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Abstract A novel mesh-free heuristic method for solv-
ing differential equations is proposed. The new approach
can cope with linear, nonlinear, and partial differen-

tial equations (DE), and systems of DEs. Candidate
solutions are expressed using a linear combination of
kernel functions. Thus, the original problem is trans-

formed into an optimization problem that consists in
finding the parameters that define each kernel. The new
optimization problem is solved applying a Covariance
Matrix Adaptation Evolution Strategy (CMA-ES). To

increase the accuracy of the results, a Downhill Sim-
plex local search is applied to the best solution found
by the mentioned evolutionary algorithm. Our method

is applied to 32 differential equations extracted from the
literature. All problems are successfully solved, achiev-
ing competitive accuracy levels when compared to other
heuristic methods. A simple comparison with numeri-
cal methods is performed using two partial differential
equations to show the pros and cons of the proposed al-
gorithm. To verify the potential of this approach with

a more practical problem, an electric circuit is analyzed
in depth. The method can obtain the dynamic behavior
of the circuit in a parametric way, taking into account
different component values.
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1 Introduction

Calculus is the mathematical study of the rate of change.

It has two major branches, differential calculus (con-
cerning rates of change and slopes of curves), and in-
tegral calculus (concerning accumulation of quantities
and the areas under and between curves). These two

branches are related to each other by the fundamen-
tal theorem of calculus (Spivak, 1980). The modern de-
velopment of calculus is usually credited to Isaac New-

ton (1643-1727) and Gottfried Leibniz (1646-1716), who
provided independent and unified approaches to differ-
entiation and derivatives.

Once the concept of derivative was clearly estab-
lished, more complex mathematical objects were devel-
oped such as differential equations (DEs). A differential
equation is just an algebraic relation between functions
and their derivatives. These mathematical entities allow
scientists to understand a wide range of complex phe-
nomena. Many fundamental laws of physics and chem-

istry can be formulated as differential equations. DEs
are also useful to model different problems in a lot of
scientific fields, such as biology, economics or engineer-
ing. Moreover, when the same differential equation de-
scribes different phenomena, it has been used as unify-
ing principle. As an example, the propagation of light
and sound in the atmosphere, or the waves on the sur-

face of a pond may be described by the same second-
order partial differential equation, the wave equation.
In the same way, heat conduction in a solid is governed
by another second-order partial differential equation,
the heat equation. The Black-Scholes equation in fi-
nance is, for instance, related to the heat equation.
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Figure 1: A possible taxonomy of methods to solve dif-

ferential equations.

Some simple differential equations admit solutions

given by explicit formulas. But in the general case, only

approximate solutions can be found. Several paradigms

exist in the literature to solve the equations. Fig. 1

shows a possible taxonomy of existing methods to solve

differential equations. A first group can be formed with

analytical methods, which try to find exact solutions.

However, as it has been commented, very few prob-

lems admit this approach. The second group of meth-

ods transforms the original differential equations into a

system of algebraic equations and solves them by nu-

merical methods. Inside this category, two subfamilies

can be distinguished according to whether or not a con-

nectivity mesh is needed. Mesh-based schemes can be

classified into finite element method (FEM) (Suli and

Mayers, 2003), finite difference method (FDM) (Ozisik,

1994), or finite volume method (FVM) (Leveque, 2002).

On the other hand, mesh-free algorithms, such as smoothed

particle hydrodynamics (SPH), diffusive element method

(DEM) and point interpolation method (PIM), do not

require mesh connectivity (Liu, 2010). However, the fi-

nal algebraic equations obtained are solved using nu-

merical methods.

A radically different type of approach, denoted by

Heuristics at Fig. 1, consists in transforming the prob-

lem into one of optimization, where a candidate solution

is tested according to a fitness or cost function which

measures how the differential equation is fulfilled. Gen-

erally speaking, these methods are also mesh-free, but

are more flexible because can cope with different types

of equations. Several paradigms have been reported in

this field, such as cellular automata (Puffer et al., 1995),

artificial neural networks (Lagaris et al., 1998; He et al.,

2000b; Parisi et al., 2003; Sun et al., 2003; Choi and

Lee, 2009; Shirvany et al., 2009; Tsoulos et al., 2009;

Chen et al., 2011; Kumar and Yadav, 2011; Yazdi et al.,

2011; Mosleh, 2013; Rudd and Ferrari, 2015), genetic

algorithms (GAs) (MacNeil, 2012), genetic program-

ming (GP) (Howard and Roberts, 2001; Kirstukas et al.,

2005; Bryden et al., 2006; Sobester et al., 2008; Bal-

asubramaniam and Kumar, 2009; Seaton et al., 2010;

Howard et al., 2011), particle swarm optimization (PSO)

(Khan et al., 2009; Babaei, 2013), evolution strategies

(ES) (Chaquet and Carmona, 2012), differential evolu-

tion (Panagant and Bureerat, 2014) or support vector

machines (Mehrkanoon and Suykens, 2015).

Finally, a fourth approach can be adopted, where

numerical and heuristic methods are combined (He et al.,

2000a; El-Emam and Al-Rabeh., 2011).

Although it is out of the present work scope, where

we focus on classic differential equations, there is an in-

creasing interest in other types of differential equations

such as DE with uncertainty (Allahviranloo et al., 2012;

Yao, 2015) or Grey DE (Guo and Guo, 2009).

The most widely used schemes to solve differential

equations are mesh-based numerical methods. In this

type of schemes, the computational domain must be

discretized by means of a mesh (also called a grid).

A mesh is a set of nodes and a type of connectivity.

The latter defines how nodes are joined to build com-

putational volumes. In some occasions, the generation

of a grid could be even more difficult than obtaining

the solution of the equation. Therefore, grid generation

is only a means to an end and still has a component
of both art and science (Thompson et al., 1999). For

example, the general problem of tetrahedral meshing

is challenging and remains unsolved (Bronson et al.,

2014). Although in recent years mesh generation tech-

niques have improved a lot, it would be premature to

state that further improvements are not needed, espe-

cially in terms of efficiency and robustness.

An increasing interest in heuristic methods is ob-

served in the literature. Although these methods are

less efficient than numerical methods from a computa-

tional cost point of view, they have several advantages:

a connectivity grid is not needed and they can handle

a wide variety of differential equations with a straight-

forward setup. Moreover, numerical schemes need be

adapted for each equation type.

We present a novel heuristic method for solving dif-

ferential equations. The new approach can cope with

linear and nonlinear, ordinary, partial or systems of dif-

ferential equations. Candidate solutions are expressed

as a weighted sum of Gaussian functions. The origi-
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nal problem is transformed into an optimization prob-

lem that consists in finding the parameters that de-

fine each Gaussian. The new optimization problem is

solved applying a Covariance Matrix Adaptation Evo-

lution Strategy (CMA-ES). Besides, to increase the ac-

curacy of the results, a local search is applied to the

best solution found by the CMA-ES using the Downhill

Simplex (DS) algorithm. To test the proposed method,

32 problems extracted from the literature are success-

fully solved, providing evidence about the robustness of

the algorithm.

A simple comparison with numerical methods is per-

formed using two partial differential equations to show

the pros and cons of the proposed algorithm in terms

of accuracy, flexibility, storing requirements, robustness

and computational elapsed time.

To verify the potential of the approach in a more

practical problem, a study of an RLC electric circuit

is presented. The method can obtain the dynamic be-

havior of the circuit in a parametric form taking into

account different component values. This allows us to

study different analysis and design problems and solve

them in a very efficient manner. A linear circuit is solved

and the evolved solution is compared with the analyt-

ical solution. A non-linear case of the same problem is

also commented and solved.

The rest of the paper is organized as follows: In Sec-

tion 2, CMA-ES and DS methods are briefly introduced.

The mathematical problem description is detailed in

Section 3. Then, in Section 4, a description of the pro-

posed approach is given. In Section 5, a set of test cases

extracted from the literature is described and experi-

mental results are reported. Section 6 gives some qual-

itative and quantitative comparisons with both other

evolutionary approaches and numerical methods. A prac-

tical problem in which our method can take advantage

is solved in Section 7, where one design exercise of an

electric circuit is presented. Finally, the conclusions are

outlined in Section 8.

2 Background

CMA-ES (Hansen, 2006) is a stochastic, derivative-

free method for numerical optimization of non-linear

or non-convex continuous optimization problems. It be-

longs to the family of evolutionary algorithms. New can-

didate solutions are sampled according to a multivari-

ate normal distribution. Pairwise dependencies between

the variables in this distribution are represented by a

covariance matrix.

CMA-ES is considered as the state-of-the-art in evo-

lutionary computation and has been adopted as one of

Algorithm 1 : CMA-ES.
Input:

σ0: Initial mutation step
ξ0: Initial mean value of the distribution
µ, λ: Population and offspring sizes
F (·): Fitness function

Output:
S1: Optimum solution.

——————————————————————————
0: Initialize C = I,σ = σ0 and ξ = ξ0
1: Until termination criteria do

for i = 1...λ
Si=Sample multivariate normal distribution(ξ,σ2C)
Fi = F (Si)//Evaluate fitness

Sort solutions: F (S1) ≤ F (S2) ≤ · · · ≤ F (Sλ)
Selection and recombination (S1, · · · ,Sλ;µ)
ξ =Update mean
σ =Update step size
C =Update covariance matrix

2: Return S1

the standard tools for continuous optimization. A lot

of applications can be found in the literature (Colutto

et al., 2010; Peterson, 2011).

CMA-ES uses a second order approach to estimate

a covariance matrix C within an iterative procedure.

The covariance matrix is positive definite and plays a

similar role to the Hessian matrix in gradient-based

algorithms. This makes the method feasible on non-

separable and/or badly conditioned problems (Hansen

and Kern, 2004). Another interesting CMA-ES prop-

erty is its feasibility on non-smooth and even non-continuous

problems. Finally, it does not require a tedious param-

eter tuning.

Algorithm 1 describes the main steps of the CMA-

ES algorithm. The covariance matrix C is initialized

with the identity matrix I. Other parameters, such as

the step size σ and the population mean ξ are also ini-

tialized at the beginning. Then, in each generation, λ

new individuals are sampled from a multivariate nor-

mal distribution of mean ξ, and covariance σ2C. The

individuals are sorted according to the fitness values.

Two main principles are exploited by the CMA-ES al-

gorithm for the adaptation of the distribution param-

eters. The first one, the maximum-likelihood principle,

is based on the idea of increasing the probability of

generating successful candidate solutions. The mean of

the distribution is updated maximizing the likelihood

of previous successful candidate solutions. The second

principle, called search or evolution paths, records two

paths related to the evolution over time of the mean of

the distribution. These paths contain significant infor-

mation about the correlation between consecutive steps.

More details about how the mean, step size and covari-

ance matrix are updated can be consulted in (Hansen,

2011).
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Figure 2: Geometric operations performed by Down-

hill Simplex method in a simplex. Example for a two-

dimensional search space.

As it was commented in the introduction, a local

search is applied in a second phase to improve the qual-

ity of the evolved solution. For that, the Downhill Sim-

plex (DS) algorithm is used, also known as Nelder-Mead

or Amoeba (Nelder and Mead, 1965). DS is a tech-

nique for minimizing an objective function in a mul-

tidimensional space. The method uses the concept of

simplex, which is a special polytope of N + 1 vertices

in a N -dimensional space. The algorithm generates a

new vertex by extrapolating the behavior of the objec-

tive function, measured at each test point arranged as

a simplex, and applying geometric rules such as reflec-

tions, expansions, contractions and reductions. Fig. 2

shows these geometric operations in a two-dimensional

problem (N = 2). The parameters α, β, δ and ζ are,

respectively, the reflection, expansion, contraction and

shrink coefficients. The algorithm then chooses to suc-

cessively replace the worst of these vertices with the new

test point, and so the search progresses. Algorithm 2

sketches the main steps of the Downhill Simplex method.

3 Statement of the problem

Using the same notation as (Sobester et al., 2008) and

(Chaquet and Carmona, 2012), we present the problem

to solve differential equations expressed by the following

general expression:

Ly (x) = f (x) in Ω ⊂ Rd (1)

Algorithm 2 : Downhill Simplex.
Input:
{S0, · · · ,SN}: Initial simplex
α, β, δ, ζ: Geometric coefficients
F (·): Fitness function

Output:
S0: Optimum solution.

——————————————————————————
0: Given a simplex {S0, · · · ,SN} while not happy
1: Sort: F (S0) ≤ F (S1) ≤ · · · ≤ F (SN )

2: Sa = 1
N−1

∑N−1
i=0 Si

3: Sr = Sa + α (Sa − SN ) //Reflection
if F (S0) ≤ F (Sr) < F (SN−1) then

SN = Sr
go to 0

4: if F (Sr) < F (S0) then //Expansion
Se = Sa + β (Sa − SN )

if F (Se) < F (Sr) then
SN = Se
go to 0

else
SN = Sr
go to 0

5: Sc = Sa + δ (Sa − SN ) //Contraction
if F (Sc) < F (SN ) then

SN = Sc
go to 0

6: Si = S0 + ζ (Si − S0) ∀i ∈ {1, . . . , N}//Reduction
go to 0

subject to the boundary conditions:

By (x) = g (x) on ∂Ω, (2)

where L and B are differential operators, x ∈ Rd, and

y (x) denotes the unknown solution vector. Functions

f (x) and g (x) denote source terms, so only depend

on x, but not on y or its derivatives. From a gen-

eral point of view, y (x), f (x) and g (x) belong to the

set of vector-valued functions Rd→ Rm. The domain

Ω ⊂ Rd is bounded and ∂Ω denotes its boundary.

Strictly speaking, this notation corresponds to elliptic

equations, where the boundary conditions must be im-

posed in the whole domain boundary. In other prob-

lems, such as initial value differential equations, bound-

ary conditions are given in a subset of ∂Ω. Note that

if d = 1 and m = 1, we have an ordinary differential

equation (ODE) problem, which can be linear (LODE)

or non linear (NLODE). If d = 1 and m > 1, a system of

differential equations (SODE) problem is managed. Fi-

nally, if d > 1 and m = 1, a partial differential equation

(PDE) problem is established. The solution satisfying

(1) and (2) can be computed solving the following con-

strained optimization problem:

Minimize :
´
Ω
‖Ly (x)− f (x)‖2 dx

Subject to :
´
∂Ω
‖By (x)− g (x)‖2 dx = 0

(3)

where ‖·‖ denotes the Euclidean norm in Rd space.
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Expressed as Eq. (8)
Problem solution

DS (local search)

Best individual

CMA-ES (global search)

Eq. (11)
Optimization Problem

Eq. (1) and (2)
Original Problem: Solving a DE

Reformulation

Figure 3: Block diagram of the proposed method. The

global search of the Differential Equation (DE) solu-

tion is made using the Covariance Matrix Adaptation

Evolution Strategy (CMA-ES), and the local search by

means of the Downhill Simplex (DS) algorithm.

The problem is then discretized using a set of nC
collocation points situated within the domain:

C = {(xi) |i=1,··· ,nC
⊂ Ω} , (4)

and nB points located on the boundary:

B = {(xj) |j=1,··· ,nB
⊂ ∂Ω} . (5)

Finally the original problem is transformed into an op-

timization problem without constraints where the cost

function to minimize is:

F (y) =

nC∑
i=1

‖Ly (xi)− f (xi)‖2 +

nB∑
j=1

‖By (xj)− g (xj)‖2 .
(6)

4 Method Description

The proposed method will be described in this sec-

tion. A block diagram of the algorithm is shown in Fig.

3. As we can see, the original differential equation is

reformulated into a new optimization problem. The so-

lution is obtained making a global search by means of

an evolutionary algorithm (CMA-ES). A local search

is performed on the best individual obtained by CMA-

ES employing a Downhill Simplex (DS) algorithm. The

particular coding of candidate solutions and the fit-

ness function used by both search algorithms are ex-

plained in subsections 4.1 and 4.2, respectively. Finally,

the global search (CMA-ES) and the local search (DS

algorithm) are explained in subsections 4.3 and 4.4.

4.1 Candidate solution encoding

Encoding is a very important issue when an evolution-

ary algorithm is designed. Ideally, the exact solution

should be expressed with the encoding selected, and at

the same time, this encoding should be as straightfor-

ward as possible. In this context, the use of a functional

basis considerably reduces the size of the search space.

That is, instead of searching generic symbolic expres-

sions, each candidate solution component y (x) is ex-

pressed as a linear combination of basis functions. In a

previous work by the same authors (Chaquet and Car-

mona, 2012), a harmonic approach was adopted using a

Fourier series expansion. With this strategy, each har-

monic affects to the whole solution, needing a complex

scheme for handling the unknowns (variables whose value

is unknown). Additionally, Radial basis functions have

been adopted here in order to decouple in some way

the search of each unknown. A radial function, also

called kernel, is a real-valued function whose value de-

pends only on the distance from the origin, so that

φ (x) = φ (‖x‖), or, alternatively, on the distance from

some other point c, called center, so that φ (x, c) =

φ (‖x− c‖). The norm ‖·‖ is usually the Euclidean dis-

tance, although other distance functions are also possi-

ble. Among the family of radial basis functions, Gaus-

sian kernels are chosen because of their good behavior

to approximate any continuous function (Hangelbroek

and Ron, 2010). A Gaussian kernel is defined as

Φ (x, c) = exp
(
−γ ‖x− c‖2

)
, (7)

where c ∈ Rd is a vector defining the center of the Gaus-

sian, and γ > 0 is a scalar which controls the shape of

the kernel. A candidate solution y (x) is then expressed

combining n Gaussian kernels in the following way:

y (x) =

n∑
i=1

wiΦ (x, ci) =

n∑
i=1

wi exp

− d∑
j=1

γi (xj − cij)2
 . (8)

For each Gaussian Φi, we have d + 2 degrees of free-

dom: d components of the center ci, the shape parame-

ter γi and the weight wi. Considering all n kernels, the

problem can be seen as an optimization problem with
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n · (d+ 2) degrees of freedom. Additionally, if the func-

tion to be estimated is a vector function with m > 1

dimensions in the output domain (SODE), we apply

the previous ideas to each dimension. Therefore, the

following degrees of freedom or number of unknowns

(variables) are obtained:

N = m · n · (d+ 2) . (9)

For instance, in the case of an ordinary DE (m =

d = 1), each genotype would be formed by:

[w1, γ1, c1, · · · , wn, γn, cn] . (10)

Finally, as it was stated in Section 3, the original

problem has been transformed into an optimization prob-

lem without constraints. In particular, the shape pa-

rameters γi are not limited to positive values. Although

standard Gaussian kernels have positive values of γi, no

constrains are applied to this type of parameter because

better convergence has been observed when γi ∈ R.

Note that a Gaussian kernel is not a probability dis-

tribution function. Therefore, because the concept of

probability is not involved in the kernel computation,

it is possible to use gamma values less than or equal to

zero. In this case, we could speak of degenerate Gaus-

sian kernels. For example, for γ = 0, a constant func-

tion can be approximated with only one kernel. On the

other hand, when γ < 0, the resulting degenerate Gaus-

sian kernel is not bounded above in (−∞,+∞), that is,

limx→±∞ Φ (x, c) = ∞. However, this is not a problem

because we are only interested in solving differential

equations in bounded domains. In section 5.2, an ex-

ample with γ < 0 will be provided in order to show the

benefits of not limiting the value of this parameter.

4.2 Fitness Function

A fitness function assigns to each individual in the pop-

ulation a measure of how close it is to achieve its aims,

i. e., how close the individual represents a correct so-

lution of the differential equation. In the present work,

a fitness function is built modifying the cost function

given by Eq. (6) as follows:

F (y) =

[
nC∑
i=1

ξ (xi) ‖Ly (xi)− f (xi)‖2 +

ϕ

nB∑
j=1

‖By (xj)− g (xj)‖2
 / [m · (nC + nB)] ,

(11)

where a weighting factor, ξ (x) ∈ R+, only dependent

on the collocation points, xi, and a penalty param-

eter, ϕ, are introduced. Note that the cost function

is obtained dividing the residuals by the total num-

ber of collocation points m · (nC + nB) in a similar

way as in (Parisi et al., 2003; Chaquet and Carmona,

2012). Other authors (Lagaris et al., 1998; Sobester

et al., 2008; Balasubramaniam and Kumar, 2009) do

not make this normalization, which makes the fitness

function values more dependent on the number of col-

location points. The penalty parameter ϕ controls the

relative weights assigned to boundary condition points

compared with the inner collocation points. Note that,

typically, nC � nB .

The weighting factor ξ (x) can be used to modify

the algorithm convergence behavior increasing the rel-

ative errors in some domain locations. In the present

work, ξ (x) is employed to increase the weights of the

inner collocation points closer to boundary points in the

following way:

ξ (xi) =

1 + κ

(
1− min∀xj∈B‖xi−xj‖

max∀xk∈C(min∀xj∈B‖xk−xj‖)

)
1 + κ

, (12)

where κ ≥ 0 is a user parameter called inner weighting

factor. The expression (12) assigns a maximum value of

1 to all the collocation points closest to the boundary

∂Ω, and a value of 1/ (1 + κ) to those collocation points

located at a maximum distance from ∂Ω, i. e., from

the most interior points. When κ = 0, the standard

cost function is recovered because ξ (x) = 1. Note that

the weighting factor only depends on the collocation

points. Threfore, it can be computed in a pre-processing

step, not adding any extra computational cost to the

algorithm. The method maintains its mesh-free quality

because connectivity is not needed to obtain ξ (x).

According to Eq. (11), not only the candidate so-

lution is needed, but also its derivatives. For that rea-

son, we have chosen the Gaussian kernel: it is infinitely

differentiable and its derivatives can be easily precalcu-

lated. Nevertheless, there is not any general expression

to obtain all the derivatives for any arbitrary order as

it is the case of trigonometric functions (Chaquet and

Carmona, 2012). The first derivative of the Gaussian

kernel respect to component k is:

∂y (x)

∂xk
= −2

n∑
i=1

wiγi (xk − cik)Φ (x, ci) . (13)

The second derivative is a bit more complex. If k 6= l

we have:

∂2y (x)

∂xk∂xl
= 4

n∑
i=1

wiγ
2
i (xk − cik) (xl − cil)Φ (x, ci) ,

(14)
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Figure 4: A Gaussian kernel Φ (x, c) and its first and

second derivatives.

otherwise:

∂2y (x)

∂x2k
=

n∑
i=1

wiγi

[
4γi (xk − cik)

2 − 2
]
Φ (x, ci) . (15)

Higher order derivatives can be also obtained by

hand. In Fig. 4, a Gaussian kernel Φ (x, c) in one di-

mension with center in the origin c = 0 and γ = 10 is

plotted. The first and second derivatives are also plot-

ted. We can observe that although the function’s influ-

ence zone is located near its center, this is not true for

the first and second derivatives. In fact, the first deriva-

tive has a zero value at the center, a global maximum at

x = c−1/
√

2γ and a global minimum at x = c+1/
√

2γ.

The second derivative has two local maxima and one

global minimum. Φ (x, c) and Φ′′ (x, c) are even func-

tions, whereas Φ′ (x, c) is an odd function. Therefore,

the problem of adjusting simultaneously the values and

derivatives of a function using kernels is not straight-

forward.

4.3 Global search of the solution: CMA-ES

Among the different paradigms of evolutionary compu-

tation, CMA-ES has been selected. As can be inferred

from (Chaquet and Carmona, 2012) work, those prob-

lems that result from transforming a DE into an opti-

mization problem, can be non-separable. In this kind of

problems, CMA-ES has proved to be competitive.

CMA-ES is used to search the optimal weights, cen-

ters and gammas that minimize the fitness function ex-

pressed in Eq. (11). First of all, the unknowns are ran-

domly initialized. As we see in Fig. 4, the influence zones

of the kernel derivatives are located far away from their

centers. Therefore, the initial values of centers, cik, are

set randomly in an extended range in the form:

cik ∈ [xk,min − βRk, xk,max + βRk] (16)

being Rk = xk,max − xk,min the original range width

for dimension k-th, and β an initialization parameter

which controls the extended range width. The domain

range [xk,min, xk,max] is sampled with all the colloca-

tion points within sets C and B (see Eq. (4) and (5),

respectively). As it was commented in Section 4.1, no

constraints are considered in the variables (unknowns).

Therefore it must be said that Eq. (16) is only applied

on the first generation, but not in the rest of genera-

tions.

All the default parameters for CMA-ES proposed by

Hansen in his CMA-ES public implementation (Han-

sen, 2011) are adopted, except the offspring number, λ,

and the population size, µ. The default value for the

offspring number is:

λdefault = 4 + b3 lnNc , (17)

and the population size is obtained dividing by 2:

µdefault = bλdefault/2c . (18)

In the above expressions, N is the number of unknowns.

In our case, the offspring number is slightly increased

multiplying the default value by a constant and, con-

sequently, given that µ depends on λ, the population

size is also increased. The final values for this couple of

parameters were

λ = 3 · λdefault
µ = bλ/2c = b3 · λdefault/2c ≈ 3 · µdefault

}
. (19)

The value of N , necessary to compute λdefault, is given

by the Eq. (9). These changes have experimentally shown

to produce better results and decrease the dispersion

between different runs. This strategy is in line with the

results obtained in (Hansen and Kern, 2004), where the

benefit of increasing the value of λ (with respect to its

default value) in multimodal problems with high dimen-

sionality is experimentally shown.

Finally, CMA-ES is run (see Algorithm 1) and sev-

eral generations are computed until some of the default

stop criteria (Hansen, 2011) are met. Then, the best in-

dividual found in the evolutionary process is returned

by the algorithm.
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Table 1: Test cases: differential equations, ranges and boundary conditions. Last column shows the papers where

each problem is solved. The following notation is used: [a] Tsoulos and Lagaris (2006), [b] Tsoulos et al. (2009),

[c] Chaquet and Carmona (2012), [d] Lagaris et al. (1998), [e] Yazdi and Pourreza (2010), [f] Chen et al. (2011),

[g] Babaei (2013), [h] Sobester et al. (2008) and [i] Panagant and Bureerat (2014).

Case Equation Range Boundary Conditions Used in

LODE1 y′ = (2x− y) /x x ∈ [1, 2] y (1) = 3 [a,b,c]

LODE2 y′ = (1− y cos (x)) / sin (x) x ∈ [1, 2] y (1) = 3/ sin 1 [a,b,c]

LODE3 y′′ = 6y′ − 9y x ∈ [0, 1] y(0) = 0; y′(0) = 2 [a,b,c]

LODE4 y′′ + 1
5y
′ + y = − 1

5 e
−x/5 cos (x) x ∈ [0, 1]

y(0) = 0
y′(0) = sin (0.1) /e0.2

}
[a,b,c]

LODE5 xy′′ + y′ = cos (x) x ∈ [0, 1] y(0) = 0; y′(0) = 1 [a,b,c,d]

LODE6 y′′ + 2xy = 0 x ∈ [0, 1] y(0) = 0; y′(0) = 1 [a,b,c]

LODE7 y′′
(
x2 + 1

)
− 2xy − x2 − 1 = 0 x ∈ [0, 1] y(0) = 0; y′(0) = 1 [a,b,c]

LODE8 y′ + 2y = 1 x ∈ [0, 10] y(0) = 1 [c,e]

LODE9 y′ + 2y = sin (x) x ∈ [0, 10] y(0) = 1 [c,e]

LODE10 y′′ = −16π2 sin (4πx) x ∈ [0, 1] y(0) = 2; y(1) = 2 [c,f]

LODE11 u′′ + 2u′ + 5u = 0 x ∈ [0, π] u(0) = 0;u′(0) = 1 [g]

NLODE1 y′ = 1/ (2y) x ∈ [1, 4] y(1) = 1 [a,b,c]

NLODE2 (y′)2 + log y = cos2 x+ 2 cos x+ 1 + log (x+ sin x) x ∈ [1, 2] y(1) = 1 + sin 1 [a,b,c]

NLODE3 y′′y′ = −4/x3 x ∈ [1, 2] y(1) = 0; y′(1) = 2 [a,b,c]

NLODE4 x2y′′ +
(
xy′
)2 + 1/ log x = 0 x ∈ [e, 2e] y(e) = 0; y′(e) = 1/e [a,b,c]

NLODE5 y′′ − yy′/
(
x sin x2

)
= −4x2 sin x2 x ∈ [1, 2] y(1) = sin 1; y(2) = sin 4 [c]

NLODE6 10−4y′′ + y − y3 = 0 x ∈ [−1, 1] y(−1) = −1; y(1) = 1 [c,f]

SODE1
y′1 = cos x+ y21 + y2 −

(
x2 + sin2 x

)
y′2 = 2x− x2 sin x+ y1y2

}
x ∈ [0, 1]

y1(0) = 0
y2(0) = 0

}
[a,b,c,d]

SODE2
y′1 = (cos x− sin x) /y2
y′2 = y1y2 + ex − sin x

}
x ∈ [0, 1]

y1(0) = 0
y2(0) = 1

}
[a,b,c]

SODE3

y′1 = cos x
y′2 = −y1
y′3 = y2
y′4 = −y3
y′5 = y4

 x ∈ [0, 1]

y1(0) = 0
y2(0) = 1
y3(0) = 0
y4(0) = 1
y5(0) = 0

 [a,b,c]

SODE4
y′1 = − sin (ex) /y2

y′2 = −y2

}
x ∈ [0, 1]

y1(0) = cos 1
y2(0) = 1

}
[a,b,c]

SODE5
I′ = −I − V
V ′ = 2I − V

}
t ∈ [0, 1.5]

I(0) = 2
V (0) = 2

}
[g]

SODE6

[
1 +

(
y′
)2] y = k2

k′ = 0

}
x ∈ [0, 1]

y(0) = 0
y(1) = 2

}
[g]

PDE1 Ψxx + Ψyy = e−x
(
x− 2 + y3 + 6y

)
x, y ∈ [0, 1]

Ψ (0, y) = y3

Ψ (1, y) =
(
1 + y3

)
e−1

Ψ (x, 0) = xe−x

Ψ (x, 1) = (x+ 1) e−x

 [a,b,c,d,h,i]

PDE2 Ψxx + Ψyy = −2Ψ x, y ∈ [0, 1]

Ψ (0, y) = 0
Ψ (1, y) = sin (1) cos (y)

Ψ (x, 0) = sin (x)
Ψ (x, 1) = sin (x) cos (1)

 [a,b,c,i]

PDE3 Ψxx + Ψyy = 4 x, y ∈ [0, 1]

Ψ (0, y) = y2 + y + 1
Ψ (1, y) = y2 + y + 3
Ψ (x, 0) = x2 + x+ 1
Ψ (x, 1) = x2 + x+ 3

 [a,b,c,i]

PDE4 Ψxx + Ψyy = −Ψ
(
x2 + y2

)
x, y ∈ [0, 1]

Ψ (0, y) = 0
Ψ (1, y) = sin (y)
Ψ (x, 0) = 0

Ψ (x, 1) = sin (x)

 [a,c,i]

PDE5 Ψxx + Ψyy = 4x cos x+
(
5− x2 − y2

)
sin x x2 + y2 ≤ 1 Ψ (x, y) = 0 in ∂Ω [c,h,i]

PDE6 Ψxx + Ψyy = 2e(x−y) R2 (θ) ≤ cos (2θ)+√
1.1 sin2 (2θ)

Ψ = ex
(
e−y + cos y

)
in ∂Ω

}
[c,h,i]

PDE7 ux + ut = 0 x, t ∈ [0, 2]
u (0, t) = e−2(t−1)2

u (x, 0) = e−2(x+1)2

}
-

PDE8 uxx − utt = 0 x, t ∈ [0, 1]

u (0, t) = 0
u (1, t) = 0
u (x, 0) = 0

ut (x, 0) = π sin (πx)

 -

PDE9 ut − uux = uxx x, t ∈ [0, 1]
u (0, t) = 1 + 2/ (t+ 1)
u (x, 0) = 1 + 2/ (x+ 1)
ux (0, t) = −2/ (t+ 1)2

 -
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4.4 Local search of the solution: Downhill Simplex

method

Once the CMA-ES algorithm finishes, a Downhill Sim-

plex (DS) method is applied on the best individual ob-

tained in the last generation of the evolutionary algo-

rithm. The first simplex is computed applying sequen-

tially a random increment to each unknown, maintain-

ing the rest of unknowns unmodified. Expressed math-

ematically, let S0 be the unknown vector obtained from

the CMA-ES, and formed by all the parameters: wi, γi,

and cij . As it was commented in subsection 4.1, the size

of that vector is N = n ·m ·(2 + d). A simplex is formed

by the N + 1 nodes {S0,S1, · · · ,SN}. The nodes of the

initial simplex Sk = {sk1, sk2, · · · , skN}, ∀k = 1, ..., N ,

are computed applying the following rule:

skl =

{
s0l, if k 6= l

s0l + ρk, if k = l
k = 1, · · · , N, (20)

where ρk is a random number extracted from a uniform

distribution over the range [−4,4], being 4 ∈ R+ a

user parameter.

Then, several iterations on the simplex are performed

applying the DS rules (see Fig. 2). Fitness values of the

simplex nodes drive the search process, as it is sketched

in Algorithm 2. Standard values for the geometric co-

efficients are α = 1, β = 2, δ = −1/2 and ζ = 1/2.

They have been kept constant in all the runs of the pre-

set work. Several stop criteria are checked: a maximum

number of fitness evaluations, a minimum distance from

the best and worst simplex nodes (parameter conver-

gence criterion), and a minimum fitness value differ-

ence from the best and worst nodes (target convergence

criterion).

DS method, as other heuristics algorithms, can con-

verge to local optimum depending on initialization is-

sues. To reduce this effect, the algorithm is restarted

several times recomputing the first simplex.

5 Experiments and Results

This section presents the experimental results obtained

applying the proposed method to solve a set of differen-

tial equations extracted from the literature. Subsection

5.1 introduces all the test cases (equations, boundary

conditions and exact solutions). The references where

these problems have been used are provided in order to

facilitate a further benchmarking analysis. Subsection

5.2 gives the results obtained by the method, consider-

ing fitness function, errors and number of fitness eval-

uations. Finally, subsection 5.3 performs a sensitivity

analysis of some parameters of the algorithm, such as

the number of kernels.

5.1 Test cases

The proposed method has been applied to a set of 32

differential equations extracted from the literature (La-

garis et al., 1998; Tsoulos and Lagaris, 2006; Sobester

et al., 2008; Tsoulos et al., 2009; Yazdi and Pourreza,

2010; Chen et al., 2011; Chaquet and Carmona, 2012;

Babaei, 2013; Panagant and Bureerat, 2014). In order

to verify the capabilities of the proposed approach, a

wide range of problems is studied: LODEs, NLODEs,

SODEs and PDEs. Table 1 shows all the problems used

in the present work and the references of papers where

they were also solved.

Several comments on some analyzed equations should

be made. For example, the original problem LODE11

was presented in (Babaei, 2013) as an integro-differential

equation u′ + 2u + 5
´ x
0
u (t) dt = 1 in the range [0, π]

with the boundary condition u (0) = 0. Taking deriva-

tives and using the fundamental theorem of calculus

(Spivak, 1980), the original problem is transformed into

an ordinary differential equation as it is presented in

Table 1.

In relation to SODE problems, SODE5 and SODE6

were also presented in (Babaei, 2013). The former de-

scribes a simple engineering application dealing with

electric current and potential difference in an electric

circuit. The later describes the brachistochrome prob-

lem, also known as the curve of fastest decent, which

consists in finding the curve along with a particle slides

from a given point to a lower one without friction in the

shortest time. The problem is formulated as a system

of differential equations because a constant k must be

determined.

In relation to PDE problems, note that PDE5 and

PDE6 are defined on non-rectangular domains. Besides,

new partial differential equations, different from Pois-

son problems presented in (Sobester et al., 2008; Cha-

quet and Carmona, 2012), are defined. For example,

PDE7 describes a traveling wave and PDE8 corresponds

to the one dimensional wave equation with constant

speed of wave propagation c = 1. Finally, PDE9 is

the inviscid Burgers’ equation which is a prototype for

equations which can develop discontinuities (shock waves).

The exact solutions are provided in Table 2. The

only exception is NLODE6, also known as the Allen-

Cahn equation (Chen et al., 2011), which does not have

a close analytical solution. The SODE6 solution is the

parametric equation of a cycloid. The constant k2 '
4.81125 is obtained solving a transcendental equation.
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Table 2: Exact solutions for the test cases.

Case Exact Solution
LODE1 y = x+ 2/x
LODE2 y = (x+ 2) / sin (x)
LODE3 y = 2xe3x

LODE4 y = e−x/5 sin (x)

LODE5 y =
´ x
0

sin(t)
t

dt

LODE6 y =
´ x
0
e−t

2

dt

LODE7 y = (x2 + 1) arctan (x)
LODE8 y = (e−2x + 1) /2
LODE9 y = [6e−2x + 2 sin (x)− cos (x)] /5
LODE10 y = 2 + sin (4πx)
LODE11 u = 0.5e−x sin (2x)
NLODE1 y =

√
x

NLODE2 y = x+ sin (x)
NLODE3 y = log (x2)
NLODE4 y = log (log (x))
NLODE5 y = sin (x2)
NLODE6 No analytical solution

SODE1
y1 = sinx
y2 = x2

}
SODE2

y1 = sin (x) /ex

y2 = ex

}
SODE3

y1 = y3 = y5 = sinx
y2 = y4 = cosx

}
SODE4

y1 = cos (ex)
y2 = e−x

}
SODE5

I = e−t
[
2 cos

(√
2t
)
−
√

2 sin
(√

2t
)]

V = 2e−t
[
cos
(√

2t
)

+
√

2 sin
(√

2t
)]}

SODE6
x = k2 (θ − sin θ) /2
y = k2 (1− cos θ) /2

2
k2 = arccos

(
1− 4

k2

)
− sin arccos

(
1− 4

k2

)


PDE1 Ψ = (x+ y3) e−x

PDE2 Ψ = sin (x) cos (y)
PDE3 Ψ = x2 + y2 + x+ y + 1
PDE4 Ψ = sin (xy)
PDE5 Ψ = (x2 + y2 − 1) sinx
PDE6 Ψ = e(x−y) + ex cos y

PDE7 u = e−2(t−x−1)2

PDE8 u = sin (πt) · sin (πx)
PDE9 u = 1 + 2/ (x+ t+ 1)

5.2 Results

The proposed method has been implemented in C++

and we have integrated the public implementation in

ANSI C of CMA-ES algorithm provided by Hansen

(Hansen, 2011). The source code has been compiled

with GNU gcc compiler using Ubuntu Linux operating

system. The runs have been performed in a PC with

Intel Core 2 Quad CPU Q9400 at 2.66GHz and 3.8 GB

of RAM memory. The memory requirements of the test

problems are not demanding.

Due to the stochastic nature of the method, it was

run 50 times on each differential equation described

previously, using different seeds for the random num-

ber generator; averages and standard deviations were

also computed. A total of 100 equidistant collocation

points have been used in all cases, except in those par-

tial differential equations defined in a non-rectangular

domain (PDE5 and PDE6). In these two cases, the same

point distribution used in (Sobester et al., 2008) and

(Chaquet and Carmona, 2012) was imposed (77 and 80

points, respectively) in order to make a fair comparison.

In the same way as (Chaquet and Carmona, 2012),

the Root of the Mean Squared Error (RMSE) between

the final evolved solution y and the exact solution yexact
is computed to measure the quality of the solutions ob-

tained by the method:

RMSE2 =

 nC∑
i=1,xi∈C

‖y (xi)− yexact (xi)‖2 +

nB∑
j=1,xj∈B

‖y (xj)− yexact (xj)‖2
 / [m · (nC + nB)] .

(21)

The fitness function value depends on how the differ-

ential equations are provided to Eq. (11). For instance,

LODE1 equation can be provided as y′ − (2x− y) /x,

y′x − (2x− y) or even [y′ − (2x− y) /x] /k. Although

the same problem is solved, the fitness functions are dif-

ferent. In particular, the first and third functions have

a similar fitness landscape, but with a different scale

factor given by the constant k. The second function

has a different fitness landscape, so could have a differ-

ent behavior during the evolving process. Nevertheless,

RMSE provides a good way to analyze the quality of

the solution found because is independent of the men-

tioned problems, and allows us to compare more fairly

the results of the different methods published in the lit-

erature. Obviously, RMSE can be only used when the

exact solution is known. It is important to highlight

that the RMSE values are not used to solve the dif-

ferential equations, only the fitness function defined by

Eq. (11) is used by the evolutionary and local search

algorithms.

Because NLODE6 does not have analytical solution,

the exact solution for this problem has been obtained

using a numerical approximation computed with a fi-

nite difference approach solving the discretized equa-

tion with a four order Runge-Kutta relaxation method

(Press et al., 2002). The domain range is split in 1000

nodes.

Tables 3 and 4 list the algorithm parameter configu-

ration used in all test cases regarding the CMA-ES and

DS methods. As it was commented in Section 4.3, all

default CMA-ES parameters are adopted, except the

size of the population and the offspring number. There-

fore, according to Eq. (9) and Eq. (19), the population
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Figure 5: Population size µ of the CMA-ES algorithm

according to the number of unknowns N . Dots mark

the population size used to solve the different types of

test problems.

size µ is related with the number of unknowns N :

µ =

⌊
6 +

3

2
b3 · lnNc

⌋
. (22)

Fig. 5 plots the relation between µ and N for all the

test problems. The number of unknowns depends on the

number of kernels n, the number of dependent variables

m, and the problem dimensionality d, according to Eq.

(9). The experimental criterion used to select the num-

ber of kernels was the following: four kernels for each
dependent variable in LODEs, NLODEs and SODEs,

and eight in PDEs. Thus, for LODEs and NLODEs,

the number of kernels was always four. On the other

hand, if the number of equations (dependent variables)

in a SODE is m, the number of kernels used was 4m.

Regarding PDEs, all of them have two independent

variables, which make the problem harder to be solved

compared with ODEs. Therefore, the number of ker-

nels for PDEs has been doubled respect to ODEs. As

we can see in Fig. 5, SODE3 has more unknowns than

the other SODEs because five dependent variables must

be solved (m = 5) instead of only two (m = 2) for the

rest of SODEs. The centers are initialized randomly in

an extended range whose size is controlled by a user

parameter, β, according to Eq. (16).

Some parameters affect both CMA-ES and DS al-

gorithms: the boundary condition penalty ϕ is set to

Table 3: CMA-ES parameter configuration.

Parameter Values
Initial weights Randomly in wi ∈ [−0.01, 0.01]

Initial γi Randomly in γi ∈ (0, 1]
Initial centers cik Randomly, Eq. (16) and β = 2

Initial mutation step σ 0.01
Offspring number λ = 3 · λdefault (see Eq. (17))
Population size µ = bλ/2c

Stop criteria Default, see (Hansen, 2011)

Table 4: DS parameter values.

Parameter Values
Number of restarts 10

Increment for first simplex 4 = 10−2. Eq. (20).
Stop criterion Fit. evaluations = 2 · 104

Parameter conv. criterion 10−20

Target conv. criterion 10−20

300, the inner weighting factor κ used is 30, and the

maximum number of fitness evaluations allowed is 106.

The results are given in Table 5. Data are grouped in

two categories: those obtained at the end of the CMA-

ES phase, and the final ones at the end of the DS

phase. Average values and the standard deviations are

reported for each problem. By construction of the local

search algorithm (see Section 4.4), its results (column

marked as“Fitness CMA-ES+DS”) always equal or out-

perform the fitness values of the CMA-ES algorithm

(column marked as “Fitness CMA-ES”). In some cases,

the DS phase improves significantly the fitness value

by several orders of magnitude as in LODE3, LODE5,

LODE6, NLODE3, NLODE4 or SODE4 problems.

In order to obtain the percentage of cases in which

the DS phase improves the RMSE value obtained from

the evolutionary algorithm’s best solution, a statistical

significance test was performed. A Kolmogorov-Smirnov

normality test revealed that the null hypothesis was re-

jected in 94% of the analyzed problems (α = 0.05).

Therefore, a non-parametric Wilcoxon sum-rank test

(one-tailed) was applied. The results of this test shown

that the median of RMSE values after applying the lo-

cal search was lower than the median of RMSE val-

ues associated to CMA-ES phase in 34% of the ana-

lyzed problems (α = 0.05). Therefore, we can say that

the DS phase is useful and allows us to improve (or

maintain) the results obtained by the evolutionary algo-

rithm, without modifying the control parameters, and

with a limited cost, as we can see comparing the num-

ber of fitness evaluation before and after the DS phase

(two last columns of the table 5).
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Table 5: Experimental results. Each case was run 50 times using different seeds for the random number generator.

In columns “Fitness” and “RMSE”, the best values obtained are highlighted in bold letters.

Case n Fitness Fitness RMSE RMSE Fitness Fitness

(Eq. (CMA-ES) (CMA-ES+DS) (CMA-ES) (CMA-ES+DS) Eval.×105 Eval.×105

(9)) (CMA-ES) (CMA-ES+DS)

LODE1 4 (8.73± 34.5) 10−8 (1.18± 2.87) 10−9 (1.41± 3.77) 10−5 (2.35± 2.52) 10−6 1.08± 0.481 1.92± 0.473

LODE2 4 (7.32± 47.7) 10−7 (6.82± 47.7) 10−7 (2.70± 14.4) 10−5 (2.14± 14.4) 10−5 0.958± 0.749 1.77± 0.802

LODE3 4 (1.42± 8.87) 10−1 (3.47± 17.5) 10−4 (2.51± 16.1) 10−1 (2.13± 7.53) 10−3 0.691± 0.215 1.71± 0.312

LODE4 4 (4.31± 20.2) 10−5 (1.81± 11.6) 10−5 (2.08± 9.50) 10−4 (1.03± 6.20) 10−4 0.928± 0.656 1.64± 0.678

LODE5 4 (4.45± 0.222) 10−7 (7.32± 0.373) 10−10 (5.64± 26.2) 10−5 (3.01± 8.13) 10−6 1.04± 0.570 1.71± 0.723

LODE6 4 (2.71± 18.0) 10−8 (9.87± 42.2) 10−10 (1.07± 5.75) 10−6 (1.72± 2.85) 10−7 1.14± 0.786 1.78± 0.856

LODE7 4 (4.42± 17.9) 10−6 (2.39± 9.47) 10−6 (1.40± 5.30) 10−5 (6.71± 2.33) 10−6 2.77± 1.73 3.41± 1.65

LODE8 4 (1.20± 2.34) 10−7 (2.96± 8.54) 10−8 (9.07± 8.41) 10−5 (4.87± 5.41) 10−5 0.439± 0.161 1.43± 0.235

LODE9 4 (1.01± 0.403) 10−1 (9.70± 4.26) 10−2 (2.18± 0.770) 10−1 (2.16± 0.773) 10−1 0.825± 0.281 1.76± 0.405

LODE10 4 (1.22± 1.14) 103 (9.28± 10.2) 102 1.88± 1.33 1.90± 1.41 0.522± 0.234 1.41± 0.502

LODE11 4 (4.32± 20.4) 10−4 (2.24± 14.3) 10−4 (1.40± 5.41) 10−3 (9.16± 39.4) 10−4 2.32± 1.44 2.78± 1.44

NLODE1 4 (1.05± 2.26) 10−7 (6.61± 18.2) 10−9 (6.40± 8.70) 10−5 (1.61± 2.12) 10−5 0.914± 0.446 1.88± 0.453

NLODE2 4 (2.79± 19.5) 10−4 (2.79± 19.45) 10−4 (4.84± 33.8) 10−4 (4.83± 33.8) 10−4 1.10± 0.589 1.77± 0.686

NLODE3 4 (1.34± 7.1) 10−2 (1.19± 5.02) 10−7 (4.83± 24.2) 10−3 (2.05± 5.04) 10−6 1.31± 0.542 2.26± 0.475

NLODE4 4 (6.85± 16.2) 10−3 (1.05± 4.71) 10−6 (4.78± 10.4) 10−2 (8.10± 39.9) 10−3 0.717± 0.392 1.78± 0.360

NLODE5 4 (3.76± 21.8) 10−4 (5.213± 17.9) 10−5 (2.24± 7.48) 10−4 (8.51± 12.1) 10−5 2.76± 2.13 3.42± 1.96

NLODE6 4 (3.79± 2.07) 10−3 (3.35± 1.66) 10−3 (5.30± 3.53) 10−1 (5.32± 3.57) 10−1 1.21± 0.649 2.10± 0.904

SODE1 4 (1.41± 7.66) 10−9 (1.16± 6.74) 10−9 (2.23± 4.42) 10−6 (1.86± 3.95) 10−6 3.66± 1.39 5.04± 1.41

SODE2 4 (3.18± 4.90) 10−10 (2.47± 4.16) 10−10 (1.61± 1.23) 10−6 (1.40± 1.12) 10−6 3.75± 1.41 4.98± 1.37

SODE3 4 (9.21± 30.0) 10−9 (9.13± 30.0) 10−9 (8.28± 9.54) 10−6 (8.19± 9.46) 10−6 9.54± 0.833 9.95± 0.175

SODE4 4 (1.45± 4.35) 10−1 (1.17± 3.97) 10−1 6.67± 26.4 8.37± 31.7 4.49± 2.36 6.00± 2.12

SODE5 4 (1.21± 3.28) 10−2 (1.21± 3.27) 10−2 (2.88± 7.79) 10−2 (2.88± 7.78) 10−2 4.58± 2.67 5.89± 2.36

SODE6 4 (2.07± 1.39) 10−2 (1.34± 1.14) 10−2 (2.83± 1.46) 10−2 (1.92± 1.27) 10−2 1.47± 0.465 3.21± 0.734

PDE1 8 (2.82± 5.50) 10−5 (2.02± 2.82) 10−5 (1.98± 1.60) 10−4 (1.75± 1.14) 10−4 5.14± 1.63 7.10± 1.52

PDE2 8 (1.02± 4.36) 10−5 (8.77± 36.1) 10−6 (9.88± 12.2) 10−5 (9.48± 11.3) 10−5 6.85± 2.59 8.13± 1.80

PDE3 8 (1.98± 2.95) 10−7 (1.72± 2.48) 10−7 (1.19± 0.963) 10−5 (1.09± 0.846) 10−5 6.41± 1.78 8.03± 1.40

PDE4 8 (2.44± 4.90) 10−4 (2.03± 3.53) 10−4 (7.31± 5.80) 10−4 (7.02± 5.28) 10−4 5.16± 1.96 7.02± 1.72

PDE5 8 (7.56± 19.8) 10−4 (6.26± 15.4) 10−4 (8.07± 7.97) 10−4 (7.53± 6.39) 10−4 7.79± 2.29 8.94± 1.63

PDE6 8 (3.12± 8.20) 10−4 (1.96± 5.01) 10−4 (5.76± 7.37) 10−4 (4.75± 5.26) 10−4 4.71± 1.41 6.70± 1.40

PDE7 8 (2.25± 4.15) 10−3 (2.07± 4.11) 10−3 (1.60± 1.39) 10−2 (1.55± 1.37) 10−2 3.97± 1.96 5.80± 1.86

PDE8 8 (6.44± 12.7) 10−1 (4.36± 7.63) 10−1 (5.77± 6.11) 10−2 (5.15± 5.29) 10−2 3.78± 2.10 5.62± 1.88

PDE9 8 (1.22± 1.53) 10−5 (7.69± 8.18) 10−6 (3.77± 2.64) 10−4 (3.47± 2.45) 10−4 4.01± 1.07 6.01± 1.07

Figures 6 to 10 exemplify how the proposed method

behaves when it is applied to different problems. For

example, Fig. 6 provides a typical run for PDE8 prob-

lem showing the evolution of fitness function and the

RMSE versus the number of fitness evaluations. It is

also shown the step size and the condition number of

the CMA-ES algorithm, which is defined as the ratio be-

tween the largest and smallest eigenvalue of the covari-

ance matrix C. We can appreciate the auto-adaptation

capabilities of the CMA-ES from the evolution of the

covariance matrix eigenvalues and mutation step σ, ac-

cording to the local landscape of the fitness function.

Figure 7 shows the evolution of the Gaussian kernels

for a typical run of NLODE4. Note how a big varia-

tion is observed in most of the parameters at the first

generations, where the CMA-ES explores the solution

space. Afterwards, the rate of change decreases because

CMA-ES and DS perform an exploitation of the best

solutions. Figure 8 shows the approximate solution as

an addition of four Gaussian kernels that form the solu-

tion of NLODE4. Note that in this particular situation,

the four centers ci are outside the independent variable

range and one kernel has a negative value for γ. Figure 9

shows a comparison between the exact and the approx-

imated solutions for NLODE4. Finally, Fig. 10 shows a

comparison between the approximated solution found

by the proposed method and the exact solution for the

wave equation (PDE8). The solution represents the vi-

bration of a string in his fundamental harmonic scale.

Only five time instants are plotted for t from 0 to 0.5,

although the equation is solved in the range t ∈ [0, 1].

As we can observe in the close-up view at the bottom

figure, the solution evolved by the method is in good

agreement with the exact one.
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5.3 Sensitivity to the number of kernels and the inner

weighting factor (κ)

The majority of the solutions obtained present fitness

values with orders of magnitude below 10−3. As we can

see in Table 5, values below 10−9 are reached in some

cases. The effect of increasing the number of kernels

in the solution quality is studied in this section. To do

this, we arbitrarily select all the problems whose orders
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Figure 10: Comparison between a typical solution ob-

tained by the proposed method and the exact one for

PDE8 (wave equation).

of magnitude associated to the solution fitness value

are higher than 10−3. We will vary the number of ker-

nels, but the rest of the control parameters described

in Tables 3 and 4 are maintained.

As we see in Table 6, better fitness values are ob-

tained when the number of kernels is increased for all

the cases, except for SODE4 problem, where the fit-

ness values are very similar. However, for this partic-

ular problem, an increment of the number of kernels
from four (Table 5) to six (Table 6) is enough to de-

crease the fitness values in eight orders of magnitude.

On the other hand, the value of RMSE also improves or

is approximately maintained when the number of ker-

nels grows. Here, it is important to remain the reader

that the RMSE value is used neither in the evolution-

ary algorithm nor in the local search method. Therefore,

from the evidence here presented, we can say that, when

the evolved solution is not as accurate as desired, we

should increase the number of kernels to improve such

accuracy. Finally, in relation to the average number of

fitness evaluation, obviously, it increases as the size of

the problem does with the number of kernels.

As it was commented in Section 5.2, the inner weight-

ing factor κ was set to 30 for all the cases. It was not

observed a high sensitivity in the experiments regard-

ing to κ, except for the NLODE6 case. As we see in

Fig. 11, this equation is hard to solve because it has a

strong gradient in the origin. For example, when κ = 0,

the algorithm is not capable to locate the appropriate
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Figure 11: Comparison between evolved solutions and

the exact one for NLODE6 equation.

transition from -1 to 1 at the origin. When an appro-

priate value of κ is set (κ = 30), we can observe how

the quality of the solution only depends on the number

of centers, increasing the former when the latter does.

6 Discussion

In this section, some qualitative and quantitative com-

parisons against other evolutionary approaches reported

in the literature are presented (Section 6.1). Then, two

PDEs are solved using two different numerical methods

and the results are compared with the proposed algo-

rithm (Section 6.2).

6.1 Comparison with other evolutionary approaches

It is difficult to make a quantitative comparative study

with other reported approaches because the fitness val-

ues are highly dependent on the solver parameters and

on how differential equation is provided to Eq. (11)

(see Section 5.2). For a correct comparison of the so-

lution quality, RMSE values should be used. However,

the RMSE is not generally reported in previous contri-

butions. As it was described in Section 5.3, the direct

way to increase the solution accuracy in our method

depends strongly on the number of kernels used. In or-

der to measure the performance of our approximation

in relation to other methods, we maintained here the

set-up used in Section 5, except the number of kernels.

That is, when the RMSE value obtained in Table 5 was

lower than the best result obtained by one of the tech-

niques used in the comparison, we increased the number

of kernels to investigate the potential of our method. In

this regard, we also reused the results obtained in Table

6.
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Table 6: Effect of increasing the number of centers (or kernels). The best values obtained are highlighted in bold

letters in “Fitness” and “RMSE” columns.

Case Centers n Unknowns N Population µ Fitness RMSE Fit. Evaluations
Eq. (9) Eq. (22) (CMA-ES+DS) (CMA-ES+DS) (CMA-ES+DS)

LODE9 6 18 18 (4.14± 5.46) 10−2 (1.04± 1.08) 10−1 (3.36± 0.843) 105

10 30 21 (2.48± 16.3) 10−3 (1.08± 3.48) 10−2 (5.90± 1.05) 105

14 42 22 (7.44± 43.7) 10−6 (4.49± 20.4) 10−4 (9.44± 0.80) 105

LODE10 6 18 18 (1.18± 3.66) 102 (2.26± 6.14) 10−1 (3.03± 1.50) 105

10 30 21 (4.72± 23.1) 10−3 (5.18± 9.21) 10−4 (6.15± 1.40) 105

14 42 22 (1.32± 5.04) 10−3 (4.54± 6.74) 10−4 (9.27± 1.06) 105

NLODE6 6 18 18 (1.87± 1.43) 10−3 (4.12± 3.54) 10−1 (3.88± 1.36) 105

10 30 21 (1.30± 1.36) 10−3 (3.05± 2.99) 10−1 (6.19± 1.14) 105

14 42 22 (6.26± 8.50) 10−4 (2.02± 2.74) 10−1 (8.89± 1.15) 105

SODE4 6 36 21 (2.18± 5.89) 10−9 (2.76± 3.23) 10−6 (8.15± 2.01) 105

10 60 24 (3.58± 5.56) 10−9 (4.47± 3.13) 10−6 (9.55± 1.15) 105

14 84 25 (6.57± 8.52) 10−9 (6.38± 4.45) 10−6 (9.49± 1.09) 105

SODE5 6 36 21 (2.63± 12.9) 10−9 (3.53± 3.98) 10−6 (7.86± 1.80) 105

10 60 24 (6.26± 11.7) 10−10 (2.28± 1.95) 10−6 (8.83± 1.40) 105

14 84 25 (6.22± 5.37) 10−10 (2.38± 1.24) 10−6 (8.76± 1.51) 105

SODE6 6 36 21 (1.43± 0.208) 10−2 (2.11± 0.288) 10−2 (4.29± 0.77) 105

10 60 24 (1.02± 0.303) 10−2 (1.64± 0.374) 10−2 (7.30± 1.91) 105

14 84 25 (8.70± 4.88) 10−3 (1.38± 0.556) 10−2 (8.92± 1.34) 105

PDE7 6 24 19 (7.95± 11.7) 10−2 (2.98± 2.52) 10−2 (3.87± 2.15) 105

10 40 22 (7.80± 10.2) 10−4 (9.88± 10.0) 10−3 (7.73± 1.95) 105

14 56 24 (2.78± 4.02) 10−4 (6.19± 6.41) 10−3 (9.56± 1.04) 105

PDE8 6 24 19 1.20± 1.90 (1.00± 0.729) 10−1 (3.38± 1.64) 105

10 40 22 (1.97± 6.39) 10−2 (7.00± 14.3) 10−3 (8.75± 1.60) 105

14 56 24 (8.23± 14.8) 10−4 (1.50± 1.90) 10−3 (9.95± 0.215) 105

We begin this discussion focusing on those works

where RMSE values (or at least, some other measure

of the solution accuracy) are managed (Sobester et al.,

2008; Chaquet and Carmona, 2012; Babaei, 2013; Pana-

gant and Bureerat, 2014). The results of the comparison

are shown in Table 7. For example, in a previous work

by the same authors (Chaquet and Carmona, 2012), the

candidate solutions were expressed with partial sums of

Fourier series. Additionally, an ad hoc method, which

is based on the successive application of several stages

of standard Evolution Strategies (ES) to tune the har-

monics, was used. The present approach outperforms

the results of (Chaquet and Carmona, 2012) in terms of

lower values of RMSE (see Table 7). However, in order

to confirm this, a Wilcoxon’s sum-rank test (one-tailed),

was applied. In this study, the null hypothesis (the me-

dians are equal) was rejected in 100% of the analyzed

problems (α = 0.05). Therefore, we have statistical evi-

dence to say that the median of RMSE values obtained

with our method is always lower than those obtained in

(Chaquet and Carmona, 2012).

As an example, Fig. 12 shows a typical run of the

proposed algorithm compared with the method described

in (Chaquet and Carmona, 2012) for NLODE1 problem.

Regarding the set-up for this comparison, the same pa-

rameters already commented in Tables 3 and 4 have

been employed for the algorithm, i. e., four kernels are

adjusted (12 unknowns) with a population size (µ, λ) =

(16, 33). In (Chaquet and Carmona, 2012), the method

uses 10 harmonics and a population of (µ, λ) = (10, 400).

Note how the CMA-ES algorithm needs a lower λ value,

which turns in a lower number of fitness evaluations.

In any case, due to the stochastic nature of the algo-

rithms, the average values are compared after running

both algorithms 50 times. Our current method obtains

a RMSE of (1.61±2.12)·10−5, needing (1.88±0.453)·105

fitness evaluations. In (Chaquet and Carmona, 2012),

the RMSE obtained was (7.42 ± 0.968) · 10−5, using

(4.87 ± 1.67) · 105 fitness evaluations. In the present

approach, all the problems addressed in (Chaquet and

Carmona, 2012) have been successfully solved, mean-

while, in the harmonic evolutionary solver, LODE3 was

not correctly handled. As it is described in (Chaquet

and Carmona, 2012), the number of unknowns exponen-

tially increases with the space dimension. This draw-

back does not exist in our approximation. For example,

for a PDE with two dependent variables, the election of

10 centers in our methods implies to tune 40 unknowns.

On the other hand, the use of 10 harmonics in (Cha-

quet and Carmona, 2012) implies the tuning of 100 un-

knowns, that is, more than twice as many. Thanks to

the good performance of CMA-ES, all the unknowns

can be adjusted simultaneously. However, in (Chaquet

and Carmona, 2012), different ES steps adjust differ-
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Figure 12: Comparison between the proposed method

and a Fourier-based approach described in (Chaquet

and Carmona, 2012) for a typical run of NLODE1 prob-

lem.

ent harmonic coefficients. Therefore, our approximation

greatly simplifies the procedure used to tune the vari-

ables (unknowns).

Another approach using Fourier series can be seen

in (Babaei, 2013) where harmonics are tuned by PSO

techniques. There, no PDE was addressed. In that work,

some tuned Fourier coefficients are given, so it is pos-

sible to calculate and compare the RMSE values ob-
tained. Note that the raw data and their standard de-

viations are not available in (Babaei, 2013). Therefore,

assuming normality hypothesis in the data distribution,

a Student’s t-test (one-tailed) was made in order to

compare the means of the RMSE values obtained for

LODE11, SODE5 and SODE6. The test results revealed

that there is sufficient evidence, at the α = 0.05 level,

to conclude that, in two of the three mentioned prob-

lems, our results are more accurate than those obtained

in (Babaei, 2013).

In (Panagant and Bureerat, 2014), the RMSE values

are also reported. There, only PDEs are solved. Solu-

tions are approximated by polynomial functions whose

coefficients are tuned using a method based on Differ-

ential Evolution. However, the raw data, the number

of executions for each problem, the dispersion of the

results, and the number of unknowns used are not pro-

vided. Thus, assuming normality hypothesis in the data

distribution, a Student’s t-test (one-tailed) was made in

order to compare the means of RMSE values for PDE1

to PDE6 (see Table 7). The test results revealed that

the null hypothesis (the means are equal) was rejected

for 100% of the mentioned problems. Therefore, there

is sufficient evidence (α = 0.05) to conclude that our

results are more accurate than those obtained in (Pana-

gant and Bureerat, 2014).

In (Sobester et al., 2008), a Genetic Programming

approach for solving differential equations is presented.

There, the solutions are split into two terms in order

to fulfill the boundary conditions by construction. This

particular approach can be adopted only in some spe-

cific geometries. In that paper, the MSE (mean square

error) is used as a measure of accuracy. However, it is

straightforward to obtain the RMSE values (RMSE2 =

MSE). As we can see in Table 7, the accuracy of our

approach is better than the results presented in (Sobes-

ter et al., 2008). This conclusion is confirmed assuming

normality hypothesis in the data distribution (the raw

data are not available) and applying a Student’s t-test

(one-tailed). Thus, we can affirm that there is enough

evidence (α = 0.05) to reject the null hypothesis and,

therefore, to state that the mean of RMSE values in our

case is lower than those obtained in (Sobester et al.,

2008) for PDE1, PDE5 and PDE6.

The dispersion in the results is an important issue

when comparing stochastic algorithms. A good algo-

rithm should give similar results in all the executions.

However, very few works in the literature give disper-

sion rates. For example, in (Tsoulos and Lagaris, 2006),

a differential equation solver using Genetic Program-

ming is presented. Although RMSE values are not pro-

vided, the authors give minimum, maximum and av-

erage of the number of generations needed to find a

correct solution as measures of dispersion. Knowing the

population size used, it is possible to perform a compar-

ison with our approach in terms of the number of fitness

evaluations: the average order of magnitude calculated

was 105, i.e., the same as that obtained by our method.

Additionally, all the problems solved there were also

successfully solved here.

In (Shirvany et al., 2009), a PDE using complex

numbers on a triangle shape domain is reported. The

RMSE is computed approximating the exact solution

by a numerical method solution, obtaining a value around

10−4. This number is of the same order as the RMSE

average obtained for all the PDEs when our method is

used (a variation from 10−2 to 10−5 is observed). How-

ever, the number of unknowns that must be tuned in

(Shirvany et al., 2009) is much higher than that used in

our method. A total of 132 neurons are needed there,

against 32 unknowns used here. In a similar way, in

(Yazdi and Pourreza, 2010), more than 70 neurons are
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Table 7: Comparison of the obtained RMSE, considering only those works where that type of error is reported

(Sobester et al., 2008; Chaquet and Carmona, 2012; Babaei, 2013; Panagant and Bureerat, 2014). Standard de-

viations are not always provided in the referenced works. The best results are marked in bold letter. The final

number of centers n, used by our approach for this comparison, is also provided in the last column.

Problem RMSE RMSE RMSE RMSE RMSE in this work|
in Sobester08 in Chaquet12 in Babai13 in Panagant14 centers n used

LODE1 - (3.70± 0.166) · 10−5 - - (2.35± 2.52) · 10−6|4
LODE2 - (6.59± 0.255) · 10−5 - - (2.14± 14.4) · 10−5|4
LODE3 - 13.16± 0.013 - - (2.13± 7.53) · 10−3|4
LODE4 - (1.65± 0.87) · 10−6 - - (4.17± 9.16) · 10−7|6
LODE5 - (9.90± 0.38) · 10−5 - - (3.01± 8.13) · 10−6|4
LODE6 - (5.44± 3.64) · 10−6 - - (1.72± 2.85) · 10−7|4
LODE7 - (1.25± 0.26) · 10−5 - - (6.71± 2.33) · 10−6|4
LODE8 - (1.22± 0.001) · 10−2 - - (4.87± 5.41) · 10−5|4
LODE9 - (1.51± 0.001) · 10−2 - - (4.49± 20.4) · 10−4|14
LODE10 - (3.15± 0.0519) · 10−2 - - (4.54± 6.74) · 10−4|14
LODE11 - - 4.65 · 10−3 - (9.16± 39.4) · 10−4|4
NLODE1 - (7.42± 0.968) · 10−5 - - (1.61± 2.12) · 10−5|4
NLODE2 - (5.90± 0.549) · 10−6 - - (3.79± 3.31) · 10−7|6
NLODE3 - (3.64± 0.49) · 10−5 - - (2.05± 5.04) · 10−6|4
NLODE4 - (8.32± 0.79) · 10−5 - - (8.21± 33.0) · 10−7|6
NLODE5 - (3.19± 0.59) · 10−6 - - (1.59± 1.74) · 10−6|8
NLODE6 (3.03± 0.0009) · 10−1 (2.02± 2.74) · 10−1|14
SODE1 - (7.465± 1.66) · 10−5 - - (1.86± 3.95) · 10−6|4
SODE2 - (3.90± 0.37) · 10−5 - - (1.40± 1.12) · 10−6|4
SODE3 - (8.51± 4.02) · 10−5 - - (8.19± 9.46) · 10−6|4
SODE4 - (4.72± 0.261) · 10−5 - - (2.76± 3.23) · 10−6|6
SODE5 - (1.20± 0.007) · 10−4 3.88 · 10−3 - (2.28± 1.95) · 10−6|10
SODE6 - - 1.78 · 10−2 - (1.38± 0.56) · 10−2|14
PDE1 (6.9± 8.3) · 10−4 (6.37± 0.73) · 10−3 - 7.25 · 10−4 (6.20± 3.36) · 10−5|14
PDE2 - (1.16± 0.21) · 10−3 - 2.45 · 10−4 (9.48± 11) · 10−5|8
PDE3 - (5.90± 0.79) · 10−3 - 9.48 · 10−6 (5.02± 2.19) · 10−6|10
PDE4 - (1.23± 0.03) · 10−3 - 6.60 · 10−3 (7.02± 5.2) · 10−4|8
PDE5 (1.4± 2.7) · 10−2 (9.06± 1.29) · 10−4 - 3.72 · 10−2 (1.17± 0.73) · 10−4|14
PDE6 (2.0± 2.1) · 10−2 (1.79± 0.03) · 10−2 - 3.82 · 10−1 (1.80± 1.15) · 10−4|10

needed for obtaining a solution in LODE9. In our case,

good accuracy (RMSE order of magnitude is equal to

10−4) has been obtained with 42 unknowns (see Table

6).

From a qualitative point of view, some advantages

of the current approach can be enumerated. Firstly, it

is straightforward to compute the derivatives because

all the solutions are only expressed as a sum of Gaus-

sian functions. Derivatives of this type of kernels can be

precalculated. Secondly, low dispersion in the results

has been observed, so this finding provides evidence

about the robustness of our method. Works based on

GP reported a higher dispersion. And finally, our ap-

proach can be applied to different types of differential

equations. Some authors (Lagaris et al., 1998; Sobes-

ter et al., 2008; Yazdi and Pourreza, 2010) use some

particular methods for dealing with the boundary con-

ditions, facilitating the optimization process by means

of eliminating constraints. Nevertheless, these methods

are problem dependent and cannot be applied to other

types of DEs. Our method does not assume any partic-

ular structure in the boundary conditions, making the

method suitable for different types of problems (LODE,

NLODE, SODE, and PDE).

6.2 Comparison with classical methods

In this subsection, a comparison between the proposed

algorithm and numerical methods is presented. Our in-

tention here is not giving an exhaustive comparison

with this kind of methods. Numerical methods are much

more mature than evolutionary schemes, can cope with

a great variety of difficult problems and are faster than

evolutionary approaches. However, numerical methods

are usually specific for each type of equation. Alterna-

tively, an evolutionary algorithm could cope with differ-

ent types of differential equations if they can be trans-

formed into an optimization problem. An example of

this is analyzed here. For that, two partial differential

equations are chosen: PDE1 (Poisson equation) and

PDE8 (wave equation). Although both are second or-

der equations, the former is elliptic and the latter hy-

perbolic. This means that a different numerical method
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should be employed to solve each one of them. On the

other hand, as we will show in this section, the proposed

evolutionary method can cope with the two problems

without any change in the algorithm or in its parameter

configuration.

A brief description of two simple finite difference

numerical methods used in the comparison is provided.

The first method, which is used to solve PDE1, is an

explicit four order Runge-Kutta (RK4) (Press et al.,

2002). Let Ψxx + Ψyy = f (x, y) be the DE. After a dis-

cretization process on the grid nodes and using central

differences, the residual at point (i, j) of a candidate

solution field Ψ is computed as:

Ri,j (Ψ) =
Ψi−1,j − 2Ψij + Ψi+1,j

4x2
+

+
Ψi,j−1 − 2Ψij + Ψi,j+1

4y2
− f (xi, yj) ,

(23)

where constant grid sizes4x and4y are assumed. Note

that the collocation points must be arranged in such a

way that a structured grid (or mesh) is formed assign-

ing two indices (i, j) to each node. In this way, for a

given point (or node of the mesh), its neighbors can

be identified to compute the derivatives. This special

arrangement is not needed in our mesh-free approach.

At the boundary condition points, the residual is

set to 0. Defining a pseudo time parameter, τ , which

controls the convergence rate and the stability of the

method, the RK4 consists in the following sequence:

Ψ∗ = Ψ

Ψ∗ = Ψ + τR (Ψ∗) /4

Ψ∗ = Ψ + τR (Ψ∗) /3

Ψ∗ = Ψ + τR (Ψ∗) /2

Ψ = Ψ∗

 (24)

The above sequence is repeated until some convergence

criterion is fulfilled, typically when a maximum number

of iterations is reached or when the norm of the residual

array, R, is below a predefined tolerance. We have used

2000 iterations and τ = 10−3 for PDE1. We can see a

schematic of the numerical method in Fig. 13a.

On the other hand, some modifications must be done

to the numerical scheme to solve the wave equation

(PDE8). In particular, the coefficient for the numer-

ical approximation of the second derivative utt in Eq.

(23) changes the sign. Besides, the boundary conditions

must be applied in a different way because they are not

only set in u, but also in its first derivative ut. However,

RK4 does not work for wave equation because the al-

gorithm is not stable, even for very low values of τ .

RK4 scheme

(a)

tj

tj+1

tj-1

xi+1xixi-1

Simple Explicit

(b)

Figure 13: Numerical schemes for comparison. Arrows

indicate that one node is affecting another. Note that,

with the Runge-Kutta scheme, point (i, j) affects all its

neighbors. On the contrary, with the Explicit algorithm,

to compute the solution at time instant tj+1, we need

the values at previous time instants tj and tj−1, but

the solution at future time instants (tj+1,tj+2,...) is not

needed.

To solve the PDE8, a different approach must be

followed. A simple explicit scheme can be used. Being

the equation utt = uxx, and also using central differ-

ences, the field can be computed in a straightforward

way in just a single iteration:

ui,j+1 = −ui,j−1 + 2
(
1− α2

)
uij +α2 (ui+1,j + ui−1,j) ,

(25)

where α = 4t/4x. Note that the first and second

time instant (ui,0 and ui,1) must be obtained from the

boundary conditions. The numerical scheme is outlined

in Fig. 13b. Alternatively, some changes must be ap-

plied to Eq. (25) and the boundary condition to solve

the Poisson equation (PDE1) by means of the simple

explicit method.

Table 8 shows the results when PDE1 and PDE8 are

solved with the evolutionary algorithm and with both

numerical methods. As we can observe, each numerical

method works well in one of the two problems. On the

other hand, the evolutionary algorithm works properly

in both cases. When the numerical schemes converge,

RMSE values are similar (same order of magnitude)

to those obtained by our method. However, the time

required by the numerical methods is several orders of

magnitude lower.

Other advantage of evolutionary algorithm is its lower

memory requirements: using eight centers, a total of

32 unknowns must be stored. Numerical methods must

keep as many values as collocation points (100 in these

examples). Therefore, our solution requires 3 times less

memory; and even more importantly, the solution is

symbolically stored, so new solution values, different

from the collocation points, can be obtained without

performing any interpolation.



Using Covariance Matrix Adaptation Evolution Strategies for Solving Different Types of Differential Equations 19

Table 8: Comparison between numerical methods and our approach for PDE1 and PDE8.

Case Method RMSE Iterations/ Absolute Relative
Fitness Eval. Elapsed time Elapsed time

PDE1 Evolutionary 8.3 · 10−6 1.4 · 105 68s 8.1 · 10−2

RK4 6.5 · 10−5 8.0 · 103 0.2s 2.4 · 10−4

Simple Explicit 1.1 1 0.003s 3.6 · 10−6

PDE8 Evolutionary 7.8 · 10−3 4.2 · 105 14minutes 1
RK4 ∞ ∞ ∞ ∞

Simple Explicit 4.7 · 10−3 1 0.004s 4.7 · 10−6

LR
V

V

I
C

I
L

R
1

2
R

R
I

C

Figure 14: RLC circuit.

This comparison should be carefully taken into con-

sideration. For example, a more complex numerical method,

such as an implicit method, could solve both equations.

Here we only want to give some experimental feedback

about how an evolutionary approach could be more flex-

ible and with a more straightforward setup than a nu-

merical method.

7 Other Applications: electric circuit analysis

A more challenging and practical problem will be han-

dled in this section. In particular, the dynamic behavior

of a RLC circuit is modeled by a parametric differential

equation whose solution will allow us to solve different

types of analysis and design problems. First of all, a lin-

ear circuit is presented. The obtained results for each

problem are validated with the exact solutions. After-

wards, a non-linear variation of the same problem is

also solved with the proposed method.

7.1 Linear RLC electric circuit

The linear RLC circuit described in Fig. 14 consists

of a total of six linear components: a constant voltage

generator V , three resistors (RV , R1 and R2), a variable

capacitor C and an inductor L. We are interested in

the transient behavior of the circuit when the switch

is closed. Calling IC , IL and IR the electric current

trough the capacitor, the inductor and the resistor R2,

respectively, and applying Kirchhoff’s current law, the

following differential equation system is obtained:

V = (IL + IR + IC)RV + (IL + IR)R1 + IRR2

L
dIL
dt

= R2IR

IC = CR1

(
dIL
dt

+
dIR
dt

)
+ CR2

dIR
dt

 ,

(26)

The switch is connected at time t = 0. The boundary

conditions are IL (0) = IR (0) = IC (0) = 0. Note that

it is a system of three equations for three unknowns

(the electric currents IL, IR and IC). There are a total

of six parameters which determine the system: V , RV ,

R1, R2, C and L. After some algebra, it is possible

to simplify the problem to the following second order

differential equation:

α
d2I

dτ2
+
dI

dτ
+ I = 1, (27)

with boundary conditions I (0) = (dI/dτ)τ=0 = 0. The

new variable I represents the ratio between the current

in the inductor IL at a given dimensionless time τ and

the current at the steady state IL(∞), that is:

I =
IL (τ)

IL (∞)
=
RV +R1

V
IL (τ) . (28)

A change of variables was also performed: τ = t/T ,

where the characteristic time T of the circuit is defined

as

T =
CR1R2RV + L (R1 +R2 +RV )

R2 (R1 +RV )
. (29)

The coefficient α at the Eq. (27) is the unique parameter

which determines the dynamic behavior of the system.

Therefore, we have transformed the original problem

defined with six parameters into a new equation with

only one coefficient. The relation between the original

parameters and α is the following:

α =
CL

T 2

RV
R2

(R1 +R2)

(R1 +RV )
, (30)
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The exact solution of Eq. (27) is known, so a valida-

tion of the solution obtained by our evolutionary ap-

proach can be performed. More specifically, the exact

solution depends on the sign of 1 − 4α, which deter-

mines the roots of the characteristic polynomial of the

differential equation. Thus, if 1 − 4α > 0, there are

two different real roots r1 =
(
−1 +

√
1− 4α

)
/2α and

r2 =
(
−1−

√
1− 4α

)
/2α, and the exact solution is

I = 1 + K1e
r1t + K2e

r2t with K1 = −1 − K2 and

K2 = r1/ (r2 − r1) . When 1 − 4α < 0, the character-

istic polynomial has two complex roots µ ± λi, being

µ = −1/2α and λ =
√

4α− 1/2α, and the exact solu-

tion is expressed as I = 1+eµt
(
− cos (λt) + µ

λ sin (λt)
)
.

Finally, if α = 1/4 the polynomial has one repeated real

root r = −2, and the solution is I = 1 + ert (−1 + rt).

Using Eq. (29) and Eq. (30), it is possible to obtain

an expression for α dependent only on the ratio L/C

and the resistor values, i. e., α ≡ α(LC , R1, R2, RV ).

Assuming that all resistances were known, it would be

possible to obtain the variation range for the differential

equation coefficient:

α ∈
(

0,
(R1 +R2) (R1 +RV )

4R1 (R1 +R2 +RV )

]
, (31)

where the minimum value of α → 0 is obtained when

L/C → 0 or L/C → ∞. The maximum shown in Eq.

(31) is obtained for L/C = R1R2RV /(R1 +R2 +RV ).

Once the problem and the exact solution have been

described, an approximated solution will be obtained by

our method. In this context, we are going to show the

potential of our approach in tasks such as analysis, de-

sign and optimization in electric circuits. For that aim,

the system will not be solved for a specific configura-

tion, but it will be characterized in a range of the design

space. In particular, the system will be simultaneously

solved for a value range of α. Due to the problem is

two dimensional (two independent variables, α and τ ,

are handled), the solution to the new problem will be

obtained from the following particularization of Eq. (8):

I (τ, α) =

n∑
i=1

wi exp
{
−γi

[
(τ − ciτ )

2
+ (α− ciα)

2
]}
(32)

Considering that, in the circuit of Fig. 14, the follow-

ing component values are known: V = 12 Volts, RV =

50Ω, R1 = R2 = 105Ω and L = 10−3H, and the vari-

able capacitor is in the range C ∈
[
1.60 · 10−9, 3.92 · 10−8

]
F ,

then the following problems can be defined:

– Problem 1: What is the current through the induc-

tor L at time t = 1µs for all the possible values of

the capacitor?

Table 9: Range of α and τ for Problems 1 and 2.

C α τ at t = 1µs
1.60 · 10−9 0.16 10
3.92 · 10−8 0.01 0.5

– Problem 2: What is the maximum value of C which

ensures that the current through the inductor L at

time t = 1µs is at least the 95% of the current at

the steady state?

– Problem 3: What is the minimum value of C which

ensures that the maximum voltage in the inductor

is lower than 0.5 Volts?

In order to answer these questions, the Eq. (27) is solved

with our evolutionary algorithm. First, a range for the

collocation points must be selected. Knowing the val-

ues of the linear components of the circuit and using

Eq. (29) and (30), we can obtain the ranges for α and

τ . In particular, substituting the known values of R1,

R2 and RV in Eq. (31), it is possible to obtain that

the maximum value of α is αmax ' 0.25. In the same

way, using the extreme values of the capacitor and the

known value of the inductor, the maximum values for

α and τ can be obtained for the two first problems (see

Table 9). Nevertheless, knowing that α ∈ [0.01, 0.16],

and in order to show the potential of the method to

deal with different types of solutions, the range of α

is extended until its maximum, that is, we will work

with α ∈ [0.01, 0.25]. It is not possible to know which

range for τ is needed to solve the Problem 3, so a max-

imum value of τ = 10, required for the Problems 1 and

2, is assumed. Fig. 15 shows the design region consid-

ered. As it is shown in this figure, 13 different values of

α in the ranges α ∈ [0.01, 0.25] are defined. The non-

dimensional temporal variable τ is set in [0, 10] using

101 points (constant intervals of 0.1). Therefore, a to-

tal of 1313 collocation points are employed. The same

parameters shown in Tables 3 and 4 are used by the

algorithm, except the maximum number of fitness eval-

uation, which has been increased to 107. Table 10 shows

the fitness and RMSE values for different number of ker-

nels. Note how the accuracy improves when the number

of kernels is increased. As in the benchmark problems

shown in the previous sections, low dispersion is also

observed here.

We have only to deal with two types of solutions de-

pending on the roots of the characteristic polynomial.

Note that with the component values considered, it is

not possible to obtain complex roots in the character-

istic polynomial. Figure 16 compares the evolved solu-
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Figure 15: Design range showing α and τ parameters.

The collocation points provided to the evolutionary al-

gorithm are marked with circles.

Table 10: Results of the RLC circuit problem for dif-

ferent number of kernels. Average values and standard

deviations are provided.

n Fitness RMSE Fit. Eval.

5 (1.71± 0.70) 10−3 (8.76± 1.90) 10−3 (3.03± 0.52) 105

10 (4.94± 1.75) 10−4 (5.74± 1.25) 10−3 (6.89± 1.27) 105

15 (3.84± 1.69) 10−4 (4.50± 1.36) 10−3 (1.14± 0.21) 106

tion I along the time with the exact solution for three

different values of α. One typical run of the evolution-

ary algorithm with 15 kernels is used. Note that a very

good agreement is observed in all the curves. It should

also be noted that all solutions are monotone (always

lower than one) because all the roots of the charac-

teristic polynomial are real, whereas the solution with

complex roots would oscillate around one.

Once the differential equation Eq. (27) has been

solved, a symbolic solution parametrized with the co-

efficient α is obtained, so we can solve the three men-

tioned problems above in a very efficient way. In fact,

the solution to the Problem 1 is obtained from our ap-

proximation to the differential equation, see Eq. (32),

where α and τ are replaced conveniently using Eq. (29)

and (30), and expressing I = f(C). Figure 17 shows

the solution current ratio, I, at time t = 1µs versus

the value of C (top figure). Two curves are plot, one

obtained with the exact solution and, the other, with

the approximated solution given by the evolutionary

algorithm. In order to see if we are inside the region de-
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α=0.25 Exact

I L
/I
∞

0
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α=0.15 Exact

I L
/I
∞

0
0.2

0.4

0.6

0.8
1

α=0.01 Evolved
α=0.01 Exact

I L
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Figure 16: Current ratio IL/I∞ versus time τ for 3

values of α used as collocation points. Comparison be-

tween the exact solution and the evolved approximation

using 15 centers.

fined by the collocation points, α vs. C (middle figure),

and τ vs. C (bottom figure) are also plotted. Addition-

ally, we can also obtain the solution to the Problem 2

from Fig. 17: the x-coordinate of the point obtained as

the intersection between the current ratio curve and the

horizontal line IL/I∞ = 0.95 will be the desired answer.

The exact solution is C = 6.54 · 10−9F, meanwhile the

evolved solution gives C = 6.74 · 10−9F , obtaining a

relative error of 3%.

The Problem 3 is more challenging because it im-

plies obtaining the voltage in the inductor. According to

the characteristic equation of the inductor, the voltage

VL can be obtained as the derivative of the current IL.

This shows the benefits of the proposed approach: it is

straightforward to obtain the derivative of the solution

because it is given in a symbolic manner:

VL =
LI∞
T

dI

dτ
. (33)

As we see in Eq. (33), the voltage in the inductor is pro-

portional to the derivative of the current ratio I. Fig-

ure 18 shows the voltage for several values of C both

for the exact solution and the evolved one. As we see

in the mentioned figure, we can plot the curve which

reaches a maximum of 0.5V . Thus, the exact solution

to the Problem 3 is C = 3.657 · 10−9F , meanwhile the

evolved solution gives a capacitor of 3.61 · 10−9F , ob-

taining a relative error of 1.3%. This maximum voltage

is produced in a physical time t = 4.8 · 10−8 s, which
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Figure 17: The current ratio IL/I∞ through the induc-

tor at t = 1µs (top figure), the coefficient of the differen-

tial equation α (middle figure) and the non-dimensional

time τ (bottom figure) are plotted versus the value of

the capacitor (see circuit of Fig. 14). This figure allows

us to solve the problems 1 and 2 defined in section 7.1.

C=1.6e-9 F Exact
C=3.657e-9 F Exact
C=2e-8 F Exact
C=3.92e-8 F Exact
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C=3.92e-8 F Evolved
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Figure 18: Voltage in the inductor versus the physical

time t for different values of the capacitor C (see circuit

of Fig. 14).

corresponds to a non-dimensional time τ = 0.24 < 10.

Therefore, it is not needed to increase the design range

for collocation points shown in Fig. 15.

As a conclusion, we can say that although the pro-

posed approach requires more computational effort than

a numerical method, it could be more efficient in prob-

lems like those presented here. The proposed method

obtains a symbolic solution for all values of α parameter

inside a range, so derivatives of any dependent variable

can be computed easily. On the contrary, a traditional

method only can obtain the solution for a unique value

of the α coefficient in each run.

7.2 Non-linear RLC electric circuit

In this section, a more challenging problem is sketched.

Based on the circuit of Fig. 14, the constant voltage gen-

erator V is substituted by a nonlinear generator which

depends on time and the current through the inductor:

V (t, IL) = V0
(
1 + 0.1 arctan

(
kI2L

)
+ 0.1 sin (ωt)

)
,

(34)

where V0, k and ω are constant parameters. The aim

of this study case is to show the capabilities of the

method to solve non-linear problems. The original Eq.

(34) turns

α
d2I

dτ2
+
dI

dτ
+ I =

1 + 0.1 arctan
(
kI2∞I

2
)

+ 0.1 sin (ωTτ)
, (35)

where I = IL/I∞, being I∞ = V0/ (R1 +RV ). Note

that now I∞ is just a definition and does not correspond

to the steady state current. The same setup as that one

used in the linear counterpart is employed. Using 15

kernels, Fig. 19 shows the solution obtained for several

values of α. Parameters k and ω are set to 1/I2∞ and

1/T respectively. The ranges of α and τ are the same as

those ones used in the linear circuit because the same

component values are assumed (except for the voltage

generator).

8 Conclusions

A novel mesh free approach for solving differential equa-

tions based on CMA-ES has been presented. Unlike nu-

merical methods, the proposed algorithm does not as-

sume any particular structure of the differential equa-

tion. The approach has been applied to different kinds

of problems: linear and nonlinear ODEs, SODEs and

PDEs. Candidate solutions are built using Gaussian

kernels which allows us to compute in advance all the

kernel derivatives. No restrictions have been imposed

on Gaussian parameters, allowing even zero or negative

values for γ because we observed that the capabilities

to approximate functions are enhanced. To increase the
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Figure 19: Current ratio curve IL/I∞ versus the non-

dimensional time τ evolved by the evolutionary algo-

rithm for a non-linear RLC circuit (see Fig. 14), where

V ≡ V (t, IL) (see Eq. (34)). The current ratio is shown

for several values of α parameter.

accuracy of the best solution found by the CMA-ES

algorithm, a local search based on DS method is ap-

plied. The DS phase improves or at least maintains the

quality of the evolved solution and also decreases the

dispersion when several runs are used.

The proposed method has been tested in 32 differ-

ent problems extracted from the literature. All the test

cases have been successfully solved using the same pa-

rameter configuration. Assuming that the exact solu-

tion for each problem is known, the RMSE is used for

comparing the quality of the solutions obtained: it has

been observed that the quality is improved when the

number of kernels increases.

Some qualitative and quantitative comparisons be-

tween our method and other evolutionary approaches

reported in the literature have been presented. Several

advantages of our algorithm have been commented. For

example, it is easily configurable and achieves a com-

petitive accuracy, no restrictions are used in the process

of finding the solution, and a low dispersion is also ob-

served in the results obtained from 50 runs made for

each problem analyzed.

A comparative analysis was also performed solving

two problems with two different numerical methods.

Numerical methods are very efficient, are well devel-

oped and can cope with the majority of real problems.

However, from the moment in which the problem of

solving a differential equation is transformed into an

optimization problem, the proposed method, in partic-

ular, and evolutionary algorithms, in general, have in-

teresting properties (mesh-free, mathematical function

as solution, etc.) that can be useful in this kind of prob-

lems. On the other hand, the main drawbacks of evo-

lutionary methods are their non-deterministic behavior

and their low convergence speed.

To show the capabilities of the proposed approach

in a more practical problem, a RLC circuit analysis is

presented. The circuit is modeled by a parametric dif-

ferential equation and the solution is used to solve dif-

ferent analysis and design problems. Good accuracy in

the results is observed compared with the exact solu-

tion. A non-linear version of the same circuit is also

commented.

As it has been reported in this work, the number

of kernels has a strong influence on the solution accu-

racy. Besides, only one type of kernel has been employed

(Gaussian kernel) in our approach. Therefore, it could

be interesting to test other types. For example, the au-

tomatic selection of the best combination of different

types of kernels could improve the search of the solu-

tion. In the same sense, the optimum number of kernels

could also be selected by the algorithm in an automatic

way, considering a trade-off between accuracy and com-

putational cost.
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