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Abstract Timetable optimization is an important step for bus operations
management, which essentially aims to effectively link up bus carriers and pas-
sengers. Generally speaking, bus carriers attempt to minimize the total travel
time to reduce its operation cost, while the passengers attempt to minimize
their waiting time at stops. In this study, we focus on the timetable optimiza-
tion problem for a single bus line from both bus carriers’ perspectives and
passengers’ perspectives. A bi-objective optimization model is established to
minimize the total travel time for all trips along the line and the total waiting
time for all passengers at all stops, in which the bus travel times are considered
as fuzzy variables due to a variety of disturbances such as weather conditions
and traffic conditions. A genetic algorithm with variable-length chromosomes
is devised to solve the proposed model. In addition, we present a case study
that utilizes real-life bus transit data to illustrate the efficacy of the proposed
model and solution algorithm. Compared with the timetable currently being
used, the optimal bus timetable produced from this study is able to reduce
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the total travel time by 26.75% and the total waiting time by 9.96%. The
results demonstrate that the established model is effective and useful to seek
a practical balance between the bus carriers’ interest and passengers’ interest.

Keywords Timetable optimization · Fuzzy variable · Travel time · Waiting
time · Genetic algorithm

1 Introduction

Public transit, one of the most vital modes for people’s daily traveling, and in-
deed for people’s daily life, is highly praised by people and government due to
its characteristics of cheapness, convenience and greenness. The public transit
operations management is a sophisticated process which involves routes de-
signing, timetable optimization, vehicle scheduling and crew scheduling (Gui-
haire and Hao, 2008). Among them, timetable optimization is a critical step
to determine the departure times at first stop, and the arrival and departure
times at the subsequent stops for all trips, influencing both bus carriers’ cost
and passengers’ satisfaction. To obtain an attractive timetable, it is of great
importance to consider the bus carriers’ interest and passengers’ interest.

Existing literature on bus timetable optimization mainly focuses on con-
sidering bus carriers’ perspectives, such as the carrier’s profits, bus transit
reliability, service quality and travel time. For example, Yan and Chen (2002)
introduced a mechanism to maximize the profits of a bus carrier by construct-
ing a model based on a multiple time-space network. Yan et al. (2006) proposed
a method to minimize the total cost of fleet flows and the expected cost by
establishing a stochastic-demand scheduling model. Arhin et al. (2016) devel-
oped a technique to further bus transit reliability by studying a multi-objective
re-synchronizing of bus timetable. Vissat et al. (2015) attempted to achieve a
better timetable for bus service running with lower financial risk of penalties
but higher punctuality and reliability by the use of a stochastic model. Based
on analytical development and micro simulations, Salicrú et al. (2011) present-
ed an approach to generate run-time values in an effort to optimize run-time
and improve the operating process. In order to improve the bus operator’s
transit service, Yan et al. (2012) designed a robust optimization model aiming
to minimize the sum of random schedule deviation and its variability. Wu et
al. (2016) studied the re-planning issue of a bus network timetable, considering
headway-sensitive passenger demand, uneven headway, service regularity, and
flexible synchronization. Zhao and Zeng (2008) studied the route network de-
sign, vehicle headway and timetable assignment thoroughly. Chen et al. (2015)
considered minimizing bus travel time and examined the optimal stopping cri-
teria for limited-stop bus services. We attempt to minimize the total travel
time for all trips along a given bus line.

There are also a number of studies on timetable optimization from the
perspectives of passengers to minimize their waiting time. For instance, Amin-
Naseri and Baradaran (2014) developed a simulation model to evaluate the
performance of proposed formulations estimating the average waiting time at
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stops. Parbo et al. (2014) proposed a timetable optimization model minimiz-
ing the waiting time when transferring. Ceder et al. (2001) devised a method
for minimizing passengers’ waiting time at the transfer nodes, by establish-
ing a model to maximize the synchronization of a given network of buses.
Wu et al.(2015) considered a bus optimization problem to minimize the total
waiting time cost for transferring passengers, boarding passengers and carry-
ing through passengers. Based on the above literature review, it is clear that
timetable optimization from either bus carriers’ perspectives or passengers’
perspectives has drawn great attention and become a much sought after topic
in recent years. However, the study of optimizing timetable to conjunctively
satisfy the requirements of both bus carriers and passengers is rather limited.
Thus, we pursue to establish a novel approach for optimizing the timetable
from both bus carriers’ perspectives and passengers’ perspectives by seeking a
balance between these requirements.

In practice, random events like traffic jams and weather conditions may
lead to certain buses not to finish their trips on time. By considering the
nature of such randomness, the deviations between the theoretical optimiza-
tion results and practical implementation outcomes can be minimized, if not
totally avoided. Researchers have conducted a few studies for bus timetable
optimization problems while presuming the bus travel times as random vari-
ables. Assuming the waiting time and travel time to be random variables,
Tong and Wong (1999) formulated a dynamic transit assignment model over
a transit network. Liu et al. (2013) studied a bus stop-skipping scheme with
assumed random travel times. Chen et al. (2015) considered the vehicle ca-
pacity and random travel times and addressed the optimal stopping design
of limited-stop bus services, allowing each bus vehicle to skip certain stops if
desired. Wei and Sun (2017) investigated an uncertain bi-level programming
model for multi-modal regional bus timetables and vehicle dispatch, again by
assuming travel times as random variables.

There also exists work in the literature that represents bus travel times
as fuzzy variables in bus scheduling. For example, considering fuzzy travel
time, Djadane et al. (2007) and Brito et al. (2010) devised a mechanism to
resolve the vehicle routing problems. Ban et al. (2014) examined the issue of
traffic assignment with fuzzy travel time. Considering various uncertain and
imprecise factors such as weather conditions and traffic accidents in practical
applications, we characterize bus travel times as fuzzy variables in this work.
In particular, we study the problem of bus timetable optimization within the
framework of credibility theory, a branch of mathematics for studying the
behavior of fuzzy phenomena (Liu and Liu, 2002). This design decision is
made owing to the popularity, availability and suitability of this framework.

Generating timetables has been an active research area for a long time,
but real-world applications of the theoretical results have been rather limited
(Sels et al., 2016). Due to the lack of reliable and detailed bus transit data,
most of the studies on timetable optimization have been conducted through
numerical tests and theoretical analysis (Ceder et al., 2001; Yan et al., 2006;
Zhao and Zeng, 2008; Yan et al., 2012). However, with the development of
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data collection and analysis technologies, investigations into the development
of timetable optimization models supported with case studies that are particlly
based on real-life data have recently been reported (Ceder and Philibert, 2014;
Parbo et al., 2014; Hassold and Ceder, 2014; Sun et al., 2015; Arhin et al.,
2016). In this paper, following this much desired trend, we take advantage of
IC card data and GPS data to compute spatial-temporal travel times among
adjacent stops, formulating a fuzzy bi-objective bus timetable optimization
model and devising its associated solution algorithm.

The main contributions of this paper are threefold. Firstly, we consider the
bus timetable optimization problem for a single bus line from both bus carriers’
perspectives and passengers’ perspectives, to minimize the time cost of bus
carriers and passengers, measured by the total travel time and total waiting
time respectively. Secondly, the bus travel times between stops are considered
as fuzzy variables, thereby handling the daily spatial-temporal travel time as
a fuzzy sample in a credibility space. Thirdly, the bus timetable optimization
model is empirically evaluated using real-life data.

The remainder of this paper is organized as follows. Section 2 formulates
two modeling concepts: fuzzy total travel time and fuzzy total waiting time,
and then constructs a bus timetable optimization model to minimize these ob-
jectives. In Section 3, a genetic algorithm with variable-length chromosomes
is designed to solve the proposed model. Section 4 presents a case study to
illustrate the efficacy of the model and the solution algorithm. Section 5 con-
cludes the work and discusses further research. To aid the understanding of the
paper, Appendix A summarizes basic and relevant concepts and definitions in
credibility theory.

2 Fuzzy bi-objective timetable optimization: Model

An efficient timetable should result in lower travel time and lower waiting time,
respectively representing the interest of bus carriers and that of passengers.
In this section, we formulate a bi-objective bus timetable optimization model
which minimizes the total travel time for all trips along a given bus line and
the total waiting time for all passengers at all stops.

2.1 Notations

Suppose that there are I stops along a bus line, and two depots near the termi-
nal stops. Note that for simplifying the model and notation system, the travel
times between a depot and a terminal stop is not considered. The following
notations are defined and used in what follows (See Table 1).
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Table 1: List of notations

Notations Description
Indices
i Stop index, 1 ≤ i ≤ I
k Trip index, 1 ≤ k ≤ K
l Segment index, 1 ≤ l ≤ L
θ Day index, 1 ≤ θ ≤ Θ
Parameters
τθil Travel time from stop i to stop i+ 1 if the departure time belongs to the

l-th time segment at day θ
Ts Departure time for the first trip
Te Departure time for the last trip
Hmin Minimum headway among two adjacent trips
Hmax Maximum headway among two adjacent trips
δ Length of a time segment
Fuzzy Parameters
τil Travel time from stop i to stop i+ 1 if the departure time belongs to the

l-th time segment, which takes district values in {τ1il, τ
2
il, · · · , τ

Θ
il }

Decision Variables
K Number of trips, K ∈ [Kl,Ku] where Kl and Ku are lower and upper

bound, respectively
tk1 Departure time from stop 1 for the k-th trip, 2 ≤ k ≤ K − 1
Intermediate Variables
tki Departure time from stop i of the k-th trip, 2 ≤ i ≤ I, 1 ≤ k ≤ K

2.2 Travel times among adjacent stops

As a mature bus network has steady traffic conditions, the past traffic condi-
tions can be used to hypothesize the forthcoming situations. To characterize
the spatial-temporal characteristics on traffic conditions, we divide the time
horizon [Ts, T ] into a sequence of segments with euqal length δ, denoted by
[Ts + (l − 1)δ, Ts + lδ), 1 ≤ l ≤ L, where Ts is the departure time from stop
1 for the first trip, T is the end of the daily operating time and L is the
number of segments satisfying T − Ts = Lδ. In practice, the traffic conditions
are complex and changing real-time, frequently leading to the temporal (and
spatial) variations on the bus travel time. Even for the same departure time,
the travel times from stop i to stop i + 1 in different days may be different.
We can estimate the forthcoming spatial-temporal travel times based on the
past values {τθil|1 ≤ i ≤ I, 1 ≤ l ≤ L, 1 ≤ θ ≤ Θ}, approximately calculated
using the GPS data at the last Θ days.

Generally speaking, the traffic conditions over the last Θ days have differ-
ent influences upon the traffic conditions of the forthcoming day. The traffic
conditions of the days near the forthcoming day have higher similarity with the
forthcoming day, although not in a precisely definable manner. Therefore, the
forthcoming travel times can be expressed as a fuzzy variable τil, taking dis-
trict values in {τ1il, τ2il, · · · , τΘil }, 1 ≤ θ ≤ Θ with credibilities {v1, v2, · · · , vΘ}.
For 2 ≤ i ≤ I and 1 ≤ k ≤ K, the departure time from stop i of the k-th trip
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can be depicted as follows

tki =



tk,i−1 + τi1, if tk,i−1 ∈ [Ts, Ts + δ)

tk,i−1 + τi2, if tk,i−1 ∈ [Ts + δ, Ts + 2δ)

...

tk,i−1 + τiL, if tk,i−1 ∈ [Ts + (L− 1)δ, Ts + Lδ).

(1)

The credibilities {v1, v2, · · · , vΘ} is determined by the similarities between
the past days and the forthcoming day. The days near the forthcoming day
have higher credibilities with the forthcoming day. Additionally, the weekday’s
timetable and the weekend’s timetable should be optimized separately.

2.3 Total travel time

Transit travel time influences service quality, operating cost and efficiency
(Bertini and El-Geneidy, 2004). Bus carriers generally attempt to supply pas-
sengers with less total travel time, which will make their customers happy and
reduce their own cost as well, due to the decrease in the total working time of
bus, driver and conductor. To reflect this observation we consider guaranteeing
the interests of bus carriers by minimizing the total travel time

Tr(θ) =

K∑
k=1

(tkI − tk1) , 1 ≤ θ ≤ Θ, (2)

where K denotes the total number of trips. In an actual operation, bus carriers
must provide transport service to passengers with trip times greater than or
equal to a minimum value determined by the maximum headway. Therefore,
the number of trips K is a variable which takes values in [Kl,Ku], where Kl

is the minimum number of trips for ensuring the transport quality, and Ku is
the maximum possible number of trips based on the carrier’s resources.

It is obvious that decreasing the number of trips will reduce the total travel
time of all trips along the line. Additionally, traffic congestions of metropolitan
always occur during rush hours. Thus, the trips departing in rush hours are
usually caught in traffic, which will increase the total travel time. Hence, this
objective impels the timetable to reduce the frequency of trips in rush hours
in order to decrease the total travel time.

2.4 Total waiting time

From the perspectives of passengers, they prefer to minimize the waiting time
at stops. For each stop, the departure time difference between two adjacent
trips is used to characterize the average waiting time for all passengers based
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on the (practically reasonable) assumption that passengers arrive at stops
randomly with a uniform distribution, that is

∆ki = tki − tk−1,i, 1 ≤ i ≤ I, 2 ≤ k ≤ K.

In order to ensure the fairness among passengers, we try to decrease the
maximal time difference among adjacent trips. Since the time difference be-
tween two adjacent trips for each stop is generally affected by the distance
between the two stops that flank that stop, we minimize the average waiting
time for all stops. We consider guaranteeing the passengers’ satisfaction of a
fixed bus line by minimizing the total waiting time for all passengers at all
stops as follows

Tw(θ) =

I∑
i=1

(
max

2≤k≤K
∆ki

)
, 1 ≤ θ ≤ Θ. (3)

This objective attempts to increase the total number of trips K in an effort to
decrease the total waiting time. In addition, the traffic congestions may lead
to the situation where buses can not arrive the depots in time and then depart
according to timetable. Thus, the passengers usually wait for longer time at
stops after the rush hours. This objective in effect impels the timetable to
reduce the frequency of trips in rush hours.

2.5 Proposed model

From bus carriers’ perspectives any timetable should be set up as an objective
to reduce the number of required trips. However, this contradicts with the
objective from passengers’ perspectives which should pursue more bus trips in
order to decrease the passengers’ waiting time. Given such a clear conflicting
requirement between the two objectives, a balance need to be achieved. In
accordance with the requirements and conditions, a bi-objective bus timetable
optimization is herein proposed such that

min E [Tr(θ)|1 ≤ θ ≤ Θ] (4)

min E [Tw(θ)|1 ≤ θ ≤ Θ] (5)

s.t. Hmin ≤ tk1 − tk−1,1 ≤ Hmax, 2 ≤ k ≤ K (6)

tki = tk,i−1 + τil, 1 ≤ k ≤ K, 2 ≤ i ≤ I, 1 ≤ l ≤ L (7)

t11 = Ts (8)

tK1 = Te. (9)

The first objective (Eqn. 4) in the above minimizes the expected travel
time of all trips along the given line. The second objective (Eqn. 5) minimizes
the expected waiting time for all passengers at all stops. The third constraint
(Eqn. 6) defines the minimum and maximum headways between two adjacent
trips. The fourth (Eqn. 7) constrains the departure times from different stops.
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The final two constraints (Eqn. 8 and 9) specify the departure times for the
first trip and the last.

In order to address this bi-objective bus timetable optimization problem,
we take a compromise approach. Firstly, we calculate f1max, f1min, f2max and
f2min to denote the maximum expected travel time, the minimum expected
travel time, the maximum expected waiting time and the minimum expected
waiting time, respectively. Then, we use λ ∈ [0, 1] to denote the relative im-
portance degree on the two objectives. Furthermore, the compromise model is
formulated to minimize the following linearly weighted objective function:

min λ
f1 − f1min

f1max − f1min
+ (1− λ)

f2 − f2min
f2max − f2min

, (10)

In this compromise model, if the two objectives are equally important, we
take λ = 0.5; if the first objective is more important than the second, we take
λ > 0.5; otherwise, we take λ < 0.5.

As such, the proposed model is an integer nonlinear programming. Due
to the fuzzy travel time in the model, we need to use fuzzy simulations to
approximate the expected travel time and the expected waiting time. Thus, we
rely on a heuristic optimization algorithm by integrating the fuzzy simulation
and GA to solve the proposed model in the next section.

3 Fuzzy bi-objective timetable optimization: Solution method

A genetic algorithm (GA) is a computational method for simulating the bi-
ological evolution process of natural selection and genetic mechanism. Since
genetic algorithm first proposed by Holland (1975), it has been widely studied,
experimented and applied by many researchers (Pillai et al., 2017; Ting et al.,
2017). Owing to the robustness and success of GA in providing good solutions
to many complex optimization problems, the algorithm has been widely ap-
plied to solve various scheduling problems in the field of public transit (Liu
et al., 2013; Zuo et al., 2015; Huang et al., 2016), including the application
of GA to solve timetable optimization problems (Niu and Zhou, 2013; Wu et
al., 2015). Following this trend, this paper designs a genetic algorithm with
variable-length chromosomes in the attempt to resolve the proposed fuzzy bi-
objective model.

3.1 Representation structure

A chromosome v = (t11, t21, · · · , tK1) (See Fig. 1) consists of the departure
time of every trip. K is the number of trips in a day which is permitted in an
interval [Kl,Ku], and t11 = Ts and tK1 = Te are used to denote the departure
time of the first and last bus trip in a day, respectively.
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t11 t21 t31 t41 t51 tK-1,1. . . tK1

Fig. 1: Chromosome structure for fuzzy bi-objective timetable optimization

3.2 Initialization

An integer pop size is defined as the size of population and a real number K
from [Kl,Ku] is generated randomly. We use the MATLAB function rand-
fixedsum to randomly generate K − 1 numbers Hk−1,k (k = 2, 3, · · · ,K)

from [Hmin, Hmax], satisfying
K∑
k=2

Hk−1,k = Te − Ts. Then a chromosome

v = (t11, t21, · · · , tK1) with t11 = Te, tk1 = tk−1,1 + Hk−1,k and tK1 = Te
is obtained. This is in order to obtain a feasible chromosome. Repeat the
above procedures for pop size times and denote the generated chromosomes
as vi, i = 1, 2, · · · , pop size. Then, return the initialized population vi, i =
1, 2, · · · , pop size.

3.3 Evaluation function

The evaluation function assigns each chromosome a probability of reproduc-
tion so that its likelihood of being selected (to act as a potential parent) is
proportional to its fitness relative to the other chromosomes in the population.
That is, the chromosomes with higher fitness will have more chance to produce
offspring. For a real number α ∈ (0, 1), we define the evaluation function as
follows

Eval(vi) = α(1− α)i−1, i = 1, 2, · · · , pop size.
Then, we rearrange these pop size chromosomes from higher quality to lower
based on the order relationship, i.e., the evaluation function, with the resultant
v1 being the best chromosome and vpop size being the worst.

3.4 Selection process

The method of spinning the roulette wheel is used to select chromosomes which
breed a new generation. The chromosomes with larger fitness are more likely
to be selected and the selection process is summarized in Algorithm 1.

Algorithm 1: Selection Process
Step 1 Calculate the reproduction probability qi for each chromosome vi

q0 = 0, qi =
i∑

j=1
Eval(vj), i = 1, 2, · · · , pop size.

Step 2 Generate a random number ri in (0, qpop size].
Step 3 Select the chromosome vi such that qi−1 < ri ≤ qi.
Step 4 Repeat the second and third steps pop size times and obtain pop size

chromosomes.
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3.5 Crossover operation based on multi-periods

We define a parameter Pc to denote the probability of crossover. Generate
a random number ri from [0, 1] with i = 1, 2, · · · , pop size, then select the
chromosome vi if ri ≤ Pc. Without loss of generality, the crossover operation
is introduced on a pair of chromosomes v1 = (t111, t

1
21, · · · , t1K1,1

) and v2 =

(t211, t
2
21, · · · , t2K2,1

) where K1,K2 ∈ [Kl,Ku]. Firstly, divide the operating time
into N segments [Tj , Tj+1) (j = 1, 2, · · · , N), in which T1 = Ts and TN+1 = Te.
Secondly, generate N real numbers mj from [Tj , Tj+1 − t) randomly (where
t represents a unit time, typically an hour). Then mj are used as the time
start points of individual sections (a unit time per section) and hence, the
sections Pj are determined. Thirdly, for the two chromosomes, determine the
sections in the periods Pj , swapping the corresponding sections by exchanging
the difference of two adjacent departure times, i.e., tk1− tk−1,1 in Pj , then two
new chromosomes are obtained. Finally judge the length of chromosomes: if
the length of the new chromosome K3(K4) ∈ [Kl,Ku], then a pair of child is
obtained (See Fig. 2). Otherwise, repeat the above process until two qualified
chromosomes are obtained.

t1
11 . . . t1

a1 . . . t1
b1 t1

c1. . . . . . t1
d1 . . . t1

e1 . . . . . .t1
f1 t1

K1,1

t2
11 . . . t2

a'1 . . . t2
b'1 t2

c'1. . . . . . t2
d'1 . . . t2

e'1 . . . . . .t2
f'1 t2

K2,1

t1
11 . . . t2

a'1 . . . t2
b'1 t2

c'1. . . . . . t2
d'1 . . . t2

e'1 . . . . . .t2
f'1 t1

K3,1

t2
11 . . . t1

a1 . . . t1
b1 t1

c1. . . . . . t1
d1 . . . t1

e1 . . . . . .t1
f1 t2

K4,1

Parent

Child

the 1st section (a unit time) the 2nd section (a unit time) the Nth section (a unit time)

Fig. 2: Crossover process

3.6 Mutation operation based on multi-periods

We define a parameter Pm to denote the probability of mutation and repeat
the following processes for pop size times. Randomly generate a real number ri
from [0, 1] with i = 1, 2, · · · , pop size, then the ith chromosome is chosen as the
parent for mutation if ri < Pm. For each parent, firstly generate a real number
n from [Ts, Te − t) (where t represents a time unit, again, typically an hour)
randomly. Secondly, a section T (a unit time) is determined using n as the time
start point of the section, containing the part (ta1, · · · , tb1). Thirdly, operate
the mutation process on the selected part (ta1, · · · , tb1): randomly generate a
real number q in [Hmin, Hmax], and determine the first point ta′1 = ta−1,1 + q
in the section to be mutated. Repeat the third step to make the next point’s
value equal to the sum of the last point and generate a new random number
q: t(a+1)′,1 = ta′1 +q until attaining a value tb′1 satisfying that (tb+1,1− tb′1) ∈
[Hmin, Hmax]. Fourthly, repeat the above processes for N times and judge the
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length of the new chromosome K2: if K2 ∈ [Kl,Ku], a child is obtained (See
Fig. 3). Otherwise, repeat the above process until a qualified chromosome is
obtained.

t11 . . . ta1 . . . tb1 tc1. . . . . . td1 . . . te1 . . . . . .tf1 tK1,1

t11 . . . ta'1 . . . tb'1 tc'1. . . . . . td'1 . . . te'1 . . . . . .tf'1 tK2,1

Parent

Child

the 1st section (a unit time) the 2nd section (a unit time) the Nth section (a unit time)

Fig. 3: Mutation operation

3.7 Procedure summary

Following the selection, crossover and mutation operations, a new population
is generated. The GA will terminate after a given number of iterations running
the above steps. The general procedure for the GA-based solution method is
summarized in Algorithm 2.

Algorithm 2: Genetic Algorithm
Step 1 Randomly initialize pop size chromosomes.
Step 2 Calculate objective values for all chromosomes.
Step 3 Evaluate fitness of each chromosome using objective values.
Step 4 Select chromosomes by spinning roulette wheel.
Step 5 Update chromosomes using crossover and mutation.
Step 6 Repeat Step 2 to Step 5 for a given number of iterations.
Step 7 Report best found chromosome as optimal solution.

4 Case study

To illustrate how well our model and the associated solution method can be
applied in reality, we present a case study utilizing real-life data obtained from
a bus carrier in Beijing, China. The bus line, Yuntong 128 is of 21.44 km long
with 31 stops including two depots, running from Beijing Business School
Station in Changping District to Laiguangying North Station in Chaoyang
District, as shown in Fig. 4.

4.1 Data preparation

The data utilized is recorded during weekdays from February 27, 2017 to
March 24, 2017 from the bus carrier. Such GPS data of 20 weekdays has been
analyzed for its statistical properties. Based on which, the number of bus trips
in a day should be selected from the an interval [65,75] meeting the demand
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Fig. 4: Yuntong 128 bus route

of the bus carrier’s service. In order to process the data of bus travel time
between two adjacent stops, a time segment of 5 minutes is used to divide
the operating time into 216 segments. We gather data statistics and compute
the travel time from a stop to the next per segment per day. According to
the bus operator’s experience, the forthcoming travel time from stop i to stop
i+ 1 in time segment l can be expressed as a simple fuzzy variable τθil, taking
distinctive values from {τ1il, τ2il, · · · , τ20il }, whose credibilities are specified as
follows

v(r) =


0.2, if r = τ1il, τ

2
il, τ

3
il, τ

4
il, τ

5
il

0.4, if r = τ6il, τ
7
il, τ

8
il, τ

9
il, τ

10
il

0.6, if r = τ11il , τ
12
il , τ

13
il , τ

14
il , τ

15
il

0.8, if r = τ16il , τ
17
il , τ

18
il , τ

19
il , τ

20
il .

This means that the last week near the forthcoming day has higher similarity
on the traffic conditions with the forthcoming day, while the earlier weekday
has lower similarity, which of course, reflects the commonsense.
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4.2 Results

4.2.1 Experiments with fixed model parameters

Based on the reality and the bus operator’s experience, the following is set
such that λ = 0.5, Hmin = 8 min and Hmax = 20 min. Aiming to select the
optimal values of Pc and Pm, we resolve the model by setting different solution
parameters in GA for an initial comparison. The relative errors of the objective
values are defined by

Actual objective−Minimal objective

Minimal objective
× 100%.

The minimal objective values are empirically taken as the corresponding
minimal of all the computational results returned. The detailed results while
setting different Pc and Pm are listed in Table 2. The compromise objective
value in No.13 is the best, thus the parameters in No.13, where Pc = 0.5 and
Pm = 0.3 are chosen to be used in the GA for solving the model.

Table 2: Optimal values of Pc and Pm

No. Pc Pm K f1 f2
Compromise Relative error

objective value f1 f2 Compromise objective value
1 0.8 0.2 65 3898.89 857.12 0.2188 0.30% 8.31% 5.14%
2 0.8 0.4 67 3999.63 800.96 0.2252 2.89% 1.21% 8.25%
3 0.8 0.6 65 3889.26 890.50 0.2275 0.05% 12.53% 9.33%
4 0.8 0.8 65 3940.05 1148.70 0.2403 1.36% 45.15% 15.48%
5 0.7 0.3 65 3907.60 909.79 0.2385 0.52% 14.96% 14.62%
6 0.7 0.5 65 3938.04 1408.50 0.2300 1.31% 77.98% 10.55%
7 0.7 0.7 66 3942.36 838.45 0.2234 1.42% 5.95% 7.37%
8 0.7 0.9 67 3934.89 1031.53 0.2293 1.23% 30.35% 10.19%
9 0.6 0.2 66 3945.53 820.59 0.2182 1.50% 3.69% 4.89%
10 0.6 0.4 65 3925.53 873.13 0.2308 0.98% 10.33% 10.91%
11 0.6 0.6 65 3887.26 895.64 0.2287 0.00% 13.18% 9.91%
12 0.6 0.8 66 3964.53 839.35 0.2292 1.99% 6.06% 10.18%
13 0.5 0.3 66 3943.79 791.36 0.2081 1.45% 0.00% 0.00%
14 0.5 0.5 65 3928.67 1061.61 0.2194 1.07% 34.15% 5.46%
15 0.5 0.7 65 3905.87 839.74 0.2147 0.48% 6.11% 3.19%
16 0.5 0.9 65 3964.99 1097.79 0.2394 2.00% 38.72% 15.08%

Apart from the above set values for the parameters Pc and Pm, the number
of iterations is set to 500 for the experimental investigation. The proposed GA
with these parameters is run, leading to the optimal timetable as detailed in
Table 3, in which 67 bus trips ought to be arranged. The total travel time is
3991.80 minutes and the total waiting time at all stops is 828.30 minutes. The
convergence of objective value is shown in Fig. 5 which indicates the proposed
GA is effective to solve the proposed model.

4.2.2 Experiments by varying model parameters

By setting different Hmin and Hmax, we run the GA and obtain comparative
results as listed in Table 4. Generally, with the increase of Hmin and Hmax,
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Table 3: Computed optimal timetable in fuzzy environment

tk1 value time tk1 value time tk1 value time tk1 value time tk1 value time
t1,1 0 05:30 t15,1 208 08:58 t29,1 438 12:48 t43,1 641 16:11 t57,1 841 19:31
t2,1 10 05:40 t16,1 231 09:21 t30,1 456 13:06 t44,1 654 16:24 t58,1 861 19:51
t3,1 23 05:53 t17,1 249 09:39 t31,1 467 13:17 t45,1 665 16:35 t59,1 875 20:05
t4,1 44 06:14 t18,1 273 10:03 t32,1 478 13:28 t46,1 685 16:55 t60,1 887 20:17
t5,1 57 06:27 t19,1 293 10:23 t33,1 493 13:43 t47,1 698 17:08 t61,1 897 20:27
t6,1 69 06:39 t20,1 312 10:42 t34,1 501 13:51 t48,1 717 17:27 t62,1 916 20:46
t7,1 81 06:51 t21,1 326 10:56 t35,1 510 14:00 t49,1 729 17:39 t63,1 936 21:06
t8,1 97 07:07 t22,1 340 11:10 t36,1 529 14:19 t50,1 741 17:51 t64,1 956 21:26
t9,1 105 07:15 t23,1 350 11:20 t37,1 548 14:38 t51,1 750 18:00 t65,1 966 21:36
t10,1 122 07:32 t24,1 364 11:34 t38,1 566 14:56 t52,1 770 18:20 t66,1 986 21:56
t11,1 143 07:53 t25,1 380 11:50 t39,1 586 15:16 t53,1 786 18:36 t67,1 990 22:00
t12,1 160 08:10 t26,1 391 12:01 t40,1 603 15:33 t54,1 796 18:46
t13,1 171 08:21 t27,1 410 12:20 t41,1 618 15:48 t55,1 813 19:03
t14,1 188 08:38 t28,1 430 12:40 t42,1 627 15:57 t56,1 828 19:18

the number of bus trips K and the total travel time Tr tend to decrease. When
Hmin and Hmax are greater than or equal to 8 and 20 respectively, the results
appear to be in stability.
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Fig. 5: Convergence curve of objective value

The comparison over the use of different λ values is also carried out, with
the results listed in Table 5. As λ increases, the relative importance of f1
increases also but that of f2 decreases, resulting in the decrease of the number
of bus trips K. The bus carrier normally prefers less bus trips in a day, while
the passengers expect more bus trips to ensure less waiting time they cost at
stops. The balance between the total travel time and the total waiting time is
sought by the proposed model and solution algorithm to assure the interests
of both bus carriers and passengers.
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Table 4: Comparative results with different Hmin and Hmax

No. Hmin Hmax K f1 f2 Relative error of f1 Relative error of f2
1 6 18 72 4231.60 719.39 9.17% 0.00%
2 6 20 65 3901.35 860.24 0.65% 19.58%
3 6 22 65 3970.67 872.96 2.44% 21.35%
4 6 24 65 3889.48 900.82 0.34% 25.22%
5 7 18 69 4118.21 825.92 6.24% 14.81%
6 7 20 67 3968.18 1196.69 2.37% 66.35%
7 7 22 65 3906.34 864.31 0.78% 20.14%
8 7 24 65 3900.11 1098.54 0.62% 52.70%
9 8 18 66 3952.78 901.44 1.97% 25.31%
10 8 20 65 3908.67 874.01 0.84% 21.49%
11 8 22 65 3914.28 1289.75 0.98% 79.28%
12 8 24 65 3899.45 897.89 0.60% 24.81%
13 9 18 65 3904.78 1235.16 0.74% 71.70%
14 9 20 66 3944.96 867.55 1.77% 20.59%
15 9 22 65 3919.34 855.99 1.11% 18.99%
16 9 24 65 3876.24 849.96 0.00% 18.15%
17 10 18 65 3883.55 867.48 0.19% 20.58%
18 10 20 65 3919.13 825.99 1.11% 14.82%
19 10 22 66 3957.59 811.02 2.10% 12.74%
20 10 24 65 3890.44 866.27 0.37% 20.42%

Table 5: Comparative results with different λ

No. λ K f1 f1 Relative error of f1 Relative error of f1
1 0 75 4312.95 1119.82 15.44% 49.10%
2 0.1 71 4191.95 751.07 12.20% 0.00%
3 0.2 69 4082.23 809.11 9.27% 7.73%
4 0.3 65 3977.28 1048.53 6.46% 39.60%
5 0.4 66 3944.00 848.16 5.57% 12.93%
6 0.5 67 3936.66 1104.06 5.37% 46.50%
7 0.6 65 3900.63 897.20 4.41% 19.46%
8 0.7 65 3874.89 952.72 3.72% 26.85%
9 0.8 65 3855.27 1003.63 3.19% 33.63%
10 0.9 65 3835.74 1362.85 2.67% 81.45%
11 1 65 3736.02 4686.95 0.00% 524.03%

4.3 Comparison

In order to verify the potential of the proposed model and the associated
solution method, the resulting optimal timetable in the fuzzy environment
is compared with that in the deterministic environment and also, with the
currently used real-life timetable. We process the bus travel time between any
two stops over a period of 20 days as the expected values and employ the
GA in optimizing timetable in the deterministic environment. The optimized
departure time of every bus trip in the deterministic environment is shown
in Table 6, and the currently used timetable obtained from the bus carrier is
presented in Table 7. Overall, there are 65 bus trips that should be arranged
in the optimal timetable given the deterministic environment, and 67 bus trips
in the currently used timetable.

In the currently used timetable, the total travel time for all trips alone the
line is 5449.76 minutes and the total waiting time for all passengers at all stops
is 919.97 minutes. In order to compare the results in the fuzzy and determin-
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Table 6: Optimal timetable in deterministic environment

tk1 value time tk1 value time tk1 value time tk1 value time tk1 value time
t1,1 0 05:30 t14,1 166 08:16 t27,1 365 11:35 t40,1 610 15:40 t53,1 770 18:20
t2,1 20 05:50 t15,1 176 08:26 t28,1 385 11:55 t41,1 625 15:55 t54,1 785 18:35
t3,1 40 06:10 t16,1 186 08:36 t29,1 405 12:15 t42,1 640 16:10 t55,1 800 18:50
t4,1 57 06:27 t17,1 198 08:48 t30,1 425 12:35 t43,1 652 16:22 t56,1 815 19:05
t5,1 72 06:42 t18,1 210 09:00 t31,1 445 12:55 t44,1 664 16:34 t57,1 830 19:20
t6,1 87 06:57 t19,1 225 09:15 t32,1 465 13:15 t45,1 676 16:46 t58,1 850 19:40
t7,1 102 07:12 t20,1 240 09:30 t33,1 485 13:35 t46,1 688 16:58 t59,1 870 20:00
t8,1 111 07:21 t21,1 255 09:45 t34,1 505 13:55 t47,1 700 17:10 t60,1 890 20:20
t9,1 120 07:30 t22,1 270 10:00 t35,1 525 14:15 t48,1 712 17:22 t61,1 910 20:40
t10,1 129 07:39 t23,1 285 10:15 t36,1 545 14:35 t49,1 724 17:34 t62,1 930 21:00
t11,1 138 07:48 t24,1 305 10:35 t37,1 565 14:55 t50,1 736 17:46 t63,1 950 21:20
t12,1 147 07:57 t25,1 325 10:55 t38,1 580 15:10 t51,1 746 17:56 t64,1 970 21:40
t13,1 156 08:06 t26,1 345 11:15 t39,1 595 15:25 t52,1 758 18:08 t65,1 990 22:00

Table 7: Currently used timetable

tk1 value time tk1 value time tk1 value time tk1 value time tk1 value time
t1,1 0 05:30 t15,1 166 08:16 t29,1 385 11:55 t43,1 640 16:10 t57,1 800 18:50
t2,1 20 05:50 t16,1 176 08:26 t30,1 405 12:15 t44,1 652 16:22 t58,1 815 19:05
t3,1 40 06:10 t17,1 186 08:36 t31,1 425 12:35 t45,1 664 16:34 t59,1 830 19:20
t4,1 57 06:27 t18,1 198 08:48 t32,1 445 12:55 t46,1 674 16:44 t60,1 850 19:40
t5,1 72 06:42 t19,1 210 09:00 t33,1 465 13:15 t47,1 684 16:54 t61,1 870 20:00
t6,1 84 06:54 t20,1 225 09:15 t34,1 485 13:35 t48,1 694 17:04 t62,1 890 20:20
t7,1 93 07:03 t21,1 240 09:30 t35,1 505 13:55 t49,1 704 17:14 t63,1 910 20:40
t8,1 102 07:12 t22,1 255 09:45 t36,1 525 14:15 t50,1 714 17:24 t64,1 930 21:00
t9,1 111 07:21 t23,1 270 10:00 t37,1 545 14:35 t51,1 724 17:34 t65,1 950 21:20
t10,1 120 07:30 t24,1 285 10:15 t38,1 565 14:55 t52,1 734 17:44 t66,1 970 21:40
t11,1 129 07:39 t25,1 305 10:35 t39,1 580 15:10 t53,1 746 17:56 t67,1 990 22:00
t12,1 138 07:48 t26,1 325 10:55 t40,1 595 15:25 t54,1 758 18:08
t13,1 147 07:57 t27,1 345 11:15 t41,1 610 15:40 t55,1 770 18:20
t14,1 156 08:06 t28,1 365 11:35 t42,1 625 15:55 t56,1 785 18:35

istic situations against the result in currently used timetable, the deviation
ratios of the total travel time and the total waiting time are calculated by

Optimal time− Current time

Current time
× 100%.

The comparative results are shown in Table 8 and Fig. 6. The total trav-
el time and the total waiting time in the fuzzy situation, the deterministic
situation and the currently used timetable are compared. The results are:

1. Comparing to the currently used timetable, the optimal timetable in the
deterministic situation is able to reduce the total travel time by 16.03%
but increases the total waiting time by 17.94%.

2. Comparing to the currently used timetable, the optimal timetable in the
fuzzy situation is able to reduce the total travel time by 26.75% while also
reducing the total waiting by 9.96%.

3. Compared to the optimal results in the deterministic situation, both of
the total travel time and the total waiting time in fuzzy situation are
significantly shorter.

Generally, both of the total travel time and the total waiting time resulted
from the optimal timetable in the fuzzy situation are the shortest among the
three compared. In the optimal timetable returned under the deterministic
situation and also, in the currently used timetable, the arithmetic mean of the
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Table 8: Comparative results in three situations

Situation K Total travel time (min) Total waiting time (min)
Deviation ratio

Total travel time Total waiting time
Current situation 67 5449.76 919.97 0.00% 0.00%

deterministic situation 65 4575.90 1085.00 -16.03% 17.94%
Fuzzy situation 67 3991.80 828.30 -26.75% -9.96%

In fuzzy situationIn deterministic situationCurrent situation

3991.80 4575.90 5449.76

In fuzzy situation

0.232384306
828.3016667
2991.801667

67
1753.119882
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Fig. 6: Comparative results in three situations

travel times between any two stops over a period of several days is input into
the model. The traffic congestions occur occasionally is a primary reason for
increasing the average travel time between two stops, resulting in the increase
of the total travel time and the total waiting time. Compared to the optimal
timetables obtained in the fuzzy situation and that in the deterministic situ-
ation, the currently used timetable is featured with more bus trip times and
a higher departing frequency in rush hours, which lead to both longer total
travel time and longer total waiting time. From these results it is clear that
the optimization under the fuzzy situation makes the optimal timetable more
efficient and robust than that achievable by its counterparts, be they obtained
in the deterministic situation or directly using the current real-life timetable.

5 Conclusion

In this paper, we have proposed a fuzzy bi-objective model for a bus timetable
optimization problem which minimizes the total travel time and the total
waiting time simutaneously. To incorporate the fuzziness in the modeling en-
vironment, we have processed multiple spatial-temporal travel time matrices
based on real-life data acquired over several past days to statistically charac-
terize the traffic conditions of the forthcoming situations. A genetic algorithm
with variable-length chromosomes has been introduced here, for obtaining the
global optimal solution to solve the proposed model. A case study utilizing
real-life data has been presented to show that the model and algorithm are
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effective to seek a balance between the demands between bus carriers and pas-
sengers. Aiming at verifying the performance of the outcomes of this study,
the optimal timetable attained in the fuzzy environment has been compared
with that in the deterministic environment and the currently used real-life
timetable. The results have demonstrated that the consideration of fuzziness
makes the optimal timetable more robust than the other two.

This work has been focused on the optimization of the timetable for a single
bus line in a fuzzy environment. However, in practice, every bus line is not
isolated but exists in a shared transport network. Thus, in future work, we plan
to address the more challenging problem of fuzzy bus timetable optimization
within a transport network.
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20. Salicrú M, Fleurent C, Armengol JM (2011) Timetable-based operation in urban trans-
port: Run-time optimisation and improvements in the operating process. Transportation
Research Part A: Policy & Practice, 45(8):721-740

21. Sels P, Dewilde T, Cattrysse D, Vansteenwegen P (2016) Reducing the passenger travel
time in practice by the automated construction of a robust railway timetable. Transporta-
tion Research Part B: Methodological, 84:124-156

22. Sun D, Xu Y, Peng ZR (2015) Timetable optimization for single bus line based on hybrid
vehicle size model. Journal of Traffic and Transportation Engineering, 2(3):179-186

23. Tong CO, Wong SC (1999) A stochastic transit assignment model using a dynamic
schedule-based network. Transportation Research Part B: Methodological, 33(2):107-121.

24. Ting CK, Wang TC, Liaw RT, Hong TP (2017) Genetic algorithm with a structure-
based representation for genetic-fuzzy data mining. Soft Computing, 21:2871-2885

25. Vissat LL, Clark A, Gilmore S (2015) Finding optimal timetables for Edinburgh bus
routes. Electronic Notes in Theoretical Computer Science, 310:179-199

26. Wei M, Sun B (2017) Bi-level programming model for multi-modal regional bus
timetable and vehicle dispatch with stochastic travel time. Cluster Computing, 20(1):1-11

27. Wu YH, Tang JF, Yu Y, Pan ZD (2015) A stochastic optimization model for transit
network timetable design to mitigate the randomness of traveling time by adding slack
time. Transportation Research Part C: Emerging Technologies, 52:15-31

28. Wu YH, Yang H., Tang JF, Yu Y (2016) Multi-objective re-synchronizing of bus
timetable: Model, complexity and solution. Transportation Research Part C: Emerging
Technologies, 67:149-168

29. Wong SC, Tong CO (1999) A stochastic transit assignment model using a dynamic
schedule-based network. Transportation Research Part B: Methodological, 33(2):107-121



20 Xiang Li et al.

30. Yan SY, Chen HL (2002) A scheduling model and a solution algorithm for inter-city
bus carriers. Transportation Research Part A: Policy & Practice, 36(9):805-825

31. Yan YD, Meng Q, Wang SA, Guo XC (2012) Robust optimization model of schedule
design for a fixed bus route. Transportation Research Part C: Emerging Technologies,
25(8):113-121

32. Yan SY, Chi CJ, Tang CH (2006) Inter-city bus routing and timetable setting under
stochastic demands. Transportation Research Part A: Policy & Practice, 40(7):572-586

33. Zhao F, Zeng X (2008) Optimization of transit route network, vehicle headways and
timetable for large-scle transit networks. European Journal of Operational Research,
186(2):841-855

34. Zuo XQ, Chen C, Tan W, Zhou MC (2015) Vehicle scheduling of an urban bus line via
an improved multiobjective genetic algorithm. IEEE Transactions on Intelligent Trans-
portation Systems, 16(2):1030-1041

Appendix A

In this appendix, some basic concepts and definitions about credibility theory
are introduced.

Let Θ be a nonempty set, and let A be its power set. Each element of A is
called an event. Credibility measure is a set function from A to [0, 1]. For each
event, its credibility indicates the chance that the event will occur. In order to
ensure that the set function has certain mathematical properties, Li and Liu
(2006) provided the following four axioms:

Axiom 1 (Normality) Cr{Θ} = 1.

Axiom 2 (Monotonicity) Cr{A} ≤Cr{B} for any events A ⊆ B.

Axiom 3 (Duality) Cr{A}+Cr{Ac} = 1 for any event A.

Axiom 4 (Maximality) Cr{∪iAi} = supiCr{Ai} for any collection of events
{Ai} with supiCr{Ai} < 0.5.

Let Θ be a nonempty set, A the power set, and Cr a credibility measure.
Then the triplet (Θ,A,Cr) is called a credibility space. Let ξ be a fuzzy variable
on the credibility space (Θ,A,Cr). Then, its expected value (Liu and Liu, 2002)
is defined as

E[ξ] =

∫ +∞

0

Cr{ξ ≥ r}dr −
∫ 0

−∞
Cr{ξ ≤ r}dr,

provided that at least one of the two integrals is finite.

Example 1 Assume that ξ is a simple fuzzy variable taking district values in
{x1, x2, · · · , xm}. If ξ has the following credibility function

v(x) =


v1, if x = x1
v2, if x = x2
· · · · · ·
vm, if x = xm,
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then it has expected value

E[ξ] =

m∑
i=1

wixi, (11)

where for each 1 ≤ i ≤ m, the weight wi is given by

wi = max
xj≤xi

vj ∧ 0.5− max
xj<xi

vj ∧ 0.5 + max
xj≥xi

vj ∧ 0.5− max
xj>xi

vj ∧ 0.5.


