and a
likelihood optimisation method with a maximum of 500 iterations. In FML
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7N

T SN

N\

(c) sat = 0.1, a0t = 25px (d) sat = 0.1, ao0i = 10pz

Fig. 10 The shape of the trajectories to learn could influence the parameters of the algo-
rithm. Workspace: 2502185pz.

parameters are, sat = 0.1 and aoi = 25px. These results show that the perfor-
mance of both algorithms is quite different. While SEDS looks for a complete
generalisation of the motion, following the same motion pattern from any point
of the space, FML converges to the area with experience in a smooth way, cre-
ating motions always similar to the reproductions. However, the behaviour of
SEDS in some areas is unexpected and may cause problems when operating
in a real robot. This is likely to occur in those places close to the target point
but in the opposite direction of the demonstrations or in places far away from
the target. Table 1 includes the average and standard deviation of the com-
putation times as an interesting result. However, we acknowledge this is very
implementation-dependent.
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== Reproductions ®eee Demonstrations @ Initial Points ¥ Target Point

Fig. 11 Results of the Fast Marching Learning algorithm applied to handwriting motions.
sat = 0.1 and aoi = 25pz.

| == Reproductions ®e®ee Demonstrations @ Initial Points % Target Point‘

Fig. 12 Results of the Fast Marching Learning algorithm in three dimensions, sat = 0.05
and aoi = 10vz.

Table 1 Results of SEDS and FML in the handwriting motions dataset.

Times (8)
FML SEDS
1 o 7 o
0.17 | 0.12 | 23.28 | 15.58
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Fig. 13 Qualitative comparison of the learning results of algorithms SEDS and FML in the
handwriting motions dataset.

5.1 Experiment on a real platform

In order to prove the feasibility of the proposed learning method, it has been
implemented in the mobile manipulator Manfred V2, equipped with a 6 DOF
arm. The kinesthetic teaching is done offline, placing the arm in different
configurations and recording the Cartesian coordinates of the end-effector.
The recorded data is not restricted in time, as only the coordinates are saved.

After this process, the FML algorithm is executed and the robot moves its
arms towards the goal point from a different location. For better understand-
ing, the arm is moved in a 2-dimensional plane and only the XZ coordinates
of the end-effector are stored. For simplicity, and also test one of the main
characteristics of the method, one-shoot learning is carried out. This is, the
robot is taught only once since we assume that this is a desirable point by
robot’s end users.

With the data learned, the T'(z) function show in figure 14 a) converges
to the goal point independently of the starting point of the trajectory and
resembling as much as possible to the learned trajectory. Figure 14 b) compares
the two trajectories carried out by the robot (with the initial taught data and
with the learned data), using sat = 0.5 and aoi = 35 pixels in a 500x500 pixels
region (each pixel corresponds to 1 millimeter). It can be appreciated that the
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(a) T(x) function. (b) Comparison between the taught and reproduced
trajectories.

Fig. 14 FML results in a real robot.

(b) Executing FML reproduction.

Fig. 15 The robot Manfred V2 is able to successfully follow the FML trajectory which
starts in a different location.

reproduction adapts, and even improves, the taught trajectory as it is shorter
and smoother.

Finally, figure 15 includes the sequence of the robot Manfred V2 execut-
ing both trajectories. Since motion dynamics are not learned, as we aim to
low-dimensional spaces, the robot is able to perfectly follow the reference tra-
jectory.
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6 Conclusions

Along this paper FML, a novel learning algorithm for robot motions, has been
detailed. It has been shown that it can work well with an empty workspace
and also with obstacles. It is not based on an optimisation procedure but on a
well-studied path planning algorithm, FM2. This means a completely different
point of view of the previous work in motion learning.

A deep analysis on the performance of FML and the dependance on its
parameters has been carried out. The main advantages of this method against
others are: determinism, asymptotically globally stable, one-shot learning method
and low computational time. Besides, experimental results show that FML is
reliable and safe. No major problems have been identified.

A brief comparison with a state of the art method has been included.
Other metrics could be employed, such as storage size, adaptation to online
changes, accuracy reproducing demonstrations, etc. However, the nature of
FML regarding the current learning algorithms is very different. Therefore a
deeper comparison would not be meaningful. FML does not pretend to improve
SEDS, DMP or other methods, but to propose an alternative in which simpler,
robust solutions are required. For example, writing motions, door openings,
boosting planning from experience (to be addressed in future work), and other
problems in which the dynamics are not critical but the final trajectory is.

The main current drawback is that motion dynamics are not codified into
the learning. Also, as FML is based on grid cell, the application to more than
3 dimensions can be very expensive in terms of computational time. However,
the overall process can be speeded up by using more advanced FMM-like
techniques [8].

Therefore, future work will focus on solving both of these problems. The
anisotropic Fast Marching Method, together with parallel implementations are
promising research lines which can improve the proposed method significantly.
It is also worthy to explore optimisation methods in order to automatically set
the parameters involved. Finally, studying the influence of the grid resolution
in the reproduction field would be very valuable, as it would be possible to
optimize the computation-time/reproduction-quality ratio.
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