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Abstract Fuzzy set theory has developed a prolific armamentarium of mathemati-
cal tools for each of the topics that has fallen within its scope. One of such topics
is data comparison, for which a range of operators has been presented in the past.
These operators can be used within the fuzzy set theory, but can also be ported to
other scenarios in which data is provided in various representations. In this work,
we elaborate on notions for Type-2 Fuzzy Sets, specifically for the comparison of
type-2 fuzzy membership degrees, to create function comparison operators. We fur-
ther apply these operators to hyperspectral imaging, in which pixelwise data is pro-
vided as functions over a certain energy spectra. The performance of the functional
comparison operators is put to the test in the context of in-lab hyperspectral image
segmentation.

Keywords Hyperspectral Imaging - Function-Valued Arithmetics - Theory of
Comparison - Type-2 Fuzzy Set

1 Introduction

Ever since fuzzy sets appeared, the community around fuzzy set theory has devel-
oped a vast literature in the topic. A large portion of the research effort paid in the
field has been devoted to the generation and study of tools for dealing with logical
information, provided the relationship between fuzzy sets and fuzzy logic. However,
the richness of this study is such that many tools can be (and have been) ported to
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other fields of research, both theoretically and practically. Hence, it is not uncommon
to see applications of well-known fuzzy set theory operators in contexts in which
information lacks a logical interpretability.

Uses of fuzzy set theory operators can be found in a wide variety of fields. In
general, most of the research fields in the context of computer sciences or applied
mathematics have been somehow tackled from a fuzzy perspective. A very relevant
example in which the impact of fuzzy set theory has been prolific is image process-
ing. Image processing seems to be an appropriate application to put fuzzy logic to
the test, as long as it involves two key factors. Firstly, image processing tasks are
normally defined in human terms, what makes their completion and evaluation be
(often) based on human, ambiguous interpretation. Secondly, image data is imprecise
in very different manners, from the very capture of the information (sensor noise) to
the scene-bounded factors (perspective, illumination, shading). As a consequence, a
list of authors applied notions of fuzzy set theory in image processing, with or without
a logical or set-based interpretation of the data. Some works elaborate on an evident,
clear logical representation of concepts, e.g., image processing techniques based on
fuzzy rule-based systems [40,37]. In this same direction, some authors developed
methodological tools based on fuzzy notions, such as the fuzzy schema for color
granulation [14] or texture labelling [13] by Chamorro-Martinez et al., or the approx-
imate spatial relations by Vanegas [71]. Despite these works properly make a label-
or granule-based interpretation of imaging data, literature is also vast in applications
of fuzzy set theory operators with no clear presence of fuzzy sets or other fuzzy con-
cepts. For example, aggregation operators have been used to develop specific low
level image processing operators. In some of these cases [15,54,47] the fuzzy inter-
pretation is missing, but authors capitalize on the properties of aggregation operators,
as well as on the solidity of their theoretical basis. In fact, connections have been
found between basic operators in image processing and those in fuzzy set theory,
e.g., the general framework for image filtering by Wilkin and Beliakov [76]. Similar
situations can be found in other subfields of image processing, e.g., in fuzzy mathe-
matical morphology [25,7] and its relationship with grayscale morphology [29].

The transference of information between fuzzy set theory and image processing
has been boosted, in our opinion, by different facts. Very importantly, by the strict
nature of the work in the fuzzy set theory, which has led to very solid mathematical
grounds and principles. Also, by the natural focus of fuzzy set theory on handling
non-standard data. Fuzzy information has been represented in many different shapes,
from scalar values (in fuzzy sets) to subsets of [0,1] (in set-valued fuzzy sets) or
even functions (in Type-2 Fuzzy Sets). Hence, operators in fuzzy set theory shall be
prepared to deal with such variety of shapes, whether in terms of logic (as meet and
join) or arithmetics (as comparison and fusion). Fuzzy set theory has produced a list
of operators prepared for non-standard data, and hence provides solutions to handle
mathematical objects for which other fields are not yet prepared.

This work relates to one of those fields in which non-standard data appears, as
it is hyperspectral imaging. In hyperspectral imaging, each pixel in the image grid
is associated to a functional representation of the reflected light (energy) in a certain
spectral range. This functional representation is materialized as a vector in which
each position holds the reflectance at equally-distant wavelengths of such range. In
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Fig. 1 Visualization of the mean spectra of different biological and artificial materials. The mean spectra
is computed from the region actually occupied by the object. This region is determined using the segmen-
tation technique in [44].

order to produce reliable image processing operators in this field one needs to define
basic operations on pixelwise information, including comparison, difference, fusion,
etc. As long as the information at each pixel is represented as a vector, such basic op-
erations could be handled with standard vectorial arithmetics. However, the semantics
and conditions (e.g., strong spatial correlation) of spectra make it possible to develop
evolved tools which better exploit the nature of the data. These problems are, in fact,
similar to those encountered in the comparison of some Type-2 Fuzzy Sets, in which
the uncertainty represented by a function comes from possibility distributions. This
means that the values at contiguous positions of the function are strongly correlated.
In Fig. 1 we display some examples of hyperspectral profiles for in-lab imagery, fea-
turing several living matter and human-made items. We observe, for example, that
there is a strong correlation in consecutive positions at each spectra. Also, that living
matter items on the left side present, in general, similar spectral patterns as a result of
their similar chemical compositions.

In order to develop image processing frameworks, we first need to study operators
able to work at the pixel level. In grayscale morphology, such operators are meet and
join, while in image convolution they are the product, sum and difference operators.
In this work, aimimg at developing a framework for hyperspectral imaging, we focus
on spectral comparison, which can be seen as the problem of functional comparison.
In order to do so, we study the literature and tools from type-2 fuzzy logic, which is
also based on a functional representation of the information at each element. Then,
we develop novel operators which can be used for the comparison of one dimensional
functions defined over a partially ordered domain. As special cases, they can be used
for both type-2 fuzzy logic and hyperspectral image processing. All of this is built
upon the existing cumulative operators, and takes inspiration from [74].

The remainder of this work is organized as follows. First, in Section 2 we review
the literature on comparison in the context of fuzzy set theory. Then, in Section 3
we propose a method for multivalued representation of functions, which leads to a
comparison operator focused on the peaks and valleys in the compared functions. In
Section 4 we analyze in detail the problem of spectral comparison to further put our
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comparison operators to the test in Section 5. Finally, a brief discussion is included
in Section 6.

2 Comparison in Fuzzy Set Theory

The boost of data-centric culture has affected most disciplines of research. As of
now, scientists in different fields attempt to model their contexts and circumstances
in terms of data, which needs to be further processed [68]. This has raised new con-
cerns ranging from the ethics and accountability of the process [51] to the modelling
and management of complex mathematical objects [1,6]. Data-centric science is sup-
ported by two pillars: data gathering and data processing. While the former is context-
dependent, the latter allows to import experience from different fields of study.

When it comes to data processing, knowledge is normally built upon simplistic
mathematical tools, in the same manner as complex mathematics are built upon basic
operations. Apart from object equality, the most basic operation on data is object com-
parison. Historically, metrics (a.k.a. distance functions) have been a mainstream tool
for complex object comparison. This is mostly due to the interesting properties they
satisfy, and to the fact that metrics abilitate the use of certain key techniques in, e.g.,
optimization [4]. Besides, the use of metrics preserves an Euclidean-like interpreta-
tion of the data universe, which certainly facilitates the understanding of subsequent
computational goals. The study of metrics and metrical spaces has been a key topic
of research in mathematics, leading to different sub-concepts and related studies (e.g.
multidistances or multi-argument distances [50,57]). Although akin to human inter-
pretation, the properties imposed by metrics shall not always be natural for some
types of data [19]. In the past century, different psychologies have also questioned
whether humans truly perform object interpretation and comparison based on met-
rical spaces. Such questioning has been done from a psychological perspective [3],
but also involves interdisciplinar approaches [81]. Criticisms can be found to be prac-
tical [39], and also theoretical [3]. The inconsistencies between human judgements
and triangular inequality have led authors as Tversky [69] or Santini and Jain [64]
to disregard the use of metrics. Other authors [69,70] even question the role of the
symmetry, mainly because it negates a directional interpretation of human compari-
son. Apart from purely theoretical analysis, applied research has sometimes found the
results by metrics to be meaningless in large-range comparisons [63,58]. Overall, a
quorum seems to exist that humans do not always behave according to metrical prop-
erties, specially when it comes to triangular inequality, but it is also acknowledged
that its properties greatly ease the use of certain data.

Considering the vagueness of the data comparison problem (we are still uncertain
of the properties satisfied by general human comparison) and the potential complex-
ity of the mathematical objects involved in it, soft computing appears as a straighfor-
ward tool to analyze comparison. In fact, over the years a vast armamentarium [83]
of techniques for comparison has been presented. Some of these techniques embrace
the metrical approach [27,26], while some others developed parallel theories (as the
T-indistinguishability by De Baets [20, 18]). Still, all of them are born from Zadeh’s
introduction of similarity as an extension of equivalence [83]. Note that binary equiv-
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alence shall not be totally disregarded from the debate in a fuzzy approach to object
comparison. In fact, the very idea of granulation and wide fuzzy logic, as presented
by Zadeh [84], can be understood under the prism of classes of equivalence for input
data. Also, there has been relevant research in the generation of graded equivalence
relations from both crisp and graded relational data [72].

In a historical account of comparison operators for fuzzy set theory we find that
each generalization of fuzzy sets has come coupled to new definitions of comparison
operators. For example, scalar membership functions in fuzzy sets can be compared
using equivalence functions or restricted equivalence functions [8]. Similar develop-
ments were created for comparing interval-valued fuzzy sets [36,61], hesitant fuzzy
sets [85] or L-fuzzy sets [60]. In this work, we focus on the tools and means for the
comparison membership degrees in Type-2 Fuzzy Sets. Type-2 Fuzzy Sets (T2FSs,
for short) were introduced in 1975 by Zadeh [82]. Soon after its definition, some the-
oretical works about the algebra of fuzzy truth values of T2FSs were introduced [55,
56]. However, it is not until the recent literature that T2FSs have grown in impor-
tance. This lack of early literature is, at least partially due to the fact that the un-
certainty modelled by T2FSs is more intricate and its treatment more complicated
than in other generalizations of fuzzy sets. In order to solve this problem, Mendel et
al. [42,53] introduced the notion of interval T2FSs. However, the notation used by
Mendel et al. is different from the notation by authors as Walker et al. [30,31,73,74]
and Hernandez et al. [32,33]. The existence of different notations has, in fact, slowed
down the development of T2FSs.

In [9] it is shown that the pointwise interpretation of functions, which is the most
usual one in literature [21], is not appropriate for introducing operations in T2FSs.
The significance of the function, as mathematical object, cannot be observed individ-
ually at each point of its domain x; it can only be observed, hence, in its indivisible
behaviour over the domain. For that reason, the definition of operations in T2FSs
(see, for example [32,38,74]) lies on Zadeh’s extension principle [82]. This prob-
lem also affects, among others, most of the comparison operators for T2FSs. Most of
the operations defined in the literature are only applicable to interval T2FSs [78-80].
McCulloch et al. have recently tried to generalize the concept of similarity measure
to deal with any T2FS [52], but their definition heavily depends on the use of (some)
z-Slides which are not congruent with the semantics of the present work.

In this work we present a novel strategy for functional comparison. This strategy
is not focused on the pointwise analysis of functions, but on the idea of indivisi-
ble function, instead. In this sense, our approach is heavily inspired by the ideas of
Zadeh [82], as well as by the mathematical developments by Walker, Walker and
Harding [31,74].

3 A novel strategy for function comparison

In this section we present our proposal for functional comparison, which will later
be applied to hyperspectral imaging. Our idea is based on two principles. Firstly, a
function represents the information as a piece and it should have the consideration
of an indivisible object. Secondly, most of the information in functions is in their
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maxima and minima, either local or global. From these two principles we deduce
that a pointwise treatment is not suitable for the purpose of this work. Also, that
the measurement of the local and semi-local variations of a function are a key for
the interpretation and comparison of functions. With these two ideas we present in
this section a novel similarity measure for one-dimensional functions, which will be
further applied to hyperspectral image processing.

3.1 Preliminary definitions

In order to better understand our proposal, it is necessary to recall the expression of
union and intersection of two membership functions of T2FSs [55,74].

Definition 1 Let f,g: [0,1] — [0, 1] be two functions which represent the member-
ship degrees of two T2FSs. The union and intersection are defined as follows:

(fug)x)=\/ f(y)Ag(z), foranyxe][0,1];
yz=x
and
(fng)(x)=\/ f(y)Ag(z), foranyxec][0,1].
YAZ=X

In [74], Walker and Walker proved that the union and intersection can be equiva-
lently formulated in terms of the so-called cumulative functions.

Definition 2 Let f: [0,1] — [0,1] be a function which represents the membership
degree of a T2FS.
— The left-cumulative function f* of f is given by
L)c):\/f(y)7 for any x € [0, 1]. (1)
y<x
— The right-cumulative function f¥ of f is given by

=\/f(y), foranyxec][0,1]. (2)

y=x

Let f,g:[0,1] — [0, 1]. For any x € [0, 1], it holds that

(fURE) = (f) A g )V (fH(x) Ag(x)) = (F(x) Vg)) A (fH(x) Agh(x)),
(f1g) ) = (F) A" )V (5 () Ag(x) = (f(x) V() A (FF(x) A g ()

Cumulative functions are an initial step to treat functions as indivisible objects,
and capture most of the information needed to interpret convex functions. However,
they do not hold enough information to represent general functions, since they are
oblivious of local minima (valleys) and, potentially, of the local maxima (peaks) in
the function f. Hence, despite valid to model union and intersection operations in
type-2 fuzzy logic, we need to complete the representation of a general function f
with additional information.

3)
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3.2 A four-fold representation of one-dimensional functions

The aim in this section is to produce a representation of functions which is able to cap-
ture, in an evident manner, the presence of maxima and minima in a one-dimensional
function. Our proposal intends to build upon cumulative functions, so that functions
can be treated globally, and not pointwise. Note that the cumulative functions them-
selves do not completely fulfill our goals, since left (resp. right) cumulative function
is plain when the function is decreasing (resp. increasing). However, we make use of
cumulative functions to produce a richer interpretation of the original function.

Definition 3 Let f : X — [0, 1], where X is an ordered, discrete set. We consider a
four-fold representation of the function f, namely f = (f1, /2, f3, fa), given by:

— A =0 =\ FO);
— h) = R0 =\ FO);
y=x
— ) = A0 — £(x) = fi(x) — F();
— falx) = FR(0) — £(x) = folx) — ().

Note that f; and f, are exactly the cumulative functions as described in Egs. (1)
and (2). The function f;3 is called subtracted left cumulative function while the func-
tion f3 is called subtracted right cumulative function.

A visual example of the representation proposed in Definition 3 is given in Fig. 2.
Note that the functions used in this example are taken from the spectral profiles from
Fig. 1. In Fig. 2 we observe how the differences between the two functions f and g are
modelled, from different perspectives, in the functions f; and g;, for i € {1,2,3,4}.
Since both functions have a similar increase on the left, f is rather similar to g;.
However, the increase on the right side of the function is quite different, and so the
differences between f> and g, are notorious. Although both functions feature two
valleys in its range, their visual interpretation is rather different in terms of depth and
sharpness. Accordingly, functions f; and g;, for i € {3,4}, show differences which
allow us to model such dissimilarity.

In the remainder of this section we study some mathematical properties of the
functions of the four-fold representation. Some of the properties, specifically those
only referring to the left and right cumulative functions f; and f,, can be found
in [74].

Let X and X respectively denote the smallest and greatest elements of the discrete,
ordered domain X. We can then consider the domain X as the set containing all the

elements in the interval [X, X], i.e., we can write X = [X, X]

Proposition 1 Ler f : [X,X] — [0,1] be a function and let f = (f1, f>, f3, f4) be its
four-fold representation as introduced in Definition 3. The following holds:

e 0< fi(x) <1 foranyxe€[X,X]andfori={1,2,3,4}.
e f| is an increasing function.
e f> is a decreasing function.
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N

(a) Original Signals f, g (b) Functions fi, g; (c) Functions f>, g3
A A
(d) Functions f3, g3 (e) Functions f4, g4

Fig. 2 Visual example of the proposed four-fold representation of one dimensional features. We display
the original functions f and g, together with the representations included in f and g, as in Definition 3.

e Let x' = min(argmax,y ¥ f(x)). It holds that fi(x) = M for all x > X', where
M = f(X). Note that, since the X is discrete, X always exists.
o Let X = max(argmax ¢y y) f(x)). It holds that f>(x) = M for all x < x", where
M= f(x").
o Letx' € [X,X] satisfy that f1(x') = fo(x') = f(¥'). Then, X' € argmax .y 5, f(x).
o Let x* be a strict local maximum of the function, i.e., let x* satisfy that f(x*) >
f(x), for all x in a neighbourhood of x*. It holds that
- f3(x*) < fa(x), for all x in a neighbourhood of x*;
— fa(x*) < fa(x), for all x in a neighbourhood of x*.
Otherwise said, a local maximum generates a local minimum in both f3 and f4
functions.
o Let x* be a strict local minimum of the function, i.e., let x* satisfy that f(x*) <
f(x), for all x in a neighbourhood of x*. It holds that
- f3(x*) > fa(x), for all x in a neighbourhood of x*;
— fa(x*) > fa(x), for all x in a neighbourhood of x*.
Otherwise said, a local minimum generates a local maximum in both f3 and fa
functions.
o Let g(x) = f(x)+cand let § = (g1,82,83,84) be its four-fold representation. It
holds that

- g1(x) = filx) +¢;
- (%) = fo(x) +¢
- g3(x) = f3(x);

= 84(x) = fa(x).
Otherwise said, fi and f, are stable under vertical translations, while f3 and fa
are oblivious to them.
o Let g(x) =c- f(x), withc € [0,1] and let § = (g1,82,83,84) be its four-fold rep-
resentation. It holds that g;(x) = c- fi(x) foranyi € {1,...,4} and x € X.

e If f is an increasing function, for any x € [X,X|, it holds that
- filx) = f(x); _
- L(x) =M, withM = f(X);
- f3(x) =0;
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= falx) =M — f(x). _
e If f is a decreasing function, for any x € [X,X)], it holds that
2 i) = M, with M = f(X);

- (%) = f(x);
- f3(x) =M~ f(x);
- fa(x)=0

o If fisconcave, ie., there exist xo € [X,X] such that for all x € [X, xo], f(x) < f(x0)
and for all x € [xo,X], f(x0) > f(x), then the following holds:
- _ f(x)  ifxe[X,xl
fi(x) {f(xo) if x € [x0,X]
— f(X()) ifxe [K,Xo[
- falx) = {f(x) ifx € [x0,X]

Al = 0 ifxe[X,xof

st {f<xo>—f<x> iFx€ [ X]
S fxo) = f(x) ifx € [X,x0

_f“(x)_{o ifx € [x0,X].

3.3 A similarity measure for functions

We present two different ways of measuring the similarity focusing on two interpre-
tations of the four-fold representation in Section 3.2. The first one focuses on the
comparison of all the available information, while the second one restricts the analy-
sis to the study of the left and right subtracted cumulative functions.

Let H denote the set of all functions from [X,X] to [0,1], i.e

H={f|f:[X,X]—[0,1]}.
Definition 4 The similarity function g; : H x H — [0,0) is defined as

=Y Y |fix)—g)]|, foranyf gcH. 4)

xG[XX}ZG{L -4}

This operator takes into account the differences between the four functions of the
four-fold representation. The advantage is that the generated function is a metric.

Proposition 2 The similarity q; satisfies that

(i) q1(f,8) =0iff f(x) = g(x), for all x € X;
(ii) q1(f,8) = qi(g,f). forany f,g € H;
(iii) q1(f,h) <q1(f,8) +qi1(g,h), forany f,g,h € H.

Proof (i) The similarity g;(f,g) = 0 if and only if fi(x) = g1(x), f2(x) = g2(x),
f3(x) = g3(x) and fi(x) = ga(x), for all x € [X, X]. Since, fi (x) = g1(x) means that
fE(x) = g-(x), for all x € [X, X], it holds that f;(x) = g3(x) for all x € [X,X]if and
only if fX(x) — f(x) = g&(x) — g(x) forall x € [X, X] 1f and only if fL(x)— f(x) =
fE(x) — g(x)for all x € [X,X] if and only if f(x) = g(x) for all x € [X,X].
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(ii) Direct.
(iif) Straight, taking into account the triangle inequality of the absolute value.

Note that f3(x) — g3 (x) can be rewritten as £ (x) — f(x) — (g5 (x) —g(x)) = (fE(x) —
g (x)) — (f(x) — g(x)). Hence, big differences in the cumulative functions (which
are counted also in fj(x) — g1(x)) may make the punctual differences insignificant.
Analogously, the same problem arises with the right cumulative and right subtracted
cumulative functions. In order to solve this obstacle, we propose another way of mea-
suring the similarity.

Definition 5 The similarity function g, : H x H — [0,) is defined as

ef.8)= ¥ (IA® -+ -s@]). 5)

x€[X,X]
Proposition 3 The similarity q; satisfies that
(i) q2(f,g) = 0 if and only if f(x) = g(x) + ¢ for all x € X, with some fixed
ce [_mian[X7Y] (f(x)ag(x))7] _maXxG[X,Y] (f(x)7g('x))] ,

(ii) q2(f,8) = q2(g, ). forany f,g € H;
(iii) q2(f,h) < q2(f,h) +q2(h,g), for any f,g,h € H.

Proof (i) Note that g>(f,g) =0 if and only iff3( ) = g3(x) and f4(x) = g4(x) forall
x € [X,X] if and only if f*(x) — f(x) = g"(x ) —8lx )ande( )= fx) =gR(x) -
g(x) for all x € [X,X] if and only if £ (x ) gh(x) = fR(x) — gR(x) = f(x) — g(x)

for all x € [X, X].
Letx" € argmax,c(y x| f(x). It holds that

fH) = gh () = f(x) — g(x") = fH(x") — g"(x") if and only if
FO) = gh @) = f(x") —g(x") = f(x") = ¢"(x") if and only if (6)
gh(x") =g(x") = g"(x").
Due to Proposition 1, this means that x* € argmax,. |y yg(x). Let ¢ = f(x*) —
g(x*). For any, x; € [X,X] such that x; < x*, it holds that

FR(x) — g8 (x1) = f(x1) — g(x1) if and only if -
F(&) —g(x™) = flx1) —glx1) =c.

Similarly, for any, x, € [X,X] such that x, > x*, it holds that
fH(x2) = g"(x2) = f(x2) — g(x2) if and only if ®

() =) = fx2) —glxn) = ¢

Hence, f(x) = g(x) + ¢ for any x € [X,X].
(i) Direct.
(iif) Straight, taking into account the triangle inequality of the absolute value.
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It is worth mentioning that even g, overcomes the limitations of the metric ¢,
in which big differences in the cumulative functions may degenerate the metric, the
new similarity is not a metric any more. Indeed, it yields O for any pair of functions
satisfying that one is a vertical translation of the other. Anyway, in situations in which
the importance is given to the form and size and not to the height of the functions (as
it is the case of the proposed application in hyperspectral images) this need not be a
disadvantage, but an advantage instead.

3.4 Practical analysis of the comparison measure

The measures ¢g; and ¢, are meant to have a behaviour more logical than that of the
point-to-point measurements. In order to illustrate that, Fig. 3 displays the results
of the comparison of two functions f and g against distorted versions of itself. In
that figure, the leftmost column includes the original signals in the experiment. Then,
each of the three rightmost columns displays the dissimilarity of the original version
of the signal w.r.t a modified version of itself. Such modifications consist of a lateral
displacement of the function d positions to the right (column (b)), a point-wise scaling
by a constant factor k (column (c)) or uniform white noise contamination of +n% of
its value (column (d))'. In all cases, the disimilarity is measured using ¢, ¢» and the
absolute difference s(f,g) = ¥.cix x|/ (x) — g(x)]-

In Fig. 3 we can observe that the measures ¢ and g5, as well as s, quantify linearly
the distortions due to pointwise alterations of the signal (columns (c) and (d)). Note-
worthingly, g; and g, have a better behaviour when the modification of the function
affects its structure, as in the case of the displacements. In Fig. 3(b) we observe how
the dissimilarity measured with g; is a quasi-linear w.r.t. the displacement. While g,
does not manage to keep such linearity, it still performs better than s, which performs
poorly in such cases.

4 Hyperspectral imaging

Functional representation of information is not uncommon in science, specially when
linear measurement parameters are considered in the data gathering process. Exam-
ples of such can be time series, in which scalar data becomes a function of time, or
scale-spaces [43], for which dedicated parameters are introduced with the same goal.
Hyperspectral image processing is a suitable field of application of the measurements
in Section 3 for a list of reasons. Among them, two reasons gain special relevance.
First, the fact that hyperspectral imaging involves all the factors that make image
processing an evident target for fuzzy set theory, as analyzed in Section 1. Second,
the absence of widely-accepted low level operations on top of which more complex
image processing methods can be built.

Hyperspectral imaging generally refers to the measurement of light in wave-
lengths beyond those visible to human beings. Specifically, such measurements are

!' In the case of column (d) the measurements have been repeated, then averaged, 1000 times.
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y y y y I —
”M q2

(a) Original Signal (b) Lateral displacement (c) Scaling (d) White noise

Fig. 3 Analysis of the responses yielded by the measures q;, go and absolute difference (AD) in the
comparison of a function with a distorted version of itself. (a) Original functions with 200 sample points,
(b) dissimilarity measured w.r.t. lateral displacement of d positions to the right, (c) dissimilarity measured
w.r.t. multiplication of the signal by a factor &, (d) average dissimilarity measured w.r.t. 1000 random
contaminations of the signal with uniform, white noise in the range [—n,n|, n expressing a percentage of
the maximum value of the original signal.

acquired at different wavelengths in a certain spectral range, normally a subset be-
tween the visible and near infrared regions of the electromagnetic spectrum. Given a
spectral range and a vector of equally-distant wavelengths within it Ml = (..., U,),
a hyperspectral image is a mapping f : Z X € x M — [0, 1], so that f(r,c,i) repre-
sents the reflectance of energy at position (r,¢) for a wave at y; nanometers. Hence,
it can be figured out as an image in which the information at each row r and column
c is a spectrum, i.e., a function.

Recent years have brought a drastic increase in the use of hyperspectral imag-
ing. The reasons partially lie on the decay of the prizes of the machinery, but also
on the attractive applications hyperspectral imagery has. Specifically, on the fact that
the reflectance at certain wavelengths in the non-visible spectra is related to mate-
rial properties of the visible objects. Hence, the reflectance at certain wavelengths is
dependent upon physical facts such as humidity or presence of certain components.
This makes such facts visible under hyperspectral imaging systems, even if they do
not manifest for the human-visual system. This has found a list of applications in
different fields, specially remote sensing, drone-based surveillance and control, and
agro-bio product analysis [23].

The benefits and possibilities of hyperspectral imaging are evident, but they come
at the cost of greater data complexity [24]. To compare, regular images have 3 or 4
values per pixel, while hyperspectral images contain functions with 256 — 1024 mea-
sured wavelengths, whose interpretation (individually, or globally) is far from evi-
dent. When it comes to hyperspectal imagery even visualization is non-evident [35].
The low interpretability of hyperspectral imagery is indeed a significant problem,
more so if we consider that most image processing tasks are based on human inter-
pretation of visual artefacts, sometimes even attempting to mimic human cognitive
processes. We believe that most of this complexity would unravel by developing low-
level operators that enable the implementation of more complex image processing
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algorithms. In this context, we focus on spectra comparison, one of the key low-level
operations in data (also, image) processing.

The comparison of pixel information is ubiquitous in image processing. It affects
most of the processes, from the definition of the basic operators (e.g. differential
operators [62]) to the very definition of color spaces (e.g CIELab). When it comes
to hyperspectal comparison, the complexity of the data makes it arduous to define
reliable, interpretable operators. In our opinion, operators should make full use of
the fact that spectra are not vectors, but functions. In this sense, we understand that
spectra comparison must be tackled from a deep understanding of the conditions of
spectra. Specifically, we focus on agro-bio applications, one the most prolific use of
hyperspectral imagery.

5 Experiments on in-lab hyperspectral imagery
5.1 Edge detection on hyperspectral images based on the USAN principle

There exists a certain divergence on the way in which object boundaries are perceived
by humans, at least when it comes to the directionality of the process. This divergence
roots on the experiments carried out in the context of neurology and psychotropics,
and has been matter of debate for a long time. Although the contributions to the
debate are multiple, the contradiction of modern theories (e.g. [34,10]) have been
frequently echoed in the image processing literature [49,48].

A large portion of the literature in image processing considers images to be scalar-
valued functions, so that the boundaries manifesting as intensity changes shall be de-
tected throughout the analysis of their derivatives. This has lead to a prolific field of
study on optimal filters or kernels for gradient characterization, including the well-
known Sobel [67], Prewitt [62] or Canny [11] operators, but also very recent pro-
posals as the anisotropic Gaussian kernels [65,75]. In case images are vector-valued
(e.g. color images), the required analysis is that of the Jacobian of the image [22]. De-
spite being a mainstream option, very relevant authors have taken a totally different
approach. Within their framework for the raw primal sketch, Marr and Hildreth con-
sidered that boundary manifestations, and hence boundary detection filters, need not
be orientation dependent [49]. Other authors have also elaborated on similar ideas
to produce orientation independent filters to model object boundaries. One of such
efforts is the SUSAN edge detector, which relies on the relative heterogeneity of the
pixels in a small image region to model the probability of the presence of a bound-
ary [66].

The USAN edge detector is based on the so-called Univalue Segment Assimi-
lating Nucleus (USAN) principle, which refers to the fact that most of the values in
an area are normally similar to the pixel in its center (its nucleus). Any divergence
from such trend is thought to be due to the presence of multiple objects in the region,
and hence indicator of boundary of multiple objects. Mathematically, it renders in
a weighted summation of the dissimilarities between each pixel and the pixel in its
surrounding area.
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Let Q be the positions of an image I, and let N : Q — £2(Q) be a mapping such
that N(x,y) yields the positions in a certain neighbourhood around (x,y). The edge
value at each pixel is computed from the difference of the pixels and its neighbours.
In [66], Smith and Brady proposed to compute such differences with a sigmoid-like
function of the pairwise differences. Specifically, Smith and Brady propose to mea-
sure the uniformity of the area around each pixel as

,<Egﬂ;&éiﬂ>
Uxy)= ) e ' , 9)

(¥ )EN(x,y)

where ¢ corresponds to the maximum expected dissimilarity between two pixels in the
same object, and « is a coefficient influencing the slope of the sigmoid-like function.
In [66], « is set to 6, although in our experiments better results were reached with o €
[2,4]. For any (x,y) € Q, U(x,y) € [0,card(N(x,y))], with 0 measuring the maximal
heterogeneity in the neighbourhood and card(A) denoting the cardinal of a set A.
Hence, an edginess value can be obtained as

U(x,y)
N(x,y)’

A key for the application of the USAN is the comparison of individual elements
within the local context of the image. This seems to be a relatively evident question
for scalar valued images, but becomes a complicated problem when the amount of
information at each pixel increases. In fact, relevant color spaces as the CIELab have
been created with the goal of easing pixel comparison; also, some authors propose
custom-made kernels to produce distance-aware color spaces on demand. Nonethe-
less, provided a sensitive comparison operator, the SUSAN operator can be applied
to any type of images.

In this experiment we attempt to produce fuzzy edge images from hyperspectral
images using the comparison operators introduced in Section 3. In order to do so, we
just need to reformulate Eq. (9) as

E(x,y) =1-

(10)

B (q,-(:(x.yu(% ) ) ¢
Uy = ) e : (11)

(' Y)eN(x.y)

for any of the g; presented in Section 3 (also, the absolute difference s).

In order for the values yield by g; to be normalized (in [0, 1]), simple arithmetic
can be used. Assuming that spectra have normalized reflectance values (percentage
of maximum reflection), the results of the measures g; just need to be divided by the
number of wavelengths in the spectra.

5.2 Image segmentation using the USAN principle

Image segmentation is a mid level image processing task aimed at discriminating
the areas of the image occupied by each visible object. Since the description of the
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objects in an image is normally hierarchical, some authors have proposed segmenta-
tion tasks to produce hierarchical descriptions of the scene (see, e.g. the discussion
on ultrametric contour maps in [2]). Due to the simplicity of the scenes in this ex-
periment, we restrict to scalar labelling of individual pixels. Hence, a segmentation
algorithm can be seen as a mapping from the universe of visual images to the universe
of labelled images. Let 2 = {1,...,R} x {1,...,C} be the positions of an image, we
denote by Iy to the set of images whose pixels take values in X. Hence, a hyperspec-
tral segmentation algorithm is a mapping 7 : Iy, [o,1) — Iy such that, for any two
positions (x,y), (¥',y') € Q, T(I)(x,y) = T(I)(x',y) if and only if (x,y) and (x,y’)
are occupied by the same object in /. Alternative descriptions of segmentation can be
found in, e.g., [28].

In the context of object segmentation in hyperspectral imagery, we intend to auto-
matically discriminate two regions: the area in which vegetable material appears and
the background area. Hence, only two classes (equiv. labels) are considered.

Let H € Iy, ,[o,1) be a hyperspectral image. Our algorithm, created as a modifica-
tion of that in [44], is as represented in Fig. 4. A stepwise description is the following:

1. Create a Peak energy image of the hyperspectral image (G € Ig), given by

G(x,y) = \/ 1(x..p).
neM

2. Compute a fuzzy edge image using the operator in Eq. (10). We refer to this image
as E € Ip.

3. Perform the watershed transform on E, so that the image is partitioned in regions.
This process is likely to oversegment the image, creating highly partitioned re-
gions.

4. Create tiled representations of the peak energy and the centrality of each region
in C. These representations (namely G’ and C’) can be seen as spatially-granular
interpretations of the image or, equivalently, as superpixel-based representations
of different image features.

5. Since G’ and C’ represent semantic facts (energy and centrality), they can be
combined using a logical operator. In this case, we are interested in tiles (regions)
being in the center of the image and having high energy, and so we chose a t-norm.
For this experiment, the product has been chosen.

6. The resulting image is thresholded using hysteresis [12]. The upper threshold for
the hysteresis is computed according to the Otsu method [59], while the lower
threshold is set as 70% of the upper one.

5.3 Experimental Dataset

In this study, we used a collection of 40 images of different food and vegetables to
build our dataset. All images were of different size and shape, but each having 320
columns and a variable number of rows. The reflectance of each pixel was measured
at 256 different wavelengths using a setup for hyperspectral imaging consisted of a
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Peak energy image (G) Granular energy (G')

Hyperspectral @
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h 4
Hysteresis @

Watershed transform
Segmented image

Fig. 4 Schematic representation of the image segmentation algorithm based on local contrast measure-
ments, as explained in Section 5.2.

computer-controlled translation stage; four halogen lamps (Lexman 46 W) to illumi-
nate the samples; an Indium gallium arsenide (InGaAs) CCD camera with a resolu-
tion of 320x256 pixels (Xenics, Model Xeva-1.7-320, Leuven, Belgium) coupled to a
spectrograph (ImSpector N17E, Specim, Spectral Imaging Ltd., Oulu, Finland), and
to a lens (Xenics, Model OPT-000107, SWIR 16 mm f/1.4, Leuven, Belgium) with a
focal length of 16 mm; and, a computer fitted with the specific software Xeneth 2.5.
The exposure time was optimized at 2 ms in order to maximize the spectral signal-
to-noise ratio while avoiding saturation of specular reflective regions.

This image acquisition system has a line scanning or pushbroom configuration
which acquires a whole line of an image each time requiring to move the sample
under the field of view of the camera [41]. Therefore, images of one spatial and one
spectral dimension are acquired by the detector of the camera and the third dimension
is achieved by means of sample movement under the camera. Images are measured
in the 900-1700 nm wavelength range with 3 nm resolution.

5.4 Quantification of the results

The results of our segmentation algorithm can be seen as binary results, so that the
background takes the label 0 and the featured biological items take label 1. In par-
allel, human experts were required to manually label the images by pointing out the
areas in which the biological items appeared. Let Igt € Ifo 1} be the ground truth
image created by a human and let Ic € [0 ) be a candidate image produced by our
algorithm. The quality of Ic w.r.t. to Igt is quantified as follows.

— Statistical interpretation: If segmentation is regarded as a classification task, quan-
tification shall be done in terms of a confusion matrix. From the standard quan-
tities in the confusion matrix (TP, FP, FN and TN) , we consider the following
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quality indicators:

TP TN TN+ TP
=—— TNg and Acc = +
TP+FN

TP S N+ Y
R TN+FP’ card(Q) ’

with card(€) representing the cardinality of the set Q.

Note that, due to the conditions of the dataset, most of the pixels are expected
to be classified as background. Hence, TN is significantly greater than the other
quantities. In such cases, it is recommended to use Precision/Recall measures,
which avoid using TN. Precision, recall and F,, are defined as

TP TP Prec+Rec
= -, Reczi,andFaZ ’
TP+FP TP+FN oPrec+(1 — o) Rec

Prec

respectively.

— Topological interpretation: This interpretation considers the distribution of the
featured object (in this case, the biological item) in the image. We consider two
measures for this interpretation. First, the symmetric distance which, as included
in [46,45], is given by

1
ZpEIGT dk (pa IC) + Zpe[c dk (pa IGT) ,
card(IgrUlc)

SD¥(Ic, IgT) = [

where d is a metric in R? (in our experiments, the Euclidean metric) and k is a
regulation exponent, which is set to 1 in our experiments. Second, Baddeley’s
Delta metric [4,5], given by

1

B
Z |D(p71C)_D(paIGT)|B] 5
peQ

1

Aﬁ(ICJGT) = m

where D(p,S) is the point-to-set distance defined as D(p,S) = mingesd(p,s), d
is a metric on  and B € R* is an exponent?.

Note that, although both interpretations would yield maximal results in case of
optimal solutions, they differ in how they model and penalize errors [46].

5.5 Experimental results

The results of the experiments are included in Table 1. Note that they are discrimi-
nated according to the operator N used for the configuration of local neighbourhoods
at each pixel in the image. We consider, separately, radial neighbourhoods of radius
5 (Table 1(a)) and radial neighbourhoods of radius 7 (Table 1(b)).

The facts to be observed in Table 1 are diverse. At first glance our algorithm shows
good performance regardless of the measure used for comparison and the USAN

2 The original formulation by Baddeley [4,5] included a convex function w, but its effect can be also
reached by means of a sensible choice of d and D. In fact, follow-up works have omitted such function [17,
16,77].
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Quality measures
TP FP FN Acc Prec Rec Fys SD! A2

Measure

AD(s) t=005 .13 .00 .04 .96 97 18 .87 013 7.5
t=0.10 .14 .01 .03 .96 .96 .80 .87 012 774
t=0.15 .14 01 .03 .96 .96 .80 87 013 785
t=020 .14 .01 .03 96 .96 .80 87 013 785
q t=005 .13 .01 .04 96 .96 8 .86 013  7.80
t=0.10 .14 01 .04 96 .96 79 87 013  7.68
t=0.15 .14 01 .04 96 .96 79 87 013  7.67
t=020 .14 .01 .03 .96 .96 .80 .87 013 7.63
Q@ t=005 .14 .01 .03 .96 .96 .80 87 012 7.61
t=0.10 .14 .01 .03 .96 .96 .80 87 012 755
t=0.15 .14 01 .03 .96 .96 .80 .87 012 7.55
t=020 .14 01 .03 .96 .96 .80 87 012 755

(a) Results with circular USAN area of radius r = 5.

Quality measures
TP FP FEN Acc Prec Rec Fys SD! A2

Measure

AD(s) t=005 .13 .00 .04 96 97 78 87 013 781
t=0.10 .14 .00 .04 .96 97 79 87 012 746
t=0.15 .14 01 .04 96 .96 79 87 013 7.3
t=020 .14 .01 .04 96 .95 .80 .87 013 7.89
7l t=0.05 .13 .01 .04 96 .96 79 87 013 771
t=0.10 .14 .01 .04 .96 .96 79 87 012 787
t=0.15 .14 01 .04 96 95 .79 .86 013 8&.11
t=020 .14 .01 .04 96 .95 79 .86 .013  8.09
Q@ t=0.05 .14 .01 .03 .96 .96 .80 87 012 7.6l
t=0.10 .14 01 .03 .96 .96 .80 87 012 7.66
t=0.15 .14 01 .03 .96 .96 .80 .87 013 779
t=020 .14 .01 .04 96 .96 79 87 013 7.84

(b) Results with circular USAN area of radius r = 7.

Table 1 The results gathered in the experiments. Results are discriminated according to the radius of the
neighbourhood considered in the SUSAN edge detector. Appart from that parameter, we have considered
three different spectral comparison measures (s, g1 and ¢»), each of them in combination with four different
thresholds in the computation of the USAN area (7). Comparison measures are explained in Section 5.4.
The best performers for each quantitative measure and USAN area are boldfaced.
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threshold . The algorithm is specially good in avoiding of FPs (normally featuring
under 1% of FPs), although this comes at the cost of a significant number of FNs. In-
lab agro-bio analysis normally intends to extract one or many spectral profiles from
each item. In this regard, misclassifying parts of the object (FNs) is a problem much
lighter than misclassifying regions of the background (FPs), whose spectral profiles
might severely modify the spectral information from the item. Also, it is remarkable
that the methodology presented here works better than those in previous approaches,
e.g. than the one we presented in [44] on the same dataset.

With respect to the comparison of the results by different measures, we find very
little differences in performance. The reasons lie in the treatment of the fuzzy edge
images. Although each version of the SUSAN edge detector produces rather different
images E, the watershed transform (which mostly uses the position of the local max-
ima in E, but not their intensity) equalizes their result. Still, differences arise in the
topological interpretation of the results. This is to be expected, again. In the statistical
interpretation of the results, most of the methods coincide in segmenting the objects,
what creates a very significant number of TPs. The differences between the results
mostly appear at the item boundaries. Such differences are visually noticeable, but
account for a relatively small number of pixels. For the statistical measurements the
impact is subtle, but for the topological measures they create a noticeable impact.

From the results in Table 1, we understand that the segmentation algorithm reaches
its goal, but leaves few room for the interpretation of the differences between com-
parison measures. A potential solution would have been to test the quality of the edge
images E in a pure edge detection dataset, but up to our knowledge there is no avail-
able dataset for edge detection in the context of in-lab hyperspectral imaging. In any
case, we undestand that the results gathered in the experiment fully depict the validity
of our proposals (g and ¢»), to perform competitively with s in real data scenarios.

6 Conclusions

This work has elaborated on the notions and literature to produce two comparison
measures for functions in discrete domains. One of the functions (g;) is a metric in
the universe of such functions, while the other one (¢) is a measure such that any two
functions satisfying that one is the vertical transformation of the other, i.e., f =g-+c,
with ¢ € R, are equally similar and they yield the minimum value. Such measures can
be further use to compare functions coming from membership degrees in T2FSs, but
also as spectral signatures in hyperspectral images. In fact, they have been put to the
test in the context of in-lab hyperspectral image segmentation. Their results indicate
that the new measures perform similarly to (eventually, slightly better than) the abso-
lute difference, but hold more interesting theoretical properties. Still, it seems evident
that the measures shall be used in contexts or applications in which their impact is
better observed. Since item comparison is a very low image processing operation,
those applications might as well be in the fields of data clustering or classification.
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