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Abstract Reduction of energy consumption in Cloud

computing datacenters today is a hot a research topic,

as these consume large amounts of energy. Further-

more, most of the energy is used ine�ciently because

of the improper usage of computational resources such

as CPU, storage, and network. A good balance be-

tween the computing resources and performed workload

is mandatory. In the context of data-intensive applica-

tions, a signi�cant portion of energy is consumed just

to keep alive virtual machines or to move data around

without performing useful computation. Moreover, het-

erogeneity of resources increases the degree of di�culty,

when try to achieve energy e�ciency. Power consump-

tion optimization requires identi�cation of those inef-

�ciencies in the underlying system and applications.

Based on the relation between server load and energy

consumption, we study the e�ciency of data-intensive

applications, and the penalties, in terms of power con-

sumption, that are introduced by di�erent degrees of
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1 Introduction

Nowadays, Cloud computing datacenters consume large

amounts of energy. By 2020 these will use approxi-

mately 140 kilowatt-hours. The usage on large scale of

the services provided by Cloud led to this situation. So,

there is an urgent need to reduce the consume of energy.

A possible way to reduce the energy consumption

is to improve resource utilization. Virtualization tech-

nology, permits the independence of servers and o�ers a

new way to improve the data center energy e�ciency by

assignment of multiple virtual machines (VMs) to a sin-

gle physical server. The problem is represented by the

low utilization of virtual machines. Resources, such as

CPU, memory, storage, and network, consume energy

even when they are in idle state [2].

Resource provisioning problem is very challenging

as we encounter a great diversity of workloads (e.g.

computationally-intensive, data-intensive, and hybrid),

di�erent usage patterns (e.g. static, periodic, once-in-

a-lifetime, unpredictable, and continuously changing),

and virtual machine heterogeneity. For instance in the

case of data-intensive applications a signi�cant portion

of energy is used just to keep virtual machines alive

or move data around without performing a useful com-

putation. Furthermore, reducing power consumption at

the data center level has serious implications over the

usage cost.

Few important questions arise when talking about

power e�ciency related to workload type and usage
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patterns. What happens when we have to deal with

workloads that are computational intensive or data-

intensive?How is better regarding the energy consump-

tion, to use virtual machine instances, with low re-

sources (e.g. CPU, RAM, Disk and bandwidth) and to

process tasks in a longer time, or to use virtual machine

instances with high resources and to process tasks in a

shorter time? Also, what are the implications of virtual

machine heterogeneity over the energy consumption?

So, in order to study the optimization of power con-

sumption, we need in the �rst place, to identify the

ine�ciencies in the underlying system. So, heterogene-

ity of virtual machines has a great deal of importance

in power consumption.

Applications for smart-cities and cyber-infrastructures

are data intensive and are I/O bounded. These dedicate

a signi�cant part of execution time to the data move-

ment process, and in consequence need a high band-

width data access rate. If the available bandwidth is

less than required, the CPU is held idle until data sets

are available. So, a virtual machine that is idle for a

certain amount of time, will consume much more en-

ergy. Additionally, a heterogeneous environment con-

tribute to the waste of energy especially in the case

of data-intensive applications. This happens because

of the resource characteristics diversity such as CPU,

bandwidth and RAM memory in virtual machines.

Also, Big Data applications can help to uncover the

�ne interactions between data. In this way we are al-

lowed to manipulate hidden, often-counterintuitive, lev-

els that directly impact di�erent domains and activities.

Moreover, these applications can bring up new opportu-

nities for business and consumer through modern mar-

keting and networking technologies using an inclusive

social and technological environment [35], [37]. Also,

there are tools that supports managers in identifying

forthcoming disruptive technologies and provide them

with tailored strategic options [28].

Fields such as environmental research, disaster man-

agement and information in relief operations, decision

support systems, crowd-sourcing, citizen sensing and

sensor web technologies, need to make use of new and

innovative tools and methods for Big Data, in order to

be more e�cient. So, we must be able to analyze all data

in order to get the promoted bene�ts. For instance, a

decision support system can give better and accurate

indications in a crisis situation.

As shown by the authors of [53] the measurement of

energy consumption in a virtual machine can be made

by measuring the usage of the machine. So, there is a

direct relation between server load and consumption of

energy. Based on this relation we try to evaluate what

are the penalties in terms of power consumption intro-

duced by the heterogeneity of virtual machines.

This paper extends the work presented in [39]. The

main contributions can be summarized as follows:

� we analyze the methods for power metering at vir-

tual machine level;

� we identify ine�ciencies of big-data applications;

� based on the relation between virtual machine load

and power consumption, we present an approach

for evaluating the impact of virtual machine het-

erogeneity on power consumption in a datacenter;

The paper is structured as the following: In Section

1, is presented the importance of power consumption

optimization in Cloud computing data centers. Also,

here are presented the questions and implications that

arise when performing power consumption optimiza-

tion. In Section 2, are presented previous related work

for the power consumption optimization of virtual ma-

chines. Section 3 presents our approach for the impact

evaluation of the virtual machine heterogeneity over the

power consumption in a Cloud computing datacenter.

Section 4 presents the Big Data applications and key

issues regarding the energy consumption. In Sect. 5,

the experimental setup, use case scenarios, results and

analysis of the obtained results are presented. Finally in

Sect. 6, the conclusions and future work are presented.

2 Related work

The problem of virtual machines e�cient power con-

sumption in Cloud computing infrastructures is very

intense studied. Given the heterogeneous nature of re-

sources, workloads and, usage patterns this is still a

challenging problem. Surveying the literature we can

distinguish few important research directions for power

e�cient Cloud computing.

One research direction refers to the methods and

technologies for operation e�ciency at the hardware

level, meaning computer and network infrastructure.

Technologies, such as SpeedStep [20], PowerNow [11],

Cool'n Quiet [52] or DemandBased Switching [41] has

been developed. Also, techniques like dynamic voltage

scaling [43] have been applied in di�erent provisioning

and scheduling algorithms and workload consolidation

techniques to minimize the power consumption. More-

over, frameworks for reducing power consumption in

computer networks and network-wide optimization al-

gorithms have been proposed. In [40] is proposed a two-

level control framework providing local control mecha-

nisms that are implemented at the network device level

and network-wide control strategies implemented at the

central level.
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Another research direction that we have identi�ed in

the scienti�c literature refers to virtual machine place-

ment problem. Also, di�erent methods and algorithms

has being proposed. For instance, in [19] the authors

propose an algorithm that use methods like dynamic

programming and local search in order to place in an

energy-e�cient way, previous created copies of virtual

machines in order to meet the QoS, on the physical

servers. An algorithm for virtual machine placement,

designed to increase environmental sustainability in the

context of distributed data centers with di�erent carbon

footprint and power utilization e�ciency is presented in

[23]. The results obtained from the simulation shows a

reduction of CO2 and power consumption, maintain-

ing the same level of quality of service. Furthermore, a

multi-objective ant colony system algorithm for mini-

mization of total resource wastage and power consump-

tion is proposed in [17]. The authors compare the al-

gorithm with existing multi-objective genetic algorithm

and two single-objective algorithms. In [21] is proposed

a decentralized strategy for genetic scheduling in het-

erogeneous environments that uses a combination of ge-

netic algorithms and lookup services for obtaining a

scalable and highly reliable optimization tool.

Energy-e�cient scheduling algorithms that assign

virtual machines to physical machines represent an-

other research direction that we have identi�ed. For ex-

ample, an algorithm, that aim to minimize total power

consumption of physical machines in the datacenter,

by assigning e�ciently virtual machines is presented

in [47]. The results obtained show 24.9% power saving

and nearly 1.2% performance degradation. Also, an al-

gorithm called Dynamic Round-Robin for energy-aware

virtual machine scheduling and consolidation is pro-

posed in [31]. Compared with other strategies such as

Greedy, Round-Robin and PowerSave implemented in

Eucalyptus, this reduces a signi�cant amount of power.

In [33] the authors propose and implement a virtual

machine scheduling heuristics that take into consider-

ation load-balancing and temperature-balancing with

the aim of reducing the energy consumption in a Cloud

data center.

Energy e�cient, data-aware scheduling is also a ma-

jor research direction. In Cloud computing, it pose ad-

ditionally challenges, as data is stored and accessed on

a large scale from distributed servers. In this situation

the energy consumption reduction represents the prin-

cipal scheduling objective. In [26], the authors deal with

the problem of independent batch scheduling in grid en-

vironment as a bi-objective minimization problem with

makespan and energy consumption as the scheduling

criteria. Also in [27],are presented two implementations

of classical genetic-based data-aware schedulers of in-

dependent tasks submitted to the grid environment.

In [5] is optimized the energy e�ciency of message ex-

changing for service distribution in interoperable infras-

tructures. The authors consider two use cases. First, a

requester sends messages to all interconnected nodes

and gets messages only from resources available to ex-

ecute it and second, the requester sends one message

for all of the jobs of its local pool and gets a respond

from available nodes, and then obtainable resources are

ranked and hierarchically categorized based on the per-

formance criterion e.g. latency competency. Also in [6]

the authors propose a novel message-exchanging opti-

mization model to reduce energy consumption in dis-

tributed systems. They aim to achieve the optimiza-

tion of the energy consumption for communication and

to improve the overall system performance. The inter-

cloud concept [49] encompasses the interconnectivity of

node and authors of [5], [6] developed the inter-cloud

meta-scheduling simulation framework [48] to evaluate

the energy e�ciency of message exchanging.

Workload consolidation represents also an impor-

tant research direction, as it permits to place the work-

load on fewer physical machines, taking into considera-

tion as a principal parameter the machine load. In this

way is achieved the reduction of the power consump-

tion. Usually, the workload placement problem is mod-

eled as a multi-dimensional bin-packaging problem, as

expressed in [45], [42], [29]. Moreover, meta-heuristics

such as Ant Colony Optimization [14], [15], [17], Ge-

netic Algorithms [25], [46], [44], [24] are used for power

consumption optimization.

More recent research directions are in the domain

of security. One example is prevention of some energy

oriented distributed denial of service (e-DDoS) attacks.

These attacks are characterized by the fact that do not

produce direct damage or block the activity of the tar-

geted infrastructure, but instead generate an anoma-

lous and sustained power consumption on the target

side. In this way, IT equipment and facilities such as

air conditioning, heating and ventilation are a�ected,

their lifetime is reduced signi�cantly. Also, this type of

attacks increases energy bills, drastically [16].

The previous related works do not take speci�cally

into consideration and do not evaluate the heterogene-

ity degree of virtual machines when proposed di�erent

resource management methods such as resource alloca-

tion, job scheduling and workload consolidation tech-

niques. Quantifying the penalties that are introduced

by the di�erent degrees of heterogeneity can be used

further as the input parameter in scheduling and pro-

visioning algorithms for energy consumption optimiza-

tion. Based on previous related works we build a simple

taxonomy presented in Fig. 1.
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Fig. 1 Energy e�cient power consumption taxonomy

3 Virtual machine power metering

Server virtualization represents one step further in power

consumption optimization in Cloud computing data-

centers, permitting e�ective, e�cient energy manage-

ment. In order to optimize power consumption, we have

to measure the power consumption on per-virtual ma-

chine basis in an accurate and e�cient way. In [36] the

authors provide a comprehensive survey of proposed

approaches for estimating the power consumption of

single-core as well as multi-core processors, virtual ma-

chines, and an entire server.

The virtual machine power models for power con-

sumption metering proposed in literature can be classi-

�ed in two categories: utilization-based models [32],[8],

[3] and performance-monitor-counter models [30], [7],

[4]. The �rst category of models assume that a server

resources (e.g. CPU, memory, disk) consume of energy

is linear with his utilization [36]:

Pserver = Pstatic +
∑
j∈J

(kj · Uj), (1)

where:

� Pstatic - �xed power consumption when there is no

workload;

� Uj - utilization of physical component;

� kj - the dynamic power coe�cient;

� J = CPU,RAM,Disk, I/O - set of power consum-

ing components.

Starting from equation 1, can be obtained the most

used virtual machine power model:

P vmi =
Pstatic
M

·
∑
j∈J

(kj · Uj), (2)

where:

� Wi - the processor utilization of the virtual machine;

� M - the number of active VMs on a server.

Performance monitor counter models are based on

software components called counters, that monitor the

performance of the physical server o�ering a real-time

method for power consumption monitoring. These coun-

ters are supported by all modern processor architec-

tures. The power model for a virtual machine using

performance monitor counter models can be expressed

as follows:

P vmi (t1, t2) =
∑
j∈J

P vmij (t1, t2), (3)

where:

� P vmij (t1, t2) - the power consumption consumed by

physical component j in time interval [t1, t2].

The authors of [1], in order to formulate the prob-

lem of power consumption minimization, propose the

following objective function:

P (π) =
∑

i∈[1,m]:Ai 6=�

(µ
∑
dj∈Ai

(l(dj)
α + b), (4)

where:

� π = {A1, . . . Am} - set of virtual machines;

� l(dj) - load of a virtual machine;

� µ - dynamic power coe�cient;

� b - static power consumption.

Then the power consumption function for a set of

virtual machines can be express as following:

P (π) =

m∑
i=1

f(l(Ai)) (5)
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Further in our paper we used Equation( 4) to quan-

tify the power consumption for our considered set of

virtual machines.

4 Big Data Applications

Big Data represents a paradigm for the advancing trends

in technology that propose a new approach in the pro-

cess of decision-making. Moreover, it means to deal with

huge amounts of heterogeneous data, and ask for a

pipeline of processing operations. The aim is to o�er

support in the decision-making process. An important

challenge, besides the large volumes and high-speed pro-

duction rates (e.g. velocity), is raised by the data het-

erogeneity (e.g. variety). The most important Big Data

characteristics are volume, variety, velocity, value, ve-

racity, volatility and vicissitude.

Data volume is the main challenge, because tradi-

tional storage systems(e.g. relational databases) did not

succeed to handle volumes of data in terms of terabyte

and petabyte levels. Developments in di�erent areas

such as Cyber-infrastructures, Smart Cities, e-Health,

Social Media, Web 3.0, etc., has led to large amounts

of data, and these data are often unstructured or semi-

structured, with a high level of heterogeneity.

Variety characteristic refers to di�erent data for-

mats and sources such as data from sensors, documents,

emails, social media texts, mobile devices etc. Veloc-

ity refers to the data acquisition rate, as data can be

acquired at di�erent speeds. The value property illus-

trates the potential gain of data, obtained after some

processing operations.

Veracity characteristic describes how accurate is data

collected from di�erent sources. For example, data gath-

ered from a social media website have a speci�c degree

of accuracy, in other words represents the uncertainty

in data. Veracity ensure that used data are trusted, au-

thentic and protected for unauthorized access and mod-

i�cation. Furthermore, the data must be secured during

the whole their lifecycle from collection to storage [13].

Vicissitude property refers to the challenge of scal-

ing Big Data complex work�ows. This property signi�es

a combination between the large volume of data and

the complexity of processing work�ow, which prevent

to gather useful insights in data [18].

4.1 Real-Time Data Access and Processing

The batch data processing has the following work�ow

of operations: data collection, send to the processing

system, process, and extract the results. This is an ef-

�cient way to process high volumes of data. This type

of processing requires separate applications for input,

process and output.

In contrast with batch data processing, real time

data processing implies a input, process and output of

data in a continuous mode. This means that data need

to be processed in a small time. Moreover, there are two

categories of data:

� predicted data - that has value at the given moment

in time);

� measured data - value remains forever (e.g. sensor

data) which represents historical data.

Mining the instantaneously valued data requires a

real time platform. Also, a method of dynamic pattern

identi�cation for logically clustering log data is needed.

The method must be a real time and generalized solu-

tion to the process of log �le management and analy-

sis. For instance, a monitoring platform for water data

management needs to access distributed data sources

(e. g. sensor networks, mobile systems, data repository,

social web, and so on). Next, this data has to be pro-

cessed for preventing natural disasters such as water

pollution and to alert the possible a�ected people [38].

Frameworks such as MapReduce [12], Dryad [22]

are used for large-scale data processing. Users write

parallel computations with the aid of high-level opera-

tors, without paying attention to data distribution or

fault tolerance. These systems are batch-processing sys-

tems and are not designed for real-time processing and

this is an important disadvantage. A possible solution

for real-time data streaming processing is provided by

Storm [51] and Spark [50]. Storm is used at Twitter for

real-time distributed processing of stream data.

In the context of Big Data traditional technologies

for the data processing and analysis are not e�cient.

There is an imperative need to discover valuable knowl-

edge in data in order to gain help in decision mak-

ing process. Di�erent challenges are encountered when

dealing with big data handling, from data capture to

visualization. Moreover, sources of data are heteroge-

neous, geographically distributed, and unreliable, being

susceptible to errors. As a consequence we face with

databases that are populated with inconsistent, incom-

plete and noisy data. Therefore, several data prepro-

cessing techniques, such as data reduction, cleaning,

integration, data transformation, must be applied to re-

move noise and correct inconsistencies in order to help

in decision-making process.

NoSQL databases systems highlights a series of ad-

vantages for data handling compared with relational

database systems. First advantage is represented by the

fact that storage and management parts are indepen-

dent one from another. The data storage part, (e.g.
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key-value storage), focus on the scalability and high-

performance, while the management part, is built on

low-level access mechanisms, meaning that related tasks

to data management can be implemented in the appli-

cation layer. For instance, three operators are de�ned

for data cleaning tasks:

� fuzzy lookup - used to perform record matching;

� fuzzy grouping - used for deduplication;

� column segmentation - uses regular expressions to

segment input strings.

In this way, NoSQL databases provide �exible mecha-

nisms for data handling and application developments.

Moreover, deployments can be easily updated.

Many �elds(e.g. scienti�c, business, etc.) can bene-

�ts from Big Data with the condition to solve the chal-

lenges, which arise in data storage, capture, cleaning,

analysis and visualization.

4.2 Energy E�cient Processing in Big Data Platforms

A Big Data processing platform is composed by two

parts, a job manager and a storage manager. First one

coordinates the processing nodes, and the second one

coordinate the storage nodes. An examples is Apache

Hadoop [10] composed by a set of open source applica-

tions that are used together to provide a Big Data pro-

cessing solution. HDFS and YARN are the main com-

ponent of Hadoop. YARN coordinates the processing

nodes and HDFS the storage nodes. Fig. 2 presents the

general architecture of Big Data platforms.

Hadoop distributed �le system (HDFS) is organized

in clusters where each cluster consists of a name node

and several storage nodes. A large �le is split into blocks

and name node takes care of the persisting parts on data

nodes. The name node maintains metadata about the

�les and commits updates to a �le from a temporary

cache to the permanent data node. The data node does

not have knowledge about the full logical HDFS �le; it

handles locally each block as a separate �le. Fault tol-

erance is achieved through replication; optimizing the

communication by considering the location of the data

nodes (the ones located on the same rack are preferred).

A high degree of reliability is realized using "heartbeat"

technique (for monitoring), snapshots, metadata repli-

cation, checksums (for data integrity), and re-balancing

(for per-formance) [9].

YARN, the version 2.0 of MapReduce, implements a

master/slave execution of processes with a JobTracker

master node and a pool of Task-Trackers that do the

work. JobTracker has two main responsibilities, man-

agement of resources and job scheduling/monitoring.

Fig. 2 Organization of resources in a big-data platform

Also, there is a global resource manager (RM) per appli-

cation, and an Application Master (AM). The slave has

a node entity named Node Manager (NM) which is do-

ing the computations. The AM negotiates with the RM

for resources and monitors task progress. Other com-

ponents are added on top of Hadoop in order to create

a Big Data ecosystem capable of con�guration man-

agement (Zookeeper), columnar organization (HBase),

data warehouse querying (Hive), easier development of

MapReduce programs (Pig), and machine learning al-

gorithms (Mahout).

In Big Data platforms each layer (e.g. operating

systems, databases and environments, computing solu-

tions, data operations and analytics and data sources)

of the processing stack impose power issues, as can see

in the Fig. 3. First, the usage of virtual machine com-

ponents (e.g. CPU, storage, RAM and network) have a

direct in�uence on power consumption of the hardware

components. Operating systems, databases and envi-

ronments have direct impact on the hardware usage

and thus on power consumption. Computing solutions

produce the system behavior power consumption fac-

tor. Data operations and analytics have e�ect on data

movement and processing. Finally, data sources pro-

duce e�ects in memory and storage components.

So, in order to optimize the energy consumption of

the underling hardware, every processing step should

be optimized. For instance, this could mean optimized

reads and writes from memory and storage, e�cient

data movement and processing, improved system be-

havior.

5 Impact Evaluation on Power Consumption of

Virtual Machines Heterogeneity

In the �rst place, in order to evaluate the impact of vir-

tual machine heterogeneity on power consumption at

the datacenter level we performed several experiments
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Fig. 3 Energy e�ciency issues Big Data processing

with di�erent degrees of heterogeneity. To achieve our

goal, we used multiple sets of virtual machines having

di�erent heterogeneity degrees. Each set is composed

by four instances. Further, we increase gradually the

degree of heterogeneity and calculated the power con-

sumption for di�erent degrees of heterogeneity. Regard-

ing the workload type, we chose to perform a data-

intensive job, all machines sending and receiving simul-

taneously a �le of 200MB. At every 15 seconds we get

the server load on every machines until the job is done.

In the �rst experiment we start four identical ma-

chines and performed the data transfer job. In the sec-

ond experiment we used three identical instances and

the forth instance was di�erent. For the third exper-

iment we used two machines of one type and two of

other type. In the fourth experiment we used three dif-

ferent sets of virtual machines. In the last experiment,

all machines were di�erent, having the highest degree

of heterogeneity.

In the second place, we want to evaluate the di�er-

ence in terms of power consumption between two di�er-

ent Hadoop clusters with same computing power when

running the same workload. Regarding the workload

type we run three benchmarks, TeraGen, TeraSort and

TeraValidate. TeraGen was used to generate 10GB of

random distributed data, TeraSort was used to sort the

data and TeraValidate was used to validate the sorted

data. These benchmarks are commonly used to measure

MapReduce performance of an Apache Hadoop cluster.

We used the following formula in order to calculate

the power consumption and it is based on Equation 5:

P (4) =

4∑
i=1

(l(i)3 + 0.1), (6)

where:

� i represents a virtual machine instance;

� α = 3;

Fig. 4 Full mesh logical topology

� b = 0.1;

� µ = 1.

5.1 Experimental Setup

We create two di�erent experimental setups. First, in

order to perform a data-intensive job, we interconnected

all machines together in a full mesh logical topology as

shown in Fig. 4. Further, each virtual machine sends

and receive data. We used four types of virtual ma-

chines from Microsoft Azure Cloud [34] with di�erent

CPU and RAM memory characteristics presented in

Table 5.1: Basic A0, Basic A1, Basic A2 and Basic A3

instance types.

Secondly, in order to evaluate power consumption

in a Hadoop MapReduce cluster, we used two di�erent

Hadoop clusters with same computing power. Cluster

1 has six worker nodes (with the following characteris-

tics:1 virtual CPU and 3.75 GB RAMmemory) and one

master node (with 2 virtual CPUs and 7GB RAMmem-

ory). Cluster 2 has three worker nodes and one master

node. All virtual machines has the same con�guration,

2 virtual CPUs and 7GB RAM memory.

In all experiments performed, we get the average

load of the virtual machines using the "uptime" com-

mand. The average load Linux systems, represents a

measurement of the computational work that the sys-

tem is performing. Moreover, Linux systems counts pro-

cesses waiting for other resources than CPU such as,

processes that wait to read from or write to the disk.
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VM type Cores RAM (GB) Disk (GB)

Basic A0 0.25 0.75 30

Basic A1 1 1,75 30

Basic A2 2 3,00 30

Basic A3 4 7,00 30

Table 1 Azure instances types that have been used in experi-
ments

Fig. 5 Experiment 1: Homogeneous environment

5.2 Results

5.2.1 Evolution of server load

In order to understand the e�ect of heterogeneity on

power consumption of the machines, we present the

evolution of server load in a for di�erent degrees of

heterogeneity. In the �rst experiment, we considered

a homogeneous environment. In this setup the type of

virtual machines is "Basic A0". The evolution of server

load is presented in the Fig. 5. As can we see the load

has same evolution pattern on all machines.Moreover,

al machines �nish the data transfer in the same time.

In the second experiment, we considered an hetero-

geneous environment with three identical sets of virtual

machines formed from "Basic A0" instance types and

one di�erent with "Basic A1" instance type. The evolu-

tion of server load is presented in Fig. 6. We can observe

a more random evolution pattern with large �uctua-

tions of the load. "Basic A1" instance types �nish �rst

the transfer and have to wait for the rest of instances

to �nish the data transfer.

In the third experiment we increased the degree of

heterogeneity. We interconnected two sets of virtual

machines with di�erent characteristics. First set has

"Basic A0" instance types and the second one has "Ba-

sic A1". In the Fig 7 is presented the evolution of server

load. As can we observe the sets with identical machines

has the same evolution pattern. Moreover, the virtual

machines with higher performance characteristics (e.g.

Basic A1) �nish the transfer before the other instance

Fig. 6 Experiment 2: Heterogeneous environment

Fig. 7 Experiment 3: Heterogeneous environment

Fig. 8 Experiment 4: Heterogeneous environment

types. These have to wait for the slower machines to

�nish the transfer.

For the fourth experiment we have increased the de-

gree of heterogeneity. We've interconnected three di�er-

ent sets of instances (e.g. Basic A0, A1 and A2). The

evolution of server load is presented in Fig. 8. As can

we see an irregular pattern of the load evolution and

the range of load values increased. Also, "Basic A2"

instance type �nish �rst the transfer followed by the

"Basic A1" and "Basic A0".

In the �fth experiment, we considered an environ-

ment with the highest degree of heterogeneity. In this

setup we interconnected four di�erent sets of virtual

machines. In Fig. 9 is presented the evolution of server
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Fig. 9 Experiment 5: Heterogeneous environment

Fig. 10 Hadoop cluster 1 load evolution

load in this type of environment. The powerful instances

A2, and A3 �nish the job much faster, approximatively

after 100 second and have to wait for the other less

powerful virtual machines.

In the second part of our experiment we measured

the evolution of load on two di�erent Hadoop clusters,

while performing a MapReduce benchmark(e.g. Tera-

Gen, TeraSort and TeraValidate.) The load evolution

for the �rst cluster is presented in Fig. 10 and for the

second cluster is presented in Fig. 11.

Comparing the load evolution of the two clusters

we can observe that the �rst cluster need more time to

generate (approximately �ve minutes more), sort and

validate the data than the second cluster. We can also

observe that the cluster nodes are not equally balanced.

5.2.2 Power Consumption

In the Fig. 12 is presented in an aggregated way the

evolution of energy consumption over the execution of

job. As can we see the environment with highest de-

gree of heterogeneity (Experiment 5) consume more

power than the homogeneous environment (Experiment

1). Furthermore, we observe that for the Experiment 5

in the �rst 15 seconds, which is the time that is needed

for the powerful machines to �nish the transfer, is con-

sumed an important quantity of energy. In the remain-

Fig. 11 Hadoop cluster 2 load evolution

Fig. 12 Power consumption for each experiment

ing time these stay in an idle state while have to wait

for the slower machines to �nish the transfer and thus

consume energy while do not make any useful work.

So, we can conclude that the heterogeneous envi-

ronments consume more power because the virtual ma-

chines with higher resource characteristics �nish the

transfer much faster than slower machines and have to

wait in an idle for the other virtual machines to �n-

ish the transfer, consuming power without performing

useful computation. The key issue is to reduce the idle

time of the virtual machines.

In the Fig. 13 is presented the power consumption

for the each experiment performed. As can we see a fully

heterogeneous environment consume approximately twice

the power of a homogeneous environment.

The power consumption evolution of the load for

the nodes of Hadoop cluster 1 is presented in Fig. 14

and for Hadoop cluster 2 is presented in Fig. 15. As can

we see, for the �rst cluster the power consumption dis-

tribution on nodes is unbalanced. There are two nodes

(e.g. cluster-1-w-3 and cluster-1-w-5) that consume the

same amount of power. Comparing the power consumed

by the two clusters we can observe that cluster 1 con-

sume approximately twice the power of the cluster 2.

So, we can conclude that in order to optimize power

consumption in Big Data processing platforms we must
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Fig. 13 Power consumption for each experiment

Fig. 14 Hadoop cluster 1 power consumption

Fig. 15 Hadoop cluster 2 power consumption

�nd the best combination between the con�guration of

computing resources and workload type.

6 Conclusions and Future Work

In this paper we presented an approach for evaluation

of the heterogeneity degree impact on power consump-

tion for a set of virtual machines in a Cloud computing

environment in the case of data-intensive jobs in virtual

machines.

A good balance between workloads, usage patterns

and virtual machine computing power is mandatory in

order to achieve power e�ciency. If the virtual machine

utilization is low, and is still running, more power is

consumed. As a consequence virtual machines should

be dynamically adjusted to match the characteristics

of the other virtual machines that performs the job. In

this way the degree of heterogeneity decrease and the

virtual machines can �nish the data transfer in simulta-

neously, reducing the energy consumed. The key issue

is to reduce the idle time for the used resources.

Results show that the power consumption is pro-

portional with heterogeneity degree. This happens be-

cause of the fact that powerful virtual machines �nish

the transfer much more quickly that the less powerful

ones, and wait just to receive the data.

As we showed through the paper heterogeneity de-

gree has a big impact on power consumption for a set

of virtual machines that perform data-intensive tasks.

This has also impact on cost, because the cost of en-

ergy represent an important component of the cost for

services and resources.

For future work more type of workloads can be used

in order to quantify more accurate the impact on power

consumption. Furthermore, based on these results we

can build a job scheduling algorithm that take into

consideration the heterogeneity degree for the set of

instances that must execute scheduled job, in order to

optimize the power consumption at data center level.
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