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Abstract Most research about the vehicle routing problem
(VRP) does not collectively address many of the constraints
that real-world transportation companies have regarding
route assignments. Consequently, our primary objective is to
explore solutions for real-world VRPs with a heterogeneous
fleet of vehicles, multi-depot subcontractors (drivers), and
pickup/delivery time window and location constraints. We
use a nested bi-criteria genetic algorithm (GA) to minimize
the total time to complete all jobs with the fewest number of
route drivers. Our model will explore the issue of weighting
the objectives (total time vs. number of drivers) and provide
Pareto front solutions that can be used to make decisions on a
case-by-case basis. Three different real-world data sets were
used to compare the results of our GA vs. transportation field
experts’ job assignments. For the three data sets, all 21 Pareto
efficient solutions yielded improved overall job completion
times. In 57 % (12/21) of the cases, the Pareto efficient solu-
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tions also utilized fewer drivers than the field experts’ job
allocation strategies.

Keywords Vehicle routing problem - Bi-criteria genetic
algorithm - Pareto front - Multi-depot transportation
problem - Hard and soft time windows

1 Introduction and background of BSL

Amid significant shifts in the socioeconomic landscape,
the growing complexity of global supply chains and inno-
vative technological advances, it has become increasingly
challenging for transportation companies to maintain their
competitive advantage. Transportation-based companies are
incessantly looking for ways to cut logistics costs, reduce
waste, utilize information technologies, improve operational
efficiency and increase overall productivity levels. Trans-
portation companies are ultimately tasked with delivering
packages efficiently and exceeding customer expectations.
After extensively researching logistics companies and
existing methodologies for vehicle routing problems (VRP),
it became apparent that the literature focused on more gen-
eralized problems that did not collectively address many of
the variants that are common to transportation companies.
Specifically, we perused the literature for research about solv-
ing VRPs that involved a heterogeneous fleet of vehicles,
multi-depot subcontractors (drivers), and pickup/delivery
time window and location constraints. Since we were unable
to find existing literature that collectively addressed the afore-
mentioned variants in a VRP, the initial phase of our research
involved developing an evolutionary algorithm to minimize
the total time to complete all jobs with the fewest num-
ber of route drivers given pickup/delivery times, locations,
and vehicle capacity constraints (Lightner-Laws et al. 2016).
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Our results revealed an interesting dichotomy between the
objectives of minimizing the overall completion time vs. the
number of route drivers needed to complete all jobs. There
was an apparent trade-off between improving either the total
job completion time or number of drivers. Consequently, in
this phase of our research, our primary objective is to min-
imize this bi-criteria problem by exploring varying weights
that prioritize the time vs. the number of drivers needed.

We plan to use a nested bi-criteria genetic algorithm (GA)
that computes a Pareto frontier to explore this VRP, with
a heterogeneous fleet of 4 vehicle types, multi-depot sub-
contractors (drivers), and pickup/delivery time window and
location constraints. Our model will explore the issues of
weighting the objectives and provide Pareto front solutions
that can be used to make decisions on a case-by-case basis.
Three data sets from BSL, a mid-sized transportation com-
pany, will be used in this paper. BSL has customarily used
in-house field specialists to assign jobs to each driver based
on the pickup/delivery times, location, number of packages
and weight of the load. Although this is a common practice,
management wants to automate their process and find more
efficient methods to allocate jobs for route drivers as a means
of improving operations and competitiveness. Ultimately, our
model will provide the Pareto front solutions (route assign-
ments) that BSL can use on a case-by-case basis to assign
jobs to route drivers.

This paper is organized as follows: Sect. 2 provides a
review of the literature about VRPs. In Sect. 3, we describe
our VRP and the associated constraints. Our GA frame-
work and its specific components are presented in Sect. 4.
The experimental results and discussion are given in Sect.
5. Finally, the conclusion and future research directions are
presented in Sect. 6.

2 Literature review

The vehicle routing problem is a combinatorial problem
that seeks to find the optimal route that minimizes the total
travel distance required to deliver packages for a given set
of customers. Typically customer demand is satisfied by a
homogeneous fleet of vehicles from a central depot. Dantzig
and Ramser (1959) capacitated vehicle routing problem
(CVRP)is a VRP in which the homogeneous fleet of vehicles
servicing the demand has a limited capacity which cannot be
exceeded. The CVRP precipitated variant streams of research
about multiple depots (Baldacci and Mingozzi 2009; Lau
et al. 2010; Ombuki-Berman and Hanshar 2009; Vidal et al.
2011a), heterogeneous fleets (Baldacci and Mingozzi 2009;
Brandao 2011; Choi and Tcha 2007), time windows for mak-
ing deliveries (VRPTW), and designated pickup/delivery
times (Dumas et al. 1991; Ropke and Cordeau 2009; Ropke
et al. 2007; Baldacci et al. 2011).
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A wide variety of closed form techniques have been used
to solve VRPs. However, as more complex constraints are
considered, finding an explicit optimal solution becomes
computationally expensive and virtually impossible to ascer-
tain; thus researchers have explored a variety of heuristics
such as data mining (Chen et al. 2012), evolutionary algo-
rithms (Vidal et al. 2011b; Lau et al. 2010), tabu searches
(Cordeau and Maichberger 2011; Brandao 2011), graph the-
ory (Likaj et al. 2013) and simulated annealing (1993) to
solve these complex transportation problems. All of these
approaches seek to find near optimal solutions to address
routing problem variants.

There has been extensive research on VRPs; however,
Pisinger and Ropke (2007) are among the few who have
developed a single robust heuristic that can be used to solve
five different variants of this transportation problem. Their
approach will solve the vehicle routing problem with time
windows (VRPTW), capacitated vehicle routing problem
(CVRP), multi-depot vehicle routing problem (MDVRP),
site-dependent vehicle routing problem (SDVRP) and the
open vehicle routing problem (OVRP). While this heuris-
tic has been applied to a variety of VRPs individually, it
was not applied to multiple variants simultaneously in a
single problem instance (i.e., a CVRP with multi-depots,
time window constraints and a heterogeneous fleet) or
multi-objective problems. Research has been conducted on
general multi-objective transportation route problems using
linear programming parametrics (Aneja and Nair 1979; Gal
1975; Zeleny 1974) and adjacent efficient methods (Evans
and Steuer 1973; Yu and Zeleny 1974). Researchers have
also used heuristic techniques and Pareto front solutions
to explore bi-criteria transportation problems (Muller 2010;
Prakash et al. 2014; Konak et al. 2006; Abounacer et al.
2012).

Recently, an increasing number of studies have emerged
to solve a multi-criteria VRPTW. Tan et al. (2006) imple-
mented a hybrid multi-objective evolutionary algorithm to
minimize the total travel distance and the number of vehicles
used to meet customer demand. They incorporated Pareto’s
optimality concepts for determining the best solutions to
solve their multi-objective problem. Muller (2010) examined
a VRPTW that utilized a homogeneous fleet of vehicles from
a central depot. The objective of their research was to mini-
mize overall costs and penalties for not adhering to soft time
constraints. Their optimization problem had two competing
objectives that made simultaneously optimizing both cost and
penalties challenging. The dual objectives formed a Pareto
front that the decision maker used to determine which solu-
tion best fits their needs. Their multi-objective optimization
problem was solved using the e-constraint method (Coello
et al. 2002; Miettinen 1999), graph theory, Solomon’s 11
insertion heuristic, ejection chain theory, or-opt and 2-opt
procedures (Potvin and Rousseau 1995). Zou et al. (2013)
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proposed a hybrid swarm optimization model for minimizing
the number of vehicles utilized to serve customer demand,
the total travel distance and the total waiting times. Their
model assumed that there were an unlimited number of ser-
vice vehicles. Banos et al. (2013) presented a Pareto-based
simulated annealing model for solving a VRPTW that mini-
mized the travel distance and the imbalance (travel distance
and vehicle loads) of the individual routes.

Most single and multi-objective VRPTW research has
been tested using Solomon’s benchmark data (1987). This
data set consists of 56 different problems with varying fleet
sizes, vehicle capacities, and extensive information regarding
the location of customer demand and travel time/distances
between different location sites. This data set has been used
extensively to compare different heuristic methods for solv-
ing a VRPTW. The research presented in this paper includes
the additional variants of using a heterogeneous fleet and mul-
tiple depots, with a multi-objective VRPTW. Although these
additional variants are common for a variety of real-world
delivery/logistics scenarios, an exhaustive exploration of the
literature did not reveal existing research about a VRPTW
with all of the variants presented in this paper. As a result,
no standardized benchmark datasets are available to test and
compare with the results of this research.

Lightner-Laws et al. (2016) developed a heuristic solution
for a VRP where multiple variants are presented in a sin-
gle problem instance. Their approach utilized a GA to solve
a VRP with a heterogeneous fleet of vehicles, multi-depot
subcontractors, and constraints on pickup/delivery times and
locations. The solution aimed to minimize the overall driving
time to complete all job assignments while utilizing the
fewest number of drivers. While their approach addressed
multiple variants of the classic VRP, it only marginally
explored the trade-off between overall driving time and the
total number of drivers.

This paper further develops the solution proposed by
Lightner-Laws et al. (2016) to optimize a multi-objective
VRP where multiple variants of the problem exist in a single
problem instance. We develop a nested GA, which explores
the VRP for a heterogeneous fleet of vehicles with multi-
depot subcontractors and constraints on pickup/delivery
times and locations. We provide Pareto front solutions
that allow BSL management to fully explore the trade-off
between these two objectives.

3 Problem formulation

The multiple depot VRP presented in this research is con-
cerned with the execution of a set of jobs where each job
represents a package to be delivered. Each job is associated
with a set of requirements that specify how the job is to be ful-
filled. The following list gives the six requirements specified
for each job:

Pickup time (PT)
Pickup location (PL)
Delivery time (DT)
Delivery location (DL)
Vehicle type (VT)

Job weight (JW)

PT is the earliest possible time the package can be picked
up, while DT is the latest possible time that the package
can be delivered. Specialists use their expertise to assign the
appropriate vehicle types (based on customer estimates of the
weight, size, and number of packages) for each job. Although
cars (C), SUVs (S), box trucks (B), and tractor trailers (T) are
the vehicle types used in this problem formulation, alterna-
tive vehicle types could also be easily incorporated as well.
Finally, JW is the sum of the weight of all packages for a
given job.

Alljobs,J;,(wherei = 1...N and N is the total number of
jobs) to be fulfilled are known in advance. A potential driver
list is created for each job, J;, (based on customer input,
estimated weight, size, and capacity constraints) from a set
of available drivers, Dg, (wWhere k = 1...M and M is the total
number of available drivers). A driver’s job completion time
is calculated from the time they leave their home and pickup
their first job until the time their last job is delivered. The
overall total time for all route deliveries is equivalent to the
sum of the job completion times for each individual driver.
Both mapping software and input from field experts are used
to determine the travel time between any home, pickup or
delivery location (Lightner-Laws et al. 2016).

BSL wishes to automate the process of allocating jobs to
drivers and designating the order in which jobs should be
picked up/delivered. The driver assignments should be made
in a manner that minimizes total travel time and the total
number of drivers required to complete all jobs.

4 Proposed framework

Holland (1975) developed a stochastic search technique, a
genetic algorithm (GA), which incorporates features of nat-
ural selection to solve optimization problems. The main
components in the design of a GA include:

Candidate solution representation or chromosomes,
Selection strategy,

Genetic operators,

Fitness evaluation,

Termination requirement.

A GA starts with a population of initial solutions. Genetic
operations, (mutations and/or crossover events) alter initial
parent solutions to create new children solutions. The next

@ Springer



V. Agrawal

generation of solutions is selected from the set of parent and
children solutions, in such a way that the best solutions have
a higher probability of continuing to the next generation. The
goal is to produce improved solutions at each generation by
ultimately allowing natural selection to filter out the weaker
candidates.

Our optimization model features a nested GA. Our main
GA seeks to minimize the total distance traveled and the
number of drivers required to complete all jobs. This genetic
algorithm employs a secondary GA to help compute the fit-
ness of a candidate solution. The secondary GA minimizes
the total travel time for an individual driver by finding the
optimal ordering of assigned pickups and deliveries. Our
primary GA will be referred to as the Outer GA, and the
secondary GA will be referred to as the Inner GA.

4.1 Evolutionary algorithm for outer GA

4.1.1 Candidate solution representation/initial population
generation

Candidate solution representation refers to the encoding
scheme that is used to represent a candidate solution. Sup-
pose we were given the five jobs and potential driver list for
completing each job shown in Table 1.

As mentioned in a previous section, available driver lists
for each job are determined by BSL experts based upon the
availability of BSL drivers with vehicle types that meet the
established requirements. For this example, job J; can be
serviced by driver Dy or Dy; however, driver Dy is the only
driver available to service job Js.

Figure 1 depicts our encoding scheme for three possible
candidate solutions to this problem. Our encoding scheme
includes the pickup and drop off locations for each job since
optimal driver routes may include consecutive (nested) pick-
ups and/or drop offs when multiple jobs are assigned to a
single driver, in addition to the maximum amount of weight
that the driver is carrying at any given time. In the first solu-
tion, driver D, was assigned job J1; thus the pickup location
J1PL and drop off location J; DL are assigned to driver D».
Since driver Dy only carried job Jj, the maximum weight
that the driver carried at any given time is 300 Ibs (the total
package weight for job J1). Driver D3 was assigned jobs J»,

J3, and J4, where they picked up and delivered each job con-
secutively, and the maximum weight that the driver carried
at any given time was 850 lbs. Additionally, driver D4 was
assigned job Js5(600 1bs). In the second solution, driver D;
was assigned jobs Jjand J3; driver D3 was assigned jobs Jo
and J4, and driver D4 was assigned job J5. The last candidate
solution assigned jobs J1, J», J3, and J4 to driver D5, and job
J5 to driver D4. The maximum weight carried by a driver is
recorded at all times.

To create our initial population, we use the aforementioned
encoding scheme to randomly assign job pickup and deliv-
ery locations to drivers, based upon the potential drivers list
for each job. We impose large time penalties in the fitness
function for each candidate solution if time conflicts make it
impossible for the assigned driver to complete all jobs within
the given time constraints, or if the known vehicle capacity
was exceeded. These penalties effectively prevent infeasible
candidates from being considered when other feasible can-
didates have been found.

4.1.2 Selection strategy

We adopt the tournament selection strategy to select candi-
date solutions for breeding. Our “tournament” is conducted
by randomly selecting two candidate solutions from the cur-
rent population, comparing their fitness values, and then
declaring the strongest and weakest candidate of the pair (i.e.
stronger candidates have high fitness values). Since weaker
candidates can sometimes produce strong progenies, we set a
selection probability of 0.9 that the strongest candidate solu-
tion from each pair will be selected for genetic operation.
Additionally, we employ the elitism strategy, where the
best candidate solution from each generation is directly
copied into the next population, unaltered. For our model,
we select the top three candidate solutions to directly move
on to the next generation. We then conduct tournaments, as
described above, until our next generation is fully populated.

4.1.3 Genetic operator-mutation

Once a candidate solution is identified via the tournament
selection process, our model utilizes mutation as the genetic
operator. A candidate solution is mutated as follows:

Candidate Solution 1:

Candidate Solution 2:

Candidate Solution 3:

Dy: [J;PL, J;DL,300]
Ds: [IL,PL, L,DL, I;PL, I;DL, J,PL, J,DL,850]

D.: [JsPL, JsDL,600]

Ds: [J,PL, J,DL, J5PL, J;DL, 850]
Ds: [J,PL, I,DL, J4PL, J4DL, 400]

Dy: [JsPL, JsDL, 600]

Ds: [J,PL, J,DL, J,PL, J,DL, JsPL, JsDL, J4,PL, JuDL, 850]

D.: [JsPL, JsDL, 600 ]

Fig. 1 Sample candidate solutions
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Table 1 Sample potential drivers list

Job Drivers available
to service job

Job weight (Ibs)

J1 Dy, D, 300
153 Dy, Dy, D3 400
I3 D, D3 850
Iy Dy, D2, D3 400
Js Dy 600
1. We randomly select three current job assignments.

2. For each job selected, we randomly reassign the job to a
different driver in the potential driver list for that job. If
a selected job only has one potential driver in its list, no
change is made.

For example, suppose we are given the potential drivers list
provided in Table 1, and our tournament selection process
produced Candidate Solution 1 (from Fig. 1). Our process for
mutating Candidate Solution 1 is illustrated in Fig. 2. In step
1 of this figure, we see that jobs J1, J3, and J5 are randomly

Original Candidate Solution 1
Step 1: Randomly select 3 jobs

to mutate
Supposed jobs J,, J5, and Js

D,: [J,PL, J,DL, 300]

D;: [J,PL, J,DL, J;PL, J;DL,
J,PL, I,DL, 850]

D,: [JsPL, JsDL, 600]

Step 2b: For each job selected,
randomly reassigned the job to a
different driver in its potential driver
list

. JobJ, was assigned to driver D,.
We reassign this job to driver D;.

. Job J; was assigned to driver or Ds
We reassign this job to driver D,

Job J5s must remain with driver Dy

Fig. 2 Sample mutation process

selected to mutate. In step 2, we review the potential driver
lists for the three jobs selected, and reassign each job to a
different driver from their respective list. Since driver Dy is
the only available driver that can complete job Js, this job
assignment remained unchanged.

4.1.4 Fitness evaluation

The fitness evaluation function mathematically expresses the
value of a candidate solution. Genetic algorithms are primar-
ily concerned with finding the best or “most fit” solutions
for the final population. Accordingly, we start our fitness
evaluation, by checking the vehicle weight capacities for
all proposed driver assignment solutions. We immediately
impose a large fitness penalty value to all solutions that vio-
late capacity limits; thus reducing the likelihood of invalid
solutions continuing to the next generation (Michalewicz
1995).

For all valid solutions we focus on the multi-objective goal
of minimizing the travel time and the number of drivers to
complete all jobs. Like many multi-criteria problems, it is
challenging to optimize both objectives simultaneously. In

Step 2a: Review the potential driver list
for each job selected.

From Table 1:

Job J; could assigned to drivers D; or
D,

Job J; could be assigned to drivers D,
or D;

Job Js must be assigned to driver Dy

Mutated Candidate Solution 1

D;: [J,PL, J,DL, 300]
Dy:[ JsPL, J;DL, 850]
Dj: [J,PL, J,DL, J,PL, J,DL, 400]

Dy: [JsPL, JsDL, 600]

@ Springer
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an effort to address potential conflicts, we aim to generate a
Pareto optimal set consisting of solutions that are not dom-
inated by either objective. For our problem, we define our
first objective as minimizing the travel time and our second
objective as minimizing the number of drivers.

We use the weighted approach to formulate our multi-
objective problem into the following single scalar objective
function:
Minz=w*z1(x)+(1—-w)*z2(x), for0<w <1 (4.1.1)
where x represents a candidate solution and z; (x) represents
the ith normalized objective function.

Our normalized first objective, z1(x) is
21 = fin)/ fi* 4.1.2)

In this equation fi(x) is the travel time required for all
jobs to be completed using the driver allocation specified by
candidate solution x. A separate GA model, which we refer
to as our Inner GA (discussed below), is used to compute
the minimum time for a driver to complete the assigned jobs.
The Inner GA returns the time and optimal order that jobs
should be picked up/delivered. Thus, for a single candidate
solution, each driver assignment must be processed through
our Inner GA, and the sum of the minimum times returned
for all drivers will serve as fj(x) for the candidate solution.
The function f;* is the minimal travel time to complete all
jobs if we consider time as our only objective. We discuss
fi further below (Initial GA Model Parameters).

Conversely, our normalized second objective
2(x) = H&)/L* (4.1.3)
is computed as the total number of drivers that the candidate
solution x allocated to complete all jobs, f>(x), divided by
the minimal number of drivers, /5. The denominator in this
equation represents the minimal number of drivers to com-
plete all jobs if we consider the total number of drivers as
our only objective. We discuss f; further below (Initial GA
Model Parameters).

One of the challenges in using the weighted sum approach
for addressing multi-objective problems is determining the
appropriate weights to accurately reflect the priorities of the
objectives. Since BSL was unable to definitively prioritize
their goals, this issue of how to weight objectives surfaced in
our research. Management asserted that determining the best
trade-off between minimizing time and the total number of
drivers is a judgment call that is made on a case-by-case
basis. Accordingly, we choose to vary the weight in our
multi-objective fitness function (Eq. 4.1.1) from O to 1, using
increments of 0.1; the rationale is that varying the weight cap-
tures a spectrum of driver allocation solutions by gradually

@ Springer

shifting the priority for each objective. We use this approach
to determine the Pareto front solution set for our problem.

4.1.5 Initial GA model parameters

Before running our GA using our multi-objective fitness
function (described in Eq. 4.1.1) we must determine f;* and
S5 f{ is determined by running our GA using total travel
time as our fitness function and completely ignoring the num-
ber of drivers required to complete all jobs. The best time
produced by our single objective GA, determines our f}*
value for Eq. 4.1.1. We determine the value of f;* by running
our GA using the single objective of minimizing the num-
ber of drivers needed to complete all jobs, without regard to
the requisite travel distance. These parameters are then used
in Eq. 4.1.1 to determine driver allocations for our multi-
objective fitness function.

4.1.6 Termination condition

The Outer GA continues for a fixed number of generations
or until no improvement in solution quality is seen. The final
population is then analyzed to determine the solution with the
minimum time and then the fewest number of total drivers.

4.2 Evolutionary algorithm for inner GA

The job assignments for a single driver are input into the Inner
GA. The Inner GA is used to process all driver assignments
and return the corresponding minimum time and ordering
that jobs should be picked up/delivered. For example, let us
consider the following assignment for Driver 2:

D, : [J;PL, J;DL, JoPL, J,DL]

Originally the driver is scheduled to pickup job J1, deliver job
J1, pickup job J,, then deliver job J,. However, the minimum
time solution may be to pickup job J1, pickup job J,, deliver
job Ja, then deliver job J;. The Inner GA would accept the
original driver assignment above, and return the candidate
solution below with its respective travel time:

D, : [J,PL, J,PL, J,DL, J;DL]

In computing the total travel time, we assume that drivers
always begin at a known home location, before making their
first pickup. The travel time ends after the last job is delivered.
For a candidate solution to be considered valid, the pickup for
each job must precede its delivery in the assignment order-
ing. Additionally, a substantial time penalty is added to any
potential assignment that cannot (due to travel time conflicts)
meet the required pickup and delivery times of all assigned
jobs. This penalty significantly reduces the likelihood that
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these solutions are selected to continue on to later genera-
tions.

4.2.1 Candidate solution representation initial population
generation

We retain the encoding scheme shown above for encoding
candidate solutions for our Inner GA. The initial pool of
candidate solutions for the first generation is created by tak-
ing the list of pickup and drop off locations for a driver
and randomly shuffling their respective positions to form a
new initial candidate solution. The generated solution is then
checked to ensure that it is valid. Figure 3 shows a sample
initial generation that could be generated from an original
driver assignment. In this figure the notation DxH denotes
the home location of driver Dy.

4.2.2 Selection strategy

We employ the same selection strategy used for the Outer
GA described above.

4.2.3 Genetic operator-mutation

Once a candidate solution is identified through our tourna-
ment selection process, our model utilizes mutation as the
genetic operator. To be consistent with common GA nota-
tion, we refer to a candidate solution as a chromosome and
we refer to a single item within a solution as a gene. A can-
didate chromosome is mutated as follows:

e Stepl: Randomly select one drop off or pickup location
within the chromosome (i.e., randomly select one gene).

e Step2: With a 0.5 probability, exchange the selected gene
with its neighbor to the left or right.

e Step3: Check the validity of new solution by making sure
that following conditions are met: (a) the first position
must remain the driver’s home location, and (b) drop off
location must come after the respective pickup location.
If the solution is not valid, repeat steps 1 and 2 above up
to three times, in attempt to find a valid mutated solution.
After 3 attempts, if a valid solution has not been found,
the original candidate solution will be copied unaltered
into the next generation.

Figure 4 shows a mutation process that yields an invalid
candidate solution. For this instance, we must abandon the
mutated solution and make up to two additional attempts to
mutate the original candidate solution. If the future attempts
yield a valid solution, the mutated candidate solution will
continue to the next generation. If the future attempts fail to
produce a valid mutated solution, the original candidate solu-
tion will move on to the next generation, unaltered. Figure
5 illustrates a mutation process that yields a valid candidate
solution.

4.2.4 Fitness evaluation

The fitness value for a candidate solution is calculated by
adding the travel times to reach each successive location in
the solution. For example, consider the following candidate
solution:

Fig. 3 Sample initial
population for five candidate
solutions

Initial Driver Assignment:

D1: [DH, J,PL, J,DL, J,PL, J,DL, J5PL, J;DL, J,PL, J,DL]

-

\_

Candidate solution 1: [D,H, J,PL, J,DL, J,PL, J,DL, J;PL, J;DL, J,PL, J,DL]
Candidate solution 2: [D,H, J,PL, J,DL, J,PL, J;PL, J,DL, J;DL, J,PL, J,DL]
Candidate solution 3: [D,H, J,PL, J,PL, J,DL, J,PL, J,DL, J;PL, J,DL, J;DL]
Candidate solution 4: [D,H, J,PL, J;PL, J,PL, J,DL, J,DL, J;DL, J,PL, J,DL]
Candidate solution 5: [D,H, J,PL, J,PL, J,PL, J,DL, J,DL, J;PL, J,DL, J;DL]

Sample Initial Population:

J

@ Springer



V. Agrawal

Selected Candidate Solution for Mutation:

[D\H, J,PL, J,DL, J,PL, J5PL, J,DL, J;DL, J,PL, J,DL]

Step 1: Select a gene to mutate.
Suppose the gene J,DL was selected.

[D\H, J,PL, J,DL, J,PL, J5PL, J,DL, J;DL, J,PL, J,DL]

Step 2: With a .5 probability, exchange the selected
gene with its neighbor to the right or left.
Suppose this probability process selected the
left neighbor, J,PL. These two genes are
exchanged.

Mutated Candidate Solution:
[DyH, J,DL, J,PL , J,PL, J5PL, J,DL, J;DL, J,PL, J,DL]

Step 3: Check the validity of the mutated solution.
This solution is not valid since the ordering
has job J1 being dropped off before it was
picked up. Therefore we must abandon this
solution.

Fig. 4 Sample mutation process yielding an invalid solution

Selected Candidate Solution for Mutation:

[DH, J,PL, J,DL, J,PL, J;PL, J,DL, J;DL, J,PL, J,DL]

Step 1: Select a gene to mutate.
Suppose the gene J;PL was selected.

[D\H, J,PL, J,DL, J,PL, J5PL, J,DL, J;DL, J,PL, J,DL]

Step 2: With a .5 probability, exchange the selected
gene with its neighbor to the right or left.
Suppose this probability process selected the
right neighbor, J,DL. These two genes are
exchanged.

Mutated Candidate Solution:
[DH, J,PL, J,DL, I,PL, J,DL, J;PL, J;DL, J,PL, J,DL]

Step 3: Check the validity of the mutated solution.
This solution is valid since the ordering has
Jjobs being picked up before delivery. Thus
this mutated candidate solution will move on
to the next generation.

Fig. 5 Sample mutation process yielding a valid solution

[DiH, J,PL, J,DL, JLPL, J3PL, J,DL, J3DL, J4PL, J4DL]
Its fitness value would be the travel time from driver D;’s

home to job J;’s pickup location, plus the travel time from
job J1’s pickup location to job J;’s drop off location, plus the
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travel time from job J;’s drop off location to job J»’s pickup
location, and so on.

4.2.5 Termination condition

The Inner GA continues for a fixed number of generations
or until no improvement in solution quality is seen. Once
the termination condition is met, the Inner GA returns the
minimum time solution (and ordering) for the driver’s job
assignments.

5 Experimental results and discussion
5.1 BSL parameters
5.1.1 Sample problem using BSL parameters

Initially, we used a small sample problem to test our GA and
ensure that all six variants were properly incorporated into
the model. We used BSLs Midwest metropolitan area service
area for the pickup/delivery locations in the sample problem.
To determine the time and distance required to complete jobs
within the service area, 141 zones were established based
on geographical locations. GPS software was then used to
ascertain the distance and time between any two zones within
the service area; finally, this information was used to calculate
the overall time and distance required to complete all jobs.

There were fifty drivers, with unique driver identification
numbers (ID#), available to service customers in this sample
problem. Specifically, there were 18 car drivers (ID# D1-
D18), 16 SUV drivers (ID# D19-D34), 13 Box Truck drivers
(ID#D35-D47) and 3 tractor trailers drivers (ID# D48-D50).
It is worth noting that SUVs have a unique degree of flexibil-
ity because they could be used for jobs, which require cars
or SUVs.

The sample input data are displayed in Table 2. Specif-
ically, the table gives the earliest pickup times, the latest
delivery times, the pickup/delivery location zones, the vehi-
cle type required, maximum vehicle type weight capacity,
and the job weights for 11 different jobs. A perusal of the
vehicle types for jobs 2, 4 and 6 raises two questions: (1)
why is an SUV required for Job 2 and the job weight is
only 180 Ibs? and (2) why is a box truck required for jobs 4
and 6, when the weights are only 1000 and 468 Ibs, respec-
tively? These jobs highlight the need for transportation field
experts to be involved in the process of assigning vehicle
types. Although these three jobs weigh considerably less than
the maximum vehicle type weight capacity, other factors such
as the length, width, surface area, fragility, density, materi-
als handling requirements, etc. must also be considered when
choosing the appropriate vehicle type; thus, factors other than
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Table 2 Sample input data

Job#  Pickuptime  Delivery  Pickup Delivery ~ (Max vehicle type capacity)  Job weight
time location location Vehicle type
J1 6:30 16:00 134 76 C (1500) 280
12 9:30 11:30 51 68 S (2000) 180
I3 8:00 11:00 130 88 T (43,500) 42,000
J4 8:30 11:30 127 98 B (10,500) 1000
I5 9:00 11:30 139 124 C (1500) 300
J6 8:30 11:30 136 65 B (10,500) 468
17 7:00 9:00 43 42 C (1500) 500
I8 8:00 10:00 43 121 C (1500) 25
19 9:00 11:00 103 55 C (1500) 200
J10 8:00 9:00 43 141 C (1500) 1300
J11 8:00 10:30 100 128 B (10,500) 10,000

simply the weight dictated that a larger vehicle was required
to complete jobs 2, 4 and 6.

Table 3 displays the four Pareto front solutions and spe-
cific coordinates (total travel time, number of drivers) for the
sample problem. In this table, the MTPW is the maximum
total package weight at any time and the VC is the maximum
amount of cargo that the vehicle can carry (or the maximum
vehicle type capacity). Let us examine the W = 0.3, Run 2,
driver 19 data. For this solution, driver 19 uses an SUV to
complete jobs 1, 7 and 8. Specifically, driver 19 would pickup
job 8, pickup job 7, drop off job 7, drop off job 8, pickup job
1 and drop off job 1. Jobs 7 and 8 would be in the vehicle at
the same time (MTPW = 525 1bs) and job 1 (MTPW = 280
Ibs) would be in driver 19°s SUV alone. The maximum total
package weight at any time would be less than the maximum
amount of cargo that an SUV can carry (VC = 2000).

Figure 6 shows a graph of the 110 solutions found by our
GA, under varying values of w. For each solution, the graph
shows the travel time vs. the number of drivers required to
complete all jobs. Our Pareto front solutions are depicted as
square-shaped data points in the graph. The solutions in Table
3 and Fig. 6 encompass all six variants—pickup/delivery
time windows, pickup/delivery locations and vehicle capac-
ity constraints.

5.1.2 Results from GA vs. BSL job allocations

We conducted our experiments using actual BSL data from
three different days. In Table 4, there is a complete list of
all jobs that needed to be filled on three different days. This
table also provides the earliest pickup times, the latest deliv-
ery times, the pickup/delivery locations, the type of vehicle
needed for the job and the drivers that could potentially do
the jobs. There were sixty-eight drivers, with unique driver
identification numbers (ID#), available to service customers.

Specifically, there were 18 car drivers (ID# DI1-D18), 16
SUV drivers (ID# D19-D34), 13 Box Truck drivers (ID#
D35-D47) and 21 tractor trailers drivers (ID# D48-D50,
D56-D64, D66, D68, D70, D71, D73-D77).

BSL does not currently preserve information about the
estimated weight or package dimensions of fulfilled jobs in
their records. Thus, for these experiments we assume that
BSL vehicle type assignments are made correctly and hence
have the available capacity to fulfill all assigned jobs over the
course of a day. However, it is worth noting that our model
is designed to ensure that vehicle capacity constraints are
not violated when package weights are provided (refer to the
sample problem in the previous section).

Preliminary experiments for both the inner and outer GAs,
which systematically investigate alternative population sizes
and maximum number of generations, were executed to
determine efficacious GA parameter settings. Upon consider-
ation of total computation time, overall job completion time,
and marginal improvement of generated results, the popula-
tion size and maximum number of generations were both set
to 25. Prior to implementing our bi-criteria objective, the GA
was run twice—once with the objective of minimizing the
total travel time and once to minimize the number of drivers.
The results from these two runs were used to determine f}*
and f5° as described in Sect. 4 above. The minimum travel
time, fl*’ was determined to be 1260 for our Day 1 data set,
1673 for Day 2, and 2039 for Day 3. The minimum number of
drivers, f2*, was determined to be 8 for our Day 1 data set, 6
for Day 2, and 15 for Day 3. Our multi-objective fitness func-
tion was investigated for w = [0, 0.1, 0.2, ..., 1]. For each
of the 3 data sets, the GA was run 10 times for each value of
w (110 total runs per data set). All experimental results were
performed using a Windows 7 Professional 64-bit Operat-
ing system with 6 GB of RAM and Inter(R) Xeon(R) CPU
W3530 @ 2.8GHz.
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Table 3 Pareto front Solutions for our Sample Data Problem

W=.9, Run 6

W=.3, Run 2

W=.3, Run 6

W=0, Run 4

D,-: [JsPL, JsDL]
MTPW": 300 Ibs
VC™: 2000 Ibs

D25Z [JzPL, .]()PL7 JgDL, JzDL]
MTPW": 380 lbs
VC™: 2000 Ibs

D»: [J;PL, J,DL]
MTPW": 280
VC™: 2000 Ibs

Dye: [JH*PL, J;DL]
MTPW": 10000 Ibs
VC™: 10500 lbs

Ds;: [JsPL, J,PL, J,DL, J;DL]
MTPW": 525 lbs
VC™: 2000 Ibs

D4g: [JgPL, J3DL]
MTPW":42000 lbs
VC ™ 43500 Ibs

Dss: [J6PL, J,PL, I,DL, J;DL]
MTPW": 1468
VC ™ 10500 Ibs

D]g: [J]QPL, J]()DL]
MTPW": 1300 lbs
VC™: 1500 Ibs

Min Time: 831
# of Drivers: 8

D42: [JﬁPL, J4PL, J4DL, J6DL]
MTPW": 1468 lbs
VC ™ 10500 lbs

D33I [JzPL, J9PL, JQDL, JQDL]
MTPW": 380 lbs
VC™: 2000 Ibs

DIQZ [JgPL, J7PL, J7DL, JgDL,
J,PL, J,DL]

MTPW": 525 lbs

VC™: 2000 Ibs

D50: [J;PL, J3DL]
MTPW": 42000 lbs
VC ™ 43500 Ibs

D3(,: [JI!‘(PL’ J“DL]
MTPW : 10000 Ibs
VC™: 10500 Ibs

Dis: [J12PL, J10DL]
MTPW": 1300 Ibs
VC™: 1500 Ibs
Dq: [JsPL, JsDL]
MTPW": 300 Ibs

VC™: 1500 Ibs

Min Time: 859
# of Drivers: 7

D,.: [JsPL, JsPL, JsDL, JsDL]
MTPW": 325 lbs
VC™: 2000 lbs

Dys: [JILPLa Ji1DL]
MTPW": 10000 lbs
VC™: 10500 Ibs

D25: [J10PL, J7PL, J7DL, JloDL,
J,PL, I,DL]

MTPW: 1300 Ibs

VC™: 2000 lbs

Ds;: [1L,PL, J,PL, J,DL, J,DL]
MTPW": 380 lbs
VC™: 2000 lbs

D49: [J}PL, J}DL]
MTPW": 42000 lbs
VC™: 43500 Ibs

Dso: [J6PL, J4PL, J,DL, J¢DL]
MTPW': 1468 lbs
VC™: 10500 lbs

Min Time: 884
# of Drivers: 6

Ds: [JsPL, JsDL]
MTPW": 300 lbs
VC™: 1500 Ibs

D»s: [JsPL, J,PL, J,DL,

J,DL, J,PL, J,DL]
MTPW":525 lbs
VC™: 2000 Ibs

Dus: [J6PL, J,PL, I,DL,
JoDL, J;,PL, J;;DL]

MTPW":10000 Ibs

VC ™ 10500 Ibs

Ds(): [JgpL, J3DL]
MTPW": 42000 Ibs
VC ™ 43500 Ibs

Dzz: [Jl()PL, Jl()DL . J9PL,
J,PL, JoDL, J,DL]

MTPW": 1300 Ibs

VC ™ 2000 Ibs

Min Time: 1251
# of Drivers: 5

*MTPW is the maximum total package weight at any time
**VC is the maximum amount of cargo that vehicle can carry

Fig. 6 Graph of GA solutions
and Pareto front for our sample
data problem
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Table 4 Details for each Job on
Days 1,2 and 3

Job# Pickup time Delivery time Pickup location Delivery location Vehicle type
Day 1
)| 6:30 16:00 134 76 C
2 9:30 17:00 137 111 S
I3 9:30 11:30 119 78 C
J4 11:45 13:45 64 60 C
J5 9:30 11:30 51 68 S
J6 8:00 11:00 130 88 T
17 6:30 7:30 82 43 C
J8 8:00 10:00 40 104 C
19 8:30 11:30 127 98 B
J10 9:00 11:30 139 124 C
I 8:30 11:30 136 65 B
J12 7:00 9:00 43 42 C
J13 8:00 10:00 43 121 C
J14 9:00 11:00 103 55 C
J15 8:00 9:00 43 141 S
J16 8:00 10:30 100 128 B

Day 2
| 11:45 13:45 94 60 C
2 8:30 10:30 85 135 S
I3 9:00 12:00 46 99 B
J4 9:00 12:00 41 99 B
J5 10:00 13:00 127 98 B
J6 10:00 13:00 96 48 B
17 9:30 11:30 75 132 C
J8 8:00 10:00 141 95 C
19 7:00 16:00 69 62 C
J10 7:00 9:00 121 43 C
i 7:00 10:00 43 95 C
J12 5:00 7:00 43 121 C
J13 7:00 9:00 43 109 C
J14 9:00 8:30 100 73 B
J15 9:00 11:00 100 45 B

Day 3
I 14:00 16:00 92 81 C
2 8:30 10:30 122 90 C
I3 10:30 13:30 56 115 B
J4 9:00 11:00 71 72 S
J5 15:30 17:30 116 53 C
J6 9:00 11:00 110 118 C
17 13:30 16:30 67 82 B
I8 9:00 12:00 107 130 B
19 9:00 11:00 84 93 S
J10 11:00 13:30 61 114 S
I 7:00 10:00 89 63 B
J12 13:00 15:00 91 66 C
J13 10:30 12:30 97 50 S
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Table 4 continued

Job# Pickup time Delivery Pickup Delivery Vehicle
time location location type

Day 3 continued
J14 13:30 14:30 40 86 C
J15 14:30 15:30 86 40 C
J16 7:30 9:30 141 43 C
117 9:00 11:00 74 58 C
J18 9:00 12:00 74 105 C
J19 9:00 11:30 74 140 C
120 9:00 11:30 74 133 C
J21 9:00 11:00 74 87 C
122 9:00 11:00 121 95 C
123 9:00 12:00 74 83 C
124 9:00 11:30 74 101 C
125 9:00 11:00 74 59 C
126 9:00 11:00 74 112 C
127 9:00 11:00 74 71 C
128 9:00 11:00 74 120 C
129 9:00 11:00 74 70 C
130 9:00 11:00 74 125 C
J31 9:00 11:00 74 131 C
132 9:00 11:00 74 117 C
J33 9:00 11:00 74 54 C
J34 9:00 11:00 74 126 C
I35 9:00 11:00 74 57 C
J36 9:00 11:30 74 108 C
137 9:00 12:00 74 47 C
J38 7:00 8:00 43 121 C
139 10:00 11:00 138 123 C

Vehicle type Available drivers

that could do
job
Cars (C) D1-D34
SUVs (S) D19-D34

Tractor trailer (T)

D48-D50, D56-D64, D66,

D68, D70, D71, D73-D77

Box Truck (B) D35-D47

The pickup, delivery, vehicle type needed and the available drivers for each job on Days 1, 2 and 3

For the Day 1 jobs, Fig. 7 shows a graph of the 110 solu-
tions found by our GA, under varying values of w. For each
solution, the graph shows the travel time vs. the number of
drivers required to complete all jobs. Similarly, Figs. 8 and
9 show the solutions yielded from our GA for Days 2 and 3,
respectively. Table 5 displays the specific coordinates (total
travel time, number of drivers) for our 7 Pareto front solu-
tions for Day 1, 6 Pareto front solutions for Day 2, and 8
Pareto front solutions for Day 3.

Tables 6, 7 and 8 show the specific job assignments for
each Pareto solution, overall completion times and number
of drivers for our GA for Days 1, 2 and 3. The final col-
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umn of these tables displays the job assignments that BSL
experts gave to each driver; while the set of jobs are listed
for each driver, the order that the jobs were picked up and
delivered was not provided. Thus, we ran the job assignments
that BSL provided through our program that determines the
optimal route (i.e. the order for pickups/deliveries) for a set
of jobs. We used these optimal routes to determine the mini-
mum time that it would take the drivers to complete all orders.
It is important to note that these times are based on mapping
software’s estimates of driving times between two locations
and may not account for delays due to traffic or weather or
alternative route selections made by individual drivers.
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If we examine our Day 1 results, there are 7 Pareto opti-
mal solutions with total job completion times ranging from
1243 to0 2533 min as compared with 1571 min from the BSL
job assignments. This represents an improvement in com-
pletion time of up to 21 %. Additionally, while 14 drivers
were required for the BSL solution, only 8-13 drivers were
needed for the Pareto solutions from the GA. Thus, the GA
was able to provide automated solutions that would reduce
both travel time and the number of drivers. Specifically, one

Time (minutes)

of our Pareto solutions yielded 1414 min and 9 drivers. This
solution reduced the travel time by 10 % and showed a 36 %
decrease in the number of drivers when compared to BSL’s
manual driver allocations.

For Day 2, the Pareto front consists of 6 distinct points.
The total job completion times for the Pareto solutions ranged
from 1673 to 2479 min for the GA while the BSL solution
was 1858 min. This represents time improvements of up to
10 %. Here, 12 drivers were required for the BSL solution in
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Table 5 Summary of Pareto

Day 2: 15 Jobs
(ff = 1673, f5 = 6)

Day 3: 39 Jobs
(fff = 2039, fff =15)

1673 min, 12 drivers

1686 min, 10 drivers
1804 min, 8 drivers

1791 min, 9 drivers

2111 min, 7 drivers

2073 min, 25 drivers
2039 min, 26 drivers

2177 min, 23 drivers

2228 min, 22 drivers
2174 min, 24 drivers

2952 min, 18 drivers
2548 min, 19 drivers
3883 min, 15 drivers

front results for our three W DaZ 1+ 16 Jobs N
problems (i =1260. f;7=8)
1 _
0.9 1310 min, 11 drivers
1243 min, 13 drivers
0.8 1281 min, 12 drivers
0.7 -
0.6 -
0.5 1414 min, 9 drivers
0.4 -
0.3 1352 min, 10 drivers
0.2 2533 min, 7 drivers
0.1 1785 min, 8 drivers
0 _

2479 min, 6 drivers -

contrast to 6-12 drivers needed for the Pareto solutions from
the GA. One of our Pareto solutions yielded 1686 min and
10 drivers; again, the GA was able to improve the travel time
and number of drivers by 9 and 17 %, respectively, compared
to BSL’s solution.

For Day 3, the 8 solutions in the Pareto front had job com-
pletion times spanning 2039-3883 min while utilizing 15-26
drivers. BSL’s route allocation used 15 drivers who com-
pleted the jobs in 3698 min. The GA was able to improve the
total completion time by up to 45 %. However, in providing
this dramatic improvement in time, it utilized 11 more drivers
than the BSL solution. One of our Pareto solutions yielded
2948 min with 18 drivers. With this solution, the travel time
was reduced by 20 % with a 20 % increase in the number of
drivers.

The results from the GA on Days 1 and 2 revealed that the
overall job completion times were markedly better than the
BSL solutions while the total number of drivers was equal or
better. For the Day 3 results, the GA provides dramatically
better completion times but utilizes more drivers in doing
so. Overall, our model was able to successfully automate
their driver assignment problem while providing options for
marked improvement of their combined objectives.

6 Conclusion and future directions

In our collaborative efforts with BSL, we address their need
to automate the route assignment process by developing a
nested GA for a heterogeneous fleet of vehicles with multi-
depot subcontractors, pickup/delivery time windows, varying
pickup/delivery locations, job weights and vehicle capac-
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ity constraints. BSL can input job requests for a given day
and the model will yield the Pareto optimal solutions for
their problem. Our model specifies the driver assignments,
the order that jobs should be picked up/delivered, and the
total time and number of drivers needed to complete all jobs.
This allows BSL the ability to fully explore the trade-offs
between driving time and number of drivers. Once a particu-
lar solution representing the best trade-off has been selected,
the model will specify the driver assignments that should be
designated.

Three different data sets from BSL were used to com-
pare the results of the GA and BSL field experts. Our GA
showed that the total job completion times were improved
up to 21, 10 and 45 % on Days 1, 2, and 3 respectively. In
addition, 12 of 13 Pareto front solutions for Days 1 and 2
reveal a decrease in the total number of drivers needed to
complete all jobs. On Day 3, while results from the GA solu-
tions yielded remarkably lower total job completion times,
the BSL assignment yielded the fewest number of drivers.
The Day 3 results indicate the need for us to continue to
work with BSL to further understand how they prioritize both
objectives (minimizing time vs. number of drivers required)
on a daily basis. Overall, our GA results were promising and
provided a substantive alternative to manually allocating job
assignments.

In the future, we plan to modify our algorithm so that
we can explore how unforeseen changes in the environment
or disruptions in transportation can impact route assign-
ments. For instance, if a driver has delivered some jobs and
has a breakdown, we will explore which drivers can take
over the remaining jobs most efficiently. We also intend
to solve this vehicle routing problem using other meta-
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Table 6 Pareto front solutions from our GA and the BSL job Allocations for the Day 1 jobs

W=0.9, Run 1 W=0.9, Run 9 W=0.8, Run § W=0.5, Run 2
D30: [J}PL, J3DL, J5PL, D21: [ J4PL, J4DL] D30: [J15PL, J12PL, leDL, D46Z [JUPL, JQPL, J()DL,
J;DL] Dyy: [J1PL, J,oDL] JysDL] J,DL]

Dso: [J4PL, J,DL]

Dss: [J16PL, J16DL]

De: [J6PL, J¢DL]

Dy, [J10PL, J15PL, J13DL,
J10DL]

Ds: [J14PL, JsPL, JsDL,

J14DL]

D,s: [J45PL, J1,PL, J;,DL,
J;sDL]

Dy [J4PL, JuDL]

Dy4: [J-PL, J;DL]

Dys: [J,PL, J,DL]

D47 [J1/PL, JoPL, JoDL,
J;,DL]

Min Time: 1310
# of Drivers: 11

Dsi: [Ji2PL, J,PL, J;DL,
J;,DL]

Ds,: [J,PL, J,DL]

Dss: [J11PL, JoPL, JoDL,
J;,DL]

Dss: [JsPL, JsDL]

D¢y: [J6PL, JsDL]

Dy: [J1sPL, J;sDL]

D;: [J5PL, J;DL]

Dyy: [J16PL, J16DL]

Do: [J13PL, J;3DL, J,PL,

J,DL]
Dyg: [ J14PL, J14uDL]
Dys: [JsPL, JsDL]

Min Time: 1243
# of Drivers:13

Dy [J6PL, JDL]

D4 [J,;PL, JoPL, JoDL,
JuDL]

Dss: [J16PL, J;6DL]

Dsy: [J,PL, J,DL]

Ds3: [J,PL, J,DL]

D;: [J5PL, I;DL]

Dy»: [JsPL, JDL, J,PL,
J,DL]

D.s: [JsPL, J,,PL, J,,DL,
JsDL]

Ds: [J4PL, J,DL]

Dy: [J1sPL, J;;DL]

Dy7: [J10PL, J;oDL]

Min Time: 1281
# of Drivers: 12

Dso: [J6PL, J¢DL]

Dyo: [J15PL, J12PL, J;,DL,
J;sDL, J,PL, J,DL]

Da4: [J5PL, J14PL, JsPL,
J:DL, J;4,DL, JsDL]

Dys: [JsPL, JsDL, J,PL,
J,DL]

Dys: [J16PL, J1sDL]

Dys: [J10PL, Ji3PL, J;3DL,
J,oDL]

Dy4: [J4PL, J,DL]

Dys: [J;PL, J,DL]

Min Time: 1414
# of Drivers: 9

W=0.3, Run 8 W=0.2, Run 9 W=0.1, Run 9 BSL Job Assignments
Ds;: [JsPL, J5PL, J;DL, Dso: [JsPL, J1sPL, J13PL, Ds: [J,PL, J;DL] Dy:[ J15]
JsDL] J4PL, J;sDL, JsDL, Dss: [J1,PL, JoPL, JoDL, Ds [ Ji0]
Dso: [J14PL, J14DL, J;5PL, J,DL, J;;DL, J,PL, J;,DL] D7 [J4]
J1sDL, J1oPL, J;,DL] J,DL] D,: [J;PL, J,PL, J;DL, Dyo: [Js]
Ds7: [J1:PL, JoPL, JoDL, Dys: [J1,PL, JoPL, JoDL, J4.DL] Dao: [J7, 312, J15]
J;,DL] J;:DL] Dy: [J15PL, J;,PL, J;,DL, Day:[J5]
Dy: [J4PL, J,DL] Dg,: [J6PL, JeDL] J1sDL, J,PL, J,4PL, Ds;: [Js]
Dsq: [J5PL, JsDL, J,PL, Dyo: [ J10PL, J;oDL] J1,DL, J;DL] Dy [15]
J,DL] Dsy: [JsPL, JsDL, J;,PL, Ds;: [J6PL, JsDL] Dug: [Jo]
Dg: [J1,PL, J;,DL, J,PL, J,DL, J4,PL, J;,DL]  Djs: [ J;sPL, J;sDL, JsPL, Dys: [J11]
J,DL] D,;: [J5PL, J,PL, J,DL, JsDL] Ds7: [J4]
Ds7: [J6PL, JsDL] J;DL, J,PL, J,DL] Dy;: [J16PL, J1sDL] Dg3: [J16]
D,s: [J,PL, J,DL] Dsg: [J14PL, J1sDL] Dao: [J10PL, J1oDL, JsPL, Do: [J6]
Dag: [ J1sPL, J;sDL] JsDL, J,PL, J,DL] D77 [J14]
Dy7: [ J16PL, J1sDL]

Min Time: 1352
# of Drivers: 10

Min Time: 2533
# of Drivers: 7

Min Time: 1785
# of Drivers: 8

Min Time: 1571
# of Drivers: 14
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Table 7 Pareto Front Solutions from our GA and the BSL Job Allocations for the Day 2 Jobs

W=1, Run 8 ‘W=0.8, Run 2 W=0.7, Run 5 W=0.7, Run 8
Dys: [J5PL, J,PL, J;DL, D,7: [J,PL, J,DL] Dy: [JsPL, JsDL] D, [J,PL, J,DL]
J4.DL] Dys: [J6PL, JsDL] Dy;: [J6PL, JsDL, J;PL, Dyo: [J6PL, JsDL]
D;4: [J,PL, J,DL] D,s: [J1,PL, J;,DL] JsPL, J;DL, JsDL] D;: [J,PL, J,DL]
Djo: [JsPL, JsDL] Dy [JsPL, J14PL, J;uDL,  Ds;: [J1,PL, J;,DL] Days: [J1,PL, J1,DL]

D»;: [J,PL, J,DL]

Dsg: [J45PL, J14PL, J14DL,
J;sDL]

Ds: [J15PL, J;3DL]

D,s: [JoPL, J;,PL, J,DL,
J;;DL]

Ds: [J1,PL, J;,DL]

Dy7: [JsPL, JsDL]

Dy,: [J6PL, JsDL]

D»o: [J,PL, J;DL]

Dyy: [J10PL, J1oDL]

Min Time: 1673

# of Drivers: 12

JisDL]
D46: [J5PL, J5DL]
D26: [J7PL, JgPL, .]gDL,

D30: [JzPL, .]zDL]
D31: [.]7PL, JgPL, .]7DL,
J,DL]

J;DL] Dy,: [J10PL, J1oDL, J;,PL,
Dy,: [116PL, J;3PL, J;,DL, JisPL, J;3DL, J;DL]
Ji3DL] Dss: [J4PL, J,DL, J14PL,

o

s [J,PL, J,DL]

Dis: [JoPL, J,,PL, J,DL,
JuDL]

D, [JsPL, I,PL, J;DL,

L,DL]

JisPL, J,DL, J;sDL]
D,»: [J;PL, J,DL]

Min Time: 1686
# of Drivers: 10

Min Time: 1804

# of Drivers: 8

Dis: [J10PL, JoPL, J;oDL,
J,,PL, JDL, J;;DL]

D¢ [J5PL, J,PL, J;DL,
1,DL]

Dy [J;PL, J,DL]

Dss: [JsPL, JsDL, J;sPL,
Ji4PL, J,DL, J;sDL]

D;: [J;sPL, J;sDL, J4PL,

JsDL]

Min Time: 1791
# of Drivers: 9

W=0.3, Run 7 W=0, Run 6 BSL Job
Assignments

Ds: [J,PL, J;DL] Das: [JsPL, IsDL, Dy:[ J15]

D,: [J,PL, J,DL] J14PL, J1sPL, D[ J1]

Dss: [J1PL, J1oPL, Ju.DL, J;sDL] Ds: [J5]
J;,DL, J1oPL, Dyy: [J6PL, JDL, Dy: [J10]
J10DL, JsPL, J;PL, J;DL] Dyo: [Js, J11]
JsDL, J;,DL, Dsg: [J4PL, J,DL] Dyo:[J12]
J,PL, J,DL] Dy: [J,PL, I,DL, Dyy: [12]

Ds.: [J,PL, I,DL, JsPL, JsPL, J;DL, Das: [Jo]
JsDL] JoPL, J,DL, Dss: [Js Jias Jis]

Ds¢: [J5PL, I;DL] J,PL, J,DL] Dsg: [Jo]

Dss: [J6PL, JsDL, Dis: [JuPL, J;;DL,  Duo: [J5]
J1sPL, T14PL, J,PL, J,DL] Dai: [Ja]
J1.DL, J;sDL] Dy [J1oPL, J1oPL,

D7: [J13PL, JQPL,
JsDL, J,DL]

Min Time: 2111

# of Drivers: 7

JisPL, J,DL,
J1,DL, J;5DL]

Min Time: 2479

# of Drivers: 6

Min Time: 1858
# of Drivers: 12
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Table 8 Pareto front solutions from our GA and the BSL job allocations for the day 3 jobs

W=1, Run 1 W=1, Run 6 W=0.8, Run 5 W=0.6, Run 5

D.s: [J1,PL, J;;DL] Dus: [J1,PL, J;;DL] D.o: [JsPL, JsDL] Dao: [JPL, J2PL, I,PL,

Dyy: [J15PL, J;;DL] Dyo: [J;PL, J,DL] D.;: [J5PL, JsDL] J,DL, J;,DL, J,DL,

D.;: [J,PL, J;DL] D,y [J,5PL, J;3DL] Das: [JsPL, JsDL] J1oPL, J;oDL]

Dss: [J55PL, J3,PL, J,;DL, Dss: [J16PL, J;oDL] Dsg: [J14PL, J;sDL] Dio: [JosPL, JosDL]
J3;DL] Dys: [J;PL, J;DL] Dio: [J5,PL, JoPL, I,,DL, Dsy: [JoPL, I,PL, I,sPL,

Dag: [J3sPL, J3sDL] Do: [J,PL, J,DL] J,DL] J5sDL, JDL, J,,DL]

Dyo: [J34PL, JoPL, J3,DL, JoPL,  Dsg: [J1oPL, JosPL, Jo0PL, Dao: [J5sPL, JosPL, J,sDL, Dys: [J3sPL, J;sDL]
JoDL, J,,DL] J5DL, J14DL, J5;DL] J5sDL, J1oPL, J;,DL] Dyy: [J15PL, J;;DL]

Dao: [J10PL, J;,DL] D¢ [JsPL, J;DL] Dss: [J,PL, J;DL] Ds: [J,PL, J,PL, J,,DL,

Djs: [JsPL, JsDL] Dyy: [JsPL, JsDL] Das: [J;,PL, J;,DL] J,DL]

Dy;: [J16PL, J;¢DL] Dso: [JsPL, JsDL] Dyy: [J1,PL, J;;DL] D;: [JI,PL, I,DL, J»sPL,

Dso: [J5PL, J;DL] Dao: [J24PL, J5,DL] Doy: [J3,PL, J3,PL, J55PL, J,3DL]

Das: [J4PL, I,DL, J;,PL, J;,DL]  Dag: [JoPL, J,sPL, I,PL, J5,DL, J3;DL, J5,DL] D;: [J5,PL, J5PL, I,0PL,

Ds: [J5PL, J56PL, J3oDL, J3sDL] 1,DL, J3PL, J5,DL, Dao: [J57PL, JoPL, J,;DL, JPL, J3,DL, J5DL,

Dj: [J;sPL, J;sDL] J5sDL, JDL] J56DL] J5DL, J3;DL]

Dyy: [J,4PL, J,4DL] Ds: [J54PL, J3,DL] Das: [J4PL, 1,DL, J5,PL, D3 [J,sPL, J;;DL]

Ds3: [J17PL, J5PL, J,0DL, Ds: [J;,PL, J;,DL] J5DL] Ds;: [JsPL, JsDL]

J1sDL]

Dy [J2,PL, J5,PL, J,PL, I,PL,
J,;DL, J;;DL, J,,DL, J,DL]

Djy;: [J5sPL, J3sPL, J,sDL,
J5sDL]

Dy»: [J¢PL, JsDL]

Dy5: [J54PL, J,,DL]

D4 [J3PL, Jo,PL, J5,DL,
J5;DL]

Dis: [JosPL, J1sPL, J,sDL,
J1oDL]

Ds: [JsPL, JsDL]

Dy [J12PL, J;,DL]

Ds: [J;sPL, J,PL, J;sDL, J,DL]

Dy: [J39PL, J5oDL, J5PL, JoDL]

Min Time: 2073
# of Drivers: 25

Ds4: [J1sPL, J1sDL]
D;: [J5,PL, J5sPL, J55PL,
J33DL, J3sDL, Jp,DL]

D3, [J36PL, J2oPL, J5,PL,
JsDL, J;;DL, J3cDL]

D;: [J3sPL, J3sDL]

D;y: [J57PL, J37DL]

Dy, [J14PL, J14DL]

Dy5: [J1sPL, J1sDL]

Dy4: [J6PL, JsDL]

Dys: [J30PL, Jo6PL, J56DL,
J30DL]

Dy¢: [J17PL, J5,PL, J5,PL,
J;PL, J,,DL, J;,DL,
J;,DL, J;;DL]

Dy: [J16PL, J;cDL]

Dy: [J2sPL, JosDL]

ol
gl
gl
ol

Min Time: 2039
# of Drivers: 26

Dy: [J2PL, J5oDL]

Ds: [J,sPL, J;sDL]

Ds4: [J30PL, J3DL, J3PL,
J3DL]

Dj: [1o4PL, J;5PL, I,;PL,
JisPL, Jo4DL, J5;DL,
JisDL, J;;DL]

Dy: [J5,PL, J3sPL, J5sDL,
J,,DL]

Djo: [J15PL, J;3DL]

D)3 [J2PL, JooDL]

Ds: [J1sPL, J;oDL]

Dy: [J5sPL, J5sDL, J;¢PL,
J1DL, I,PL, J,DL]

Dy: [J5,PL, J5,PL, JPL,
JsDL, J3,DL, J;,DL]

Ds: [J,PL, J;DL]

Min Time: 2177
# of Drivers: 23

D;: [J;,PL, J;,DL]

Ds¢: [J5PL, J;DL]

Dy: [J16PL, JsPL, JsDL,
JisDL]

Ds: [J33PL, J5sPL, I, PL,
J50PL, J3oDL, J3;DL,
J5sDL, J5,DL]

Ds: [J3PL, J5oDL]

D.o: [J1,PL, J;;DL]

Dy7: [J5sPL, J3sDL]

D.s: [J,PL, J;DL]

Dy: [J2PL, J5DL]

Dy4: [J5PL, J;sPL, J,;DL,
JisDL]

D3 [J3PL, JogPL, J5DL,
J;DL]

Dy»: [J2PL, J,oPL, J,,DL,
J1oDL]

Min Time: 2228
# of Drivers: 22

@ Springer



V. Agrawal

Table 8 continued

W=(.6, Run 10 W=(.3, Run 4 W=0.2, Run 6 W=0, Run 6
Dy [J10PL, J;oDL] Dyi: [J1gPL, Tp6PL, J;;PL, D»y: [J2sPL, J37PL, JpsDL, Dyi: [J6PL, J34PL, J,PL,
Dyg: [J20PL, J5DL] JDL, J};DL, J;sDL] J3,PL, J3oPL, J30DL, J3,DL, J,cDL, J,DL]
D,;: [J37PL, I, PL, J,6PL, Dyo: [J35PL, J3sDL] J;DL, J;;DL, JsPL, D,;: [JoPL, JyDL, J,,PL,
JDL, J,;DL, J3;DL] Dyo: [J14PL, J1sDL] JsDL] JDL]
D,s3: [J13PL, J13DL] Day: [J20PL, J1oPL, JsPL, Dsy: [J20PL, JpoDL] D,y [J12PL, J1,DL]
Dag: [J30PL, J33PL, J3,DL, JsDL, J50DL, J;oDL] D»;: [J3sPL, JoPL, J3sDL, D»;: [J33PL, I,PL, J;6PL,
J33DL] Dag: [JoPL, Jo4PL, JosPL, JoDL] J;3DL, J;¢DL, J,DL]
D,s: [J1sPL, J,PL, J;5sDL, J,DL] Jx3PL, J,sDL, JoDL, Dag: [J29PL, J15PL, J,oDL, D,;: [J5/PL, J5,DL]
D, [I»PL, J,PL, J,DL, J,,DL] J,DL, J5;DL] J19PL, J1oDL, J;3sDL, Dso: [J27PL, J;7PL, J3PL,
Ds: [J1,PL, J;,DL] D»s: [J;sPL, J;PL, J;sDL, J0PL, J;,DL, J;4,PL, J,;DL, J;;DL, J3DL,
Ds;: [JoPL, J5oPL, J5oDL, JoDL] J,DL] J14,DL] J1oPL, JoDL]
Dsg4: [J7PL, J3sPL, J,PL, J;DL,  Dyy: [J,PL, J3PL, J13DL, D,s: [J,PL, J,DL] Ds,: [J6PL, JisPL, JsDL,
J3sDL, J,DL] J»DL, Ji,PL, J;,DL] D»o: [J4PL, J,DL] J;sDL, J15PL, J14,PL,
Dy: [Jo4PL, J36PL, JyDL, J3DL]  Djq: [J4PL, J,DL, J,PL, Ds: [J12PL, J1,DL] J14,DL, J;5DL]
Ds: [J3,PL, J5,DL] J33PL, JsPL, J33DL, Ds;: [J13PL, J13DL] D,: [J36PL, J5,PL, J,PL,
Ds: [J19PL, JsPL, JDL, J;oDL] J, DL, JsDL] Ds;: [J15PL, J30PL, J6PL, J»,DL, J3;DL, J3sDL]
D;: [JosPL, J5sDL] Ds;: [J30PL, J30DL, J36PL, JsDL, J30DL, J;;DL] Dy: [JpsPL, JsPL, J3,PL,
Dy: [J3,PL, J5,DL] J3sDL, J,oPL, J;,DL] Ds;: [J5PL, J;DL, JgPL, JDL, J;sPL, J;sDL,
Ds¢: [JsPL, JsDL] Ds,: [J3sPL, J3,PL, J3sDL, JsDL] JsDL, J3,DL]
Dso: [J1,PL, J;;DL] J34,DL] Dsy4: [J3PL, J3DL] Ds;: [J9PL, J35PL, J3sPL,
Dys: [J17PL, J53PL, J34PL, Dss: [J,PL, J;DL] Ds¢: [J,PL, J;DL] J3sDL, J,PL, J,oDL,
J;;DL, J34DL, J34PL, Ds: [J¢PL, J3,PL, J,oPL, D5: [J33PL, 1, PL, J34PL, J,DL, J3sDL]
J3DL, J53DL] J37PL, J,yDL, JsDL, J3,DL, J,;DL, J33DL] Ds¢: [J,PL, J;DL]
Dyo: [J;PL, J;DL] J3,DL, J3;DL] Dg: [J27PL, Jp;DL] Dsg: [J1PL, J;;DL]
Di¢: [J15PL, JpsPL, JsDL, Ds¢: [JsPL, JsDL] Dy;: [J1,PL, J;;DL] Dy;: [J5PL, J;DL, JgPL,
J;sDL] Ds: [J39PL, J3oDL] Dy: [J1sPL, J;sDL] JsDL]
Dys: [JsPL, JsDL] Dys: [J1,PL, J5PL, J; DL, Dis: [J36PL, JPL, J,PL, D7 [J30PL, J19PL, Jo4PL,
D4 [J35PL, J3DL, J;6PL, J;DL] JDL, J,DL, J3cDL] J30DL, Jo,DL, J;4DL]
J;sDL] Dy [J1,PL, J;,DL] Di;: [J3sPL, J33DL, J;cPL, Dy, [J5,PL, JsPL, JsDL,
Dys: [J14PL, J14,DL] Dys: [J,PL, J,DL] J1sDL, J,PL, J,DL] J3PL, J3DL, JDL]
Dy;: [J;PL, J;DL] Dy: [J,7PL, J5,PL, J,;DL, Dyy: [JosPL, J3,PL, J4PL,
J;,DL] J,,DL, JsDL, J3,DL]

Min Time: 2174
# of Drivers: 24

Min Time: 2952
# of Drivers: 18

Min Time:2548
# of Drivers: 19

Min Time: 3883
# of Drivers: 15
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Table 8 continued

BSL Job Assignments

Dy [Ja1, Joo]
Dy: [J17]
Doo:[ J2, 122, Jys, J3g]
Dy [Js]
Dao: [Ja, Ji6s Tis, J23, J24, Tos]
Dos:[ 11]
Doyt [J12, J30]
Das: [J13]
19,5 Ja0]
“ 14, J1s]
Dsi:[Js, T34, T3]
D332 [Jo, Jio]
Diy: [J26, J27, T30, T315 J32, 33, Ts6,
J37]
D37 [J3, 11l
Dyo: [J7, Js]

Min Time: 3698
# of Drivers: 15

heuristic algorithms, such as a Tabu Search and Simulated
Annealing. We plan to compare these metaheuristics and
refine our methods of minimizing both objectives simulta-
neously.
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