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Abstract Models like support vector machines or Gaus-
sian process regression often require positive semi-definite
kernels. These kernels may be based on distance func-
tions. While definiteness is proven for common distances
and kernels, a proof for a new kernel may require too
much time and effort for users who simply aim at prac-
tical usage. Furthermore, designing definite distances
or kernels may be equally intricate. Finally, models can
be enabled to use indefinite kernels. This may deterio-
rate the accuracy or computational cost of the model.
Hence, an efficient method to determine definiteness is
required. We propose an empirical approach. We show
that sampling as well as optimization with an evolu-
tionary algorithm may be employed to determine defi-
niteness. We provide a proof-of-concept with 16 differ-
ent distance measures for permutations. Our approach
allows to disprove definiteness if a respective counter-
example is found. It can also provide an estimate of
how likely it is to obtain indefinite kernel matrices. This
provides a simple, efficient tool to decide whether ad-
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ditional effort should be spent on designing/selecting a
more suitable kernel or algorithm.

Keywords Definiteness - Kernel - Distance - Sam-
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1 Introduction

The definiteness of kernels and distances is an impor-
tant issue in statistics and machine learning (Feller|1971}
Vapnik|1998; [Scholkopf|2001). One application that re-
cently gained interest is the field of surrogate model-
based combinatorial optimization (Moraglio and Kat-
tan| [2011; Zaefferer et al.|2014b} |[Bartz-Beielstein and
Zaefferer|2017). Continuous distance measures are re-
placed by distance measures that are adequate for the
respective search space (e.g., permutation distances or
string distances). Such a measure will have an effect on
the definiteness of the employed kernel function. For ar-
bitrary problems, practitioners may come up with any
kind of suitable distance measure or kernel.

While it is easy to determine definiteness of matri-
ces, determining the definiteness of a function is not as
simple. Proving definiteness by theoretical means may
be infeasible in practice (Murphy| 2012, p. 482; |Ong
et al.|2004)). It may be equally difficult to design a func-
tion to be definite. Finally, algorithms may be adapted
to handle indefinite kernels. These adaptations usually
have a detrimental impact on the computational effort
or accuracy of the derived model. Hence, this study tries
to answer the following two research questions:

Q

Discovery: Is there an efficient, empirical approach
to determine the definiteness of kernel functions based
on arbitrary distance measures?
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Q, Measurability: If Q; can be answered affirma-
tively, can we quantify to what extent a lack of def-
initeness is problematic?

Q; tries to find an answer to the general question of
whether or not a function is definite. Measurability (Qs)
is important, as this may allow determining the impact
that indefiniteness has in practice. For instance, if a ker-
nel rarely produces indefinite matrices, an optimization
or learning process that explores only a small subset of
the search space may not be negatively affected. There-
fore, this article proposes two approaches.

A; Sampling: Random sampling is used to determine
the proportion of solution sets with indefinite dis-
tance or kernel matrices for a given setting.

A, Optimization: Maximizing the largest eigenvalue
related to a certain solution set with an Evolution-
ary Algorithm (EA), hence finding indefinite cases
even when they are rare.

If either approach detects an indefinite matrix, the
respective kernel function is demonstrated to be indef-
inite. On the other hand, if no indefinite matrix is de-
tected, definiteness of the function is not proven. Still,
this indeterminate result may indicate that indefinite-
ness is at least unlikely to occur. Hence, the function
may be treated as unproblematic in practical use.

Section [2] provides the background of the methods
presented in Section [3] The experimental setup for a
proof-of-concept, based on permutation distance mea-
sures, is described in Section [} Results of the experi-
ments are analyzed and discussed in Section [5| Finally,
a summary of this work as well as an outlook on future
research directions is given in Section [6]

2 Background: Distances, Kernels and
Definiteness

2.1 Distance Measures

Distance measures compute the dissimilarity of two ob-
jects z, 2’ € X, where we do not assume anything about
the nonempty set X'. Such objects can be, e.g., permu-
tations, trees, strings, or vectors of real values. Thus, a
distance measure d : X x X — R, expresses a scalar,
numerical value d(z,z’) that should become larger the
more distinct the objects x and x’ are. For a set of
n € N objects, the distance matrix D of dimension
n x n collects all pairwise distances D;; = d(z;,x;)
with ¢ =1,...,n and j = 1, ..., n. Intuitively, distances
can be expected to satisfy certain conditions, e.g., they
should be zero when comparing identical objects.

A more formal definition is implied by the term dis-
tance metric. A distance metric d(z,2’) is symmetric
d(z,2") = d(z', z), non-negative d(x,z’) > 0, preserves
identity d(z,2') = 0 <= x = 2/, and satisfies the
triangle inequality d(z,z"”) < d(x,z’) + d(z’,2"). Dis-
tance measures that do not preserve identity are often
called pseudo-metrics.

An important class of distance measures are edit
distance measures. Edit distance measures can be de-
fined to count the minimal number of edit operations
required to transform one object into another. An edit
distance measure may concern one specific edit opera-
tion (e.g., only swaps) or a set of different operations
(e.g., Levenshtein distance with substitutions, deletions,
insertions). Edit distances usually satisfy the metric ax-
ioms.

2.2 Kernels

In the following, a kernel (also: kernel function, similar-
ity measure or correlation function) is defined as a real
valued function k(z,2’) with

k:XxX >R
(z,2") = k(z,2")

(1)

that will usually be symmetric k(z,2') = k(z’,x) and
non-negative k(z,z’) > 0 (Murphy|[2012, p. 479). Ker-
nels can be based on distance measures, i.e., k(d(z,2)).

2.3 Definiteness of Matrices

One important property of kernels and distance mea-
sures is their definiteness. We refer to the literature for
more in-detail descriptions and proofs, which are the
basis for the following paragraphs (Berg et al.[|[1984;
Scholkopf||2001; |Camastra and Vinciarelli|2008)).

First, we introduce the concept of matrix definite-
ness. A symmetric, square matrix A of dimension n xn
(n € N) is positive definite (PD) if and only if

n n

Z Z CiCinj > 0,

i=1 j=1

for all ¢ € R™\ {0}. This is equivalent to all eigenval-
ues A\; < Ao < ... <\, of the matrix A being positive.
Due to symmetry, the eigenvalues are A € R™. Respec-
tively, a matrix is negative definite (ND) if all eigenval-
ues are negative. If eigenvalues are non-negative (i.e.,
some are zero) or non-positive, the matrix is respec-
tively called Positive or Negative Semi-Definite (PSD,
NSD). If mixed signs are present in the eigenvalues, the
matrix may be called indefinite. Kernel (or correlation,
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covariance) matrices are examples of matrices that have
to be PSD.

A broader class of matrices are Conditionally PSD
or NSD (CPSD, CNSD). Here, the coefficients satisfy

Zci = 07 (2)

withn > 1. All PSD (NSD) matrices are CPSD (CNSD).

To check conditional definiteness, let the n x n matrix
P be

r=(Mann" )

withe = (1,...,1)T, and B = PAPT. Then, A is CNSD
if and only if

A= B, (3)

is NSD (Ikramov and Savel’eva 2000, Algorithm 1).
Here, B,,_1 is the leading principal submatrix of B,
that is, the last column and row of B are removed.

2.4 Definiteness of Kernel Functions

In a similar way to the definiteness of matrices, def-
initeness can also be determined for kernel functions.
The upcoming description roughly follows the defini-
tions and notations by [Berg et al (1984) and [Scholkopf]
(2001). For the nonempty set X, a symmetric kernel k
is called PSD if and only if

i icicjk(;vi,xj) > 0,

i=1j=1

for all m € N, x € X and ¢ € R". A PSD kernel will
always yield PSD kernel matrices.

An important special case are conditionally definite
functions. Analogous to the matrix case, they observe
the respective condition in equation . One example
of a CNSD function is the Euclidean distance. The im-
portance of CNSD functions is also due to the fact that
the distance measure d(z,z’) is CNSD if and only if
the kernel k(z,2') = exp(—6d(z,z")) is PSD V 6 > 0
Proposition 2.28).

It is often stated that kernels must be PSD
imussen and Williams|[2006}; [Curriero|[2006)). Still, even
an indefinite kernel function may yield a PSD kernel
matrix. This depends on the specific data set used to
train the model (Burges|1998)); (Li and Jiang|2004) The-
orem 2) as well as the parameters of the kernel function.
Some frequently used kernels are known to be indef-

inite. Examples are the sigmoid kernel (Smola et al.

2000; |(Camps-Valls et al.||2004) or time-warp kernels for
time series (Marteau and Gibet|[2014).

To handle the issue of a kernel’s definiteness, differ-
ent (not mutually exclusive) approaches can be found
in the literature.

— Proving: Definiteness of a specific function can be
proven (or disproven) by theoretical considerations
in some cases (cf. (Berg et al|[1984)). For complex
cases, or practitioners this may be an infeasible ap-
proach (Ong et all[2001).

— Designing: Functions can be designed to be defi-
nite (Haussler||1999; |Gartner et al. [2003; Marteau]
and Gibet|2014). Especially noteworthy are the so
called convolution kernels 7 as they
provide a method to construct PSD kernels for struc-
tured data. For a similar purpose,
(2004) show how to design a syntax based PSD ker-
nel for structured data. However, convolution ker-
nels may be hard to design (Gértner et al.2004).
Also, kernels and distance measures may be prede-
termined for a certain application.

— Adapting: Algorithms or kernel functions may be
adapted to be usable despite a lack of definiteness.
This, however, may affect the computational effort
or accuracy of the derived model. Some approaches
alter matrices (or rather, their eigenspectrum), hence
enforcing PSDness (Wu et al.[2005; Chen et al.[2009;
\Zaefferer and Bartz-Beielstein 2016). For the case of
SVMs, Loosli et al.| (2015]) provide a nice compari-
son of various approaches of this type and propose
an interesting new solution to the issue of indefinite
kernels based on learning in Krein spaces. A recent
survey is given by |Schleif and Tino| (2015).

Between these three approaches, there is a lack of
straightforward empirical procedures, without resorting
to complex theoretical reasoning. How can the definite-
ness of a function be determined? And what impact
does a lack of definiteness have on a model?

Hence, we propose the two related empirical ap-
proaches A; and A, introduced in Sec. [I] to fill the
gap. An empirical approach may help to overcome the
difficulty of theoretical considerations or designed ker-
nels. Empirical results may also be a starting point for
a more formal approach. Furthermore, it may give a
quick answer on whether or not the algorithm will have
to be adapted for non-PSD matrices (which, if applied
by default, would require additional computational ef-
fort and may limit the accuracy of derived models).
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3 Methods for Estimating Definiteness

We propose an experimental approach to determine and
analyze definiteness (A1, Ag). As a test case, we deter-
mine the definiteness of a distance-based exponential
kernel, k(z,2") = exp(—60d(z,z")). The kernel is defi-
nite if the underlying distance function is CNSD. For a
given distance matrix, CNSDness is determined by the
largest eigenvalue A, of D, based on equation . D is
not CNSD if A, > 0. We could also probe the kernel
matrix K, but in this case the kernel parameter § would
have to be dealt with.

Of course, we cannot simply check definiteness of
a single matrix D, since this would be only one possi-
ble outcome of the respective kernel or distance func-
tion. Hence, a large number of solution sets with respec-
tive distance matrices has to be generated to determine
whether any of the matrices are CNSD (research ques-
tion Q;: discovery) and to what extent this may affect
a model (Q,: measurability). For smaller, finite spaces
a brute force approach may be viable. All potential ma-
trices D can be enumerated and checked for CNSDness.
Since this quickly becomes computational infeasible, we
propose to use sampling or optimization instead.

3.1 Estimating Definiteness with Random Sampling

To estimate the definiteness of a distance or kernel func-
tion we propose a simple random sampling approach
(A1). This approach randomly generates t € N sets
X1, ..., X;. Each set has size n, that is, it contains n € N
candidate samples X = {z1,...,z,}.

For each set, the distance matrix D is computed,
containing distances between all candidates in the set.
Based on this, D is derived from equation . Then, the
largest eigenvalue A,, of D is computed. This eigenvalue
determines whether D is NSD, and hence whether D is
CNSD and K PSD. This is repeated for all ¢ sets. The
number of times that the largest eigenvalue is positive
(An, > 0) isretained as ny. Accordingly, the proportion
of non-CNSD matrices is determined with p = "%

Obviously, all distance measures that yield p > 0 are
proven to be non-CNSD. Hence, an exponential kernel
based on these measures is also proven to be indefinite.
If p = 0, CNSDness is not proven or disproven.

In general, the proposed method can be categorized
as a randomized algorithm of the complexity class RP
(Motwani and Raghavan|[1995| p. 21f.). That is, it stops
after polynomially many steps, and if the output is “no”
then the distance measure is non-CNSD with probabil-
ity 1, and if the output is “yes” then the distance mea-
sure is CNSD with some probability strictly bounded
from zero.

The parameter p is an estimator of how likely a non-
CNSD matrix is to occur, for the specified set size n.
To determine definiteness, the calculation of A,, of Dis
not mandatory, but it may be useful to see how close to
zero A\, is, to distinguish between a pathological case
and cases where the matrix is just barely non-CNSD.
We will show in Section that A\, of D can be linked
to model quality.

Note, that inaccuracies of the numerical algorithm
used to compute the eigenvalues might lead to an er-
roneous sign of the largest eigenvalue. To deal with
that, one could try to use exact or symbolic methods or
else use a tolerance when checking whether the largest
eigenvalue is larger than zero. In the latter case, a ma-
trix D is assumed to be non-NSD if \,, > €, where € is
a small positive number.

3.2 Estimating Definiteness with Directed Search

If very few sets X yield indefinite matrices, A; may fail
to find indefinite matrices by pure chance. In such cases,
it may be more efficient to replace random sampling
with a directed search (As). In detail, a set X can itself
be viewed as a candidate solution of an optimization
problem. The largest eigenvalue A,, of the transformed
distance matrix D is the ob jective to be maximized. By
maximizing the largest eigenvalue, a positive \,, may be
found more quickly (and more reliably).

This optimization problem is strongly dependent on
the kind of solution representation used. Evolutionary
Algorithms (EAs) are a good choice to solve this prob-
lem, because they are applicable to a wide range of
solution representations (e.g., real values, strings, per-
mutations, graphs, and mixed search spaces). EAs use
principles derived from natural evolution for the pur-
pose of optimization. That is, EAs are optimization
algorithms based on a cyclic repetition of parent se-
lection, recombination, mutation, and fitness selection
(see e.g., Eiben and Smith| (2003)). These operations
can be adapted to a large variety of representations,
mainly depending on suitable mutation and recombi-
nation operators. The EA in this study will operate as
follows:

— Individual: X. A set X = {z1, ..., 2, } with set size
n is considered as an individual. Set elements = are
samples in the actual search or input space, as used
throughout Sec. [2|

— Search space: S™. All possible sets X of size n,
ie, X € 5™

— Population: Z. A population of size r, containing
Xy € Z with ke {1,...,r} and Z C 5™
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— Objective Function:

f: 8" =R

X =\, )

where A, is the largest eigenvalue of the transformed
distance matrix D based on equation . The ob-
jective function f is maximized.

— Mutation: Alteration of an individual.

Xnew = mutation(X) =

{21, ..., xj_1, submutation(z;), xj41, ..., Tn, }, With
j € {1,...,n}. For the submutation function, any
edit operation that works for a sample x can be
chosen: e, = submutation(z) = edit(x).

For example, in case of permutations, one permu-
tation z; € X is chosen and mutated with typical
permutation edit-operations (swap, interchange, re-
versal). The specific edit-operation is called submu-
tation operator, to distinguish between mutation of
the individual set X and the submutation of a single
permutation z; € X.

— Recombination: Combining two sets. For re-
combination, two sets are randomly split and the
parts of both sets are joined to form a new set of
the same size.

— Repair: Duplicate removal. Mutation and re-
combination may create duplicates (x; = z; with
i # 7). In practice, duplicates are not desirable
and are irrelevant to the question of definiteness.
Hence, duplicates are replaced by randomly gener-
ated, unique samples z* ¢ X.

— Stopping criterion: Indefiniteness proven or
budget exhausted. The optimization can stop when
some solution set X is found which yields A,, > ¢,
where € is a small positive number. Alternatively,
the process stops if a budget of objective function
evaluations is exhausted.

4 Experimental Validation

The proposed approaches can be useful in any case
where definiteness of kernels is of interest. The exper-
iments provide a proof of concept of the proposed ap-
proaches. Hence, we chose to pick a recent application
as a motivation for our experiments: surrogate-model
based optimization in permutation spaces (Moraglio and
Kattan|2011} [Zaefferer et al.|[2014al).

In many real-world optimization problems, objec-
tive function evaluations are expensive. Sequential mod-
eling and optimization techniques are state-of-the-art
in these settings (Bartz-Beielstein and Zaefferer|[2017)).
Typically, an initial model is built at the first stage
of the process. The model will be subsequently refined

by adding further data until the budget is exhausted.
At each stage of this sequential process, available in-
formation from the model is used to determine promis-
ing new candidate solutions. This motivates the rather
small data set sizes used throughout this study.

4.1 Test Case: Permutations

As a proof-of-concept, we selected 16 distance mea-
sures for permutations; see Table [I] for a complete list.
The implementation of these distance measures is taken
from the R-package CEGdH

Similarly to [Schiavinotto and Stutzle| (2007) we de-
fine IT™ as the set of all permutations of the numbers

{1,2,...,m}. A permutation has exactly m elements.
We denote a single permutation with # € II'™ and
m = {m, 72, ..., T } Where 7; is a specific element of the

permutation at position i. For example, a permutation
in this notation is 7 = {3,2,1,4,5} € II°. Explana-
tions and formulas (where applicable) for the distance
measures are given in appendix A.

Table 1 Distance measures for permutations. Second col-
umn lists runtime complexity where m is the number of ele-
ments of the permutation. Metric refers to permutation space;
these measures may be non-metric in other spaces. LC is short
for Longest Common.

name complexity metric  abbreviation
Levenshtein O(m?) yes Lev
Swap O(m?) yes Swa
Interchange O(m?) yes Int
Insert O(mlog(m)) yes Ins
LC Substring  O(m?) yes LCStr
R O(m?) yes R
Adjacency O(m?) pseudo Adj
Position O(m?) yes Pos
Position? O(m?) no Posq
Hamming O(m) yes Ham
Euclidean O(m) yes Euc
Manhattan O(m) yes Man
Chebyshev O(m) yes Che
Lee O(m) yes Lee
Cosine O(m) no Cos
Lexicographic ~ O(mlog(m)) yes Lex

4.2 Random Sampling

In a single experiment, t = 10, 000 sets of permutations
are randomly generated. Each set contains n permuta-
tions and each permutation has m elements. For each

1 The package CEGO is available on CRAN at

http://cran.r-project.org/package=CEGO.
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set, the largest eigenvalue \,, of D is computed based
on equation . To summarize all ¢ sets, the largest A\,
as well as the ratio p = "% are recorded. The toler-
ance value used to check whether the largest eigenvalue
is positive is e=1e-10. This process is repeated 10 times,
to achieve a reliable estimate of the recorded values.
Two batches of experiments are performed. In the
first, all 16 distance measures are examined, with n =
{4,...,20} and m = {4,...,15}. In the second batch,
larger sizes n = {21, ..., 40, 45, 50, 60, 70, 80, 90, 100} are
tested, but the permutations are restricted to m =
{5,...,15} and the distance measures are only LCStr,
Insert, Chebyshev, Levenshtein and Interchange.

4.3 Directed Search

To be comparable to the random sampling approach,
the budget for each EA run is 10,000 fitness function
evaluations. A run will stop if the budget is exhausted
or if A\, > ¢ = 1071%. The population size of the EA is
set to 100. The recombination rate is 0.5, the mutation
rate is 1/m and truncation selection is used.

To identify bias introduced by the choice of the sub-
mutation operator (which may have a strong interaction
with the respective distance measures), each EA run is
performed repeatedly with three different submutation
operators:

— Swap mutation: Transposing two adjacent elements
of the permutation.

T =T, ., Mg, Ty ey T

*

T = T1yee s Ty Ty ee s Tms

withl<a<(m—1)and b=a+ 1.

— Interchange mutation: Transposing two arbitrary
elements of the permutation.

T ="T1y+yTa—1,Ta,Ta+1y -y To—15Tby To+1; -+ Tm

*

T =T1yee s Tq—1,Tby Ta4+1s++ s Th—1,Tay Tot1s -5 Tm,

withl<a<mand1l<b<m.
— Reversal mutation: Reversing a substring of the

permutation.
T ="T1ysTasTa+tls--sTo—1,Tbs -5 Tm
*

T =Ty s ThyTTo—15 - s Ta4+15Tay oo s Timy

with 1 <a <b<m.

All 16 distance measures are tested, with
n ={4,...,20} and m = {4,...,15}. With ten repeats,
and the three different submutation operators, this re-
sults into 97,920 EA runs, each with 10,000 fitness
function evaluations. The employed EA implementation
is part of the R-package CEGO.
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Fig. 1 Mean proportion of sets yielding matrices D with
positive A, found with random sampling. Only distance mea-
sures that achieved positive A,, are shown. The numeric labels
and the color indicate the respective value of m.

4.4 Tests For Other Search Domains

To show that the proposed approach is not limited to
the presented permutation distance example, we also
briefly explore other search domains and their respec-
tive distances. However, these are not analyzed in fur-
ther detail. Instead, we provide a list of minimal ex-
amples in Appendix B: the smallest (w.r.t. dimension)
indefinite distance matrix for each tested distance mea-
sure. The examples include distance measures for per-
mutations, signed permutations, trees, and strings.

5 Observations and Discussion
5.1 Sampling Results

The proportions of sets with positive eigenvalues (p)
are summarized in Fig. |l The largest eigenvalues are
depicted in Fig.[2] Only the five indefinite distance mea-
sures, which achieved positive eigenvalues are shown:
Longest Common Substring, Insert, Chebyshev, Leven-
shtein, Interchange.

No counter-examples are found for the remaining
eleven measures. That does not prove that they are
CNSD (although some are CNSD, e.g., Euclidean dis-
tance, Swap distance (Jiao and Vert||2015), Hamming
distance (Hutter et al||2011)), but indicates that it
may be unproblematic to use them in practice. Some
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Fig. 2 Mean of maximum \,, of D found with random sam-
pling. The maximum is determined over all sets in a single
experiment. The mean is determined over ten repeats of the
sampling. Only distance measures that achieved positive A,
are shown. The numbers inside the plot and the color indicate
the respective value of m.

of the five non-CNSD distance measures were reported
to work well in a surrogate-model optimization frame-
work, e.g., Levenshtein distance seemed to work well
for modeling of scheduling problems
2014a)). This is mainly due to the fact, that even a
non-CNSD distance may yield PSD kernel matrix K,
depending on the specific data set and kernel parame-
ters used. We do not suggest that non-CNSD distance
measures should be avoided, but that their application
should be handled with care.

Regarding values of p (Fig. [1]), some trends can be
observed. For indefinite distance measures, increasing
the set size (n) will in general lead to larger values of
p. Obviously, a larger set is more likely to contain com-
binations of samples that yield negative eigenvalues. In

addition, the lower bound for eigenvalues decreases with
increasing matrix size (Constantine[1985)).

In contrast to the set size, increasing the number
of permutation elements (m) decreases the proportion
of positive eigenvalues p in all five cases. This can be
attributed to a larger and hence more difficult search
space. Overall, none of the distance measures shows ex-
actly the same behavior. LCStr distance has the least
problematic behavior. Only very few sets (of compara-
tively large size) yielded positive eigenvalues with LCStr
distance. Interchange, Levenshtein and Insert distance
all have relatively large p for small set sizes n. Cheby-
shev on the other hand, starts to have non-zero p for
relatively large n. However, the number of permutation
elements has only a weak influence in case of Chebyshev
distance. Hence, curves for different m are much closer
to each other, compared to the other distance measures.
Somewhat analogous to p, the largest eigenvalues of D
plotted in Fig. [2| are generally increasing for larger n,
and decreasing with larger m.

Our findings are confirmed by some results from lit-
erature. (Cortes et al (2004) have shown that an expo-
nential kernel function based on the Levenshtein dis-
tances is indefinite for strings of more than one symbol.
Our experiments show that this result can be easily re-
discovered empirically, for the case of permutations. At
the same time, these findings also confirm (and pro-
vide reasons for) problems observed with these kinds

of kernel functions in a previous study (Zaefferer et al.
2014a).

As a consistency check, Table [2] compares the sam-
pling results to a brute force approach for n = {4, ..., 8}
and m = 4. It shows that the sampling indeed approxi-
mates the number of non-CNSD matrices quite well. In
this small set, the sampling identified all combinations
of distance measure and n that may yield non-CNSD
matrices.

5.2 Optimization Results

The average number of fitness function evaluations (i.e.,
number of times \,, of D is computed) required to find
a matrix D with positive A, is depicted in Fig. [3| The
optimization results show similar behavior with respect
to n and m as the sampling approach. Increasing m
leads to an increased number of fitness function evalua-
tions. That means, finding positive eigenvalues becomes
more difficult with increasing values of m. Increasing n
reduces the number of required fitness function eval-
uations. That is, finding positive eigenvalues becomes
easier. In some cases, this effect disappears for large
values of m, e.g., for LCStr distance, where the average
is more or less constant over n, if m is large enough.
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are found. Columns show the results of the EA with each submutation function and the earlier described sampling approach.
The rows indicate different distances measures. Only distance measures which achieved positive eigenvalues are shown.

Importantly, the comparison to the sampling results
clearly shows that the EA has some success in opti-
mizing the largest eigenvalue of the transformed dis-
tance matrix D. In several cases, positive eigenvalues
are found by the EA while sampling with the same bud-
get failed to find any. Hence, it can be assumed that the
fitness landscape based on A, of D is sufficiently smooth
to allow for optimization. The eigenvalue A, seems to
be a good indicator of how close a solution set is to
yielding an indefinite kernel matrix.

Furthermore, the expected bias of the used submu-
tation operator becomes visible. For Insert and LCStr
distance, the EA with swap mutation works consider-
ably better than the other two variants. Hence, compar-
isons of these values across different distance measures
should be handled with caution. Clearly, other aspects
of the optimization algorithm (e.g., selection criteria
or recombination operators) might have similar effects.
While this bias is troubling, results may still offer inter-
esting insights. The eigenvalue optimization could be
interpreted as a worst-case scenario that occurs if an
iterative learning process strongly correlates with the
eigenvalues of the employed distance matrix.

5.3 Verification: Impact on Model Quality

Earlier, we discussed two values that may express the
effect of the lack of definiteness in practice, i.e., p and
A of D. But what do these values imply?

The value p can be seen as a probability of gener-
ating indefinite matrices. If we assume that a model is
unable to deal with indefinite data, the fraction p is an
estimate of how likely a modeling failure is. For other
cases, it is very hard to link it to a model performance
measure such as accuracy without making too many
assumptions. We still argue that p provides useful in-
formation, especially when the kernel is designed and
probed before sampling any data (e.g., when planning
an experiment). We suggest to use p to support an ini-
tial decision (e.g., whether to spend additional time on
fixing or otherwise dealing with the indefinite kernel).
One advantage is that it is rather easy to interpret.

In contrast, the parameter A\, of D is more diffi-
cult to interpret. But it has the advantage that it may
be estimated for a single matrix as well as its aver-
age for a set of matrices. Hence, we want to determine
whether the magnitude of this eigenvalue affects model
performance. We expect an influence that depends on
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Table 2 Comparing the true proportion of non-CNSD ma-
trices p determined by brute force (true) with the mean of
p estimated by sampling (estimate). The table only presents
results for permutations with m = 4 elements and set sizes
n. The number of sets evaluated by brute force is ns =
np! / (n! (np —n)!) with n, = ml.

n distance Ng true estimate
5 Insert 42,504 0.047 0.048
6 Insert 134,596 0.221 0.219
7 Insert 346,104  0.530 0.529
8 Insert 735,471  0.827 0.825
5 Interchange 42,504 0.106 0.105
6 Interchange 134,596 0.465 0.463
7 Interchange 346,104 0.833 0.834
8 Interchange 735,471 0.978 0.978
5  Levenshtein 42504 0.087 0.087
6 Levenshtein 134,596 0.293 0.293
7 Levenshtein 346,104 0.591 0.589
8 Levenshtein 735,471 0.847 0.846
5 LCStr 42504  0.002 0.002
6 LCStr 134,596  0.007 0.007
7 LCStr 346,104  0.026 0.026
8 LCStr 735,471 0.093 0.092

the choice of model. Consider, e.g., a Gaussian process
regression model, as e.g., described by [Forrester et al.
(2008). The model may be able to mitigate the problem-
atic eigenvalue by assigning larger 6 values to the kernel
k(z,z") = exp(—0d(z,2")). For very large A, and thus
very large 6, this will lead to kernel matrices that ap-
proximate the unit matrix, which is positive definite. A
model with a unit kernel matrix would be able to repro-
duce the training data, but would predict the process
mean for most other data points. Hence, we examine
Gaussian process regression models, since they provide
a transparent and interpretable test case (but similar
experiments could easily be made with support vector
regression).

An experimental test has to consider the potential
bias of the used data set. We need to be able to reason-
ably assume that differences in performance are actu-
ally due to the properties of employed distance or kernel
(i.e., a kernel performs poorly because the correspond-
ing A\, of D is high) rather than properties of the data
set (i.e., a kernel performs poorly because it does not
fit well to the ground truth of the data set). To that
end, we suggest that observations in a test data set are
derived from the same distances that are used in the
model.

Hence, we randomly created data sets X of size
n with permutations of dimension m, similarly to the
random sampling performed earlier. Then, we created
training observations by evaluating the distance of each
permutation in X to a reference permutation z,.; =

m: 6 m: 6
n: 50 n: 100
0.10- =7
R, |
02- o . B -
X P =
o L
xﬁﬁ% P 005 |
01 ki e
00-% : : 0.00- &
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Fig. 4 RMSEs of a Gaussian process regression model plot-
ted against the eigenvalue A\, of D that is critical to def-
initeness of the underlying distance matrices. The denoted
distance measures are used in the underlying data set as well
as the model itself. The dashed line depicts a linear trend.

1,..,m, ie., y=d(x,zrer). A Gaussian process model
was then trained with this data, largely following the
descriptions in [Forrester et al.| (2008]). The model was
trained with the kernel k(z,z’) = exp(—60d(z,x’)), and
the model parameters (e.g., §) were determined by max-
imum likelihood estimation, via the locally biased ver-
sion of the DIviding RECTangles (DIRECT) algorithm
(Gablonsky and Kelley|2001)) with 1,000 likelihood eval-
uations. For each test, the distance chosen to produce
the observations y and the distance chosen in the kernel
were identical.

The Root Mean Square Error (RMSE) of the model
was evaluated on 1000 randomly chosen permutations.
The resulting RMSE values for each training set X, as
well as the corresponding eigenvalue \,, of D are shown
in Fig. [d] The graphic shows a trend that confirms our
expectation. It seems that distances associated to larger
A tend to produce larger errors.

6 Summary and Outlook

The focus of this study was the definiteness of kernel
and distance measures. Definiteness is a main require-
ment for modeling techniques like Gaussian processes
or SVMs. Distance-based kernels with unknown defi-
niteness may be promising choices for certain parame-



10

M. Zaefferer, T. Bartz-Beielstein and G. Rudolph

ter spaces. Yet, their definiteness may be very hard to
prove or enforce.

It was found, that empirical approaches (based on
sampling or optimization) may help to assess definite-
ness of the respective function. In detail, two research
questions were investigated:

Q; Discovery: Is there an efficient, empirical approach

to determine the definiteness of kernel functions based

on arbitrary distance measures?

Qs Measurability: If Q; can be answered affirma-
tively, can we quantify to what extent a lack of def-
initeness is problematic?

Two empirical approaches were suggested towards
that end. The first approach (A;) samples from the
space of solution sets, and determines whether a set
is found which leads to an indefinite distance or kernel
matrix. If indefinite matrices are rare, a directed search
with an EA is more successful (As). The EA maximizes
the largest eigenvalue of a transformed distance matrix
ﬁ, respectively minimizes the smallest eigenvalue of a
kernel matrix. Hence, the EA searches for sets that yield
indefinite matrices.

As a proof-of-concept, the approaches were applied
to distance measures for permutations. It was shown
that five problematic distance measures could be identi-
fied: Longest Common Substring (LCStr), Insert, Cheby-
shev, Levenshtein, and Interchange distance. Informa-
tion known from literature (regarding indefiniteness of
the respective kernel function) could be rediscovered by
the empirical approaches.

The optimization approach was successful, as it was
able to outperform the sampling approach in discov-
ering sets with indefinite kernel matrices. Still, the re-
sults also indicated that the choice of variation opera-
tors in the optimization algorithm does introduce bias.
Hence, the respective results do not allow a conclusion
about the impact of a lack of definiteness of the respec-
tive sets/matrices. Still, the success of the EA indicates
that the fitness landscape posed by the largest eigen-
value is not excessively rugged and has an exploitable
structure. This suggests that the largest eigenvalue is a
good indicator of how far a certain solution set (and the
respective distance or kernel matrix) is from becoming
indefinite. In an additional set of experiments, we fur-
ther verified that increasing the largest eigenvalue can
in fact be linked to a decrease in model quality. This re-
sults into the following responses to the posed research
questions:

R1 Discovery: Sampling from the space of potential
candidate solution sets allows identifying problems
with definiteness, by identifying solution sets that
lead to non-CNSD distance matrices (A;). Where

such situations are rare (hence more likely to be
missed by the sampling), an optimization approach
may be more successful (Az). While neither approach
A1 nor A, are able to prove definiteness, both are
able to disprove it. If no negative results are found
it is reasonable to assume that using the respective
distance/kernel function is feasible.

R2 Measurability: The sampling approach (A7) yields
a proportion of potentially non-CNSD matrices, which
in turn yields an estimate of how problematic a dis-
tance measure is. In a similar way, yet potentially
biased by the choice of optimization algorithm, the
number of evaluations required by the optimization
approach gives a similar estimate. In addition, the
success of the optimization approach (As) suggests
that the respective largest eigenvalue is an indica-
tor of how close certain sets (and respective distance
or kernel matrices) are to becoming indefinite. Addi-
tional experiments showed how this eigenvalue could
be linked to model performance.

For future research, it may be of interest to allow
the EA to change the set size. Clearly, one issue would
be that enlarging the sets may quickly lead to a trivial
solution, since larger sets naturally lead to larger A,
of D. Hence, there is a trade-off between the largest
eigenvalue and the set size. A multi-objective EA (e.g.
NSGA-II (Deb et al.|2002)) or SMS-EMOA (Beume et al.
2007))) may be used to handle this issue by simultane-
ously maximizing A, and minimizing the set size n.

Finally, the herein described kernels and distances
are not the full story. For other kernels, the relation be-
tween distance measure and kernel function may not be
as straightforward. Parameters of the distance measure
or the kernel function could complicate the situation.
It may be necessary to adapt the proposed method to,
e.g., include parameters in the sampling and optimiza-
tion procedures.
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Appendix A: Distance Measures for Permuta-
tions

In the following, we describe the distance measures employed
in the experiments.

— The Levenshtein distance is an edit distance measure:
drev(m, ") = editsy s

Here, edits;_ - is the minimal number of deletions, inser-
tions, or substitutions required to transform one string (or
here: permutation) 7 into another string 7’. The implemen-
tation is based on [Wagner and Fischer] (1974).

— Swaps are transpositions of two adjacent elements. The
Swap distance (also: Kendall’s Tau (Kendall and Gibbons

1990} |Sevaux and Sorensen|2005)) or Precedence distance (Schir

avinotto and Stutzle|2007)) counts the minimum number of
swaps required to transform one permutation into another.
For permutations, it is (Sevaux and Sorensen|2005)):

dSwa(ﬂ—aT‘-/) = i i Zij with

i=1j=1
1 ifm <mj and 7] > 7},
Zij = 0

otherwise.

— An interchange operation is the transposition of two ar-
bitrary elements. Respectively, the Interchange (also: Cay-
ley) distance counts the minimum number of interchanges
(interchangesr _, /) required to transform one permutation
into another (Schiavinotto and Stiitzle|[2007):

dint(m, ") = interchanges _ r

— The Insert distance is based on the longest common sub-
sequence LCSeq(mw, n’). The longest common subsequence is
the largest number of elements that follow each other in both
permutations, with interruptions. The corresponding distance
is

dins(m, ') =m — LCSeq(m, ).

We use the algorithm described by (1975). The

name is due to its interpretation as an edit distance mea-
sure. The corresponding edit operation is a combination of
insertion and deletion. A single element is moved from one
position (delete) to a new position (insert). It is also called
Ulam’s distance (Schiavinotto and Stiitzle|[2007)).

— The Longest Common Substring distance is based on the
largest number of elements that follow each other in both per-
mutations, without interruption. Unlike the longest common
subsequence all elements have to be adjacent.

If LCStr(m,n") is the length of the longest common string,
the distance is

drcstr(m,m’) =m — LCStr(m, ).

— The R-distance (Campos et al.|[2005} |Sevaux and Sérensen)|
2005) counts the number of times that one element follows
another in one permutation, but not in the other. It is identi-

cal with the uni-directional adjacency distance 1999).

It is computed by

m—1

dr(m, ') = Z y; with

1=1
_Jo
Yi = 1

— The (bi-directional) Adjacency distance 1999

lavinotto and Stiitzle||2007) counts the number of times two
elements are neighbors in one, but not in the other permuta-
tion. Unlike R-distance (uni-directional), the order of the two
elements does not matter. It is computed by

if 35 :m = 7r;- and ;41 = 7r;-+1,
otherwise.

m—1

dagj(m,m') = Z y; with

i=1
_JO
Yi =191

— The Position distance (Schiavinotto and Stitzle| [2007) is
identical with the Deviation distance or Spearman’s footrule
(Sevaux and Sorensen|[2005)),

dpos(m,m') =3 4L, li —j| where m =7} =Fk.

if3j:m; = 775. and w41 € {7r3+1,7'r;.71},
otherwise.

— The non-metric Squared Position distance is Spearman’s
rank correlation coefficient (Sevaux and Sorensen||[2005)). In
contrast to the Position distance, the term |¢ — j] is replaced
by (i — ).

— The Hamming distance or Exact Match distance simply
counts the number of unequal elements in two permutations,
ie.,

0 ifm=mn)
d m,w’) =YY" a;, where a; = ——
Ham (7, 7) 21:1 L B 1 otherwise.
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— The Euclidean distance is

dEuc(ﬂ'v 77/) = 2111(71-7« - 71-'/;)2 .
— The Manhattan distance (A-Distance,
cf. (Sevaux and Sorensen|2005; |Campos et al.|[2005))) is
datan (m, ') = 3270 [ — il -
— The Chebyshev distance is
A )
done(m ') = max (|mi — ) -

— For permutations, the Lee distance (Lee 1958 |Deza and
Huang||1998) is

dpee(m,m’) =31 min(|m; — 7|, m — |7 — 7)) .
— The non-metric Cosine distance is based on the dot prod-
uct of two permutations. It is derived from the cosine simi-
larity (Singhal|2001) of two vectors:

7w
dCos(7T77TI) =1—- 7.
el [
— The Lexicographic distance regards the lexicographic or-
dering of permutations. If the position of a permutation 7 in
the lexicographic ordering of all permutations with fixed m
is L(mw), then the Lexicographic distance metric is

dLea:(Tr7 ﬂ—/) = |L(7I') - L(ﬂ—/)|

Appendix B: Minimal Examples for Indefinite
Sets

To showcase the usefulness of the proposed methods, this
section lists small example data sets and the respective in-
definite distance matrices. Besides the standard permutation
distances we also tested:

— Signed permutations, reversal distance: Permuta-
tions where each element has a sign are referred to as
signed permutations. An application example for signed
permutations is, e.g., weld path optimization (Voutchkov;
et al.||2005). The reversal distance counts the number of
reversals required to transform one permutation into an-
other. We used the non-cyclic reversal distance provided
in the GRAPPA library version 2.0 (Bader et al.|[2004]).

— Labeled trees, tree edit distance: Trees in general are
widely applied as solution representation, e.g., in Genetic
Programming. In this study, we considered labeled trees.
The tree edit distance counts the number node insertions,
deletions or relabels. We used the efficient implementation
in the APTED 0.1.1 library (Pawlik and Augsten|{2015,
2016). The labeled trees will be denoted with the bracket
notation: curly brackets indicate the tree structure, letters
indicate labels (internal and terminal nodes).

— Strings, Optimal String Alignment distance (OSA):

The OSA is an non-metric edit distance that counts inser-
tions, deletions, substitutions and transpositions of char-
acters. Each substring can be edited no more than once.
It is also called the restricted Damerau-Levenshtein dis-
tance (Boytsov||2011]). We used the implementation in the
stringdist R package (van der Loo|2014).

— Strings, Jaro-Winkler distance: The Jaro Winkler
distance is based on the number of matching characters
in two strings as well as the number of transpositions re-
quired to bring all matches in the same order. We used
the implementation in the stringdist R package (van der
Loo|2014).

The respective results are listed in Table [3] All of the
listed distance measures are shown to be non-CNSD.

Table 3 Minimal examples for indefinite distance matrices.
The matrix in the table is the actual distance matrix, while
the eigenvalue refers to the transformed matrix D derived
from equation . The lower triangular matrix is omitted
due to symmetry.

Permutations, Insert, n =5, m =4, A, = 0.090

i x; di;1 di2  diz dia  dis
1 {1,2,3,4) o 1/3 1/3 2/3 1/3
2 {1,3,4,2} 0 2/3 1/3 2/3
3 {2,3,4,1} 0o 1/3 2/3
4 {3,412} 0 1/3
5 {4,1,2,3) 0

Permutations, Interchange, n = 5, m = 4, A,, = 0.090

1 {1,2,3,4} 0 1/3 1/3 2/3 1/3
2 {1,2,4,3} 0 2/3 1/3  2/3
3 {1,3,2,4} 0 1/3  2/3
4 {1,3,4,2} 0 1/3
5 {1,4,3,2} 0
Permutations, Levenshtein, n =5, m =4, A\,, = 0.135
1 {1,2,4,3} 0 1 12 1/2 1
2 {2,3,1,4} 0 /2 1/2 1
3 {2,4,3,1} 0 1 1/2
4 {3,1,2,4} 0 1/2
5 {3,4,2,1} 0
Permutations, LCStr, n =5, m = 4, \,, = 0.023
1 {1,3,2,4} 0 2/3 1/3 1/3 2/3
2 {2,4,1,3} 0 1/3 1/3  2/3
3 {3,2,4,1} 0 2/3 1
4 {4,1,3,2} 0 2/3
5 {4,2,1, 3} 0

Permutations, Chebyshev, n =5, m =5, A\, = 0.034

1 {1,5,3,4,2} 0 1/4 3/4 3/4 1

2 {2,5,3,4,1} 0 1 1 3/4

3 {4,2,3,1,5} 0 2/4  1/4

4 {4,3,1,2,5} 0 1/4

5 {5,3,2,1,4} 0

Sign. Permutations, Reversal, n =5, m =5, A\,, = 0.016

1 {4, 5,-1,-2,-3} 0 4/6 5/6 3/6 2/6

2 {2 1, 3,-4,-5} 0 2/6 3/6 5/6

3 {2, 1, 3, 5, 4} 0 5/6 3/6

4 {4,-2, 3, 1,-5} 0 2/6

5 {4,-2,1,-5,-3} 0
Labeled Trees, Edit dist., n = 5, A\, = 0.026

1 {b{c{b}}} 0 2 1 3 1

2 {b} 0 1 3 1

3 {b{c}} 0 2 2

4 {a{c}{a}} 0 3

5 {c{b}} 0

Strings, Optimal String Alignment, n = 5, A,, = 0.102

1 abc 0 1 2 3 1

2 acc 0 3 2 2

3 cba 0 1 2

4 caa 0 2

5 bac 0

Strings, Jaro-Winkler, n =4, \,, = 0.046

1 bbbb 0 1 1/6 3/6

2 aaaa 0 3/6 1/6

3 bbba 0 3/6

4 aaab 0
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