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Abstract The recent remarkable increase in air pas-
senger traffic has been fostering a considerable conges-

tion of the airport facilities. In this context, traditional
procedures employed for check-in operations have been
supporting by alternative methods, based on the use of

self-service options (kiosks, web services, app for mo-

bile phones, etc). However, even if such innovations are

contributing to improve the service level provided to

passengers, field investigations suggest that traditional

procedures will be employed also in the future, espe-
cially for medium and long-haul flights, where baggage
dropping is required. For this reason, the passengers

allocation problem at check-in counters is attracting

growing attention by the scientific community and sev-

eral decision support tools, involving both optimization

and simulation methods, have been proposed. Most of

the available approaches aim at deciding the optimal

number of check-in counters to be activated, in such

a way to balance the operative costs and passengers

waiting times. Such approaches assume that the ser-

vice capacity (in terms of available check-in operators

and counters) is given and determined on the basis of

physical constraints (related to the available space in
the terminal) and of staff scheduling decisions made at
a tactical level. The present contribution tries to over-
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come this limitation, by proposing a decision support

system, based on a mathematical model, capable of de-

signing optimal check-in policies by also incorporating

staff scheduling decisions. The model is tested on some

real-world case studies; computational results are evalu-

ated, along with the practical usability of the approach.

Keywords Airport Check-in · Staff scheduling ·

Passengers’ allocation · Optimization model · Decision
support system

1 Introduction

With an expected annual rate of about 4.0 % over the

next 20 years (IATA 2017), the growth in air passen-

gers traffic has been fostering a remarkable congestion

in the use of available resources at different levels, in
both airside and landside operations. Besides invest-
ments on new airport facilities, huge interventions have
been deployed in order to increase the capacity of cur-

rent infrastructures and to deal with issues representing

bottlenecks in air traffic logistics.

Within terminal facilities, passengers are involved in

different processes. In particular, once arrived, they pass
through a check-in area in order to get their boarding
pass and/or to drop off their luggage (they may skip

this step if they are self-checked in and they only own a

hand luggage). Then, they proceed to a security area for

control operations and they finally move toward their

assigned gate. These processes require the use of several

resources (equipment, personnel, etc) and often produce

significant waiting times, which can be perceived as sig-

nal of a low service quality, resulting in a negative im-

pact on the overall image of the airport and of airlines.

Focusing on check-in operations, two types of systems
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can be deployed, based on common-use and exclusive-

use of counters. The common-use system consists of a
large set of counters where passengers can be accepted,

regardless of their flight. Typically, it is adopted for

groups of flights operated by the same airline or by dif-

ferent airlines that outsource the handling operations to

the same company. On the other hand, the exclusive-use

system consists of a set of counters, dedicated to sin-
gle flights. Obviously, the common-use system is more

efficient as it yields higher utilization rates of available

service capacity; hence, due to above described con-

text of growing congestion of terminals, it has become

also the most commonly adopted. Moreover, huge in-

vestments in ICTs have been deployed to support tra-

ditional check-in procedures with self-service alterna-

tives, mainly based on the use of kiosks, web services,

applications for mobile phones, etc. However, even if

the introduction of these innovations certainly played

and will be playing an important role, contributing to

the reduction of passengers waiting times and operating

costs for airlines, field investigations suggest that tradi-

tional procedures remain important and will be needed

also in the future. Indeed, recent studies demonstrated

that many factors affect the acceptance of self-service

mode, such as passenger’s age, level of education, na-

tionality, previous experiences, flight destination, the

type of journey; thus, a significant portion of the de-

mand will continue to select the traditional check-in
mode (Chang and Yang 2008; Lu et al 2009, 2011;
Wittmer 2011; Castillo-Manzano and López-Valpuesta
2013). This is particularly true for medium and long-

haul flights, where baggage dropping processes involve

most of the passengers (Chang and Yang 2008).

For this reason, in the recent literature, several decision

support tools have been proposed to optimize check-in
procedures at desks. As such process is characterized by
several stochastic factors (i.e. service demand, passen-
gers’ arrivals, check-in times, etc), many contributions

adopted simulation approaches to tackle the problem.

However, if simulation may be useful for the evaluation

of the system performances, optimization models, used

separately or in combination, could be beneficial to de-
termine the value of decision variables.
Check-in management policies can be tested against

different performance functions; however, to date, the

most common objectives are represented by passengers’

waiting times and the number of activated desks in a

given time horizon. This last objective is often used as

a proxy of operating costs, on the assumption that the

more counters are used, the more resources are needed

and, hence, more expensive will be the process. How-

ever, even if this assumption might be considered appro-

priate for the counter rental charge, personnel costs are

also influenced by the adopted shift system. To the best

of our knowledge, no extant approach considers staff
scheduling decisions in addressing the check-in manage-
ment problem. For this reason, in this paper we propose
a mathematical model, in which the objective function

represents a measure of personnel costs associated with
the delivery of the service. Available shift systems are
taken into account, as a constraint of the model.

The paper is organized as follows. In Section 2 a sur-

vey of the scientific contributions on optimization ap-

proaches for the airport check-in problem is illustrated,

highlighting literature gaps. Then, in Section 3, we dis-

cuss the proposed mathematical model, with a partic-

ular emphasis on the justification of the selected objec-

tive function. In Section 4, the procedure adopted to

generate the test instances, related to real-world prob-

lems, is illustrated, while in Section 5 the results ob-

tained from the application of the model to the case of

two Italian airports are analysed and discussed. Finally,
some conclusions are drawn.

2 Literature review

In literature, many contributions devoted to the op-

timal management of service capacity have been pro-
posed (see, for example, Bruno et al 2016). In particu-
lar, papers focused on the analysis of the airport check-
in service, traditionally adopted simulation approaches

to deal with the problem (Chun and Mak 1999). Only in

the last decades, researchers started to implement op-

timization or hybrid approaches to deal with it. One of

the first works specifically devoted to check-in manage-
ment optimization was the one by Park and Ahn (2003),
which proposed a procedure to calculate the appropri-
ate number of check-in counters and their operating

times, through a deep analysis of passengers arrival dis-

tribution and processing patterns. Yan et al (2004) and

Yan et al (2005) tackled the problem of assigning flights

to blocks of check-in counters, considering various ob-

jective functions, such as the total passenger walking

distance and a so-called inconsistency term, evaluating

whether flights having some common characteristics are

assigned to different counter locations. Van Dijk and

Van Der Sluis (2006) highlighted the potential of com-

bining stochastic and deterministic approaches. In par-

ticular, assuming that a peak requirement of check-in

counters is estimated for each flight, they proposed an

integer linear programming model aimed at determin-

ing the minimum number of desks needed for all flights.

The results provided by this model were then used as in-

puts for a simulation model to calculate the system per-

formance, in terms of service times. Parlar and Sharafali
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(2008) and Stolletz (2011) attempted to statistically an-

alyze the queueing phenomenon at check-in counters,

providing useful insights for modelling purposes.

Bruno and Genovese (2010) and Bruno et al (2014) pro-

posed some models (based on the mathematical struc-

ture of the lot sizing problem) for determining the opti-

mal number of check-in counters to be activated. Con-

sidered objective functions included passenger waiting
times and total opening times of counters.
Tang (2010) developed a network model for the opti-

mization of common-use check-in counters assignments,

with the goal of minimizing the number of counters re-

quired for daily operations. Stolletz (2010) addressed

workforce planning problems for check-in systems, through

a mathematical programming model based on a mod-

ification of the set covering model. Hsu et al (2012)

analyzed the problem of dynamic allocation of vari-

ous types of check-in facilities (counters, kiosks, on-

line check-in and barcode check-in), to minimize wait-

ing times for passengers. They proposed a sequential

stochastic assignment model to decide whether the n-th

arriving passenger, requiring a certain type of check-in

service, was to be assigned to a given facility or not,

and then to determine the number of facilities of each

type to be opened.

Araujo and Repolho (2015) proposed a modification of

the model by Bruno and Genovese (2010) to optimize

the Airport Check-in Counter Allocation Problem (AC-
CAP), introducing service level constraints. They also
used a simulation approach to assess the results pro-
vided by the model. Mota (2015) studied the problem

of the allocation of flights to check-in counters, con-

sidering a given layout of check-in areas, and introduc-

ing constraints deriving from contracts between airlines

and airport operators. The problem was solved using an
approach based on the combination of an evolutionary
algorithm and simulation.
Parlar et al (2016) proposed a dynamic programming

model for check-in counter allocation problem, espe-

cially suitable in the case of exclusive-use systems, that

was tested on real data coming from Singapore Interna-

tional Airport. The performance indicators adopted in
the model included the expected waiting and counter
activation costs; these latter were evaluated consider-

ing variable and fixed costs, also including a penalty

for keeping idle counters open.

The analysis of the proposed models reveals that typical

approaches aim at optimizing passengers’ waiting times

and/or the total number of the activated check-in coun-

ters, either using simulation or adopting mathemati-

cal models. Such approaches are characterized by an

inherent multi-criteria nature, that is modelled either

through explicitly multi-objective mathematical mod-

els or through the inclusion of appropriate constraints.

When effectively modeled, passengers’ waiting times
represent a measure of the passengers’ satisfaction. In
terms of efficiency, the total number of activated check-
in counters may be considered a good proxy, when man-

agement costs are mainly related to counter rental charges.
However, this is not appropriate when the dominant
cost item is represented by the cost of staff delivering

the service at counters. Indeed, in this case, as personnel

is engaged according to a shift system, a more realis-

tic objective could be represented by an estimation of

the personnel cost, on the basis of feasible shifts. Typ-

ically, a shift covers consecutive time periods, in which

one or more break windows must be included (depend-

ing on its length). Shift-works are generally regulated

through work contracts in terms of length, start times

and breaks (see for instance Avramidis et al 2010; Bard

et al 2003).

In this work, we further extend the use of optimization
models to solve the ACCAP. Specifically, based on the
work by Bruno and Genovese (2010), we formulate a

model to deal with the check-in optimization problem,

in which a trade off solution between the service level

provided to passengers, in terms of waiting times, and

the cost of the service is provided. In particular, the

objective function is represented by the personnel cost
of the staff engaged at check-in counters, according to
a set of given feasible shifts; while the queue of passen-

gers at check-in counters is limited by a specific set of

constraints. In the following sections, the model will be

introduced and some computational experiences will be

shown.

3 A novel mathematical model

In order to formulate the model, the reference planning
horizon (typically a single working day) has been dis-
cretized in a finite number N of periods of the same

length. Each departing flight f in such time horizon is

characterized by a departure time and, consequently,
by a time window, in which check-in operations can be

performed, whose length generally depends on various

factors, such as the destination (national, international,

intercontinental), the airline policies, etc. We indicate

with T−

f and T+
f , respectively, the first and the last pe-

riod in which passengers of flight f can be accepted at

check-in counters. Even if the passengers’ behavior is

not deterministic and it is not possible to know in ad-

vance the exact distribution of their arrivals, we assume

to be able to forecast, with a significant reliability, the

number of passengers of flight f arriving at desks in

each period t of the time window (T−

f , T+
f ) denoted by
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dtf . The check-in optimization problem consists of ac-

cepting all the arriving passengers, by minimizing their
waiting times and by satisfying the deadlines related to
the single flights departures.

Of course, the solution of such a problem is strongly

affected by the available service capacity during the

planning horizon, in terms of check-in operators and

desks. The higher is the service capacity, the higher is
the service level that can be provided to users. In order
to clarify this aspect, let indicate with UBt the Upper

Bound of the service capacity needed in each period t,

i.e. the minimum number of desks required to accept
passengers with no waiting times. As the real service
capacity is usually lower than UBt, due to the pres-

ence of limited resources (lack of operators or space for
desks), optimization approaches are adopted in order to
allocate resources with the aim of minimizing the wait-

ing times of passengers. In Fig. 1, a typical situation is

depicted in which the best policy (line in red), given by

values of UBt, cannot be implemented as the service

capacity (line in blue), in some periods, is not sufficient

and an alternative feasible solution is adopted (line in

violet). However, such solution appears to be inefficient,

as the available capacity results highly underutilized, as

testified by the area between the two curves represent-

ing the available and used capacity respectively.

Fig. 1: Typical pattern of a check-in optimization prob-

lem

As check-in activities still represent labour intensive op-

erations, especially for long-haul flights, it is reason-

able to assume that the critical resource is represented

by operators. This means that the value of the service

capacity strongly depends on decisions related to staff

scheduling, made at a tactical level. As an example, in

Fig. 2, two alternative solutions, obtained according to

different staff scheduling policies, are compared. In par-

ticular, the policy reported in Fig. 2b is representative

of a more flexible shift schedule than the one in Fig. 2a,

which allows adapting the number of available opera-

tors (blue line) to the variability of the service demand

over time, thanks to the use of shifts of shorter duration

and/or of more typologies. Comparing the solutions ob-

tained in the two cases (violet line), it is possible to no-

tice that a higher flexibility in the number of available

operators produces a more efficient solution, character-

ized by a lower level of underutilized desks.

(a) Less flexible shift schedule

(b) More flexible shift schedule

Fig. 2: Examples of solutions based on different staff-

scheduling decisions

In this context, operative costs could depend on the

scheduling of desk-operators, i.e. duration, type and/or

the starting time of their working shifts. In the light

of such considerations, we propose a mathematical pro-

gramming model aiming at finding a trade-off between:

– service operating costs, by optimizing the shift-scheduling

decisions of the desk-operators;

– service level, measured in terms of passengers wait-

ing times at desks.

In order to formulate the model, the following notation

is adopted:
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Sets and Parameters

T planning horizon;

N number of periods in which the planning

horizon is subdivided, indexed by t ;
l lenght of single periods (l = T/N);

J set of shift types that can be selected for desk

operators;

F set of departing flights;

pf average service time to process a single pas-

senger of flight f at check-in desks;

dft number of arriving passengers of flight f dur-
ing period t;

ajkt binary parameter equal to 1 if and only if the

shift j in J , activated in the period k, covers
the period t (with t > k);

βft binary parameter equal to 1 if and only if the

check-in time window for flight f is closed in

period t;

γ service level to be guaranteed, i.e. minimum

number of passengers to be accepted, ex-

pressed as percentage of arrivals (0 ≤ γ ≤ 1);
cj cost for shift type j in J ;

Decision Variables

xj
t number of operators starting the shift type j

at the beginning of period t;

qft passengers of flight f accepted at desks in

period t;

Ift passengers of flight f in queue at desks at the

end of period t.

Then, the model is formulated as follows:

min z =
∑

j∈J

T∑

t=1

cjx
j
t (1)

s.t.

βftIft = 0 ∀f ∈ F, t ∈ 1...N (2)

Ift = If(t−1) + dft − qft ∀f ∈ F, t ∈ 1...N (3)
∑

f∈F

Ift ≤ (1− γ)
∑

f∈F

dft ∀t ∈ 1...N (4)

∑

f∈F

pfqft ≤ l
∑

j∈J

t∑

k=1

ajktx
j
t ∀t ∈ 1...N (5)

xj
t ∈ N ∀j ∈ J, t ∈ 1...T (6)

qft, Ift ∈ {0, 1} ∀f ∈ F, t ∈ 1...T (7)

The objective (1) represents the minimization of the to-

tal costs for the shift schedule. Constraints (2) impose

that passengers of each flight f may be processed only
within their check-in time windows; indeed, no passen-

ger of flight f can wait at check-in desks outside the

time window (Ift = 0, βft = 1). Equations (3) represent

passengers flow conservation constraints. Constraints
(4) guarantee a minimum service level to passengers;
indeed, they assure that passengers waiting in queue at
the end of each period t may not exceed a given per-

centage (1− γ) of the arrivals in the same period. If γ
is equal to one, a maximum service level is guaranteed

to passengers, as constraints impose to have no queue

in each time period; by decreasing the value of such pa-

rameter, the feasible amount of passengers in queue in

each time period may increase. Coherently to the ap-

proach suggested by Araujo and Repolho (2015), con-

straints (5) guarantee that the service time needed to

accept passengers in each time period t (
∑
f∈F

pfqft) does

not exceed the service capacity, defined as the product

between the total number of available operators in pe-

riod t (
∑
j∈J

t∑
k=1

ajktx
j
t ) and the duration l of the period

itself. Finally, constraints (6) and (7) define the nature

of the introduced decision variables.

In the next sections, the results deriving from the appli-

cation of the above model to real case studies related to

two Italian airports will be introduced and discussed.

4 Methodology for instances generation

In this section, the steps followed to generate test in-

stances of the problem are illustrated. It is worth to

highlight that the main aim here is to characterize the

crucial parameters to be considered in real world situ-

ations for an effective use of the model and to generate

possible scenarios, in order to test the performances of

the proposed model in different operating conditions.

Hence, the reproduction of realistic values of such pa-

rameters is out of the scope of the paper and it should

be performed on the basis of specific field investigations.

We used, as reference planning horizon (T ), the single

working day, defined as the time span between the 4:30

am and the 10:30 pm, that was subdivided in a finite

number N of time periods of 15 minutes (|N | = 72).

A single case study is characterized by a set F of de-

parting flights, with the corresponding departure times

tf and destinations, distinguished between national and
international. Along with this information, retrieved by

the official websites of the selected airports, a set of fur-
ther data were needed; in particular:

– Check-in Time Windows ;

– Passengers requiring traditional check-in service mode;
– Passengers’ arrival distribution at desks;

– Service Characteristics.
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Check-in Time Windows

For each flight f ∈ F , the completion time t+f for check-
in operations was fixed equal to tf − Df , where Df

represents the time span between the end of check-in

operations and the departure time. Subsequently, the

starting time t−f for check-in operations was fixed equal

to t+f −Lf , where Lf represents the duration of check-
in operations. In the test instances, we considered Df

equal to 30 and 60 min and Lf equal to 60 and 90 min,

for national and international flights respectively.

Passengers requiring traditional check-in service mode

For each flight f ∈ F , the total number of passen-

gers on board nf was firstly estimated. At this end,

information about the airplane model utilized for each
flight f and the associated passengers’ capacity Cf ,

were collected (www.flightradar24.com) and a param-

eter δf , representing the aircraft utilization rate, was
introduced (nf = δfCf ). For each instance, the uti-

lization rates δf were randomly generated from a uni-

form distribution in the range (δ − r,δ + r), whose pa-

rameters (,r) were fixed as described in the next sec-

tion. Finally, a further coefficient ωf was introduced

to estimate the portion of passengers on board requir-

ing check-in services at desks (and, hence, do not use
self-service modes). It assumed different values, accord-
ing to the length of flight f ; in particular, it was set

equal to 0.2 for short-haul flights (national), 0.5 for
medium-haul flights (international with a duration un-
der 6 hours) and 0.9 for long and ultralong-haul flights
(over 6 hours).

Passengers arrival distribution at desks

We assume that passengers arrive at check-in desks ac-
cording to a given distribution, that varies, in depen-

dence of flight destination, national or international.

The percentages σft of arriving passengers of flight f

during the associated check-in windows are reported in

Fig. 3 and were derived from a survey conducted at

Naples International Airport in the time span April-

May 2016, that involved more than 150 flights (equally

distributed between national and international) and more

than 5000 passengers. From these values, the number of

arriving passengers at desks, for each flight f and each

period t, were calculated (dft = σftωfnf ).

Service Characteristics

We considered the most adopted work shifts for desk

operators, that can be four hours (part time) or six

hours and half long (full time). According to the Ital-

ian regulations, shifts lasting 4 hours need to include

a break window of 15 minutes (1 period), positioned

in a way that avoids more than two consecutive hours

of work; in the case of longer durations, shifts need

Fig. 3: Passengers’ arrival profiles

to include an additional break for the meal, lasting

30 minutes (2 periods). By combining these aspects,
we adopted six shift configurations, whose structure is
shown in Fig.4. The cost for each shift is considered
proportional to the length of the shift itself.

Moreover, the unit service time pf , i.e. the time needed

to process a single passenger of flight f at check-in
desks, was assumed constant for each flight f (pf = p)

and equal to 90 seconds.

Finally, Figure 5 summarizes the information needed

for the instances generation.

Fig. 4: Characteristics of work shift types

Fig. 5: Information needed for the instances generation
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5 Model Results

The proposed model was tested on case studies, ob-
tained by considering daily timetables of typical work-

ing days of some Italian airports. Italy accounts for 41

civil airports, with different characteristics in terms of

passenger traffic and number of flights (ENAC 2017).

Only five of them can be classified as hubs (FCO, MXP,

LIN, BGY, VCE), being characterized by more than
40.000 flights per year (i.e. more than 100 per day);
while most of them are micro airports, with less than

10.000 departing flights per year (i.e. 30 per day), and

medium-size airports, with a range of 10.000- 40.000

flights per year, as reported in Fig. 6. In order to test

the proposed model, we focused on the class of medium-

size airports, as they are those that most likely adopt

a management strategy based on the common-use of

check-in counters. Within such class, two airports of

different size were selected: Napoli Capodichino (NAP)

and Firenze Peretola (FLR). The number of departing

flights from the two airports is significantly different (on

average 45 from FRP and 120 from NAP), but in both
cases most of them are short and medium-haul flights,
as shown in Fig. 7.

Fig. 6: Italian airports per number of departing flights

per year (Source data: ENAC, 2017)

In order to analyze the variation of the total cost ac-

cording to different service levels, the model was solved

with different values of parameter γ (γ = 0.2, 0.4, 0.6,

0.8, 1.0). Moreover, also the expected utilization rate δ

was varied, with the aim of simulating different conges-

tion levels of the terminal (δ = 0.4, 0.6, 0.8, 1.0). Then,

parameter r was fixed equal to 0.2 in order to assure

(a) FLR

(b) NAP

Fig. 7: Map of scheduled departing flights from FLR

(a) and NAP (b) airports during a typical week

(Source: www.flightradar24.com)

a significant variability around the central value δ but

avoiding the overlapping of generated demand profiles.

Hence, for each case study, a set of 20 scenarios was pro-

duced (one for each combination of the parameters α
and δ). Each instance was optimally solved in limited

computational times, i.e. within 3600 s, using Cplex

12.4 on an Intel Core i7 with 1.86 GHz and 4 GB of

RAM.

Tables 1 and 2 show results obtained for the two case

studies, in terms of values of the objective function. It

is possible to notice that, by fixing the parameter δ, the

value of the objective function decreases when a higher

service level is guaranteed to passengers (i.e. when de-

creases); indeed, the model is constrained to activate

more shifts in order to have more available service ca-

pacity and minimize the passengers in queue. Moreover,

for each given value of the service level α, the objective
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function increases when the congestion level of the ter-

minal increase (i.e. when δ decreases), as the number of
passengers to be accepted at check-in counters increase

and more operators will be needed in each time period.

γ

δ 1.0 0.8 0.6 0.4 0.2
0.4 365 304 281 273 273
0.6 546 463 402 387 387
0.8 637 538 508 500 500
1.0 864 720 652 652 652

Table 1: Computational Results: FLR airport

γ

δ 1.0 0.8 0.6 0.4 0.2
0.4 736 624 593 562 562
0.6 906 791 732 700 692
0.8 1225 1050 981 957 943
1.0 1465 1249 1180 1140 1125

Table 2: Computational Results: NAP airport

In the following, some solutions obtained for the

case of FLR are analyzed, in order to show the capabil-
ity of the model to support the decision maker.
Fig. 8 and 9 show the solution obtained by imposing

the maximum service level (γ=1) and an expected air-

craft utilization rate δ equal to 0.4. In particular, Fig.

8 indicates the number of operators that, in each time

period, starts their work shift, classified according to

the six considered shift types; while Fig. 9 reports the

number of available operators over time and the number

of needed operators to process passengers, determined
on the basis of the allocation decisions made by the
model. In this case the desk operators are scheduled in
such a way to not have any passenger waiting in queue;

then, the solution represent an upper bound in terms of

objective function. Indeed, if, in a given period, the pas-

sengers arrivals require more operators than the avail-

able ones, the model activates new shifts, that last for
a certain number of successive periods; then, such op-
erators remain active even if they are not needed later.

This circumstance may lead to an underutilization of

the available capacity. Obviously, by decreasing the ser-

vice level provided to users, it is possible to have more

flexibility in the use of resources; indeed, if passengers

can wait in queue, a lower number of operators is re-

quired in each time period. Fig. 10 shows the results

provided by the model by fixing γ=0.4. As expected,

the underutilization rate decreases as the gap between

needed and available operators is generally lower over

the whole time horizon if compared with the one in Fig.

9. Finally, in Fig. 11 we compared the number of avail-

able operators over time in the two scenarios; of course,

the profile obtained by fixing γ=0.4 is dominated by the

line corresponding to the number of available operators

for γ=1.0.

Fig. 8: Activated shifts (distinguished per typology) in

each time period (γ=1, δ=0.4)

Fig. 9: Available and used service capacity profiles

(γ=1.0, δ=0.4)

6 Conclusions

Historically, passengers’ check-in operations have rep-

resented a very resource intensive process taking place

in airports. Even if huge investments in ICTs have been

deployed in the last years to support traditional check-

in procedures with self-service alternatives, field inves-

tigations suggest that they will continue to be needed

also in the future, especially for long and medium-haul

flights, where baggage dropping processes are involved.

For this reason, the check-in problem has been gaining

popularity in the recent operational research literature,

with the development of both optimization and simu-

lation methods.
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Fig. 10: Available and used service capacity profiles

(γ=0.4, δ=0.4)

Fig. 11: Available service capacity profile by varying γ

The contribution presented in this study has extended

the current state-of-the-art, by proposing a mathemat-

ical model capable of performing check-in decisions by

also incorporating staff scheduling considerations, in

order to deliver more realistic and accurate planning
decisions. Specifically, the model is capable of finding
trade-off solutions between the cost of the personnel
employed in the check-in operations and the service

level provided to passengers, expressed in terms of wait-

ing times. These two criteria have been included in the

model as an objective function to be optimized and as

constraints to be satisfied, respectively.
The proposed model was tested on case studies, ob-
tained by considering daily timetables of typical work-

ing days of some Italian airports; tests were performed

considering two mid-sized airports, likely to adopt man-

agement strategies based on the common-use of check-

in counters.

Results show that the model is capable of identifying

the most appropriate staff configuration (in terms of

number of operators, shift start time and shift type) in

order to optimize the mentioned trade-off.

Future researches might involve the adoption of stochas-

tic version of the model, in order to better represent

the variability in passengers’ arrivals, along with the
integration with simulation tools, in order to improve
the capability of the model of dealing with real-world

scenarios. Also, additional case studies might be gath-

ered, to explore to a wider extent the applicability of

the model and gain new insights about further practical

constraints to be added to the mathematical formula-

tion.
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Castillo-Manzano JI, López-Valpuesta L (2013) Check-in
services and passenger behaviour: Self service technolo-
gies in airport systems. Computers in Human Behavior
29(6):2431–2437

Chang HL, Yang CH (2008) Do airline self-service check-in
kiosks meet the needs of passengers? Tourism Manage-
ment 29(5):980–993

Chun HW, Mak RWT (1999) Intelligent resource simulation
for an airport check-in counter allocation system. IEEE
Transactions on Systems, Man, and Cybernetics, Part C
(Applications and Reviews) 29(3):325–335

ENAC (2017) Dati di traffico 2017. URL:
https://www.enac.gov.it [accessed in May 2018]

Hsu CI, Chao CC, Shih KY (2012) Dynamic allocation of
check-in facilities and dynamic assignment of passengers
at air terminals. Computers & Industrial Engineering
63(2):410–417



10 Giuseppe Bruno et al.

IATA (2017) Annual review 2017. URL:
www.iata.org/publications/pages/annual-review.aspx
[accessed in May 2018]

Lu J, Chou HY, Tseng WC (2011) Determinants of passen-
gers choice of airline check-in services: A case study of
american, australian, korean, and taiwanese passengers.
Journal of Air Transport Management 17(4):249–252

Lu JL, Chou HY, Diglio A (2009) Investigating passengers
intentions to use technology-based self check-in services.
Transportation Research Part E: Logistics and Trans-
portation Review 45(2):345–356

Mota MM (2015) Check-in allocation improvements through
the use of a simulation–optimization approach. Trans-
portation Research Part A: Policy and Practice 77:320–
335

Park Y, Ahn SB (2003) Optimal assignment for check-
in counters based on passenger arrival behaviour at
an airport. Transportation Planning and Technology
26(5):397–416

Parlar M, Sharafali M (2008) Dynamic allocation of air-
line check-in counters: a queueing optimization approach.
Management Science 54(8):1410–1424

Parlar M, Rodrigues B, Sharafali M (2016) Event-based al-
location of airline check-in counters: a simple dynamic
optimization method supported by empirical data. Inter-
national Transactions in Operational Research

Stolletz R (2010) Operational workforce planning for check-
in counters at airports. Transportation Research Part E:
Logistics and Transportation Review 46(3):414–425

Stolletz R (2011) Analysis of passenger queues at airport ter-
minals. Research in Transportation Business & Manage-
ment 1(1):144–149

Tang CH (2010) A network model for airport common use
check-in counter assignments. Journal of the Operational
Research Society 61(11):1607–1618

Van Dijk NM, Van Der Sluis E (2006) Check-in computation
and optimization by simulation and ip in combination.
European Journal of Operational Research 171(3):1152–
1168

Wittmer A (2011) Acceptance of self-service check-in at
zurich airport. Research in Transportation Business &
Management 1(1):136–143

Yan S, Tang CH, Chen M (2004) A model and a solution
algorithm for airport common use check-in counter as-
signments. Transportation Research Part A: Policy and
Practice 38(2):101–125

Yan S, Chang KC, Tang CH (2005) Minimizing inconsisten-
cies in airport common-use checking counter assignments
with a variable number of counters. Journal of Air Trans-
port Management 11(2):107–116


