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The importance of implementation details and parameter settings
in black-box optimization: a case study on Gaussian
estimation-of-distribution algorithms and circles-in-a-square
packing problems
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Abstract We consider a scalable problem that has strong
ties with real-world problems, can be compactly formu-
lated and efficiently evaluated, yet is not trivial to solve and
has interesting characteristics that differ from most com-
monly used benchmark problems: packing n circles in a
square (CiaS). Recently, a first study that used basicGaussian
EDAs indicated that typically suggested algorithmic para-
meter settings do not necessarily transfer well to the CiaS
problem. In this article, we consider also AMaLGaM, an
enhanced Gaussian EDA, as well as arguably the most pow-
erful real-valued black-box optimization algorithm to date,
CMA-ES, which can also be seen as a further enhanced
Gaussian EDA. We study whether the well-known perfor-
mance on typical benchmark problems extends to the CiaS
problem. We find that although the enhancements over a
basic Gaussian EDA result in superior performance, the fur-
ther efficiency enhancements in CMA-ES are not highly
impactful. Instead, the most impactful features are how con-
straint handling is performed, how large the population size
is, whether a full covariance matrix is used and whether
restart techniques are used. We further show that a previ-
ously published version of AMaLGaM that does not require
the user to set the the population size parameter is capable
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of solving the problem and we derive the scalability of the
required number of function evaluations to solve the prob-
lem up to 99.99% of the known optimal value for up to 30
circles.
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1 Introduction

Estimation-of-distribution algorithms (EDAs) build
and use probabilistic models during optimization in order to
automatically discover and exploit structural features of an
optimization problem (Larranaga 2001; Pelikan et al. 2006).
EDAs are especially applicable in black-box optimization
(BBO) where no assumptions are made on the problem
being solved. This is frequently the case when solving com-
plex real-world problems. In the design of real-valued BBO
algorithms, important advances have been made and some
well-designed sets of benchmark problems now exist that are
commonly used to compare and evaluate the performance
of algorithms. An excellent example of such a bench-
mark is known as the black-box optimization benchmarking
(BBOB) (Hansen et al. 2010) set, which has been carefully
designed to facilitate meaningful algorithm comparisons
across artificial problems that are scalable in dimensional-
ity and have known structural features. The BBOB set has
been widely adopted in the evolutionary computation and
metaheuristics communities. Across a large number of algo-
rithms tested on BBOB, an enhanced Gaussian EDA known
as AMaLGaM (Bosman et al. 2013) and the well-known and
related CMA-ES (Hansen 2006) algorithm produced among
the best results.
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Despite these advances in the experimental evaluation of
algorithms, there remains a significant gap between results
on artificial benchmarks and the successful application of
newalgorithms to real-world problems.Real-world problems
impose conditions and requirements that are often abstracted
away in benchmark studies, where the primary concern is to
better understand the algorithm. In addition, there is always
the question of whether benchmark sets such as BBOB are
sufficiently representative of real-world problems. Here, we
aim to take a step in the direction of bridging this gap by
considering a problem that ticks many of the boxes of things
that are generally considered to be importantwhen evaluating
evolutionary algorithms (Whitley et al. 1996). The problem
we consider is scalable, has strong ties with real-world prob-
lems, can be compactly formulated and efficiently evaluated,
yet is not trivial to solve and has interesting characteris-
tics that differ from commonly used benchmark problems:
packing n circles in a square (CiaS). When faced with a
complex, real-world problem that can only be tackled from
a BBO perspective, the underlying problem difficulty could
well have been that of the more complex problems in the
BBOB benchmark suite, but it could also have been that
of CiaS, which we argue has different, yet important prop-
erties. Nevertheless, our focus is still firmly on evaluating
algorithms rather than claiming state-of-the-art performance
for specific real-world packing problems. In other words, it
should be clear that the focus of this article is not to design
and experimentwith (adaptations of) evolutionary algorithms
that are specifically meant for and achieve state-of-the-art
results on CiaS. For this, specific properties of the CiaS
problem would have to be considered and exploited as is
done bymany specific heuristics already exist. Instead, while
knowing the problem is CiaS, we still take a BBO approach,
assuming only that we know the types of variables and their
ranges and that these ranges must be considered as hard con-
straints.

Recently, a first study that used elementary Gaussian
EDAs indicated that typically suggested algorithmic para-
meter settings do not necessarily transfer well to the CiaS
problem (Gallagher 2012). Given that AMaLGaM was
designed to overcome certain drawbacks in basic Gaussian
EDAs and that, especially on smooth, quadratic surfaces,
CMA-ES is even more efficient, we consider whether the
issues observed with basic Gaussian EDAs when solv-
ing CiaS are overcome by these algorithms. Especially
within the EDA community, the topic of factorizing dis-
tributions to limit model complexity has received much
attention. We therefore consider also the benefits of esti-
mating a Gaussian distribution with a full covariance matrix
over using a univariate factorization for solving CiaS.
We further consider the added value of a restart strat-
egy and the impact of handling constraints since the CiaS
problem has simple (bounding box), but hard constraints.

To study these issues, we will use all the aforemen-
tioned algorithms to conduct various experimental analy-
ses. In the context of real-world representative problems,
we aim to highlight the experimental choices that must
be made in practice but yet are often overlooked or not
described in detail in papers that use artificial benchmark
problems.

2 Background

In this section, we present a brief overview on the general
notion of BBO in the case of continuous, real-valued vari-
ables, the evolutionary algorithms that we consider in this
article as well as the specific optimization problem at hand:
packing n circles in a square.

2.1 Continuous black-box optimization

Since we take a black-box optimization (BBO) perspec-
tive, we consider the following general formulation of a
continuous/real-valued optimization problem:

min
x∈R�

{ f (x)} s.t. c(x) = 0 (1)

where � is the number of real-valued problem variables and
it is further assumed that the only information available is
the ability to evaluate the objective function, f and the con-
straint function c, at a candidate solution, x. In Eq. 1 we
assume, without loss of generality, that objective function
f is to be minimized. Function c is 0 if and only if a solu-
tion is feasible. This is the most general definition of a BBO
problem in the real-valued domain as we make no further
assumptions on either f or c. The latter assumption is, how-
ever, often violated slightly even in what is still considered
BBO, assuming that (1) we know at least the allowed range
of values that each variable xi can take (often a contiguous
interval [xmin

i , xmax
i ] ⊆ R) and (2) we have a way to ensure

that function c is not just a binary indicator function but that
it also provides a notion of how much a solution violates the
constraints, making function c, and consequently the entire
problem, far more searchable. Making further assumptions
moves the problem further away from BBO. Although this
may well be possible for a real-world problem, in this article
we assume that this is not the case. The reason for this is
that for the best performance of the optimization algorithm,
it is typically very important to exploit such assumptions as
much as possible. This consequently alsomakes the designed
algorithms problem specific, which is specifically not the aim
of this article. We specifically want to consider algorithms
meant to target BBO, to which additions can be made should
more problem-specific information be available.
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2.2 Estimation-of-distribution algorithms

All the algorithms that we consider are evolutionary algo-
rithms (EAs) that maintain a population of n solutions upon
which selection and variation are performed. Furthermore,
they all follow, at the top level, the same principle: maintain
an �-dimensionalGaussian distribution and sample new solu-
tions from this distribution as a means of generating future
search points. All algorithms can thus be considered to be of
the estimation-of-distribution algorithm (EDA) family and
weuse a single framework for them.At each generation, �τn�
of the best solutions are selected and the Gaussian distribu-
tion is updated using these solutions. Here, τ is the so-called
selection percentile (τ ∈ [ 1n , 1]). For all algorithms consid-
ered, n − 1 new solutions are then generated, replacing the
n − 1 worst solutions and keeping only the currently best
solution in the population. The main difference between all
considered algorithms then is how the Gaussian distribution
is updated and used to generate new solutions.

2.2.1 MaLGaM

Perhaps, the most straightforward approach is to use well-
known maximum likelihood estimates for the parameters
(i.e., the mean vector and the covariance matrix) of the
Gaussian distribution. This basic Gaussian EDA, with and
without factorizations of the distribution, has been stud-
ied before within the framework known as IDEA (Bosman
and Thierens 2000) as well as separately, under the name
EMNA (Larrañaga et al. 2001; Larranaga 2001). Here, we
refer to this algorithm as maximum-likelihood Gaussian
model (MaLGaM) for its relation toAMaLGaMand iAMaL-
GaM, which are, respectively, adapted and incremental
adapted versions of MaLGaM.

2.2.2 AMaLGaM

AMaLGaM uses the same maximum likelihood estimates
for the model parameters as MaLGaM, but it increases the
values in the covariance matrix adaptively, based on how far
from the current model mean the improvements were found.
It samples solutions directly from the Gaussian distribution,
but it additionally attempts to move a subset of these new
solutions along the direction of the anticipated mean shift,
which is given by the difference between the current mean
and the mean estimated in the previous generation. These
additions, respectively, prevent the EDA from converging
prematurely and accelerate its movement along improving
directions. The proposed value for the selection parameter
is τ = 0.35, i.e., the fraction of best solutions in the pop-
ulation retained for subsequent model building. For more
details, including the required formulas, we refer the inter-
ested reader to the relevant literature (Bosman et al. 2013).

2.2.3 iAMaLGaM

Although AMaLGaM has been found to be more robust
than MaLGaM and unlike MaLGaM capable of scalably
solving problems such as the Rosenbrock function, the min-
imum required population size for AMaLGaM (to solve a
benchmark set of quadratic functions) is relatively large. The
proposed guideline in this case is n ≥ 3�1.5 + 17. For this
reason, the covariance matrix and the anticipated mean shift
are estimated incrementally in iAMaLGaM, meaning that
the existing values for these parameters are multiplied by a
discount factor and additively combined with the maximum
likelihood estimates of the current generation. As a result, the
minimally required population size is considerably reduced
and the proposed guideline becomes n ≥ 10�0.5, effec-
tively reducing the expected number of required function
evaluations on the aforementioned benchmarks. However,
this reduction in population size was also observed to result
in less reliable behavior on highly multimodal problems.
The proposed selection percentile is again τ = 0.35. For
more details, including the required formulas, we refer the
interested reader to the relevant literature (Bosman et al.
2013).

2.2.4 CMA-ES

The covariance matrix adaptation evolution strategy (CMA-
ES) has most in common with iAMaLGaM in that the
parameters of the search distribution are updated incre-
mentally. However, in CMA-ES the updates are far more
involved. A key difference is that instead of using maximum
likelihood estimates from the set of selected solutions, the
mean that is used in the covariance matrix estimate is that
of the previous generation rather than the current genera-
tion. Furthermore, all solutions are weighted on the basis
of their fitness ranks, both in the estimate of the mean and
the covariance matrix, and an evolution path is maintained
that can be seen as a more involved variant of the antic-
ipated mean shift. The formulas in CMA-ES reduce the
minimally required population size to a very small num-
ber, aligned with the intent of CMA-ES, to first achieve
fast (optimal), competitive behavior on the functions like the
sphere function, before robust behavior, which is more spe-
cific of AMaLGaM. The guideline for the population size in
CMA-ES is n ≥ 4+ �3log(�)�. The proposed selection per-
centile is τ = 0.5. For more details, including the required
formulas, we refer the interested reader to the relevant liter-
ature (Hansen 2006).

2.3 The circles-in-a-square packing problem

TheCiaSproblem is awell-studied two-dimensional geomet-
ric packing problem. Conceptually, it is defined as follows.
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Fig. 1 Top row optimal circle packings for nc = 5, 10, 20 circles. Bottom row corresponding optimal point scatterings

Determine the maximum radius for placing nc circles inside
a unit square such that they all have that same radius and
do not overlap or fall outside of the unit square. In other
words, position the circles and compute the radius of the cir-
cles such that the circles occupy the maximum possible area
within the unit square. The solution for nc = 1 is trivial (a
circle placed at the center of the square with the maximum
radius of 1

2 ). For nc ≥ 2, the problem is equivalent to find
an optimal scattering of nc points in the unit square, mean-
ing that the smallest distance between any pair of points is
maximized (Addis et al. 2008). Examples of optimal circle
packings and their corresponding point scatterings are shown
in Fig. 1.

2.3.1 Problem formulation

It is the point scattering formulation that we shall directly use
in our optimization algorithms. Moreover, because we take
a BBO perspective, we formulate the optimization problem
here in a manner that can be used straightforwardly, i.e., in
terms of � real-valued variables x0, x1, . . . , xl−1. Note that
the CiaS problem thereby is only defined for � ≥ 4 and even.
We encode the horizontal and vertical position of the i th point

by variables x2i and x2i+1, respectively. The problem to be
solved then becomes

max
x∈Rl

{ fScatter(x)} s.t. xi ∈[0; 1], i ∈{0, 1, . . . , l − 1} (2)

where
fScatter(x) = min0≤i< j< l

2

{‖(x2i , x2i+1)−(x2 j , x2 j+1)‖
}

and ‖x‖ is the Euclidean norm, or length, of vector x. It is
known that for any solution x, the value for the original CiaS
problem is given by

fCiaS(x) = fScatter(x)
2( fScatter(x) + 1)

(3)

Castillo et al. (2008) present a survey of applications that
involve circle packing: including cutting, container loading,
cylinder packing, facility dispersion, communication net-
works and facility and dashboard layout problems. Circle
packing problems can be considered as simplified versions of
such real-world problems andhave received a large amount of
attention in the literature (seeCastillo et al. (2008) for a recent
overview). Provably optimal packings have been found for
every nc ≤ 30 as well as for some special cases with more
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circles, using either theoretical or computational approaches
(see Szabo et al. (2005) and the references therein). For
larger values of nc, finding provably optimal packings in gen-
eral becomes increasingly difficult and time-consuming. The
Packomania Web site (Specht 2013) maintains a large list of
the optimal (or best known) packings (currently with most
values from nc = 2 up to nc = 9996), along with references
and other related resources.

Circle packing problems form a challenging class of opti-
mization problems. They can generally not be solved using
analytical approaches or via gradient-based optimization.
These problems are also believed to contain an extremely
large number of local optima. For the problem of packing
equal circles into a larger circular region, a computational
approachwas previously used to estimate the number of local
optima by running a local optimization algorithm over a large
number of trials (Grosso 2010). Although a conservative esti-
mate, results indicate that the number of local optima grows
unevenly but steadily, with at least 4000 local optima for
nc = 25 and more than 16,000 local optima for nc = 40.

2.3.2 Constraint handling

A key difference with many benchmark problems (including
those in BBOB) is that CiaS has hard constraints, i.e., every
variable must always lie in the unit range [0; 1]. It is fair to
assume that real-world problems typically have such simple,
but hard constraints and that this information is known even
in aBBOsetting.A straightforward practical option to handle
these constraints is to continue to resample solutions until all
constraints are met. However, as the dimensionality of the
problem increases, this is inefficient and time-consuming.
Therefore, we will use general constraint-handling tech-
niques that are commonly encountered in the evolutionary
computation literature (Coello 2002). The techniqueswewill
consider are straightforward to incorporate in any algorithm.
However, apriori it is unclear which method is likely to work
best and whether different methods have a different impact
at all. Significant effort could be devoted to fine-tuning a
specific constraint-handling technique, but this reduces the
generality of the results as well as calling into question the
contribution of the algorithm itself, which we have declared
here to be the focus of the study. It is therefore important to
study different, but general constraint-handling techniques
here. We will consider three of them.

– Boundary repair (BR) Upon evaluation of a solution x,
every xi < 0 is changed to xi = 0 and every xi > 1 is
changed to xi = 1.

– Constraint domination (CD) (Deb 2000) The fitness
of a solution is computed regardless of its feasibility. In
addition, the amount of constraint violation is penalized

quadratically. For CiaS, we use the sum over all variables
of (0 − xi )2 if xi < 0 and (xi − 1)2 if xi > 1. With
CD, the ranking of solutions is altered. When comparing
two solutions, if both are infeasible, the solution with the
smallest amount of constraint violation is preferred. If
only one solution is infeasible, the solution that is feasible
is preferred. Finally, if both solutions are feasible, the
original ranking (i.e., based on fitness) is used.

– Random repair (RR) Upon evaluation of a solution x,
every xi < 0 and every xi > 1 is randomly reset,meaning
that it is given a new value randomly uniformly drawn
from [0; 1].

3 Initial landscape analysis

Althoughmany approaches to solving the CiaS problem have
appeared in the literature, relatively little is done on landscape
analysis (from a BBO perspective) (Morgan and Gallagher
2014). To gain some insight into the type of landscapes that
CiaS problems have, we produced pairwise variables heat
maps for two CiaS instances: for nc = 5 (Fig. 2) and nc = 10
(Fig. 3). These heat maps were produced by taking a single
solution, either the known optimal solution or a randomly
generated solution, and subsequently varying two of the vari-
ables, keeping all others fixed. The observed function values
are color-coded in a heat map, with black being the worst
function value and bright yellow the best. In case, the two
variables are the same (i.e., the diagonal in Fig. 2), the heat
map becomes one-dimensional, in which case we replace the
heat map with a simple line graph. In each case, the location
of the selected solution itself is also shown, using a black
dot.

The heat maps illustrate how the main challenges in CiaS
problems are different from typical real-valued benchmark
problems that are often variants of sums of quadratic func-
tions, potentially superimposed with many local optima. The
CiaS problem has many ridges and valleys along which the
fitness is constant. This seems to bear some similarity to
the Michalewicz function, which is also not often found in
benchmark sets, but has recently been demonstrated to be
a hard problem for typical Gaussian EDAs (Bosman et al.
2013). The Michalewicz function is not efficiently solved by
exponentially increasing the population size. However, it can
still be efficiently solvedby considering eachproblemdimen-
sion separately, which is not the case for CiaSwhere there are
clearly strong, often nonlinear dependencies between prob-
lem variables. This can for instance be seen in Fig. 2 for the
combination of variables x0 and x1 in both the random and
the optimal solution that shows an uneven distribution of cir-
cular shapes in the heat map that causes the optimal value of
one variable to be (very) different for different values of the
other variable.

123



P. A. N. Bosman, M. Gallagher

Fig. 2 Heat maps (low values: black, high values: yellow) for the
nc = 5 CiaS problem instance for all variable pairs in case of the
optimum (top right of matrix) and in case of a random solution (bot-

tom left of matrix). Black dots show solution locations.Diagonal shows
one-dimensional landscape plots (red: optimum solution, blue: random
solution)

Fig. 3 Heat maps for nc = 10 CiaS problem instance for pairs of variables that form circles only. Further details are similar to those in Fig. 2
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The heat maps for pairs of variables that form circles
also clearly show that a component of the underlying struc-
ture is the Voronoi diagram of the points, which forms a
set of ridges along which the fitness is constant. Further-
more, there are many symmetries as in any given solution
any pair of variables that form a circle can be interchanged
with any other pair of variables that form a circle. Solutions
can thus be rotated, flipped and mirrored at will. Another
interesting component to CiaS is one that cannot be seen
from the heat maps: the hard constraint that every point
must lie in the unit box. Dealing with constraints can be
done in many ways and great care must be taken. Repair
mechanisms for instance have the advantage that solutions
always remain feasible, but where solutions end up after a
repair operation can be of vital importance to the process
of model building. Although in future work more advanced
landscape analyses would be interesting to perform, we can
already conclude from this rudimentary analysis that theCiaS
problem is highly nonlinear, has many isolated local optima,
ridges and strong variable interactions as well as hard con-
straints.

4 Influence of population size

A key parameter of any EA is the population size. We vary
the population size on the nc = 10 CiaS instance and run all
algorithms until convergence without a limit on the number
of evaluations, but with a fitness variance tolerance of 10−30.
As a basis of comparison, we consider the performance ratio,
defined as f (x)/ f (x∗) where f (x∗) is the known optimal
value. We also consider the probability of success, where we
define a success as reaching 99.99% of the optimal value
(equivalent to a performance ratio of 1.00010001).

Figure 4 shows the average and the interdecile range
(i.e., 10th–90th percentiles) of the results using error bars,
computed over 100 runs. It is quite clear that the addi-
tions for enhanced convergence in AMaLGaM and CMA-ES
also prove useful for solving CiaS problems. MaLGaM
requires far larger population sizes to get a low performance
ratio (Fig. 4, center row), but even then, the performance
is well below the 99.99% success criterion (i.e., is not
shown in Fig. 4, top row since all values were zero). The
comparison between CMA-ES and AMaLGaM is far less
outspoken. Ignoring for now, the number of evaluations (dis-
cussed further in Sect. 6), the probability of success for
CMA-ES is much smaller than it is for iAMaLGaM when
BR is used, and similar when CD is used. In case of RR,
the performance ratio of CMA-ES is near that of MaL-
GaM.

Figure 4 also includes results for the use of the univariate
factorization compared to full multivariate Gaussian models.
For the univariate factorization, the covariancematrix is diag-

onal; i.e., only the variances are estimated. As a result, model
building and sampling newsolutions can be donemuch faster.
OnCiaS, a reasonable performance ratio is obtainable using a
univariate factorization. However, it is clear that using a uni-
variate factorization is inferior to using the full covariance
matrix if the true optimum is desired to be found (Fig. 4, bot-
tom row). Thus, the results on CiaS problems suggest that
it is important to consider the processing of dependencies,
also known as linkages, between problem variables and how
we can best exploit them. This has been a major focus of
the EDA literature, but there have been few empirical vali-
dations of this reported on anything but artificial benchmark
problems.

These results confirmexisting results obtainedusingMaL-
GaM regarding the sensitivity of parameter settings (Gal-
lagher 2012). The literature guidelines for population sizes
are 373 forAMaLGaM, 44 for iAMaLGaMand 12 for CMA-
ES. Whereas for AMaLGaM these values are quite good
(relatively high probability of success and relatively low per-
formance ratio), they are not optimal for iAMaLGaM and
nowhere near good for CMA-ES.

Regarding constraint-handling techniques, it is clear that
this choice has a dramatic influence on the performance
results.UsingRRgives theworst results by far among all con-
sidered techniques. This underlines the importance of being
aware of the potential influence of a constraint-handling tech-
nique, in addition to issues that are typically given much
more attention (e.g., how to best build the Gaussian model).
With reflection on some (non-black-box) specific knowl-
edge of the problem, the reason for the worse behavior
with RR is likely to be that in an optimal solution for CiaS
always at least one point lies on a boundary of the feasi-
ble solution space. When approaching a boundary, solutions
will be sampled on either side, but those on the infeasi-
ble side will be changed a lot and will typically end up far
away from the boundary, making converging to boundaries
hard.

A second, interesting effect that results from the use of
constraint-handling techniques is that the probability of suc-
cess does not continue to increase as the population size
increases. In fact, for CiaS, increasing the population size
eventually leads to a decrease in success. The average per-
formance ratio stagnates and in some cases even becomes
worse. Clearly, a source of deception exists for the con-
sidered algorithms. As the population size increases, more
infeasible solutions are generated. The proportion of infeasi-
ble solutions will also likely increase as the variance tends to
increase with a larger population size, at least up to a certain
point. The constraint-handling techniques then increasingly
interfere with converging toward a solution as many solu-
tions are repaired and relocated near local optima, toward
which in the end with high probability the algorithm con-
verges. Given that the performance ratio does not degrade
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Fig. 4 Results of all tested EAs with typical literature-reported
parameter settings except for population size, which is varied here
(horizontal axis in every graph) (different graph lines), for every
constraint-handling method (different columns) on the nc = 10 CiaS
instance, averaged over 100 runs. Bars show interdecile range. Top row

probability of success, defined as reaching 99.99% of the known opti-
mal function value. Center row performance ratio upon convergence
caused by population fitness variance dropping below 10−30. Bottom
row the same as the center row, but zoomed into a smaller range for the
performance ratio (vertical axis)

much, these local optima are of good quality in the case of
BR. This is to be expected since good solutions will have
points on the boundary. Figure 5 shows a convergence graph
for iAMaLGaM with two different settings for the popula-
tion size. For the smaller population size setting, 38 runs out
of 100 were successful, whereas for the larger population

size setting, only 6 runs out of 100 were successful. This
confirms that there are one or more local attractors to which
iAMaLGaM tends to converge (if BR is used). Given how
RR works, it is unlikely that a solution will be repaired and
relocated near a local optimum of high quality if RR is used.
Among the considered techniques, CD is the least disruptive.
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This is to be expected since this technique does not relocate
solutions. However, the performance of iAMaLGaM-Full
shows that even with CD the chance of not ending up at the
global optimum increases as the population size becomes
overly large. Concluding, the choice of constraint-handling
technique is of great importance and care should be taken
when drawing conclusions about an algorithms’ performance
without considering which constraint-handling technique is
used.

5 Influence of multi-starts and restarts

Increasing the population size is a commonly used approach
to increasing an EA’s resources and, often considered cor-
respondingly, its optimization power. However, as shown in
the previous section, due to the constraints of the CiaS prob-
lem, increasing the population size above some point is not
helpful and can even be detrimental. Another way to increase
the resources of an EA (also of non-population-based opti-
mization algorithms) is a random restart procedure, i.e., run
the EA multiple times and report the best result found over
all runs. In AMaLGaM (Bosman et al. 2013), an extension of
this procedure was proposed that uses an increasing number
of multiple restarts that are not fully independent. In the case
of k restarts, kn solutions are generated randomly and then
partitioned into k clusters. These clusters then form the initial
populations for k otherwise independent runs. If the solu-
tion space is globally deceptive or hard, this approach allows
a natural subdivision of the space and potentially a faster

increase in the probability of success than randomly restart-
ing. A related technique found in EAs is niching (Mahfoud
2000; Yu and Suganthan 2010). We consider here whether
such an approach is useful for the CiaS problem. Since the
procedure was proposed only for AMaLGaM, we tested it
only with the AMaLGaM algorithm variants. For AMaL-
GaM and iAMaLGaM, their respective guideline parameter
settings were used. For MaLGaM, 10 times the population
sizing guideline for AMaLGaM was used, i.e., n = 3730.

The results are shown in Fig. 6. The light dotted lines
correspond to the probability of success if the number of
populations on the horizontal axis was independent random
restarts, i.e., 1 − (1 − ps)k where ps would be the prob-
ability of success for a single run, and k is the number of
restarts. These results should be comparedwith those inFig. 4
showing the effects of population size. Clearly, restarting
is a far more effective approach to increasing the probabil-
ity of success than increasing the population size. This is
good news from a viewpoint of parallel computation with-
out minutely parallelizing the algorithm but running a single
algorithm in parallel multiple times. From these results,
there seems little additional advantage to using the cluster-
ing approach described above to partition the restarts when
solving CiaS, because the results closely follow the lines
that would have been achieved with pure random restarts.
If the initial partitioning would be additionally helpful, the
observed probabilities of success for the actual algorithm
experiments should grow faster than the light dotted lines.

Other results are in line with observations made in Sect. 4.
In particular, the RR constraint-handling technique leads
to the worst results, the enhancements in AMaLGaM help
substantially and the univariate factorization substantially
diminishes the probability of success. The main reason
for AMaLGaM outperforming iAMaLGaM in these exper-
iments is that at the guideline population size AMaLGaM
(initially) has a larger probability of success.

6 Influence of problem size

In this Section, we consider the influence that the size of the
problemhas on the performance of the considered algorithms
from two different perspectives. First, we consider the case
where the maximum computational budget is fixed. Second,
we consider the casewhere the desired approximation quality
is fixed.

6.1 On a 10,000,000 evaluations budget

We first consider the influence of the problem size given a
fixed budget of 107 function evaluations. We consider prob-
lem instances 2 ≤ nc ≤ 30, for which the globally optimal
values are known.Becauseweknow from the results obtained
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Fig. 6 Results of all tested EAs with typical literature-reported para-
meter settings (different graph lines) for every constraint-handling
method (different columns) on the nc = 10 CiaS instance for different
numbers of populations that are executed in parallel, but are initialized
so as to subdivide the search space (horizontal axis in every graph),
averaged over 100 runs. Bars show interdecile range. Top row prob-
ability of success, defined as reaching 99.99% of the known optimal

function value.Dotted lines indicate expected progression of the proba-
bility of success with completely independent multiple restarts, starting
from different probability of success values for a single start. Center
row performance ratio upon convergence caused by population fitness
variance dropping below 10−30. Bottom row the same as the center row,
but zoomed into a smaller range for the performance ratio (vertical axis)

so far that allowing (multi-)restarts is highly beneficial, we
will consider two approaches to using the algorithms: using
typical parameter settings and using parameter-less popula-
tion management schemes that employ restarts.

6.1.1 Typical parameter settings

For all algorithms, we used their respective suggested algo-
rithmic parameter settings taken from the literature. How-
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ever, because in the previous sections we observed that
the population size guideline for CMA-ES was too small,
we considered running CMA-ES with the same settings as
AMaLGaM and iAMaLGaM for both the truncation per-
centile and the population size.

The results in Fig. 7 confirm most of the observations that
were summarized at the end of Sect. 5. In addition, however,
we now see that the performance of CMA-ES drastically
changes if different algorithmic parameters are chosen. To
support some of our observations from the figures, we used
statistical hypothesis testing. In particular, we have used
the Mann–Whitney–Wilcoxon statistical hypothesis test for
equality of medians with p < 0.05 to see whether the final
result obtained by one EA is statistically different from that
of another EA.

If the selection parameter alone is changed into that of
AMaLGaM (i.e., τ = 0.35 instead of τ = 0.5), the results

become only a little worse on average, but this is not found
to be statistically significant. However, a huge, statistically
significant, improvement is obtained if the population size
is additionally changed into that of AMaLGaM or that of
iAMaLGaM. In case of the latter, the results are a little
worse on average than that of AMaLGaM and iAMaLGaM.
This difference is found to be statistically significant. This
is again indicative that the additional enhancements made in
CMA-ES over those already present in AMaLGaM are not
the most important. However, if the population size is further
increased to that of AMaLGaM, the results become slightly
better than that of AMaLGaM and iAMaLGaM. This differ-
ence is found to be statistically significant in comparison to
iAMaLGaM, but not toAMaLGaM. These observations hold
for the two least disruptive constraint-handling techniques.
In case of RR, the results always become worse for CMA-
ES. This is likely because the solutions no longer abide by a
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key assumption under which CMA-ES performs highly effi-
ciently, i.e., that the function being optimized is a quadratic
surface. This is a known issue (Hansen 2006). Choosing the
right population size can, however, still make a big differ-
ence. Note that although the best results in these graphs are
now for CMA-ES, this may not necessarily remain the case
if other population sizes are tested for both AMaLGaM and
CMA-ES.

6.1.2 Parameter-less population management schemes

In addition to testing the algorithms using guideline set-
tings for algorithmic parameters taken from the literature,
we also tested versions of the algorithms that incorporate
restart mechanisms. Ultimately, it is fairest to do compar-
isons on the basis of complete mechanisms, wherein all
algorithmic parameters are specified and a restart mechanism
is incorporated to make algorithms self-contained so that no
further parameter tweaking can be done tomake an algorithm
appear better than its non-tweaked competitors. We can then
speak of a specific parameterized instance of the algorithm.
For AMaLGaM and iAMaLGaM, such a parameter-less po-
pulation management (PLPM) scheme has been proposed
in which first a single run is performed with base guide-
line parameter settings. Upon convergence, the population
size is increased or the number of parallel runs started from
a clustered initialization is increased. In even restarts the
number of parallel runs is exponentially increased. In odd
restarts a single population is used but the population size is
exponentially increased. More details may be found in the
literature (see, e.g., Bosman et al. 2013). Moreover, source
code is available from the website of the first author.1 For
CMA-ES, we use a restart strategy that was the proposed
default until recently: increase the population size exponen-
tially upon convergence (Hansen 2006). We note that the
currently best-known approach for running CMA-ES is to
use a strategy that uses different parameter settings in dif-
ferent populations, known as the bi-pop CMA-ES (Hansen
et al. 2010).

For MaLGaM, a restart strategy has not been previ-
ously proposed. Although we could use the same one as
in AMaLGaM, the results presented here indicate that the
basic Gaussian EDA is far inferior for solving CiaS instances
and we therefore disregarded it further. The results (Fig. 8)
show quite clearly again the impact of using the different
constraint-handling techniques. Interestingly, it can be seen
thatwith theCDapproach to constraint handling, the negative
effect of increasing the population size on the probability of
success as pointed out in Sect. 4, becomes much larger than
with theBRapproachor even theRRapproach as the problem
size increases. This can specifically be seen from the fact that

1 http://www.cwi.nl/~bosman.

the PLPM variant of CMA-ES that increases its population
size exponentially starts to performworse than all other algo-
rithms for nc ≥ 12. Moreover, this difference becomes very
distinct as nc increases. Using the BR approach the results
are much better, although still not as good as for the PLPM
version of AMaLGaM, which appears to remain the most
robust algorithm that we have tested. Moreover, the results
are much better than those reported in the previous study on
solving CiaS with EDAs (Gallagher 2012), suggesting that
we can, for the first time, look into the scalability of actually
solving CiaS instances using a black-box approach, which is
what we turn to next.

6.2 Scalability in case of 99.99% quality

Because it has become clear that the RR constraint-handling
technique is by far the worst, we only consider the BR and
CD techniques. We use the success criterion of reaching
99.99% of the known optimal quality. To reach this crite-
rion repeatedly and reliably up to nc = 30 we only found
the PLPM versions of AMaLGaM to be up to the task, so
we report only on those. The results are shown in Fig. 9
on a log–log scale. The final results appear to scale poly-
nomially, but this is not expected to extend beyond the
tested range of problem sizes as most packing problems
are NP-hard. Our results are limited to problem sizes up
to � = 60, but it should be noted that this is still larger
than usually studied in black-box optimization experiments
(e.g., in the BBOB benchmark competitions the maximum
considered dimensionality is 40). iAMaLGaM has the upper
hand for smaller dimensionalities and this holds true longer
when the BR technique is used. Both with BR and CD,
AMaLGaM showcases the more robust behavior and bet-
ter scalability. Estimating polynomial regression lines on the
averages and in terms of � instead of nc, we find that with
the CD technique scalability is slightly better with 0.76�4.3

for AMaLGaM and 0.05�5.2 for iAMaLGaM in case of BR
and 1.2�3.7 for AMaLGaM and 0.19�5.4 for iAMaLGaM in
case of CD. We note again that these polynomial fits likely
do not remain representative well out the tested range of
2 ≤ nc ≤ 30. Moreover, even within this range, these
numbers are substantial.

7 Discussion and conclusions

In this article, we considered the real-valued optimization
problem of sizing and packing nc equally sized circles in
a square (CiaS) from a black-box optimization perspective.
This problem is non-trivial to solve, yet can be efficiently
evaluated and has many ties to real-world optimization prob-
lems. Moreover, we have pointed out various reasons why
this problem is different from most (artificial) benchmarks
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considered in most studies on the design of real-valued
evolutionary algorithms from a black-box optimization per-
spective. All these criteria combined lead us to propose that
problems such as CiaS should be consideredmore frequently
in the design of new (black-box) optimization algorithms as
they account for different, yet important problem characteris-
tics that demand other strengths of an optimization algorithm
than the strengths that are currently being focused on most in
the literature. Moreover, caution needs to be taken when gen-
eralizing the parameter settings of algorithm instances that
have worked well on some benchmark problems to problems
that may have significantly different characteristics. Ideally,
a large, diverse set of benchmark problems (including real-
world representative and artificial functions) will develop
over time to provide more informative experimental results
for black-box optimization algorithms. Our results indicate
that most commonly accepted parameters for even some of
the best-performing algorithms on other typical benchmarks

do not automatically transfer well to the CiaS problem. We
particularly looked at variants of Gaussian EDAs, includ-
ing EMNA, AMaLGaM and CMA-ES. The type of problem
structure that is exploited by these algorithms is only par-
tially of importance when solving CiaS, which is the main
reason for typical parameter settings not transferring well.
The parameter settings for AMaLGaMwere overall found to
be the most robust, although they are unlikely to be optimal.
In addition to a strong influence of parameter selection, we
further found that the manner in which constraints are han-
dled and having a restart strategy were the most impactful
elements to the finally obtained solution quality. Overall, we
therefore stress the importance of these issues when consid-
ering the comparison of different algorithms and of ensuring
that comparisons are fair. It is easy to come to the wrong con-
clusions on a problem like this by virtue of straightforward
usage of previously documented guidelines for algorithmic
parameters.
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Given the relation of CiaS to real-world problems, it
is important to study the key characteristics of CiaS more
closely and to consider how particular structural features can
be detected and be exploited automatically. To this end, we
believe that the most important issues for further study are
that the problem is constrained, that it has large, isolated local
optima (instead of, e.g., many local optima superimposed
on a quadratic surface) and that it has strong interactions
between its variables. In addition to this, CiaS problems
have high degree of symmetry in the structure of the solu-
tion space. Specifically, the order of circles in the solution
vector can be permuted and the entire solution can be rotated
or reflected, leading to 8nc! equivalent solutions (Gallagher
2009). These and other types of symmetries occur in some
types of optimization problems but to our knowledge have
not been explored in an optimization context. This is beyond
the scope of the work presented here but is an interesting
direction for future work. In particular, the choices of solu-
tion representation and search operators in population-based
metaheuristics may by strongly effected by these symme-
tries. It would furthermore be interesting to find and study
other (real-world) problems that share similar properties.

We note that we have used only very general constraint-
handling techniques that require the weakest of additional
assumptions compared to the general problem formulation
in Eq. 1. Because we have used a specific optimization
problem in our study, it is natural to start to think about
constraint-handling techniques and other extensions or adap-
tations of the EAs that we used in order to better solve
the CiaS problem. Given the breadth of the literature on
solving the CiaS problem, such improvements are most
likely possible. For instance, one straightforward possibil-

ity is to rescale newly generated candidate solutions, to lie
within the unit square. It should, however, be noted that such
problem-specific changes are outside the scope of this article.
We moreover would like to encourage other researchers to
also consider solving theCiaS problem formulation in a simi-
lar fashion aswe did in this articlewithout introducing opera-
tors that exploit any additional problem-specific information,
i.e., only using the knowledge that every variable must be in
the range of [0, 1] and not assuming to know for instance
which variables encode horizontal coordinates of points and
which variables encode (associated) vertical coordinates.

In spite of the sensitivity to algorithmic parameter selec-
tion and constraint handling, we have shown that contrary to
basic Gaussian EDAs, AMaLGaM and CMA-ES are capable
of solving CiaS to optimality, underlining that the enhance-
ments in AMaLGaM and CMA-ES over basic Gaussian
EDAs are of importance also for solving CiaS. Furthermore,
our results show that covariance modeling is important in
order to locate the global optimum efficiently. Using uni-
variately factorized Gaussian distributions allows obtaining
good solutions quickly, but obtaining near-optimal solutions
requires substantially more function evaluations. This num-
ber likely results in a larger additional computation time than
buildingmore complexmodels does. In future work, we shall
consider this trade-off in computation time more closely.
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