Large Neighborhood Search for the Most Strings
With Few Bad Columns Problem *

Evelia Lizarraga', Maria J. Blesa!, Christian Blum?, and
Giinther R. Raidl?

1Computer Science Department, Universitat Politécnica de Catalunya — BarcelonaTech,
Barcelona (Spain), {mjblesa, evelial}@cs.upc.edu
2A]rtiﬁciad Intelligence Research Institute, Spanish National Research Council (IITA-CSIC),
Bellaterra (Spain), christian.blum@iiia.csic.es
3Institute of Computer Graphics and Algorithms, Technische Universitit Wien,

Vienna (Austria), raidl@ac.tuwien.ac.at

Abstract

In this work we consider the following N P-hard combinatorial opti-
mization problem from computational biology. Given a set of input strings
of equal length, the goal is to identify a maximum cardinality subset of
strings that differ maximally in a pre-defined number of positions. First
of all we introduce an integer linear programming model for this problem.
Second, two variants of a rather simple greedy strategy are proposed.
Finally, a large neighborhood search algorithm is presented. A compre-
hensive experimental comparison among the proposed techniques shows,
first, that larger neighborhood search generally outperforms both greedy
strategies. Second, while large neighborhood search shows to be compet-
itive with the stand-alone application of CPLEX for small and medium
sized problem instances, it outperforms CPLEX in the context of larger
instances.

Keywords: Most strings with few bad columns, integer linear program-
ming, large neighborhood search.

*A preliminary version of this work appeared at the ITEEE 2015 International Sympo-
sium on INnovations in Intelligent SysTems and Applications (INISTA), September 2-4, 2015,
Madrid, Spain. This work was supported by project TIN2012-37930-C02-02 (Spanish Min-
istry for Economy and Competitiveness, FEDER funds from the European Union) and project
SGR 2014-1034 (AGAUR, Generalitat de Catalunya). Additionally, Christian Blum acknowl-
edges support from IKERBASQUE. Evelia Lizarraga acknowledges support from the Mexican
National Council for Science and Technology (CONACYT, doctoral grant number 253787).

The final publication is available at Springer via http://dx.doi.org/10.1007/s00500-016-2379-4

{mjblesa, evelial}@cs.upc.edu
christian.blum@iiia.csic.es
raidl@ac.tuwien.ac.at
montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina
The final publication is available at Springer via http://dx.doi.org/10.1007/s00500-016-2379-4

montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina

1 Introduction

Many optimization problems from the field of computational biology are con-
cerned with strings such as, for example, DNA or protein sequences. Examples
of such optimization problems dealing with strings include the longest common
subsequence problem and its variants [3, 13], string selection problems [7, 8, 9],
alignment problems [2, 12], and similarity search [11]. In this article we con-
sider an N P-hard optimization problem—the so-called most strings with few
bad columns (MSFBC) problem—which was introduced in [1] in order to model
the following situation. Suppose to be given a set of DNA sequences from a
heterogeneous population consisting of two subgroups: (1) a large subset of
DNA sequences that are identical apart from at most & positions at which mu-
tations may have occurred, and (2) a subset of outliers. The goal of the MSFBC
problem is to separate the two subsets.

The MSFBC problem can technically be described as follows. Given is a set [
of n input strings of length m over a finite alphabet X, that is, I = {s1,..., s, }.
The j-th position of a string s;, ¢ =1,...,n, j =1,...,m, is henceforth denoted
by s;[j]. Moreover, given is a fixed value k < m. Set I together with value k
define a problem instance (I, k). The goal is to find a subset S C I of maximal
size such that the strings in S differ in at most k£ positions. In this context,
the strings of a subset S C I are said to differ in a position 1 < j < m if, and
only if, at least two strings s;, s, € S exist such that s;[j] # s,.[j]. A position j
in which the strings from S differ is also called a bad column. This notation is
derived from the fact that the set of input strings can conveniently be seen in
form of a matrix in which the strings are the rows.

1.1 Existing Work

The authors of [1] showed that no polynomial-time approximation scheme
(PTAS) for the MSFBC problem exists. Moreover, they state that the prob-
lem is a generalization of the problem of finding tandem repeats in a string [4].
In a preliminary version of this article (see [5]) we introduced the first integer
linear programming (ILP) model for the MSFBC problem. Moreover, we de-
vised a greedy strategy which was further applied in the context of a so-called
pilot method [14]. For problem instances of small and medium size the best re-
sults were obtained by solving the ILP model by the general-purpose ILP solver
CPLEX!, while the greedy-based pilot method scaled much better to large prob-
lem instances. On the downside, also the pilot method consumed a rather large
amount of computation time.

1.2 Our Contribution

In this work we, first, introduce an alternative way of making use of the greedy
strategy that was introduced in [5]. This new way of using the greedy strategy
is shown to obtain results comparable to the ones obtained by the greedy-based
pilot method in significantly less computation time. Second, we introduce an
ILP-based large neighborhood search (LNS) algorithm for the tackled problem.
In general, LNS algorithms are based on the following idea (for more details see,
for example, [10]). Given a valid solution to the tackled problem instance—also

Thttp://www-01.ibm.com/software/commerce/optimization/cplex-optimizer

called the incumbent solution—first, destroy selected parts of it, resulting in a
partial solution. Then apply some other, possibly exact, technique to find a
best valid solution on the basis of the given partial solution, that is, a best valid
solution that contains the given partial solution. Thus, the destroy-step defines
a large neighborhood, from which a best (or nearly best) solution is determined
not by naive enumeration but by the application of a more effective alternative
technique. In the case of the MSFBC problem we make use of our ILP model
and the ILP-solver CPLEX for exploring large neighborhoods. Therefore, the
LNS approach proposed in this paper can be labelled an ILP-based LNS. The
results show that this ILP-based LNS approach is competitive with the stand-
alone application of CPLEX for small and medium sized problem instances, and
it outperforms CPLEX in the context of larger instances.

1.3 Organization of this Paper

The remainder of this paper is organized as follows. Section 2 introduces the
ILP model for the MSFBC problem, while Section 3 describe the greedy strate-
gies. Finally, Section 4 presents the ILP-based LNS approach. An experimental
comparison is performed in Section 5, and Section 6 is dedicated to conclusions
and an outlook to future work.

2 An ILP Model for the MSFBC Problem

For the description of the ILP model let ¥; C X be the set of letters appearing
at least once at the j-th position of the n input strings. In technical terms,
Y; = {s;[j] | i =1,...,n}. The proposed ILP model for the MSFBC problem
makes use of several types of binary incidence variables. First, for each input
string s; there is a binary variable z;. In case x; = 1, the corresponding input
string s; is part of the solution, i.e., s; € S, otherwise not. Furthermore, for each
combination of a position j = 1,...,m and a letter a € ¥; the model makes use
of a binary variable z{, which is forced—by means of adequate inequalities—
to assume value one (zf = 1) in case at least one string s; with s;[j] = a is
chosen for the solution. Finally, there is a binary variable y; for each position
j =1,...,m. Variable y; is forced to assume value one (y; = 1) in case the
strings chosen for the solution differ at position j. Given these variables, the
ILP can be formulated as follows.

i=1
s.t. x; < z;i[j] fori=1,...,n (2)
and j=1,...,m
S a1+ (% - 1)y forj=1,...,m (3)
a€x;
doui<k (4)
j=1
z; € {0,1} fori=1,...,n (5)
zj € {0,1} forj=1,...,m
and a € X; (6)
y; € {0,1} forj=1,...,m (7)

The objective function (1) maximizes the number of chosen strings. Equa-
tions (2) ensure that, if a string s; is selected (z; = 1), the variable zjim, which
indicates that letter s;[j] appears at position j in at least one of the selected
strings, has value one. Furthermore, equations (3) ensure that y; is set to one
in case the selected strings differ at position j. Note that, in comparison to the
original ILP model as described in [], the right hand side of (3) was strengthened
from 1+ |X,;|-y; to 1+ (|X;| — 1) - y;. Finally, constraint (4) ensures that not
more than k& bad columns are permitted.

3 Heuristic Approaches

In [5] we introduced the following greedy strategy for completing a solution
when given a non-empty partial solution—that is, a subset of the input strings
SP C [—as input. Henceforth, be(S?) denotes the number of bad columns with
respect to SP, that is, the number of columns j such that at least two strings
Siy Sy € SP exist with s;[j] # s,[j]. A valid partial solution S? to the MSWBC
problem fulfills the following two conditions:

1. be(SP) <k
2. There exists at least one string s; € I'\ SP such that be(SP U {s;}) < k.

Obviously, a valid complete solution S only fulfills the first one of these condi-
tions.

The procedure for completing a given partial solution, henceforth denoted
by MakeSolutionComplete(,S?), is shown in pseudo-code in Algorithm 1. It works
as follows. At each iteration, exactly one of the strings from I\ S? is chosen,
according to a weighting function, and added to SP. The weighting function that
is used concerns the number of bad columns. More specifically, among all strings
from E := {s € T\ SP | bc(SPU{s}) < k} one for which be(SPU{s}) is minimal
is selected. In other words, at each iteration a string that causes a minimal
increase in the number of bad columns is chosen. In case of ties, the first string
encountered is selected. Note, in this context, that in our implementation the
values of the weighting function bc() are calculated in an efficient way, that is,

Algorithm 1 Procedure MakeSolutionComplete(SP)

input: a problem instance (I, k), a non-empty partial solution SP
E:={sel\S?|be(SPU{s}) <k}
while F # () do
s* ;= argmin{bc(SP U {s}) | s € E}
SP = SPU{s*}
E:={se€ E|bc(SPU{s}) <k}
end while
output: A complete solution S = SP

the bad columns concerning a partial solution S? are stored and for calculating
be(SP U s) for a string s € I\ SP only the remaining (non-bad) columns are
considered.

3.1 Frequency-based Greedy

In [5] we introduced two different ways of using procedure MakeSolutionCom-
plete(S?) when starting with an empty solution. In the first one, exactly one
string from [is chosen based on a criterion related to letter frequencies. This
results in a partial solution containing exactly one string. MakeSolutionCom-
plete(SP) is then applied to this partial solution in order to obtain a complete
solution.

The way in which the first string is chosen works as follows. Let fr;, for
all a € ¥ and j = 1,...,m be the frequency of letter a at position j in the
input strings from I. For example, if a appears in five of the n input strings
at position j, fr; , = 5/n. With this definition, the following measure can be
computed for each s; € I:

m

w(s;) = Zfrjm[j] (8)
=1

Remember, in this context, that s;[j] denotes the letter at position j of string
s;. In words, w(s;) is calculated as the sum of the frequencies of the letters
at each position in s;. The following string is then chosen to form the initial
partial solution for MakeSolutionComplete(SP):

s := argmax{w(s;) | s; € I'} (9)

The advantages of this greedy algorithm—henceforth denoted by GREEDY-F—
are its simplicity and low resource requirements.

3.2 Multi-Start Greedy Approach

Apart from GREEDY-F, in [5] we made use of procedure MakeSolutionCom-
plete(SP) in the context of a pilot method [14]. Procedure MakeSolutionCom-
plete(SP) was used at each level of the search tree in order to evaluate each
possible partial solution. The choice of a partial solution at each level was then
made on the basis of these evaluations.

The disadvantage of this pilot method was the excessive computation time
consumption. With the aim of devising an algorithm yielding solutions with

Algorithm 2 Multi-start greedy method

input: a problem instance (I, k)
: Sbsf = (Z)
:fori=1,...,ndo
SP = {s;}

S := MakeSolutionComplete(SP)

if |S| > |Spst| then Sy := S end if
end for
output: Solution Syt

PN DTy

a quality comparable to the ones of the pilot method, we studied truncated
versions of the pilot method. The one with the best balance between solution
quality and computation time is shown in 2, and is best described as a multi-
start greedy approach. It works as follows. For each possible string of s; € I the
corresponding partial solution SP = {s;} is fed to procedure MakeSolutionCom-
plete(S?). The output of this multi-start greedy approach, henceforth called
GREEDY-MS is the best one of the n solutions constructed in this way.

4 ILP-based Large Neighborhood Search

In the preliminary study [5] we applied CPLEX to the ILP (1)—(7) from Section 2
for a range of different MSFBC problem instances. While CPLEX performed
quite well for small and medium sized instances, it failed even to provide nearly-
optimal solutions in the context of large instances. In order to still be able
to profit from CPLEX when dealing with large instances, we consider in the
following an ILP-based LNS approach.

At each iteration, first, the current solution is destroyed partially. This can
be done randomly or according to some heuristic criterion, resulting in a partial
solution. Then, CPLEX is applied to find the best valid solution that contains
the given partial solution obtained in the destruction step. Note that, given
a partial solution SP, the best complete solution containing SP can be found
by applying CPLEX to the ILP (1)—(7), augmented by the following variable
fixations:

x; =1 for s; € SP (10)

The framework for the ILP-based LNS algorithm is shown in Algorithm 3. In
line 2, heuristic GREEDY-F—as described in Section 3.1—is applied to the tack-
led problem instance (I,k) in order to generate the first incumbent solution
Sbst- Then, at each iteration, the current incumbent solution S is partially
destroyed (see line 5) by removing a certain percentage percg.. of the strings in
Sbst- This results in a partial solution SP. After initial experiments we decided
to choose the strings to be removed uniformly at random. Given percg., note
that the precise number d of strings to be removed is as follows:

st Scur
i Fw%wOIIJ (1)

The next step consists in applying the ILP solver CPLEX in order to find a best
solution Sy, that contains the partial solution SP (see line 6). In order to avoid

Algorithm 3 ILP-based LNS for the MSFBC problem

1: input: a problem instance (I, k), values for the algorithm parameters
2: Spst := Result of applying GREEDY-F
3: PerCgey = Perch

4: while CPU time limit not reached do
5: SP := DestroyPartially(Sps s, percgeg:)
6: Sipe = ApplylLPSolver(S?, tax)

7 if |Sc/>pt| > |Sbsf| then

8: bsf = S(I)pt

9: Percyest ‘= percldest

10: else

11: Percy. = Percy.y + o

12: if Percye > percgest then

13: percg. := perc .

14: end if

15: end if

16: end while
17: output: Spgt

that this step takes too much computation time, CPLEX is given a time limit
tmax- The output of CPLEX is, therefore, a best—possibly optimal—solution
found within the allowed computation time.

We decided to give the algorithm the possibility to dynamically adapt the
percentage percg., of strings to be removed from the current solution. In
general, setting the percentage of destruction to a suitable value is important
to have a reasonable chance of escaping poor local optima but to nevertheless
lose not too much information of an already obtained high quality solution.
In order to control a dynamically changing value of percg. lower and upper
bounds 0 < percllest < percy, < 100 are specified as strategy parameters,
and percgy,; will always have a value within these limits.

Initially, percy. is set to the lower bound (see line 3 of Algorithm 3).
Then, at each iteration, if Sj,; is better than Sy, the value of percy, is set
back to the lower bound percl. Otherwise, percy. is incremented by a
certain amount. Following preliminary experiments, we set this amount to five.
If percg.; exceeds the upper bound percy., it is reset to the lower bound
perc}iest. These adaption steps are realized in Algorithm 3 in lines 7-15.

Note that the idea behind this way of dynamically changing the value of
percg. is as follows. As long as the algorithm is able to improve the current
solution Spsr using a low destruction percentage, this percentage is kept low.
In this way, the size of the large neighborhood is rather low and CPLEX is
faster in deriving the corresponding optimal solutions. Only when the algorithm
appears not to be able to improve over the current solution Sy, the destruction
percentage is increased in a step-wise way in order to diversify the search.

5 Experiments

In this section we present a comprehensive experimental evaluation of the fol-
lowing four algorithmic approaches: (1) The frequency-based greedy method

GREEDY-F from Section 3.1, (2) the multi-start greedy method GREEDY-Ms
from Section 3.2 (3), the LP-based large neighborhood search approach LNs
from Section 4, and (4) the application of CPLEX to the ILP model from Sec-
tion 2, denoted by CPLEX. All approaches were implemented in ANSI C+-+
using GCC 4.7.3 for compiling the software. CPLEX was used in version 12.1
in single-threaded execution. The experimental results that are presented in
the following were obtained on a cluster of computers with Intel® Xeon® CPU
5670 CPUs of 12 nuclei of 2933 MHz and (in total) 32 Gigabytes of RAM. For
each run of CPLEX we allowed a maximum of 4 Gigabytes of RAM. In the
following we first describe the set of benchmark instances. Then we present a
detailed analysis of the experimental results.

5.1 Benchmark Instances

For the experimental comparison of the methods considered in this work we
generated a set of random instances. These random instances are characterized
by four different parameters: (1) the number of input strings n, (2) the length
of the input strings m, (3) the alphabet size ||, and (4) the so-called change
probability p.. The generation of a random instance works as follows. First,
a base string s of length m is generated uniformly at random, that is, each
letter a € ¥ has a probability of 1/|%| to appear at any of the m positions of s.
Then, each of the n input strings of the problem instance under construction is
derived as follows. First, s is copied into a new string s’. Then, each letter of s’
is exchanged for a randomly chosen letter from ¥ with a probability of p.. Note
that the new letter is not necessarily different from the original one. Moreover,
note that we enforced at least one change per input string.
The following values were used for the generation of the benchmark set:

e n € {100, 500, 1000}
e m € {100,500, 1000}
o |X| € {4,12,20}
Values for p. were chosen in dependence of n:
1. If n = 100: p. € {0.01,0.03,0.05}
2. If n = 500: p. € {0.005,0.015,0.025}
3. If n =1000: p. € {0.001,0.003,0.005}

The three chosen values for p. imply for any string length that, on average,
1%, 3%, or 5% of the string positions are exchanged. For each combination
of values for the three parameters n, m and |¥| we randomly generated 10
problem instances. This results in a total of 810 benchmark instances. To test
each instance with different limits for the number of allowed bad columns, we
used values for k from {2,n/20,n/10}.

5.2 Tuning of LNS

The automatic configuration tool irace [6] was used to tune LNS concerning
several parameters for which well-working values had to be found: (1) the lower

Table 1: Parameters settings produced by irace for LNS concerning |X| = 4.

k=2 | k=n/20 | k=n/10 |
n () tmax () tmax () tmax
100 (70,70) 20 (90,90) 10 (90,90) 10
500 (90,90) 10 (90,90) 15 (90,90) 20
1000 (90,90) 5 (90,90) 15 (90,90) 10

Table 2: Parameters settings produced by irace for LNS concerning |X| = 12.

k=2 | k:n/20 | k=n/10 |
n () tmax (tmax () tmzauc
100 (80,80) 20 (90, 90) 15 (40,40) 20
500 (90,90) 5 (90,90) 20 (90,90) 5
1000 (90,90) 15 (90,90) 20 (90,90) 20

Table 3: Parameters settings produced by irace for LNS concerning |X| = 20.

k=2 \ k=n/20 \ k=n/10 \
n (l,u) t'max () tmax () tmax
100 (90,90) 10 (90,90) 20 (70,70) 20
500 90,90 15 (90,90) 10 (90,90) 5
1000 (90,90) 10 (90,90) 20 (90,90) 20

and upper bounds percl, and percl.,, of the percentage of strings to be
deleted from the current incumbent solution Skt and (2) the maximum CPU-
time tmax (in seconds) allowed for CPLEX per application within LNS. irace was
applied separately for each combination of values for n, |X| and k, respectively.
Note that no separate tuning was performed concerning the string length m and
the percentage of character change p.. This is because, after initial runs, it was
shown that parameters n, |¥| and k have a bigger influence on the behavior of
the algorithm than m and p.. Summarizing, IRACE was applied 27 times with a
budget of 1000 applications of LNS per tuning run. For each application of LNS
a time limit of n/2 CPU seconds was given. For each run of irace, one tuning
instance for each combination of m and p. was generated. This gives a total of
9 tuning instances per run of irace.

The parameter value ranges chosen for the tuning processes of the LNS are
as follows:

e For the lower and upper bound values of the destruction percentage,
the following value combinations were considered: (perc}iest, percy) €
{(10,10), (20,20), (30,30), (40,40), (50,50), (60,60), (70,70), (80,30),
(90,90), (10,30), (10,50), (30,50), (30,70)}. Note that in those cases in
which both bounds have the same value, the percentage of deleted nodes
is always the same.

tmax € {5.0,10.0,15.0,20.0}.

The results of the tuning processes are shown in Tables 1, 2, and 3. The fol-
lowing observations can be made. First, nearly in all cases setting (90,90) is
chosen for the lower and upper bounds of the destruction percentage. This is, at
first, surprising, because generally LNS algorithms require a lower setting of the
destruction percentage. Later, at the end of Section 5.3 we will study why such
a high setting for the destruction percentage is chosen in this case. Second, no
clear trend can be extracted from the chosen settings for .. The reason for
this is related to the reason for choosing a high destruction percentage, which
will be outlined later, as mentioned above. Finally, note that, in general, the
setting of tyax is very much dependent on the specification of the machines used
for performing the experimentation. Therefore, before running this algorithm
on different machines, the tuning process must be repeated.

5.3 Results

The results are presented in numerical form in three tables: Table 4 contains the
results for all instances with |X| = 4, Table 5 contains the results for all instances
with |X| = 12, and Table 6 shows the results for instances with |X| = 20. All
three tables have the following format. The first three table columns indicate the
number of input strings (n), the string length (m) and the change probability
(pe)- The results of GREEDY-F, GREEDY-MS, LNs and CPLEX are presented
in three groups of columns, one group for each of the three values for k. In
each group of columuns, the results are given in the following way. For GREEDY-
F, GREEDY-MS and LNS we provide the average of the best objective values
obtained for the 10 random instances of each table row (columns with heading
“mean”), and the corresponding average of the computation times in seconds
(columns with heading “time”). Hereby, LNs was applied with a time limit of
n/2 CPU seconds to each problem instance. For CPLEX, which was applied with
the same time limits as LNS to each problem instance, we provide the average
objective values (column with heading “mean”) and the corresponding average
optimality gaps (column with heading “gap”). Note that in those cases in which
this gap has value zero, the 10 corresponding problem instances were solved to
optimality within the allowed computation time limit. Finally, note that the
best result of each table row is shown in bold font.

Apart from the numerical results provided in the form of tables, the graphics
of Figure 1 show the improvement of LLNS over GREEDY-MS and the graphics
of Figure 2 show the improvement of LNS over CPLEX. The notation X-Y-Z
on the x-axis of these graphics has the following meaning. X, Y, and Z take
values from {S,M,L}, where S refers to small, M refers to medium and L
refers to large. While X refers to the number of input strings, Y refers to
their length, and Z to the probability of change. In case of positions X and
Y, S refers to 100, M to 500, and L to 1000, while in the case of Z, S refers
to {0.01,0.005,0.001}, M to {0.03,0.015,0.003}, and L to {0.05,0.025,0.005},
respectively, depending on the value of n.

The experimental results allow us to make the following observations:

e First, no substantial differences can be observed concerning the relative
performance of the algorithms for what concerns instances of different
alphabet sizes. The only difference is that the objective function values

10

0510 2

Impr. of LNS over PILOT-TR
4
L

Impr. of LNS over PILOT-TR

{0
Cing
o
i
it
2 uj
H

10

Impr. of LNS over PILOT-TR

60 100

Impr. of LNS over PILOT-TR
Lee
Do

Impr. of LNS over PILOT-TR

T
HI-
or
Grm
i
T
Impr. of LNS over PILOT-TR

0 20 40 60 80

L
i
C -

0 20 40 6 80

020

=

- —te——|

100
40 s 120

]

Impr. of LNS over PILOT-TR
60
L

Impr. of LNS over PILOT-TR

Impr. of LNS over PILOT-TR

0 20

S=

(&) || = 4, k = n/10. (h) || = 12, k = n/10. (i) || = 20, k = n/10.

Figure 1: Improvement of LNs over GREEDY-MS (in absolute terms). Each box
shows these differences for the corresponding 10 instances. Note that negative
values indicate that GREEDY-MS obtained a better result than LNs.

generally decrease with increasing alphabet size.

e GREEDY-MS and LNS both clearly outperform GREEDY-F w.r.t. solution
quality. In particular, it clearly pays of to start the greedy strategy from n
different partial solutions (each one containing exactly one of the n input
strings) instead of applying the greedy strategy only to the partial solution
containing the string obtained by the frequency-based mechanism.

e We can also observe that LNS and GREEDY-MS perform comparably for
the small problem instances w.r.t. solution quality. However, concerning
large problem instances—especially in the case of |X| = 4—LNs generally
outperforms GREEDY-MS. Nevertheless, there are some noticeable excep-
tions, especially for what concerns cases L-S-S and L-L-S in Figure 1b and
case L-L-S in Figure 1c. That is, when k£ = 2 and problem instances are
large, GREEDY-MS sometimes performs better then LNS.

e Concerning LNs in comparison to CPLEX, we can see the relative behavior
that is to be expected nicely displayed in the graphics of Figure 2. In
particular, LNS is competitive with CPLEX for small and medium size
instances of all alphabet sizes and for all values of k. Moreover, LNS
generally outperforms CPLEX in the context of larger problem instances.
This is, again, with the exception of instances L-S-x both in the case of
|Z] € {12,20} for k = 2 where CPLEX performs slightly better than LNs.

e Concerning computation time requirements, CPLEX requires substantially
more computation time than LNS, GREEDY-R and GREEDY-MSs for reach-
ing solutions of similar quality. However, keep in mind that this statement
is bound to the machines used for the experimentation.

11

150 250

Impr. of LNS over CPLEX
o
Impr. of LNS over CPLEX
0 20 40 &0

Impr. of LNS over CPLEX
50
%
1]
=

T
333 ;
bH0H5hPD

43233333335

(a) 12| =4, k=2.

I
v

(c) 3] =20, k

e

r CPLEX

| I
wer CPLEX
050 150 250
EQ
CPLEX
05 50 20
L]

Impr. of LNS over
Impr. of LNS over

CPLEX

300

Impr. of LNS over
0 100

(&) || = 4, k = n/10. (h) || = 12, k = n/10. (i) || = 20, k = n/10.

Figure 2: Improvement of LNS over CPLEX (in absolute terms). Each box shows
these differences for the corresponding 10 instances. Note that negative values
indicate that CPLEX obtained a better result than LNs.

Summarizing, we can say that, even though LNS generally outperforms the
other considered techniques, the disadvantages of LNS in comparison to
GREEDY-Ms and CPLEX for instances with |X| € {12,20} and k& = 2 leave
certainly room for improvement.

Finally, we also want to study the reasons for the fact that the tuning proce-
dure (irace) has chosen a very high percentage of destruction in nearly all cases.
Remember that this is rather unusual for an LNS algorithm. In order to shed
some light on this matter, we applied LNs for 100 iterations to two exemplary
cases: (1) a problem instance with n = 500, m = 100, p. = 0.015, |X| = 4,
k = n/20, and (2) a problem instance with n = 1000, m = 500, p. = 0.003,
|| = 4, k = n/20. This was done in both cases for fixed destruction per-
centages over the whole range between 10% and 90%. In all runs we took the
following three different measures: (1) the average time (in seconds) needed by
CPLEX for obtaining the optimal solutions when applied to the partial solu-
tion of each iteration within LNs, (2) the average size (in percent of the size
of the original problem instance) of the considered sub-instances, and (3) the
average number of bad columns that are already determined by the fixed strings
in the sub-instances. These three measures are displayed for each considered
destruction percentage in three different graphics of Figure 3 (concerning the
first example instance) and Figure 4 (concerning the second example instance).
It can be observed that, in both cases, CPLEX is very fast for any destruction
percentage. In fact, the time difference between destruction percentages 10%
and 90% is nearly negligible. Moreover, note that CPLEX requires 18.1 sec-
onds for solving the original problem instance of the first case to optimality,
whereas in the second case CPLEX is not able to find a solution with an opti-

12

jinal)

|

]

H

H

1

—
—

IIIIIIIII

g8

—

50

ol

0w @ Ed

size (in % of origi

.l

L)

#of bad columns in partial solution

Average time to solve sub-instances
8 B

0 % 4 s e 7o o S & 0 20 3 4 s @ 0 8 %0
Destruction percentage Destruction percentage Destruction percentage

(a) (b) (c)

Figure 3: Concerning the whole range of considered destruction percentages, the
three graphics show (a) the average time (in seconds) used by CPLEX within
LNs for each application at each iteration, (b) the average size (in percent of the
size of the original problem instance) of the considered sub-instances, and (c)
the average number of bad columns that are already determined by the fixed
strings in the sub-instances. All graphics concern an example instance with
n = 500, m = 100, p. = 0.015, |X| =4, k = n/20.

mality gap below 100 within 250 CPU seconds. This implies that in the case
of the MSFBC problem, as long as a small partial solution is given, CPLEX is
very fast in deriving the optimal solution that contains the respective partial
solution. Surprisingly, there is hardly any difference in the computation time
requirements with respect to the size of this partial solution, even though the
size of the sub-instances varies considerably for different destruction percentages
(see Figures 3b and 4b). Finally, observe that the number of bad columns that
are already determined by the strings contained in a sub-instance generated
with a rather low destruction percentage is very close to the maximum number
of allowed bad columns (25 in the case of the first example instance, and 50 in
the case of the second example instance). This can be observed in Figures 3¢
and 4c. In other words, the chance to generate a better solution on the basis of
low destruction percentage is rather small.

Summarizing, these observations explain why irace chose a large destruction
percentage nearly in all cases. This also implies that the computation time
limit given to CPLEX within LLNS does hardly play any role. In other words,
all computation time limits that we considered where generally sufficient for
CPLEX when applied within LNS. This is why no tendency can be observed in
the values chosen by irace for ¢ ax-

6 Conclusions and Outlook to Future Work

In this paper we considered the most strings with few bad columns problem,
which is an NP-hard combinatorial optimization problem from the bioinformat-
ics field. A hybrid metaheuristics approach was proposed that makes use of
a new integer linear programming model within a large neighborhood search
algorithm. After comparing the large neighborhood search algorithm with two
greedy strategies and the stand-alone application of CPLEX, we can say that
the large neighborhood search algorithm is, apart from a few exceptional cases,
a new state-of-the-art algorithm for the considered problem.

Concerning future work we plan to consider other ways of combining meta-
heuristic strategies with CPLEX. One option concerns, for example, the use of
CPLEX for deriving a complete solution on the basis of a partial solution within

13

6°66< 00 6’16 T'Vi L6201 07L T0 87¢E 6°66< 00 ¢ve 90y €8L9 T¢Cr T0 €91 6'66< 00 60 9¢ €LT 9°¢ 0 0¢ G000
6°66< 00 ¢09 T8ST ®98¢T QTIET T0 L'SL 6°66< 00 9T¢ Q€6 0€E8 9¢6L T0 9G¥ 6°66< 00 ¢0T 90 T9€ 661 TO0 LLI €00°0 000T
6°66< 00 6'€c 0008 CT6VST ¥'Gck T0 €3¢ah 6'66< S TIT ¥ 9°00F €9¢8 82¢€ 10 0FEE 6'66< 6',c1 TLT T°6SC ¥'19 €99¢ 10 0°€%C 100°0
6°66< 00 ¢'09 0'8¢¢€ 9'Cc0T ¢c¢'LSc 00 L'TCC 6°66< €0 0v¢ 8TIc 0FPS L09T T0 GVET 6°66< 99 8¢ 869 T0¢€ L8 T0 9€9 G000
00 T'98¢ 88T T'98% T'6E8 6887 10 998% 6°66< €66¢ LG SGPVPY LOLV 6°GLE T0 07TLE 6'66< €¥¢ 9TVl €°T9T TVE T8IC 10 0F9T €00°0 00¢ 000T
6'66< €605 T9T 9°06S G§'GE8 016V 10 L'L8¥ 6'66< 8'L6E TTC 6°9YF 0¢Iy 8CLE 10 07TLE 6'66< 86c G€I T'¥9C €¥¢ 609¢ 10 L'LST 100°0
00 0°000T 00 0°000T Z90T 0°000T 00 000T 00 T°LEL €LC TLEL ¥L8 6'TL9 00 0999 00 ¥°08C 9¢C¢ P08 €8 ¥¥LE 00 899¢ G000
00 0°000T 00 0°000T ¥90T 0°000T 00 000T 00 6°GEL G'CE 6°9€L 998 T1T999 00 9099 00 Q'08C 687 ¢08 €8 T9.c 00 ¥'I1.C €000 00T
00 0°000T 00 0°000T &90T 0°000T 00 000T 00 0°€€L GCF 0°€E8L T'28 8899 00 €F99 00 9°C8C 6'SGT 6'18¢ 90T 69.¢ 00 ¥0.¢ 100°0
6°66< 00 00 OV% €7cI oV T0 0¢ 6°66< €0 00 0%¢ v 0¢C T0 0% 6°66< 70 00 OT 6¢ 0T 70 0T G200
6°66< T°0 s 94 9°9¢ 6°L 00 T¢ 6'66< 00 00 8¢ G111 6°€ 00 8¢ 6°66< T°0 00 OT 6¢ OT 0 0T G10°0 000T
6°66< 10 6'€T L'¥E 8€ETT 9°¢ce 00 191 6'66< €0 8¢l 96T <9 T8 00 88 6'66< 70 00 €¢ 0¥y €¢ 00 ¢C¢ G000
6°66< 60 T0¢ 60T €61 VIt 00 L9 6°66< 70 00 ¢¢ 98 ¥'S 00 L€ 6°66< L0 00 OT 0c 0T 00 OT G200
6°66< 00 T°0¢ ¥'€¢ Vve c've 00 o1 6'66< €0 L8 €%¢r L0¢ €%c¢l 00 €9 6'66< S0 00 @1 0¢c €1 00 ¢T G10°0 00§ 00¢
88E CLcl ¥yl T'SET OFIT 0¥0T 00 48 668 ®8GL 6€T 698 G6L L69 00 899 666< ¥'Ic ¢¢ €LE TL 99¢ 00 €¢€€ G000
67 T°98C GC61 9G8C L'8C LE€Ve 00 ¥'8¢T 96c €09T 9T¢ L°09T 99T T6¢T 00 GSIT VL 89Sy 9T 89y 871 677 00 76€ G200
00 8°06€ ¢C 806 70T 8T¢E 00 9'8FE 00 ¢'8¥C LV T¥8C 6¢l GLve 00 8CVC 00 ¢'SYT T'¢c CSvL 0c LT¥DL 00 CLET G10°0 00T
00 0°06€ LT 0068 70T 90%¢ 00 L9¥E 00 6'¥V8C ¢S9 6'%8C V9T T8 00 G¥¥c 00 0°LVT LT OLPT 0C 0€FT 00 €6ET §00°0
6°66< O°T 00 OT c0 0T 00 OT 6°66< O'T 00 OT ¢0 OT 00 OT 6°66< 0'T 00 0T ¢0 0T 00 OT 00
6°66< O'T 00 OT ¢0 0T 00 OT 6°66< O'T 00 0T ¢0 OT 00 OT 6'66< 0'T 00 0T ¢0 0T 00 0T €0°0 0001
6°66< €T 00 T'CT c0 | ¢4 00 0%¢ 6°66< 0T 0T T c0 T 00 TT 666< 0'T 00 0T 0 01 00 0T 10°0
6'66< 0T 00 OT T0 0T 00 0T 6°66< O'T 0 OT T0 OT 00 OT 6°66< 0O'T 00 OT T0 OT 00 OT 00
6°66< O'T 00 OT 1°0 0T 00 OT 6'66< 0'T 00 0T 70 0T 00 OT 6'66< 0°'T 00 0T 0 0T 00 0T €0°'0 00§ 00T
6°66< 9G¥ T0 8¢ 70 8°¢S 00 9¢€ 6°66< ¥'C T0 T€ 0 ¢T¢€ 00 ¢T¢ 6°66< 0T 00 ¥'1 10 VI 00 ¥T1 10°0
6°66< 69 ¢0 08 0 0'8 00 TV 6°66< L€ 0 T% 00 <¢¥ 00 9%¢ 6°66< 9T 00 T'C 00 TC 00 61 00
166 €71 ¢0 87VI c0 [} 00 L4 6'66< G'L T0 T8 70 94 00 ¥V 6'66< 6'¢ 70 0% ¢0 6€ 00 9% €0°0 00T
00 L6V LT L6V 00 R4 00 Tav 00 96€ T0 96 00 €9¢ 00 G€€ 00 I'ce T0 T°C¢ T0 OT¢ 00 062 100
deS ueowr owiI) uUBOW OWI) ueowr owi} ueswr| deS uUeowW oW} UedW OWI) UedwW owil) uesw | deS uUeoW oW} UBSW OWI} uUedw ouwir) ueaw |°d w U
XAT1d)) SN'T SIN-AQEELD) A-AATTID) XATdD SN'T SIN-AQEEYY) J-AHIYD) XHATdD SNT SIN-AQEIYY) J-AQHITD)
or/u=1y 0g/u =14 c=4

*(spuodes ut sewry [[e) § = || YITM S9OUwR)SUT I0] SHNSAI TejuotLIodxy :F 9[qR],

14

6°66< 00 €9 67TV 7'€99 8LV ¢0 ¢TVe 6°66< 00 ¥or LTc 9€e L€ ¢T0 7v¢l 6°66< 00 00 OT €4r 0T ¢0 0T G000
6°66< 00 LYy G'68 1°26CT 1°€6 ¢c0 TIv 6°66< 00 12e L9y 0€L9 <T6v <C0 7¥Ig 6°66< 00 L0 7C 9LT LT ¢0 1'¢C €00°0 000T
6°66< 00 €2.C 0'99€ 19961 L'G2¢ 00 G'¢lc 6°66< 00 LG9 L°08C 9°¢8ET V48T ¢'0 9'I8T 6'66< 8¥¢ 96¢ €¥6 S0L 096 TO 916 100°0
6°66< 00 ¢'18 ¥'2€C T'I86 8991 0 98¢l 6°66< 00 749 6°0CT 0¢6vy T1¢8 T0 069 6°66< 00 6L 9€T ¢€Vc Ccl 70 06 G000
6°66< 6°0cE T'LE 9°69Y CTELOT 6'19€ T°0 1'8¢¢ 6°66< 00 129 ¥'1I1€ L06¢ 0Lcec T0 G€TC 6°66< 8¢S¢ €LT 800T 69¢ ¥4 10 €716 €000 009 000T
G0T 809%y 9¥%€ ¢'09F 19801 ¢'09¢ T°0 L'GS€ 6°66< 00 ¢'8¢ €°90€ 9009 69¢¢c 10 0¢ce 6°66< TCTL 9€T 0'S6 0L 6¢6 T10 €88 100°0
00 0°000T T°0 0°000T 66¢T 0°000T 00 0°000T| 00 8°099 T8F 8099 7G0T €789 00 89.L¢ 6T CCIT LS ¥VPIT ¢8 G0IT 00 #4901 G000
00 0°000T T°'0 0°000T ¥0€T 0°000T 00 0°000T| 00 G099 7Ly 9099 6CG0T 688 00 6°CLS T6T ¥P'€IT ¢9¢ LTIIT 98 ¥.L0T 00 ¢C00T €00°0 00T
00 0°000T T°0 0°000T 0'€91 0°000T 00 0°000T| 00 G869 ¥LS 0°T99 6901 L'¢8% 00 8GLS 98T C9IT 0O%c T7TIT 98 RO0IT 00 9601 100°0
6'66< CT'C 00 1'C 8L tax4 0 0%¢ 6'66< G0 00 OT (187 0T 70 OT 6°66< 80 00 OT 0y OT 70 OT gc00
6°66< T°0 00 0'S 691 0°'g 0 0¥ 6°66< €0 00 1'C L' T'c 0 07%¢ 6°66< G0 00 OT 6¢ OT 0 0T G10°0 000T
6°66< 00 09¢ 961 989 €°0C 0 6711 6°66< 00 0'€l g'0T L°G¢ G'0T T0 €9 6°66< €0 00 0T 6¢ 0T 00 0T G00°0
6°66< 9T 00 69 LeT 0L 00 €9 6°66< C'T 00 0¢€ g 0°¢ 00 87T 6'66< O'T 00 OT 0z OT1 00 OT gzc00
6°66< T'0T 0T 9¥I 9'9¢ 0°ST1 00 6% 6°66< 9'¢ 00 02 ¢cl c'L 00 6% 6'66< 0O'T 00 OT 9¢ OT1 00 OT G10°0 00¢ 009
6°66< L'CL Ve €T8 ¢'c0l 979 00 8F¥ 6°66< €LT 60T 99% 7S cse 00 1°€c 6°66< 0¢C ¢¢ V'8 09 62 00 8¢ G00°0
vee viee 9VI T'€ET 80¢ 6'€8T 00 6891 968 966 0€ ¥VOT €91 9¢L 00 999 6'66< 60T 9 ¥IT €1 VIt 00 VL G200
00 T'€se 1€ T'€se 0'9¢ 0'c0e 00 1868 00 g'gee 8¢ g'gee 091 9'8LT 00 L'€LI 00 T'6e T°¢ T6e T¢ 679 00 ©09 G10°0 001
00 1°'CSE 7€ T'CSE R®SGC 60I€ 00 8L0€ 00 V'¥eC ¢L V'¥TT SGI 6 78T 00 TO08I 00 609 L9 S09 T1TC 999 00 <TI¢ S00°0
00 0T 00 OT ¢0 0T 00 OT 6'66< 0T 00 OT 0 0T 00 OT 6'66< O'T 00 OT ¢0 0T 00 OT S0°0
00 0T 00 OT ¢0 0T 00 OT 00 0T 00 OT ¢0 0T 00 OT 00 0T 00 OT ¢o 0T 00 OT €0°'0 0001
6°66< T°T 00 T ¢0 T 00 T 6°66< 0T 00 OT c0 0T 00 0T 00 0T 00 OT ¢0 0T 00 0T 10°0
6'66< 0T 00 OT1 0 01 00 OT 6'66< 0T 00 OT T0 0T 00 OT 00 0T 00 OT 0 OT1T 00 OT S0°0
6°66< O'T 00 OT 10 0T 00 OT 6°66< O'T 00 OT 1°0 0T 00 OT 00 0T 00 OT 0 0T 00 OT €0°0 00¢ 00T
6°66< T°€ 00 <€ ¢0 '€ 00 LT 6°66< A°T 00 g1 g0 LT 00 91 00 0T 00 0T 0T 0T 00 OT 10°0
00 ov 60 OV 10 ov 00 0¢€ €L8 07T 0¢ 0%¢ 00 0'¢c 00 61 00 0T 00 0T 00 OT 00 OT 00
00 8°8 €0 L8 0 8°8 60 9V 00 11 0 vV 1°0 vy 00 L'¢ 00 6°T 0¢ 871 00 6T 00 971 €00 001
00 €L T0 €.L8 ¢0 662 00 6Lt 00 662 T0 692 10 0Tz 00 98T 00 89T T0 89T T0 ¥4I 00 €€I 10°0
de8 ueowr ouwil}) UBOUWI oW} UROW OUWII) UeOW de8 ueowr owil) uUBOW oW} UeoW ouwi} ueowr| ded uUeowl oW} UBSW OUII} UOW oW} ueswr |°d w u
XATdD SN'T SIN-AQEEID) A-AAETID) XATdD SN'T SIN-AQEEYY) J-AQETUD) XHATdD SNT SIN-AQEIYY) J-AQHITD)
o1/u=1 05/u =1 c=1

‘(spuooes ut sewily [[@) g = |X| YIM SeouR)SUI 10] SHNSI [RJUSWLIOdXF G 9[qR],

15

6°66< 00 19T 6°6€ LT8¢ LTV ¢0 L€C 6°66< 00 "0 /8T TG €0 ¢C0 611 6°66< 00 00 OT €4r 0T ¢0 0T G000
6°66< 00 86L €'8L 8°660T 9°1I8 ¢0 €0ov 6°66< 00 ¢e¢6 T6E €699 TIV <¢0 96T 6°66< 00 00 0¢ 191 T1°C ¢0 0¢ €000
6°66< 00 ¢'cc 0°cve 6'0¥8¢ 08¥¢ ¢0 9¥¥e 6°66< 00 I'T9 0°LZT¢ LTITT L0ST T0 CLVl 6°66< 8LT 9¢¢ 869 869 08% TO 'ye 100°0 0001
6°66< 00 7'0L 8%TIT €166 LTI4T 70 T'TIT 6°66< 00 6.8 9COT ¥9Lv LCL T0 LLy 6°66< 00 L'8T 6°L €ce LL 0 L¥ G000
6°66< €6€¢ 9T¢ 86EY LOLIT 68 T0 LTCE 6°66< 00 67¢ 6°LAC 6'8T9 9€6T T0 6681 6°66< GGT L6T 669 TLE T9¢ T0 T€9 €000 009 000T
6°66< G'80c CI¢ 9°€¥¥F 9LCIT €8¢ T0 6°€cE 6°66< ¥6¢c T1'GG L'I8T €€99 ¢€€61 T0 TSSI 6'66< 09T 06T 9'%9 TLE 2,09 T0 LGS 100°0
00 0°000T T°0 0°000T 0'GET 0°000T 00 0°000T| 00 C8Y9 ¥'19 T8FY9 90IT ¢99¢ 00 ¥'199 7Iic 968 €6¢ 078 ¥S 9L 00 699 G000
00 0°000T T'0 0°000T €'GET 0°000T 00 0°000T| 00 L9v9 109 T9F9 L'60T LG99 00 €84S §'9L 608 99 66L ¥8 €4L 00 189 €00°0 00T
00 0°000T T°0 0°000T 8¥EI 0°000T 00 0°000T| 00 0°S¥9 0cS 0°9¥9 ¢60I R899S 00 0099 Vvc TCT8 962 908 ¥8 9LL 00 €TL 100°0
6°66< 80 00 0%¢ 8L 0°¢C 0 0°¢ 6°66< 60 00 OT (17 0T 70 0T 6°66< L0 00 OT ¢ 0T 70 0T G200
6°66< 70 00 ¢V 7ar v 0 0¥ 6°66< 90 00 0¢ 9L 0'c 0 0°¢ 6°66< 70 00 OT 6¢ OT 0 0T G10°0 000T
6°66< 00 6'¢GT VLT g'19 'S8T 10 T'TT 6°66< 00 9€l 9% G¢'6¢ 06 I'0 6¢ 6°66< 10 00 0T 8¢ 0T I'0 0T G00°0
6'66< €¢ 00 ¢9 911 89 0 09 6'66< 9T 00 0€ ‘87 0°¢ T0 €¢ 6'66< O'T 00 OT 0z OT1 70 OT gzc00
6°66< 00T 0¢ 8¢l G'€e 8°€T 0 98 6°66< 07 00 09 ¢01 9 10 v 6'66< 0O'T 00 OT 0c OT 0 OT G10°0 00¢ 009
6°66< L'T9 €1C LAl 466 g'19 10 |WAS 6°66< ¥'8 T'TT 0TIV 0%cs L1€ T0 62LT 6°66< TT 8¢ L'G 0¢ €9 10 ¢¢ G00°0
6¥c T'€c T6c 09cc 7TO0E€ TET 00 6891 L6 9C6 ¢0€ 6796 8CT LTL 00 T8¢ 6°66< 9L ¢ce €L T VL 00 V€ G200
00 g Lve 9V QLVE §99C 0'86¢ 00 §¥6¢ 00 9°€TICc L9 9°€1ITC TI1 €0LT 00 P91 00 ovw ¥vL. 0% 0°C oy 00 L7E G10°0 001
00 T°0S¢€ €7 T°0S¢€ L'9C 166 00 ¥'96¢C 00 8VIC 86 S8T¥IT €91 99T 00 67191 00 I'vw €6 I'vy 0c L6600 €6¢ S00°0
6'66< 0T 00 OT ¢0 0T 00 OT 00 0T 00 OT 0 0T 00 OT 6'66< O'T 00 OT ¢0 0T 00 OT S0°0
6°66< O'T 00 OT ¢0 0T 00 OT 00 0T 00 OT ¢0 0T 00 OT 00 0T 00 OT ¢o 0T 00 OT €0°'0 0001
6°66< 0T 00 0T 170 0T 00 0T 00 0T 00 OT c0 0T 00 0T 00 0T 00 OT I'0 01T 00 0T 10°0
6'66< 0T 00 OT1 0 01 00 OT 6'66< 0T 00 OT 00 0T 00 OT 00 0T 00 OT 0 OT1T 00 OT S0°0
6°66< O'T 00 OT 10 0T 00 OT 6°66< O'T 00 OT 1°0 0T 00 OT 00 0T 00 OT 0 0T 00 OT €0°0 00¢ 00T
6°66< 6'C 00 0€ ¢0 0¢ 00 9% 6'66< C'T 00 TT 70 €1 00 ¢TT1 00 0T 00 OT 00 OT 00 OT 10°0
6'66< 6°¢ 80 6°¢ 10 6°€ 00 0¢€ 00 6°T 00 8T 00 6°T 00 8T 00 0T 00 0T 00 OT 00 OT 00
00 78 ¢0 €8 0 7’8 00 6% 00 6°¢ 0 %€ 00 8¢ 00 6¢ 00 g1 00 a1 00 ST 00 9T €00 001
00 ove I'0 0v%Eg €0 0'9¢ 00 8€C 00 G§'IC ¢0 SIT T0 ¥OT 00 971 00 ¢CI T0 Tc¢I T0 ¢G0T 00 L8 10°0
de8 ueowr ouwil}) UBOUWI oW} UROW OUWII) UeOW de8 ueowr owil) uUBOW oW} UeoW ouwi} ueowr| ded uUeowl oW} UBSW OUII} UOW oW} ueswr |°d w u
XATdD SN'T SIN-AQEEID) A-AAETID) XATdD SN'T SIN-AQEEYY) J-AQETUD) XHATdD SNT SIN-AQEIYY) J-AQHITD)
o1/u=1 05/u =1 c=1

‘(spuooes ut sewily [[®) (07 = |X| YIM SeouR)SUI 10] SHNSI [RJUSWLIOdXF 9 9[qR],

16

IIIIIIxII

(a)

Figure 4: Concerning the whole range of considered destruction percentages, the
three graphics show (a) the average time (in seconds) used by CPLEX within
LNs for each application at each iteration, (b) the average size (in percent of the
size of the original problem instance) of the considered sub-instances, and (c)
the average number of bad columns that are already determined by the fixed
strings in the sub-instances. All graphics concern an example instance with
n = 1000, m = 500, p. = 0.003, |X| =4, k = n/20.

the recombination operator of an evolutionary algorithm.

7 Acknowledgements

All experiments were executed in the High Performance Cluster managed by the
Research and Development Lab (RDlab) of the Computer Science Dept. at the
Universitat Politécnica de Catalunya (http://rdlab.cs.upc.edu). We thank
all the RDlab staff for their support.

References

[1] Boucher, C., Landau, G.M., Levy, A., Pritchard, D., Weimann, O.: On ap-
proximating string selection problems with outliers. Theoretical Computer
Science 498, 107-114 (2013)

[2] Gusfield, D.: Algorithms on Strings, Trees, and Sequences. Computer Sci-
ence and Computational Biology. Cambridge University Press, Cambridge
(1997)

[3] Hsu, W.J., Du, M.W.: Computing a longest common subsequence for a
set of strings. BIT Numerical Mathematics 24(1), 45-59 (1984). DOI
10.1007/BF01934514

[4] Landau, G.M., Schmidt, J.P., Sokol, D.: An algorithm for approxixmate
tandem repeat. Journal of Computational Biology 8(1), 1-18 (2001)

[5] Lizarraga, E., Blesa, M.J., Blum, C., Raidl, G.R.: On solving the most
strings with few bad columns problem: An ILP model and heuristics. In:
Proceedings of INISTA 2015 — International Symposium on Innovations in
Intelligent SysTems and Applications, pp. 1-8. IEEE Press (2015)

[6] Lopez-Ibanez, M., Dubois-Lacoste, J., Stiitzle, T., Birattari, M.: The
irace package, iterated race for automatic algorithm configuration. Tech.
Rep. TR/IRIDIA /2011-004, IRIDIA, Université libre de Bruxelles, Belgium
(2011)

17

http://rdlab.cs.upc.edu

17l

18]

19]

[10]

[11]

[12]

[13]

[14]

Meneses, C., Oliveira, C., Pardalos, P.: Optimization techniques for string
selection and comparison problems in genomics. IEEE Engineering in
Medicine and Biology Magazine 24(3), 81-87 (2005)

Mousavi, S., Babaie, M., Montazerian, M.: An improved heuristic for the
far from most strings problem. Journal of Heuristics 18, 239-262 (2012)

Pappalardo, E., Pardalos, P.M., Stracquadanio, G.: Optimization ap-
proaches for solving string selection problems. SpringerBriefs in Optimiza-
tion. Springer New York (2013)

Pisinger, D., Ropke, S.: Large neighborhood search. In: M. Gendreau, J.Y.
Potvin (eds.) Handbook of Metaheuristics, International Series in Opera-
tions Research & Management Science, vol. 146, pp. 399-419. Springer US
(2010)

Rajasekaran, S., Hu, Y., Luo, J., Nick, H., Pardalos, P.M., Sahni, S., Shaw,
G.: Efficient algorithms for similarity search. Journal of Combinatorial
Optimization 5(1), 125-132 (2001)

Rajasekaran, S., Nick, H., Pardalos, P.M., Sahni, S., Shaw, G.: Efficient al-
gorithms for local alignment search. Journal of Combinatorial Optimization
5(1), 117-124 (2001)

Smith, T., Waterman, M.: Identification of common molecular subse-
quences. Journal of Molecular Biology 147(1), 195-197 (1981)

Vofs, S., Fink, A., Duin, C.: Looking ahead with the pilot method. Annals
of Operations Research 136(1), 285-302 (2005)

18

	Introduction
	Existing Work
	Our Contribution
	Organization of this Paper

	An ILP Model for the MSFBC Problem
	Heuristic Approaches
	Frequency-based Greedy
	Multi-Start Greedy Approach

	ILP-based Large Neighborhood Search
	Experiments
	Benchmark Instances
	Tuning of Lns
	Results

	Conclusions and Outlook to Future Work
	Acknowledgements

