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Abstract Network models are widely used for solving difficult real-world
problems. The minimum cost flow problem (MCFP) is one of the fundamental
network optimisation problems with many practical applications. The diffi-
culty of MCFP depends heavily on the shape of its cost function. A common
approach to tackle MCFPs is to relax the non-convex, mixed-integer, nonlinear
program (MINLP) by introducing linearity or convexity to its cost function
as an approximation to the original problem. However, this sort of simplifica-
tion is often unable to sufficiently capture the characteristics of the original
problem. How to handle MCFPs with non-convex and nonlinear cost func-
tions is one of the most challenging issues. Considering that mathematical
approaches (or solvers) are often sensitive to the shape of the cost function
of non-convex MINLPs, this paper proposes a hybrid genetic algorithm (GA)
with local search (namely GALS) for solving single-source single-sink nonlinear
non-convex MCFPs. Our experimental results demonstrate that GALS offers
highly competitive performances as compared to those of the mathematical
solvers and a standard genetic algorithm.
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1 Introduction

Network models are widely used in practice for solving difficult real-world
problems, including a wide range of network optimisation problems such as
the shortest path problem, the assignment problem, the maximum flow prob-
lem, the minimum cost flow problem (MCFP), the spanning tree problem, etc.
Among these, MCFP is one of the fundamental network optimisation problems
with many practical applications, e.g., supply chain, logistics, transportation,
and production planning [1]. Since the shortest path problem and the maxi-
mum cost flow problem are special cases of MCFPs, in this study we consider
MCFP as a generic type of network flow models.

The complexity of MCFP highly depends on the shape of its chosen cost
function, which computes how much commodities can be sent through the
network. An MCFP with a linear cost function is polynomial solvable [1, 2].
However, the linear cost function may not be able to adequately express the
actual cost in a practical situation [3]. For instance, in cargo transportation,
factors such as the amount of transportation and transport distance affect the
transportation cost function. As a result, the transportation cost may decrease
while the amount of cargo increases due to the economy of scale [3]. This
scenario shows that the linear and convex cost functions may not be adequate
in modelling the real-world scenarios of MCFPs. In contrast, nonlinear non-
convex cost functions that do not make this assumption should represent better
the real-world characteristics of the network flow problems [4, 5].

A large-scale non-convex MCFP is NP-hard and often considered a chal-
lenging problem to be solved in a short period of time, since there are numerous
extreme points in a solution set [6, 7]. MCFP using a concave cost function is
known to be NP-hard [7], where complexity arises from the fact that minimis-
ing the concave cost function over a convex feasible region does not guarantee
that the global optimum will be found [8].

A single-source uncapacitated MCFP is a special type of MCFPs which
has been studied in the past decade. Both exact and approximation meth-
ods exist for solving concave MCFPs, among which the branch-and-bound
technique is one of the most popular methods for solving single-source unca-
pacitated MCFPs. For instance, constraint programming and linear program-
ming methods were hybridised with the branch-and-bound method to solve
fix-charged MCFP [9]. This hybrid method is twice faster than a commercial
integer programming codes. A branch-and-cut algorithm is proposed to solve a
single commodity uncapacitated MCFP [10] which consisted of the Steiner tree
problem, uncapacitated lot-sizing problems, and the fixed-charge transporta-
tion problems as special cases. Other branch-and-bound methods for solving
the MCFP can be found in the following works [11–13].

Dynamic programming is another popular mathematical approach for solv-
ing MCFPs. Fontes et al. [15] proposed a dynamic programming algorithm to
optimally solve single-source uncapacitated MCFPs with linear and concave
cost functions, whereas Burkard et al. [14] applied a dynamic programming
approach to solve a single-source uncapacitated MCFP using a linear approxi-
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mation of the concave cost function. Furthermore, Erickson et al. [16] proposed
a dynamic programming approach called send-and-split method to solve con-
cave MCFPs with single-source and uncapacitated arcs. Kovacs [17] presented
an extensive survey on various mathematical programming techniques applied
for solving MCFPs.

In addition, many attempts have been made to solve concave single-source
uncapacitated MCFPs using metaheuristic methods such as ant colony optimi-
sation (ACO) and GA. Monteiro et al. [8] proposed a hybrid method combining
ACO and local search to solve single-source uncapacitated MCFPs. They also
carried out a sensitivity study on the parameters used in the ACO algorithm.
Other ACO based algorithms for solving the same problems were presented
in [3,18]. A hybrid method combining GA with local search was also proposed
to solve single-source uncapacitated MCFPs and the results were compared
with the dynamic programming approach and the upper bound obtained by a
local search method [19]. All the aforementioned methods were able to solve
the uncapacitated network instances, with the largest network instance con-
sidered being networks with 50 nodes.

Literature review suggests only a few limited studies can be found on net-
work flow optimisation using nonlinear non-convex cost functions [5, 20, 21]
mostly focusing on small-sized problems. For example, a nonlinear non-convex
transportation problem was solved using an GA [22], and by two exact meth-
ods [23,24].

In this paper, we propose a hybrid GA with local search (namely GALS)
method to solve the nonlinear non-convex single-source single-sink MCFP. A
key novelty of our proposed method is that we use GA to evolve the repre-
sentation scheme and then local search to refine the searching capability of
GALS. Since many real-world MCFPs consist of large-sized networks, this pa-
per shows that GALS is able to handle large-scale MCFPs more effectively.
We evaluate our proposed method on a set of 45 network instances, and com-
pare the results with that of a state-of-the-art mathematical solve package, as
well as a standard GA. Our results suggest the superiority of GALS over the
mathematical solver and the standard GA in solving large-scale MCFPs.

The rest of the paper is structured as follows: the problem definition is
presented in Section 2 and the proposed GALS is described in Section 3.
Section 4 presents the problem instances and experimental results. Finally the
conclusion and future research directions are provided in Section 5.

2 Problem definition

Let G(N , A) be a directed network with N = 1, . . . , n nodes and a set of
m directed arcs A. The upper and lower bounds of flow on each arc (i,j)
are denoted by ui,j and li,j respectively. Instead of a linear or convex cost
function, a nonlinear non-convex cost function f is considered in this paper
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and assigned to each arc 1. q represents the supply/demand in the source/sink
nodes respectively. xij is an integer number that denotes the amount of flow
through an arc (i, j). Generally in MCFP, we aim to send flows throughout the
network to satisfy all demands by minimising the total cost (i.e., the objective
function value). Fig. 1 provides a single-source single-sink MCFP example
with n = 5 nodes and m = 7 arcs. In this example, the aim is to find a flow
which satisfies all demands in node 5 (sink) by sending all supplies from node
1 (source) in order to minimise the total cost through the network. The total
cost of the single-source single-sink MCFP can be minimised according to the
following [1]:

Minimise : Z(x) =

n∑
i=1

n∑
j=1

f(xij), (1)

s.t.

n∑
j=1

xij −
n∑

k=1

xki =

q, if i = 1
0, if i = (2, 3, . . . , n− 1)
−q, if i = n

(2)

lij ≤ xij ≤ uij , (i, j = 1, . . . , n), (3)

xij ∈ Z, (i, j = 1, . . . , n), (4)

where the cost function in Eq. (1) minimises the total cost within the network.
Eq. (2) is the flow balance constraint in which the difference between the first
term (total outflow) and the second term (total inflow) is equal to q and −q for
source and sink nodes respectively, and is equal to 0 otherwise. Eq. (3) states
that the flow on each arc should be within the lower and upper bounds, and
finally Eq. (4) ensures that all flow values are integer. Several assumptions of
the network we have here include: 1) The network is directed; 2) the network
does not contain two or more arcs with the same tail and head nodes; 3) the
supply and demand for all nodes except source and sink nodes are equal to 0;
4) the lower bound for each arc (lij) has a value of 0; 5) there are no negative
cycles in the network; 6) the cost function on each arc (f(xij)) is a nonlinear
non-convex function, rather than a linear or convex one.

3 The proposed GA method

In this paper, we will demonstrate how a hybrid GA with local search can be
applied for solving the MCFP. GA is a stochastic search algorithm inspired by
natural selection and genetics [25]. Basically, GA has five main components:
representation, a process to create new solutions, evaluation of fitness, genetic
operators and parameters [26]. Obviously representation plays a key role in
solving many optimization problems (e.g., MCFP), before the GA search can
be carried out. In the following section, we will first describe issues associated
with the commonly-used priority-based representation scheme, and then we
present the proposed GALS for solving MCFPs.

1 Some example formulations of nonlinear non-convex cost functions for MCFPs are pre-
sented in Section 4.
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Fig. 1: A single-source single-sink MCFP example.

3.1 Issues with priority-based representation

Priority-based representation has been widely adopted in solving project schedul-
ing, shortest path and network design problems [27–29]. It is one of the most
popular approaches to represent an MCFP [30]. In a priority-based represen-
tation scheme for MCFPs, the number of genes is equal to the number of
nodes (n), and the allele (i.e., the possible value each gene can take) is created
randomly between 1 and the number of nodes (n) (Fig. 2a).

(a) A chromosome for the priority-
based encoding method.

(b) Paths produced from the priority chromo-
some shown in (a).

Fig. 2: A chromosome and its MCFP solution for the network in Fig. 1.

From the priority chromosome, several paths can be constructed in order
to satisfy the demand of MCFP presented in Fig. 1. These paths constitutes
an appropriate MCFP solution. As shown in Fig. 2b, we can construct several
paths starting from node 1, ending in node 5. For each path, starting from
node 1, we select the successor node with a higher priority. For example, the
successors for node 1 are nodes 2 and 3. Based on the priority chromosome,
the priorities of nodes 2 and 3 are values of 4 and 1 respectively. Hence node
2 is chosen. After node 2, the successor nodes are nodes 3 and 4. Since the
priority of node 3 (1) is smaller than that of node 4 (3), node 4 is chosen as the
destination and from node 4 the only possible successor node is node 5. Finally,
the completed path is 1→ 2→ 4→ 5. The possible flow on this path is equal
to the minimum of capacities on the arcs of the path and the supply/demand
(Flow=min{10,7,8,q=10}=7). At this point, we need to update the capacities
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on the arcs, supply, and demand. If the demand in node 5 is not satisfied, then
the second path is constructed, similarly as the previous path. This process
continues until the demand is satisfied. Fig. 2b shows the 3 paths produced
from the above process.

The priority-based representation method is unable to encode all the possi-
ble solutions in the feasible search space, as shown in Fig. 3a. For example, Fig.
3b shows an MCFP instance, where the priority-based representation method
fails to realise.

(a) The priority-based encoding only rep-
resents partially the feasible space.

(b) A feasible MCFP solution that priority-
based encoding fails to represent.

Fig. 3: Disadvantages of the priority-based encoding method.

3.2 Improved priority-based encoding

To address the above issue, we propose an improved priority-based encoding
(iPE) method here. In iPE, the locus, (i.e., the position (or index) of the gene)
and allele of the main chromosome are identical to the priority-based encoding
method. The main difference is that after the first path is constructed, from the
second path onwards, instead of using the same chromosome, two genes of the
main chromosome are randomly swapped and the new path is then constructed
based on this new chromosome. In other words, it is now possible to generate
MCFP solutions based on newly produced representation instances, rather
than one fixed presentation instance. Algorithm 1 shows the procedure of
iPE in detail. By using the swapping technique in the main chromosome, the
priority-based method is redeemed and it is now possible to represent more
feasible solutions using this iPE method.

3.3 GALS for solving single-source single-sink MCFPs

Building on iPE method, this section proposes GALS for solving large-scale
MCFPs with nonlinear non-convex cost functions, where iPE is used to per-
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Algorithm 1 iPE decoding procedure

1: procedure Input(Priority, Supply,Demand,Network)
2: Path=1
3: while supply 6= 0 and Demand 6= 0 do
4: if Path=1 then
5: ChromosomePath ← Main chromosome
6: else
7: ChromosomePath ← Swap two genes randomly in the main chromosome.
8: end if
9: Construct a path:

10: Construct a path according to the ChromosomePath, following the priority-based
encoding procedure.

11: Send a feasible flow:
12: Check the maximum capacity of all arcs in the path (MaxC)
13: Send an integer flow min{MaxC, Supply}
14: update: Supply, Demand and Network
15: Path←Path+1
16: end while
17: end procedure

form local search to further enhance the searching capability of GALS, which
involves the following procedure:

Initialisation: A population of npop individuals (chromosomes) is first
randomly generated (according to Subsection 3.1).

Crossover and mutation: Crossover and mutation operators are then
applied to create a new offspring population. For each newly generated off-
spring, two parents are first randomly selected and a weight mapping crossover
(WMX) is applied [30]. Subsequently an inversion mutation operator is ap-
plied [30].

Solution decoding: To counteract the limitations of the priority-based
representation, the iPE decoding procedure (as shown in Algorithm 1) is per-
formed N times for each chromosome in the population. As shown in Fig. 4,
after performing the decoding, N solutions are obtained.

Evaluation and local search: The N number of MCFP solutions gener-
ated from the previous decoding step (with respect to each chromosome) are
evaluated using Eq. (1). A local search is carried out by selecting the decoded
solution with the smallest cost, among all N solutions.

Population update: After evaluating all individuals in the population,
the tournament selection procedure (with a tournament size of 2) is applied
to select the fitter individuals for the next generation.

Termination criteria: The above process continues until a stopping crite-
rion is met, which is either 1) no further fitness value improvement in the best
individual of the population for β successive iterations; or 2) the maximum
number of function evaluations (NFEs) is reached.



8 Behrooz Ghasemishabankareh et al.

Fig. 4: The local search procedure for GALS (adapted from [36]).

4 Test problems

We focus on evaluating GALS on the single-source single-sink MCFP using
nonlinear and non-convex cost functions. Several different types of nonlinear
non-convex functions were suggested by Michalewicz [22] on the transporta-
tion problems. We select the following nonlinear non-convex cost functions (as
shown in Fig. 5) for our study as they are considered to be more practical and
challenging than others [22–24]:

f1(xij) =arctan(PA(xij − S))/π + 0.5+

arctan(PA(xij − 2S))/π + 0.5+

arctan(PA(xij − 3S))/π + 0.5+

arctan(PA(xij − 4S))/π + 0.5+

arctan(PA(xij − 5S))/π + 0.5,

(5)

f2(xij) = 100×
(
xij(sin

(5πxwij
4S

)
+ 1.3)

)
, (6)

where the values of PA is set to 1000 and S is set to 2 for f1, and 5 for f2,
respectively [23]. To examine the robustness of the proposed algorithm, the
parameter w in the cost function f2 is set to 1, 2 and 3, to generate f2a, f2b
and f2c functions, respectively. For our evaluation purpose, random networks
are created with different sizes from 5 to 100 nodes and with a random num-
ber of arcs (decision variables) from 7 to approximately 2500. These network
instances are categorised in small, medium-sized (5 to 40 nodes), and large-
sized problems (60 to 100 nodes). All these network instances are used for
evaluating our proposed algorithm. Our results are compared with those of
the commercial mathematical programming solver namely LindoGlobal [35]
and the standard GA.
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(a) f1 (b) f2

Fig. 5: The shape of the cost functions are presented in Eqs. (5) and (6).

4.1 Mathematical solvers

Although exact and heuristic methods exist for solving an MINLP where the
objective and constraints are convex, in practice most of the functions are
non-convex, which makes the problem extremely difficult to solve [31]. The
relaxation of a non-convex MINLP (to make it convex) is itself a global opti-
misation problem, and it is likely to be NP-hard [32,33]. Some representative
algorithms for solving non-convex MINLPs include spatial branch-and-bound,
branch-and-reduce and α branch-and-bound [31]. Based on the aforementioned
algorithms, some commercial and open source solvers have been developed
for solving non-convex MINLPs, such as CPLEX, Baron, Couenne and Lin-
doGlobal [31].

Nevertheless, these mathematical solver packages have many limitations.
For instance, CPLEX is probably one of the most powerful solvers, but it can
only handle mixed-integer quadratic programs under certain conditions for
constraints and objective functions. Clearly, CPLEX is unable to handle other
types of nonlinear functions. The solvers that are able to solve the general non-
convex MINLPs include BARON, LindoGlobal, Couenne [31]. BARON [34] is
unable to handle trigonometric functions sin(x), cos(x), and Couenne is unable
to handle the arctangent functions. Among these solvers, LindoGlobal is the
only solver that can handle different types of nonlinear functions [35]. Hence
in this paper we compare our proposed method GALS with LindoGlobal as
well as the standard GA. Unlike GAs, the capability and performance of the
mathematical solvers are highly dependent on the shapes of the cost functions
adopted in the non-convex MINLPs.
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4.2 Numerical results

Our proposed method GALS and the standard GA are implemented in MAT-
LAB on a PC with Intel(R) Core(TM) i7-6500U 2.50 GHz processor with 8
GB RAM and run 30 times for each problem instance using cost function f1,
f2a, f2b and f2c. The computational results for GALS, LindoGlobal and the
standard GA, are presented in Tables 1 to 4.

Parameter settings of GALS are as follows: maximum number of itera-
tion (Itmax=100), population size (npop=50), number of local search for each
individual (N=20), crossover rate (Pc=0.95), mutation rate (Pm=0.3). The
parameter settings for the standard GA method are as follows: Itmax=500,
npop=200, Pc=0.95, Pm=0.3. For both methods, the NFEs and β are set to
150,000 and 20 respectively.

In Tables 1 to 4, for the non-deterministic methods (GALS and standard
GA), b, std and t denote the best, standard deviation of the results and the
average of running time in seconds respectively, and the mean represents the
average of objective function values over 30 runs and finally h denotes the re-
sult of pairwise t-test. For LindoGlobal, the objective function value is recorded
in “Obj1” column after t1 seconds and the LindoGlobal keeps running for t2
seconds and the final objective function value is recorded in “Obj2” column.
All computational times are reported in seconds.

As shown in Tables 1 to 4, the highest average time for GALS is 286
seconds. To make the results more comparable, we record the objective value
found by LindoGlobal at 300s, as reported in “Obj1” column (note that “-” in
“t1” and “Obj1” indicates that the results are identical to those in “t2” and
“Obj2”, in which case LindoGlobal found the global optimum before reaching
300s). We also allow LindoGlobal to keep running until either a global optima is
found or the termination time (3,600s) is reached, and the results are reported
in the “Obj2” column. As can be seen in Tables 1 to 4, LindoGlobal can only
find global optima for small instances (5 and 10 nodes).

In order to compare the performance of GALS and the standard GA, the t-
test with the significance level of 0.05 is performed. If GALS is equal, superior
or inferior to the standard GA, then h is set to 0, 1 and -1 respectively. We
also compare the performance of GALS with LindoGlobal by performing a one-
sample t-test with the significance level set to 0.05 and either of the methods
has better or equal performance than that of the other is highlighted in bold.

Fig. 6 summarises the results of GALS, the standard GA and LindoGlobal
for solving all instances of different sizes using nonlinear non-convex cost func-
tions f1, f2a, f2b and f2c. As shown in Table 1 and for all 45 problem instances,
GALS is superior 39 (87%) times, equal 6 times (13%), and inferior 0 times,
when compared with the standard GA. When comparing the mean values of
GALS with LindoGlobal on all 45 problem instances (cost function f1, Table
1), GALS is superior 30 times (67%), equal 11 times (24%) and inferior 4 times
(9%). It is noticeable that LindoGlobal cannot find any feasible solutions on
all the large-sized problems in 3,600 seconds using cost function f1.
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Table 1: Results of GALS, GA, and LindoGlobal using cost function f1.

Small and medium-sized instances

No. Nodes Arcs
GALS GA

h
LINDOGlobal

t b mean std t b mean std t1 Obj1 t2 Obj2
1

5

7 16 5.0021 5.0021 9.11E-16 32 5.0021 5.0021 6.13E-08 0 - - 2 5.0021
2 7 17 5.0021 5.0021 9.11E-16 34 5.0021 5.0021 4.15E-13 0 - - 2 5.0021
3 8 16 5.0024 5.0024 0.00E+00 33 5.0024 5.0024 3.07E-08 0 - - 1 5.0024
4 10 18 5.0032 5.0032 1.82E-15 32 5.0032 5.0032 2.73E-12 0 - - 1 5.0032
5 8 18 5.0024 5.0024 0.00E+00 33 5.0024 5.0024 1.36E-07 0 - - 1 5.0024
6

10

32 26 10.0107 10.0107 0.00E+00 44 10.2021 10.2023 1.75E-06 1 - - 5 10.0107
7 25 26 10.0081 10.0081 3.33E-15 42 10.1461 10.1707 1.93E-02 1 - - 7 10.0081
8 34 29 10.0114 10.0114 4.66E-15 42 10.2024 10.2036 8.32E-04 1 300 10.0114 949 10.0114
9 20 42 10.0063 10.0063 2.73E-15 40 10.2103 10.2495 6.97E-03 1 - - 2 10.0063
10 32 40 10.0107 10.0107 0.00E+00 46 10.2037 10.2227 3.51E-03 1 300 10.0107 3600 10.0107
11

20

123 64 6.5500 9.2463 1.45E+00 72 9.0463 9.9089 4.18E-01 0 300 6.0494 3600 6.0490
12 142 61 4.0571 4.8542 2.76E-01 63 7.5546 8.0226 9.32E-01 1 300 4.0572 3600 4.0569
13 88 48 10.0310 10.0310 0.00E+00 59 12.0475 12.0475 3.47E-06 1 300 9.5374 3600 9.0370
14 133 68 13.5528 15.3900 1.23E+00 70 15.5511 16.6254 8.64E-01 1 300 15.0554 3600 15.0553
15 117 63 14.5461 16.1869 9.74E-01 64 16.5434 17.0505 7.27E-01 1 300 19.5448 3600 18.5456
16

40

363 66 10.1311 10.1311 0.00E+00 81 11.2196 12.4407 1.69E-01 1 300 NF 3600 7.6402
17 295 64 10.1063 10.1063 3.50E-15 85 12.2687 13.2361 2.13E-01 1 300 NF 3600 14.6145
18 320 66 10.1154 10.1154 2.25E-14 93 11.1039 13.0880 1.99E+00 1 300 NF 3600 12.6241
19 343 69 10.1238 10.1238 4.45E-15 95 13.1794 14.0112 6.23E-01 1 300 NF 3600 13.1331
20 294 65 10.1060 10.1060 0.00E+00 80 12.1860 13.0349 3.83E-01 1 300 NF 3600 NF

Large-sized instances
21

60

844 121 3.8220 7.5678 2.67E+00 149 9.3142 13.4360 2.83E+00 1 300 NF 3600 NF
22 905 127 6.8411 10.0384 2.10E+00 167 13.3323 15.1815 1.59E+00 1 300 NF 3600 NF
23 798 111 6.3024 9.7742 2.34E+00 124 11.2962 14.1178 1.65E+00 1 300 NF 3600 NF
24 912 124 4.8475 9.0931 2.35E+00 203 12.8363 15.5336 1.54E+00 1 300 NF 3600 NF
25 870 127 3.3310 6.9530 2.27E+00 188 10.3215 12.5202 1.25E+00 1 300 NF 3600 NF
26

70

1176 138 4.4403 7.3391 2.25E+00 163 10.4329 13.7305 2.05E+00 1 300 NF 3600 NF
27 1163 146 3.4391 6.9352 1.86E+00 169 10.4280 12.5263 2.24E+00 1 300 NF 3600 NF
28 1231 152 1.4621 4.8605 1.36E+00 189 10.4547 12.7022 1.14E+00 1 300 NF 3600 NF
29 991 148 4.3745 8.3473 2.23E+00 174 9.8679 13.5143 1.72E+00 1 300 NF 3600 NF
30 1252 133 3.4695 6.6675 2.29E+00 187 10.4619 14.4336 2.79E+00 1 300 NF 3600 NF
31

80

1718 151 3.1368 5.6617 1.83E+00 193 8.1334 11.4305 2.25E+00 1 300 NF 3600 NF
32 1812 142 3.1710 5.1711 1.53E+00 144 9.1641 11.7380 2.52E+00 1 300 NF 3600 NF
33 1513 133 3.0649 6.3123 2.67E+00 194 10.0568 13.7298 1.37E+00 1 300 NF 3600 NF
34 1880 157 3.1957 4.7464 1.13E+00 193 9.6892 12.4894 2.56E+00 1 300 NF 3600 NF
35 1619 142 1.6037 4.0776 1.24E+00 201 10.0940 12.5183 2.09E+00 1 300 NF 3600 NF
36

90

1893 165 2.7037 6.3511 2.66E+00 209 10.1936 13.3174 2.47E+00 1 300 NF 3600 NF
37 2013 202 3.2470 5.8454 2.34E+00 232 11.2367 13.5627 1.92E+00 1 300 NF 3600 NF
38 2185 164 2.8087 5.8079 2.40E+00 219 9.3009 11.6497 1.25E+00 1 300 NF 3600 NF
39 1944 159 5.2195 10.0152 3.22E+00 210 12.2108 14.0598 9.04E-01 1 300 NF 3600 NF
40 2013 171 2.7462 4.9947 2.06E+00 277 8.7389 12.9856 2.33E+00 1 300 NF 3600 NF
41

100

2501 239 1.4249 5.1976 2.29E+00 286 9.4174 13.2389 2.95E+00 1 300 NF 3600 NF
42 2512 283 2.4300 6.2270 3.54E+00 292 9.4223 14.0197 1.96E+00 1 300 NF 3600 NF
43 2437 228 2.4001 4.5490 1.20E+00 255 7.8930 10.6174 1.63E+00 1 300 NF 3600 NF
44 2370 279 2.3758 4.7743 2.03E+00 310 9.8683 11.0182 5.40E-01 1 300 NF 3600 NF
45 2503 265 2.9247 8.0457 3.32E+00 267 10.9191 13.3393 1.42E+00 1 300 NF 3600 NF

To examine if GALS is robust to the different shapes of a cost function, we
use cost function f2 (Eq. 6), choosing three different values for the parameter w
in Eq. 6. As shown in Fig. 5b, by increasing the parameter w from 1, to 2 and
3, the number of peaks and valleys (local optima) are increased gradually in
functions f2b, f2c. Dealing with these cost functions will be a challenging task.
A robust optimisation algorithm should be able to handle this sort of highly
non-convex shaped cost functions, without degrading their performances.

As can be seen in Table 2, although LindoGlobal outperformed GALS on
some small and medium size problem instances, GALS achieved significantly
better performances than those of LindoGlobal on large-sized problems. Ad-
ditionally, in Tables 3 and 4, GALS significantly outperforms LindoGlobal on
all large-sized instances and LindoGlobal has increasing difficulty in finding
feasible solutions on instances with 70, 80, 90 and 100 nodes using cost func-
tion f2b as well as on instances with 80, 90 and 100 nodes using cost function
f2c (except instances No.35,39,40). It is evident that the mathematical solver
is sensitive to the non-convex shapes introduced in the cost functions f2a, f2b,
and f2c. In contrast, GALS performance is much more robust with respect to
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Table 2: Results of GALS, GA, and LindoGlobal using cost function f2a.

Small and medium-sized instances

No. Nodes Arcs
GALS GA

h
LINDOGlobal

t b mean std t b mean std t1 Obj1 t2 Obj2
1

5

7 18 9.6000 9.6000 2.92E-12 17 26.0000 9.6000 7.29E-15 0 - - 1 9.6000
2 7 16 11.4000 11.4000 5.16E-11 16 26.0000 11.4000 7.29E-15 0 - - 1 11.4000
3 8 18 9.6000 9.6000 6.21E-10 17 26.0000 9.6000 7.29E-15 0 - - 1 9.6000
4 10 19 11.4000 11.4000 5.24E-12 19 26.0000 11.4000 7.29E-15 0 - - 2 11.4000
5 8 17 9.6000 9.6000 4.86E-14 17 26.0000 9.6000 7.29E-15 0 - - 1 9.6000
6

10

32 23 32.4853 32.6610 4.29E-01 27 33.6569 33.6569 0.00E+00 1 - - 5 21.0000
7 25 23 29.4355 29.4355 3.65E-15 23 30.6000 30.8828 6.91E-01 1 - - 42 29.4284
8 34 25 31.8142 32.1827 7.56E-01 27 33.6569 33.6569 0.00E+00 1 - - 50 21.0000
9 20 30 35.6640 36.1619 6.09E-01 29 45.5431 45.9446 8.24E-01 1 - - 10 32.0213
10 32 27 33.2000 33.5582 7.32E-01 26 34.7147 34.9214 4.29E-01 1 - - 295 32.0213
11

20

123 65 32.4853 32.4853 7.29E-15 66 32.4853 34.6143 1.57E+00 1 300 32.4853 3600 32.4853
12 142 75 32.4853 32.4853 4.61E-15 78 32.4853 32.4853 3.65E-15 0 300 30.8569 3600 30.8569
13 88 70 35.6640 37.6254 2.58E+00 71 38.2569 40.7929 3.36E+00 1 300 28.4938 3600 28.2000
14 133 77 75.7218 76.6429 1.06E+00 79 75.8934 77.6869 8.29E-01 1 300 65.9208 3600 65.3279
15 117 70 75.0132 76.2276 1.14E+00 74 75.0132 78.0872 2.14E+00 1 300 71.9635 3600 67.1635
16

40

363 83 18.0000 18.0000 0.00E+00 94 18.0000 18.0000 0.00E+00 0 300 89.6061 3600 18.0000
17 295 81 18.0000 18.0000 0.00E+00 82 18.0000 18.0000 0.00E+00 0 300 95.6430 3600 18.0000
18 320 85 18.0000 18.0000 0.00E+00 80 18.0000 18.0000 0.00E+00 0 300 104.5940 3600 18.0000
19 343 82 18.0000 18.0000 0.00E+00 77 18.0000 18.0000 0.00E+00 0 300 104.7280 3600 18.0000
20 294 84 18.0000 18.0000 0.00E+00 80 18.0000 18.0000 0.00E+00 0 300 113.4920 3600 18.0000

Large-sized instances
21

60

844 114 72.4284 74.1743 1.10E+00 109 73.8853 76.0575 2.11E+00 1 300 NF 3600 82.7929
22 905 119 72.1563 72.1563 1.46E-14 118 73.7990 76.9609 2.21E+00 1 300 NF 3600 72.6274
23 798 102 74.9706 75.8439 1.17E+00 104 74.9706 79.2687 2.83E+00 1 300 NF 3600 71.0711
24 912 120 74.9706 75.1962 4.07E-01 122 74.9706 78.7940 2.56E+00 1 300 NF 3600 72.6274
25 870 115 73.7990 74.2090 5.73E-01 125 73.7990 76.9813 2.53E+00 1 300 NF 3600 72.6274
26

70

1176 140 72.6274 73.4475 9.39E-01 135 73.7990 76.8498 2.00E+00 1 300 NF 3600 70.2426
27 1163 134 77.3137 78.3909 1.11E+00 135 77.3137 80.8208 1.80E+00 1 300 NF 3600 72.6274
28 1231 140 72.6274 72.6274 2.92E-14 143 74.9706 77.6185 1.29E+00 1 300 NF 3600 73.7990
29 991 125 75.8934 77.1638 1.25E+00 129 77.3137 81.2741 2.01E+00 1 300 NF 3600 77.3208
30 1252 135 76.1421 76.7555 8.06E-01 133 76.1421 81.2376 2.52E+00 1 300 NF 3600 104.5198
31

80

1718 154 74.9706 76.0555 1.52E+00 148 74.9706 78.5004 1.13E+00 1 300 NF 3600 99.2061
32 1812 158 73.7990 74.7362 9.77E-01 159 74.9706 78.7259 1.58E+00 1 300 NF 3600 NF
33 1513 137 79.6640 80.3737 7.60E-01 133 80.3431 84.3993 2.12E+00 1 300 NF 3600 110.9340
34 1880 165 73.7990 74.3262 5.98E-01 161 73.7990 78.8798 2.75E+00 1 300 NF 3600 128.2477
35 1619 155 74.9706 75.3220 8.58E-01 157 74.9706 79.7236 2.29E+00 1 300 NF 3600 101.6487
36

90

1893 161 72.6274 74.0583 1.07E+00 165 72.6274 77.0526 2.64E+00 1 300 NF 3600 98.4985
37 2013 188 76.1421 77.1539 1.21E+00 180 77.3137 80.3912 1.70E+00 1 300 NF 3600 78.5564
38 2185 193 72.6274 73.7236 9.25E-01 187 73.7990 78.6075 2.56E+00 1 300 NF 3600 72.7990
39 1944 181 72.7360 73.7368 1.06E+00 184 74.4863 78.8511 2.34E+00 1 300 NF 3600 104.2487
40 2013 193 73.7990 74.3186 5.52E-01 195 75.5289 76.8941 1.00E+00 1 300 NF 3600 68.4061
41

100

2501 248 78.1492 78.6954 4.19E-01 241 80.3431 82.5764 1.85E+00 1 300 NF 3600 144.4203
42 2512 257 73.7990 74.2926 6.52E-01 267 73.7990 78.6355 2.30E+00 1 300 NF 3600 120.4264
43 2437 260 77.9421 78.0140 2.76E-01 249 79.3208 84.2354 2.20E+00 1 300 NF 3600 124.2335
44 2370 250 77.3137 77.7539 8.24E-01 247 77.5431 81.0622 2.43E+00 1 300 NF 3600 83.0345
45 2503 253 75.2203 76.7672 1.46E+00 258 78.0000 80.2107 1.93E+00 1 300 NF 3600 126.9980

these cost functions. Note that GALS has superior or equal performance than
that of the standard GA on all instances using cost functions f2a, f2b and f2c.

In order to show the convergence speed of GALS compared to the standard
GA, the convergence graphs for the large-sized problems are presented in Fig.
7. Since LindoGlobal was unable to find any feasible solution in the first 300
seconds, the result by LindoGlobal is not included in Fig. 7. As can be seen in
Fig. 7, GALS is able to converge faster and find better quality solutions than
those of the standard GA (Fig. 7).

5 Conclusion

This paper proposes a hybrid genetic algorithm with local search (GALS) for
solving a single-source single-sink MCFP. Since many real-world MCFPs can-
not be adequately formulated using linear and convex cost functions, in this
paper a general nonlinear non-convex single-source single-sink MCFP is con-
sidered. The proposed GALS method is compared with the standard GA, and
a mathematical solver LindoGlobal. The proposed algorithm has been evalu-
ated on a set of 45 small, medium and large-sized MCFP instances. Our experi-
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Table 3: Results of GALS, GA, and LindoGlobal using cost function f2b.

Small and medium-sized instances

No. Nodes Arcs
GALS GA

h
LINDOGlobal

t b mean std t b mean std t1 Obj1 t2 Obj2
1

5

7 16 26.0000 26.0000 1.29E-15 18 26.0000 26.0000 6.19E-15 0 - - 1 26.0000
2 7 16 26.0000 26.0000 3.21E-15 17 26.0000 26.0000 3.39E-15 0 - - 2 26.0000
3 8 16 26.0000 26.0000 8.30E-15 16 26.0000 26.0000 4.70E-15 0 - - 4 26.0000
4 10 18 26.0000 26.0000 6.29E-15 17 26.0000 26.0000 5.14E-15 0 - - 6 26.0000
5 8 17 26.0000 26.0000 6.30E-15 18 26.0000 26.0000 8.22E-15 0 - - 3 26.0000
6

10

32 21 52.0000 52.0000 1.36E-14 22 52.0000 52.0000 2.22E-14 0 - - 60 52.0000
7 25 20 52.0000 52.0000 1.40E-14 20 52.0000 52.0000 1.36E-14 0 - - 25 52.0000
8 34 24 52.0000 52.0000 2.33E-14 20 52.0000 52.0000 1.28E-14 0 - - 40 52.0000
9 20 22 52.0000 52.0000 3.50E-14 25 52.0000 52.0000 4.40E-14 0 - - 23 52.0000
10 32 23 52.0000 52.0000 2.36E-14 24 52.0000 52.0000 3.26E-14 0 - - 185 52.0000
11

20

123 58 52.0000 52.0000 2.42E-14 59 52.0000 52.0000 3.43E-14 0 300 52.0000 3600 52.0000
12 142 61 52.0000 52.0000 2.46E-15 60 52.0000 52.0000 3.42E-15 0 300 52.0000 3600 52.0000
13 88 61 52.0000 52.0000 1.36E-14 57 52.0000 52.0000 1.25E-14 0 300 52.0000 3600 52.0000
14 133 72 109.5208 110.5929 2.40E+00 73 110.1137 114.4523 3.52E+00 1 300 121.4710 3600 121.4711
15 117 67 101.5848 102.2805 7.15E-01 65 101.5848 105.4304 2.53E+00 1 300 115.6350 3600 115.6345
16

40

363 86 78.0000 78.0000 1.46E-14 81 78.0000 78.0000 2.47E-12 0 300 NF 3600 78.0000
17 295 78 78.0000 78.0000 3.08E-12 76 78.0000 78.0000 0.00E+00 0 300 78.0000 3600 78.0000
18 320 79 78.0000 78.0000 3.02E-12 81 78.0000 78.0000 2.67E-12 0 300 NF 3600 78.0000
19 343 85 78.0000 78.0000 1.46E-14 87 78.0000 78.0000 1.46E-14 0 300 NF 3600 78.0000
20 294 89 78.0000 78.0000 2.47E-12 88 78.0000 78.0000 0.00E+00 0 300 NF 3600 78.0000

Large-sized instances
21

60

844 98 95.3350 95.7707 6.37E-01 91 96.1563 98.2845 2.83E+00 1 300 NF 3600 114.0843
22 905 105 89.3137 90.8783 1.42E+00 115 89.3137 94.6350 3.06E+00 1 300 NF 3600 94.7421
23 798 94 86.4853 88.2803 2.50E+00 95 88.4924 93.0908 4.98E+00 1 300 NF 3600 110.4345
24 912 106 92.1421 92.8057 9.44E-01 108 94.1492 97.5341 2.74E+00 1 300 NF 3600 117.5056
25 870 109 89.3137 89.8291 6.09E-01 102 89.3137 93.9485 4.40E+00 1 300 NF 3600 165.5401
26

70

1176 149 86.2569 86.7861 9.10E-01 147 86.4853 90.6934 2.40E+00 1 300 NF 3600 NF
27 1163 138 78.0000 79.3731 2.45E+00 140 80.8284 85.1097 4.27E+00 1 300 NF 3600 NF
28 1231 138 82.8355 84.0490 2.50E+00 141 90.4995 95.2600 5.21E+00 1 300 NF 3600 NF
29 991 134 83.4284 84.2816 1.78E+00 131 86.4853 91.5123 5.61E+00 1 300 NF 3600 NF
30 1252 151 82.8355 84.6055 2.59E+00 155 82.8355 91.7081 5.41E+00 1 300 NF 3600 NF
31

80

1718 165 86.2569 86.7747 1.13E+00 170 87.0782 94.2814 6.08E+00 1 300 NF 3600 NF
32 1812 160 86.4853 86.5856 4.49E-01 174 88.4924 92.1623 2.47E+00 1 300 NF 3600 NF
33 1513 165 87.0782 87.8103 1.85E+00 154 88.4924 99.3220 7.58E+00 1 300 NF 3600 NF
34 1880 169 86.4853 87.0578 1.03E+00 173 89.3137 95.9374 6.38E+00 1 300 NF 3600 NF
35 1619 155 82.8355 85.2283 9.57E-01 163 83.6569 89.5324 5.45E+00 1 300 NF 3600 NF
36

90

1893 166 80.8284 83.5290 5.17E+00 169 82.8355 91.3799 5.68E+00 1 300 NF 3600 NF
37 2013 193 86.4853 87.8949 2.43E+00 190 91.9137 100.5540 7.52E+00 1 300 NF 3600 NF
38 2185 202 88.4924 89.2656 1.34E+00 195 88.4924 98.7726 7.61E+00 1 300 NF 3600 NF
39 1944 188 83.6569 84.5350 1.38E+00 189 83.6569 90.5884 5.22E+00 1 300 NF 3600 NF
40 2013 195 82.8355 84.1494 2.38E+00 200 83.6569 90.0845 2.90E+00 1 300 NF 3600 NF
41

100

2501 251 85.6640 87.2607 4.65E+00 229 86.4853 95.8368 7.43E+00 1 300 NF 3600 NF
42 2512 270 91.3208 92.5593 1.57E+00 262 92.1421 97.7596 4.24E+00 1 300 NF 3600 NF
43 2437 278 82.8355 84.0673 2.02E+00 267 83.6569 97.4563 1.00E+01 1 300 NF 3600 NF
44 2370 285 86.2569 86.6218 1.09E+00 288 90.4995 97.3263 5.72E+00 1 300 NF 3600 NF
45 2503 286 95.3350 96.1425 1.48E+00 265 95.3350 104.2375 7.78E+00 1 300 NF 3600 NF

Fig. 6: The number of “wins-draws-loses” of GALS as compared with that of
standard GA and LindoGlobal using cost functions f1, f2a, f2b and f2c.

mental results show that GALS method significantly outperforms the standard
GA and LindoGlobal in terms of solution quality and convergence speed. It is
clearly evident that GALS method can handle the large-sized MCFP instances
more effectively and efficiently. In contrast, LindoGlobal could not find any fea-
sible solutions for large-sized problems using cost function f1, f2b and f2c. In
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Table 4: Results of GALS, GA, and LindoGlobal using cost function f2c.

Small and medium-sized instances

No. Nodes Arcs
GALS GA

h
LINDOGlobal

t b mean std t b mean std t1 Obj1 t2 Obj2
1

5

7 19 17.7868 17.7868 3.54E-14 20 26.0000 17.7868 0.00E+00 0 - - 1 17.7868
2 7 17 20.7513 20.7513 3.91E-14 18 26.0000 20.7513 0.00E+00 0 - - 1 20.7513
3 8 17 17.7868 17.7868 2.48E-10 18 26.0000 17.7868 0.00E+00 0 - - 2 17.7868
4 10 19 20.7513 20.7513 1.56E-09 15 26.0000 20.7513 0.00E+00 0 - - 29 20.7513
5 8 18 17.7868 17.7868 3.85E-11 16 26.0000 17.7868 0.00E+00 0 - - 2 17.7868
6

10

32 27 28.9157 32.7254 2.91E+00 27 35.0294 35.6087 1.19E+00 1 300 32.2010 3600 32.2010
7 25 22 31.9726 31.9726 1.09E-14 27 31.9726 31.9726 1.09E-14 0 300 31.9729 3600 31.9729
8 34 29 32.2010 32.2010 0.00E+00 29 35.0294 35.1480 2.43E-01 1 300 32.2010 3600 32.2010
9 20 35 32.2010 32.2010 0.00E+00 38 43.6508 43.6508 0.00E+00 1 300 32.2010 3600 32.2010
10 32 31 32.2010 32.2010 1.46E-14 34 32.2010 32.2010 1.46E-14 0 300 32.2010 3600 32.2010
11

20

123 68 32.2010 32.2010 6.10E-15 65 32.2010 33.8227 1.55E+00 1 300 32.2010 3600 32.2010
12 142 73 35.0294 35.2962 3.03E-01 74 37.0365 37.8076 6.88E-01 1 300 32.2010 3600 32.2010
13 88 70 34.2081 34.9881 1.06E+00 71 35.6223 39.4494 3.26E+00 1 300 34.8010 3600 34.8010
14 133 74 65.5442 65.5442 2.92E-14 75 66.9584 69.0044 1.32E+00 1 300 108.5580 3600 81.8294
15 117 67 73.8934 73.8934 1.46E-14 77 73.8934 75.5562 1.40E+00 1 300 93.6000 3600 72.6152
16

40

363 77 38.4020 38.4020 1.46E-14 70 38.4020 38.9767 2.14E+00 0 300 NF 3600 38.4020
17 295 65 38.4020 38.4020 1.46E-14 67 38.4020 38.4020 1.46E-14 0 300 NF 3600 38.4020
18 320 71 38.4020 38.4020 1.46E-14 72 38.4020 38.5024 4.49E-01 0 300 NF 3600 38.4020
19 343 78 38.4020 38.7031 9.82E-01 74 38.4020 38.6027 6.18E-01 0 300 NF 3600 38.4020
20 294 72 38.4020 38.4020 1.46E-14 74 38.4020 39.0042 1.47E+00 0 300 NF 3600 38.4020

Large-sized instances
21

60

844 100 71.4294 71.8355 5.75E-01 109 72.6152 75.2089 2.84E+00 1 300 NF 3600 118.5553
22 905 114 61.0294 61.9052 1.23E+00 112 63.8579 68.0798 2.13E+00 1 300 NF 3600 225.0630
23 798 106 61.0294 62.1858 1.34E+00 104 61.0294 64.4554 2.27E+00 1 300 NF 3600 96.2924
24 912 124 63.8579 64.2411 9.48E-01 120 65.8650 67.8427 1.82E+00 1 300 NF 3600 87.0782
25 870 104 62.8081 63.2919 5.28E-01 107 63.6294 66.2392 1.91E+00 1 300 NF 3600 219.4061
26

70

1176 135 58.2010 59.7566 1.44E+00 110 61.0294 62.0376 1.51E+00 1 300 NF 3600 77.7716
27 1163 120 58.2010 58.8967 1.24E+00 116 58.2010 59.8456 2.41E+00 0 300 NF 3600 90.4071
28 1231 141 58.2010 59.4692 2.08E+00 148 63.0365 66.6746 2.51E+00 1 300 NF 3600 75.1716
29 991 124 58.2010 59.7224 1.41E+00 121 58.2010 62.7219 2.53E+00 1 300 NF 3600 90.4071
30 1252 148 58.2010 60.2652 1.88E+00 149 58.2010 66.4671 3.29E+00 1 300 NF 3600 91.5929
31

80

1718 156 58.2010 60.0759 2.47E+00 147 63.0365 67.7377 3.34E+00 1 300 NF 3600 NF
32 1812 152 58.2010 59.9984 1.57E+00 164 60.2081 64.9640 2.63E+00 1 300 NF 3600 NF
33 1513 147 58.2010 59.4624 2.03E+00 160 63.0365 66.2047 2.35E+00 1 300 NF 3600 NF
34 1880 166 60.8010 62.2405 1.43E+00 160 63.0365 66.4603 2.37E+00 1 300 NF 3600 NF
35 1619 155 58.2010 58.6139 1.01E+00 165 58.2010 60.9359 2.71E+00 1 300 NF 3600 186.3787
36

90

1893 165 58.2010 59.3802 1.81E+00 167 58.2010 62.4687 2.54E+00 1 300 NF 3600 NF
37 2013 198 58.2010 59.3324 2.32E+00 201 63.8579 67.4959 2.37E+00 1 300 NF 3600 NF
38 2185 204 60.8010 61.2117 8.10E-01 210 63.0365 66.3439 2.46E+00 1 300 NF 3600 NF
39 1944 197 58.2010 59.6152 1.45E+00 191 58.2010 61.2598 2.14E+00 1 300 NF 3600 83.4721
40 2013 210 58.2010 60.2402 2.54E+00 214 60.2081 64.3482 2.19E+00 1 300 NF 3600 239.2975
41

100

2501 252 61.0294 62.7926 1.72E+00 248 61.0294 67.2267 3.49E+00 1 300 NF 3600 NF
42 2512 263 65.8650 66.6382 8.95E-01 253 65.8650 69.6513 3.03E+00 1 300 NF 3600 NF
43 2437 261 58.2010 59.3095 1.61E+00 263 58.2010 64.9343 4.03E+00 1 300 NF 3600 NF
44 2370 264 60.8010 61.8527 1.68E+00 271 61.0294 65.4772 3.29E+00 1 300 NF 3600 NF
45 2503 274 61.6223 62.5712 1.16E+00 278 70.2437 71.9140 1.65E+00 1 300 NF 3600 NF

(a) f2a on instance No.45 (b) f2c on instance No.40

Fig. 7: Convergence plot for the proposed GALS method and standard GA.

addition, GALS can handle very well the selected nonlinear non-convex cost
functions, whereas existing mathematical solvers are too sensitive to the shape
of the function. This robustness property is an important strength of the GA-
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based methods in solving MCFPs. Our future work will examine performance
of GALS method on practical telecommunication network problems.
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