
Aberystwyth University

Urban hazmat transportation with multi-factor
Du, Jiaoman; Li, Xiang; Shang, Changjing; Li, Lei

Published in:
Soft Computing

DOI:
10.1007/s00500-019-03956-x

Publication date:
2020

Citation for published version (APA):
Du, J., Li, X., Shang, C., & Li, L. (2020). Urban hazmat transportation with multi-factor. Soft Computing, 24(9),
6307-6328. https://doi.org/10.1007/s00500-019-03956-x

General rights
Copyright and moral rights for the publications made accessible in the Aberystwyth Research Portal (the Institutional Repository) are
retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the Aberystwyth Research Portal for the purpose of private study or
research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the Aberystwyth Research Portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

tel: +44 1970 62 2400
email: is@aber.ac.uk

Download date: 28. Apr. 2024

https://doi.org/10.1007/s00500-019-03956-x
https://doi.org/10.1007/s00500-019-03956-x


Soft Computing manuscript No.
(will be inserted by the editor)

Urban Hazmat Transportation with Multi-factor

Jiaoman Du · Xiang Li* · Lei Li · Changjing Shang

Received: date / Accepted: date

Abstract In this paper, a urban hazmat transporta-

tion problem considering multiple factors that tangle

with real-world applications (i.e., weather conditions,

traffic conditions, population density, time window, link

closure and half link closure) is investigated. Based on

multiple depot capacitated vehicle routing problem, we

provide a multilevel programming formulation for ur-

ban hazmat transportation. To obtain the Pareto op-

timal solution, an improved biogeography-based opti-

mization (improved BBO) algorithm is designed, com-

paring with the original BBO and genetic algorithm

(GA), with both simulated numerical examples and a

real-world case study, demonstrating the effectiveness

of the proposed approach.
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1 Introduction

As the demands of hazardous material for industry and

life continue to increase, dangerous goods transporta-

tion has remained as one of the major concerns for pub-

lic safety and environmental protection. It is estimated

that approximately 4 billion tons of hazmat are trans-

ported annually at the worldwide level (Carotenuto et

al. 2007). As the shipments of long distance transporta-

tion carried hazardous materials increase gradually, there

exist significant threats for catastrophic incidents with

multiple fatalities, injuries, large-scale evacuations, and

severe environmental damage. For example, when pass

through the city of Lac-Megantic, Canada in 2013, an

oil-tanker carrying hazardous materials and oil derailed

and caused 72 train tankers occurred explode, result-

ing in 47 deaths and forty buildings damage. In 2016,

the explosion of an oil tanker occurred at Mozambique

caused 73 deaths with several dozens injured. Nowa-

days, this problem has become more serious − the num-

ber of hazmat incidents has surged from 12,651 in 2010

to 16,476 in 2016 in the United States alone, result-

ing in 77 deaths and 1316 injuries and a total property

damage of $ 626.2 million (U.S. Department of Trans-

portation1).

The methods that avoid transportation risk for haz-

mat shipments can be categorized into two groups: risk

evaluation approach and vehicle routing problem. The

risk evaluation approaches aim to define the risk in a

mathematical way which mainly incorporate accident

occurrence probability and accident occurrence results.

The different risk evaluation approaches can lead to

different risk values. Therefore, the risk evaluation ap-

proaches’ choice is also a significant consideration for

1 U.S. Department of Transportation. See at:
https://www.transportation.gov
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hazmat transport. Vehicle routing problems (VRP) are

classical combinatorial optimization problems that have

been studied extensively in recent years due to their

wide applicability and economic importance. Similarly,

many approaches of VRP also have been employed in

transport with hazmat. Generally, in urban areas, a ma-

jority of hazmat shipments (i.e., gas station, chemical

institution) deliver goods to more than one destination

once under the considerations of cost and travel conve-

nience. This transportation mode is similar to that of

non-fixed destination multiple depot capacitated VRP

(MDCVRP), therefore the non-fixed destination MD-

CVRP is used as the transportation mode in our study.

Filipec et al. (1997, 2000) formulated the problem of the

non-fixed destination MDCVRP, where a fleet of homo-

geneous vehicles in depots find a set of links, originating

and ending at different depots, to service all customers

with known demand at minimum cost, while satisfying

vehicle and depot capacity constraints (where a limit

is imposed on the number of customers per vehicle’s

route).

Based on the realistic considerations in hazmat trans-

portation, several previous studies proposed various is-

sues involving multiple folds of considerations such as

road closure (Fan et al. 2015), time window (Meng et

al. 2005), congestion (Lozano et al. 2010; Assadipour

et al. 2015). However, none of them provides the com-

prehensive considerations of multiple factors for urban

hazmat transportation. In this study, multiple factors

such as adverse weather condition, high population den-

sity, accident, congestion traffic flow, time window, link

closure and half link closure, are investigated for ur-

ban hazmat transport. It is note that the closed link

can not be used during some certain time segments

for hazmat shipments. While half link closure ensures

several links can be passed by adding penalty cost in

certain segments. This model, modeled as a multilevel

programming, entails considering multiple factors for

all link so as to channel the hazmat shipment on the

risk-less route. Nonetheless, our results indicated that

multi-factor urban hazmat transport is more dynamic

and effective than those of single-factor for mitigating

transport risk.

Because of the MDCVRP, a complex multiple levels’

planning, constitutes an integrated whole of multiple

industrialized departments, the interest of each depart-

ment cannot be ignored. Therefore, the administrative

departments are classified as three levels: the upper

level (carrier company) allocates customers to depots

under the constraints of depot capacities and customer

demands; the middle level (carrier subsidiary) assigns

customers to vehicles for each group of depots and cus-

tomers; the lower level (carrier) determines the opti-

mal route for each group of vehicles and customers. In

this approach, the process of decision-making is accom-

plished from a certain upper-level down to a lower-level,

arranged hierarchically. Base the above framework, we

also present an improved biogeography-based optimiza-

tion ( improved BBO) for obtaining the pareto solu-

tion, which is first proposed by Simon (2008a, b) and

the experiment also demonstrates the effectiveness of

the proposed approach. However, our main contribution

is proposing the methodology of urban hazmat trans-

portation of multiple factors. To this end, we present a

mathematical programming of multiple levels for multi-

factor urban hazmat transport, which is more effective

than those of single-factor. Moreover, an improved BBO

algorithm is designed for optimizing the Pareto solu-

tions, which is integrated with the Clarke and Wright

saving mechanism (Clarke and Wright 1964) and neigh-

borhood search for the generation of initial inhabits as

well as Pareto elitism reserve. The results demonstrate

that the improved BBO is able to lead to solutions that

reach global optimality within an acceptable time.

This paper is organized as follows. Section 2 reviews

relevant literature on hazmat transportation. In Section

3, the non-fixed destination MDCVRP with hazmat in

urban areas is formulated as a multilevel programming

problem, while considering multiple factors. Section 4

presents an improved BBO algorithm to find solutions

inherent in such a model. Numerical examples and a

real-world case study are provided in Section 5 in com-

parison with the existing techniques. Finally, Section 6

presents conclusions and points out further research.

2 Literature Review

In this section, we outline the existing research related

to hazmat transportation in practical applications, in-

cluding risk assessment, multiple affecting factors and

routing optimization.

2.1 Risk Assessment

In general, hazmat transportation accidents are viewed

as low probability high consequence events. The risk as-

sessment over such events has been widely studied over

the past few decades. Commonly used risk assessment

models in hazmat transportation were summarized in

Erkut et al. (2007). Recently, other type methods of

risk measure have also been investigated. For instance,

Kang et al. (2014) proposed a value-at-risk model and

the route choice is implemented for hazmat transporta-

tion under the condition of giving the probability dis-

tribution of accident consequence on each link. Also, in
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order to mitigate risk in hazmat transportation (within

a risk-averse framework), Toumazis et al. (2013) put

forward a conditional value-at-risk model, considering

various levels of risk acceptance by policy makers. Erkut

and Verter (1998) validated different risk models that

work usually by selecting different optimal paths for

a hazmat shipment between a given origin-destination

pair. They proposed to exploit the weighted combina-

tions of different single-criterion risk models in order to

reach the final decision, having recognized that different

objectives may generate different optimal paths. Such

work indicates that the choice of risk models is a key

issue for hazmat transportation. Given that traditional

risk models that involve the use of the concepts like inci-

dent probability and incident consequence are popular

and important for hazmat transportation in sensitive

urban areas, we will adapt such models in this work.

2.2 Multiple Affecting Factors for Hazmat

Transportation

Weather conditions, high population density, and traffic

congestion are generally recognized as the main issues of

urban hazmat transportation. Considering such factors

that may adversely affect urban hazmat transportation

has long been an important topic in the literature. For

example, work has been done which addresses the effect

of the distance between the population center and the

hazmat traffic route (Carotenuto et al. 2007; List and

Mirchandani 1991). Bronfman et al. (2015, 2016) con-

sidered the distance between the route and its closest

vulnerable centre, weighted by the centre’s population.

Here, a vulnerable centre with a highly concentrated

population may be a school, a hospital and/or a resi-

dence zone.

Regarding weather influence, there have been a num-

ber of articles concerning the modeling of wind effects.

Karkazis and Boffey (1995) proposed a method which

incorporated meteorological conditions in the process

of determining the dispersion of pollutants. Patel and

Horowitz (1994) considered the diffusion of gases from

spills during hazmat transportation. In order to min-

imize the risk of dangerous goods over the pathways,

specific wind directions, uniform average wind direc-

tion, maximum concentration wind directions, wind-

rose averaged wind directions and speeds, and multi-

day routing with uncertain weather conditions were all

taken into account. There have also been studies that

are focused on rainy and/or snowy weather. For exam-

ple, Satterthwaite (1976) investigated the significant ef-

fect of wet weather upon accident number on the State

Highways of California in 1970. Akgun et al. (2007)

modeled the time-dependent attributes for route links

by analyzing the impact of weather systems upon haz-

mat transportation routing.

Not much research has been conducted on traffic

flow and link closure for hazmat transportation, how-

ever. Assadipour et al. (2015) formulated a rail-truck in-

termodal shipments of hazmat incorporating congestion

at intermodal yards and that at terminals which may

result in a certain non-negligible hazmat risk. Wang et

al. (2012) developed a dual-pricing model for hazmat

transportation which may avoid the delays and costs

caused by traffic congestion by dealing with different

types of traffic flow. Fan et al. (2015) proposed a bi-

objection programming model while considering link

closure, and Wang et al. (2016) investigated a dynamic

system that covered multiple affecting factors such as

people, vehicles, tanks, weather and road conditions.

Most of the above studies take into consideration

only one or a highly selected few factors, but do not

carry out a comprehensive coverage of many key factors

that may affect urban hazmat transportation. In this

study, we address multiple such factors conjunctively.

2.3 Routing Optimization

Much work has been carried out in the field of haz-

mat route planning, i.e., planning route choices for haz-

mat shipments between origin-destination pairs. Usu-

ally such research can be categorized into two fields:

shortest path problems and vehicle routing problems.

Many researchers have studied the first class such as

Bronfman et al. (2015), Du et al. (2016), Toumazis and

Kwon (2015). However, in many real world applications

(i.e., transportation of gas cylinders), transportation of
hazmats calls for the determination of a set of links used

by a fleet of trucks to serve different customers, rather

than merely the determination of a single optimal route

as shortest path algorithms may produce.

Whilst approaches to vehicle routing problem (VRP)

for hazmat transportation are generally very limited,

there have been interesting work reported recently. Bula

et al. (2017) presented a nonlinear function modeling

the heterogeneous fleet VRP (shorthanded as HFVRP)

in the context of hazmat transportation. A variable

neighborhood search algorithm was employed to solve

this problem. Fan et al. (2015) established a bi-objective

mixed integer nonlinear model for VRP under the con-

text of urban hazmat transportation, with a new heuris-

tic algorithm to solve it. Pradhananga et al. (2014)

proposed a meta-heuristic method for Pareto-based bi-

objective optimization of hazardous materials in VRP

(including scheduling). In Androutsopoulos and Zografos

(2012), Androutsopoulos and Zografos (2012) put for-

ward a technique to address the hazardous materials
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distribution problem within specified time windows that

was modeled as a bi-objective time dependent VRP.

A heuristic algorithm was used to solve this problem.

Last but not least, Du et al. 2017 proposed a fuzzy

bilevel programming model to minimize the total ex-

pected transportation risk for multi-depot VRP in haz-

mat transportation, using four different fuzzy simulation-

based heuristic algorithms to solve the problem. In this

study, the BBO algorithm is improved and integrated

with the Clarke and Wright saving method and neigh-

borhood search, in an effort to generate the initial in-

habits as well as Pareto elitism retention for obtaining

the optimal VRP solutions.

3 Proposed Approach

In this section, we first briefly introduce the urban haz-

mat transportation incorporating triple level program-

ming and multi-factor, and discuss the influence of par-

tial factors on objectives. Then, we proposed the math-

ematic programming for urban hazmat transportation

and described their meanings.

3.1 Urban Hazmat Transportation

We consider a non-fixed destination MDCVRP on a

hazmat transportation network which is formulated us-

ing a triple level integer linear programming model (Fig-

ure 1), taking into consideration the assignment strate-

gies (customer assignment for depots, customer assign-

ment for vehicles, route assignment) at the above three

levels by minimizing risk, cost and time, respectively.

Due to the real and complex situation faced by haz-

mat carrier such as weather conditions, road conditions,

population exposed etc, we have to consider the mul-

tiple factors in our model conjunctively to be more re-

alistic. Figure 2 shows such an example. Table 1 lists

the status of partial links based on multiple factors in

which the network is observed for 10 hours, between

08:00 a.m. and 18:00 p.m., divided into 1-hour time in-

tervals. These factors are as follows: 1. weather condi-

tion; 2. population density; 3. traffic congestion; 4. link

closure; 5. half link closure; 6. time window.

3.2 Illustrative Example

To more clearly illustrate link factors, a simple example

for a transportation network with two depots and two

customers is presented in Figure 3, where A and B de-

note depots and 1 and 2 represent customers. To focus

on the examination of the potential impact of various

factors, the customers assignment problem that dealt

with during the first and second level decision mak-

ing processes is omitted here (but will be described

later). Note that the link status will remain as it is

once the hazmat vehicle enters this network. Consider-

ing the multi-factor’s complexity, here in this example,

three factors including link closure, half link closure and

time window are explored. Two cases for the illustrate

example without and with multi-factor are considered

in Table 2 and Table 3. In the Table 3, partial factors in-

cluding link closure, half link closure and time window

are considered. In Figure 4, all route schemes for Case

1 and Case 2 are presented in a way of tree form. The

time at each node indicates the arrival time at which

the vehicle reaches that node. Three digit strings show

the total risk, total cost and total time applied to the

hazmat vehicle from the departure node to the current

node. Take node 2 of route I in Case 1 for example,

09:02 is the time that the vehicle arrives node 2, and

9, 77, 62 represent the total risk, total cost and total

time that it moves from node A to node 1 and then

to node 2. Note that, in Case 2, since the link (1, B)

is closed during [08:00, 09:00], this link is not feasible

during that time segment.

The results can be observed in Figure 4 and Table 4.

The optimal schemes in Case 1 and 2 are II and III. Due

to the factor of link closure, scheme II in Case 2 is in-

feasible. From the Figure 4, one can observed that the

cost of scheme I in Case 2 compared to that of Case 1

increases 20, which is incurred by the penalty cost of

half link closure in scheme I for Case 2. Note that the

cost of schemes III and IV in Case 2 compared to those

of Case 1 increases 30. This is because the factor of time

window for customer 2 in Case 2. Except for scheme II,

the risk and time in the two cases remain unchanged,

this is due to, for simplification, we only consider the

factors of link closure, half link closure and time window

in this example in which the former one is associated

with route feasibleness and the latter two are in connec-

tion with the cost objective. The other factors such as

weather condition, population density and traffic con-

gestion are associated with risk model and time model.

From the above analysis, we can see that the consider-

ation of multiple factors affect significantly the scheme

choice and the objective values of risk, cost and time.

Hence, dealing with multi-factor is essential.

Whilst in the above trivial example, we only need

to make a simple and direct comparison of risk, cost

and time to derive the route schemes, there are a num-

ber of modeling and algorithmic challenges for a large-

scale deployment problem typically encountered in ur-

ban hazmat transportation. Therefore, our research will

focus on modeling formulation and algorithm improve-
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The First Level :
Objective : risk, cost, time

Decision 1: Assign customers to depots

The Second Level :
Objective : risk, cost, time

Decision 2: Assign customers to vehicles under Decision 1

The Third Level :
Objective : risk, cost, time

Decision 3: Select route under Decision 2

Fig. 1 Schematic representation of hierarchical decision planning

Depot

Customer

Link Closure 

Half Link Closure 8am-10am

4
p
m
-
5
p
m Traffic Congestion

High Population Density

Adverse  Weather Condition

Time Window

A B

C

42

1

3

5

6

7
8

9
10

7am-9am

Fig. 2 Example of link status for non-fixed destination MDCVRP

Table 1 Example of link status

(A, 1) (2, A) (3, 2) (B, 3) (1, 9) (9, C) (5, B) (7∗, 5) (C, 7∗) (B, 4)

08:00am-09:00am ☼ #A ☼ #A ☼ #A � #x � G#A ☼  A ☼  A ☼  A ☼ #A ☼ #A

09:00am-10:00am ☼ G#A ☼ #A � #A ☼ #x ☼ G#A ☼ #A ☼  A ☼ G#A ☼ #A ☼ #A

10:00am-11:00am ☼ #A ☼ #A � #A ☼ G#A ☼  A ☼ #A ☼ #A ☼  A ☼ #A ☼ #A

11:00am-12:00am ☼ G#A ☼ G#A ☼ G#A ☼ #A ☼  A ☼ #A ☼ G#A ☼ G#A ☼ G#A ☼ G#A

12:00am-13:00pm ☼ #A ☼ #A ☼ #A ☼ #A ☼ G#A ☼ #A ☼ #A ☼ G#A ☼ G#A ☼ #A

13:00pm-14:00pm ☼ #A ☼ G#A ☼  A ☼ G#A ☼ G#A ☼ #A ☼ G#A ☼  A ☼  A ☼ #A

14:00pm-15:00pm ☼ #A ☼ #A ☼ G#A ☼ #A ☼ G#A ☼ #A ☼ #A ☼ G#A ☼ #A ☼ G#A

15:00pm-16:00pm ☼ #A ☼ #A ☼ #A ☼ #A ☼ G#A ☼ #A ☼ #A ☼ G#U ☼ G#A ☼ #A

16:00pm-17:00pm ☼ #A ☼ #A ☼ #A ☼ #A ☼  x ☼ #A ☼  A ☼ G#A ☼ #A ☼ G#A

17:00pm-18:00pm ☼ #A ☼ G#A ☼ G#A ☼ #A ☼ G#A ☼ #A ☼  A ☼ G#A ☼ #A ☼ #A

a ☼ � � represent weather conditions: Clear, Rain, Fog.
b represent population density degree: Low, Crowded, Very crowded.
c #G# represent traffic congestion degree: Slight, Moderate, Heavy.
d A U x represent open link, half link closure, link closure.
e N∗ represents customer N has time window constraint.

ment for such complex problems. Specifically, the Pareto

optimization will be used to effectively deal with the

multiple objectives problem faced in the following large-

scale examples and real-world case study.

3.3 Multilevel Programming Model

The multi-factor urban hazmat transportation can be

modeled as the following multilevel programming. Ta-

ble 5 presents the notation in this model.

A B

2

1

Fig. 3 Transport network in the illustrative example

3.3.1 Risk Model

Risk is a measure of the occurrence probability and

consequence of accidents. Following the definition of
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Table 2 Risk, cost and time of Case 1 without multi-factor

(A , 1) (A , 2) (1 , 2)/(2 , 1) (1 , B) (2 , B)

Risk Cost Time Risk Cost Time Risk Cost Time Risk Cost Time Risk Cost Time
08-09:00 4 40 30 6 60 28 5 37 32 5 15 15 4 20 20
09-10:00 3 40 25 8 40 45 6 45 32 5 32 34 6 30 25
10-11:00 4 40 33 7 40 49 7 52 35 6 28 42 5 34 27

Table 3 Risk, cost and time of Case 2 with multi-factor

(A,1) (A,2*) (1,2*)/(2*,1) (1,B) (2*,B)

Risk Cost Time Risk Cost Time Risk Cost Time Risk Cost Time Risk Cost Time
08-09:00 4U 40U 30U 6 60 28 5 37 32 x x x 4 20 20
09-10:00 * 3U 40U 25U 8 40 45 6 45 32 5 32 34 6 30 25
10-11:00 * 4 40 33 7 40 49 7 52 35 6 28 42 5 34 27

U represents half link closure. The penalty cost is 20, when the hazmat vehicles pass the link (A , 1) during [08:00, 10:00].
x represents link closure. The hazmat vehicles are prohibited to pass on link (1 , B) during [08:00, 09:00].
2* represents customer 2 has time window during [09:00, 11:00] and the penalty cost is 30.

1 2

A

2 B

B

B 1

B

08:00

08:30 08:28

09:02

09:27

09:00

09:34

4  60  30

9  97  62

15  127  87

6  90  28

11  127  60

16  159  94

10  110  48
08:48

1 2

A

2 B

B

B 1

B

08:00

08:30 08:28

09:02

09:27

09:00

09:34

4  40  30

9  77  62

15  107  87

6  60  28

11  97  60

16  129  94

10  80  48
08:48

0  0  0

09:45
9  55  45

0  0  0

I II III IV I II III IV

(1) Route schemes of Case 1 without multi-factor (2) Route schemes of Case 2 with multi-factor
 (       represents the cost including penalty cost )

Fig. 4 Route schemes for Case 1 and Case 2

Table 4 Route schemes for Case 1 and Case 2

Case Scheme Route Risk Traffic cost Penalty cost Total cost Time

Case 1

I A-1-2-B 15 107 0 107 87
II A-1-B 9 55 0 55 45
III A-2-B 10 80 0 80 48
IV A-2-1-B 16 129 0 129 94

Case 2

I A-1-2-B 15 107 20 127 87
II A-1-B x x x x x

III A-2-B 10 80 30 110 48
IV A-2-1-B 16 129 30 159 94

the risk described in Batta and Chiu 1988, the com-

mon used risk measure for hazmat transportation can

be represented as follows:

Rab = Pab × ρab × Sab
where Pab is the occurrence probability of a certain ac-

cident; ρab represents the average population density

surrounding the accidental spot; and Sab denotes the

affected area of the accident.

The risks in the hazmat transportation are associ-

ated with any accident’s impacts on the surrounding en-

vironment. Apart from the population factor, weather

condition is also an indispensable factor for hazmat
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Table 5 Mathematical notation

Notation Description

Parameters
I number of depots
J number of customers
i depot index i = 1, 2, · · · , I
j customer index j = 1, 2, · · · , J
Capi capacity of depot i, i = 1, 2, · · · , I
dj demand of customer j, j = 1, 2, · · · , J
Mi number of vehicles in depot i, i = 1, 2, · · · , I
mi vehicle index for depot i , mi = 1, 2, · · · ,Mi, i = 1, 2, · · · , I
Ni number of customers served by depot i, i = 1, 2, · · · , I
ni index of customer served by depot i, ni = 1, 2, · · · , Ni, i = 1, 2, · · · , I
Vi number of depots passed by vehicles in depot i, i = 1, 2, · · · , I,
vi index of depots passed by vehicles in depot i, vi = 1, 2, · · · , Vi, i 6= vi, i = 1, 2, · · · , I
qmi
ni

supply that vehicle mi serves customer ni, mi = 1, 2, · · · ,Mi, ni = 1, 2, · · · , Ni, i = 1, 2, · · · , I
Cami

vehicle capacity of vehicle mi, mi = 1, 2, · · · ,Mi, i = 1, 2, · · · , I
kmi

number of customers assigned to vehicle mi, mi = 1, 2, · · · ,Mi, i = 1, 2, · · · , I
umi

depot passed by vehicle mi,
Gmi

set of depots and customers that vehicle mi passes, mi = 1, 2, · · · ,Mi,

i = 1, 2, · · · , I, i.e., Gmi
=

{
i, ni1 , ni2 , · · · , nikmi

, umi

}
Rmi

ab risk from a to b with a, b ∈ Gmi
, a 6= b, mi = 1, 2, · · · ,Mi, i = 1, 2, · · · , I

Cmi

ab total cost from a to b with a, b ∈ Gmi
, a 6= b, mi = 1, 2, · · · ,Mi, i = 1, 2, · · · , I

Tmi

ab total time from a to b with a, b ∈ Gmi
, a 6= b, mi = 1, 2, · · · ,Mi, i = 1, 2, · · · , I

[W 1
ab,W

2
ab] time slot of link closure from a to b, a, b ∈ Gmi

, a 6= b
CUC the maximum number of customers visited by vehicle
ξab if the link from a to b with a, b ∈ Gmi

, a 6= b is forbidden, it takes value 1;
otherwise,it takes value 0

Decision variables
xij if depot i serves customer j, it takes value 1; otherwise, it takes value 0, i = 1, 2, · · · , I, j = 1, 2, · · · , J
eiu if depot i passes depot u, it takes value 1; otherwise, it takes value 0, i = 1, 2, · · · , I, u = 1, 2, · · · , I, i 6= u
ymi
ni

if vehicle mi serves customer ni, it takes value 1; otherwise, it takes value 0, mi = 1, 2, · · · ,Mi,
ni = 1, 2, · · · , Ni, i = 1, 2, · · · , I

lmi
vi

if vehicle mi passes depot vi, it takes value 1; otherwise, it takes value 0, mi = 1, 2, · · · ,Mi,
vi = 1, 2, · · · , Vi, i = 1, 2, · · · , I

Zmi

ab if the link from a to b is active with a, b ∈ Gmi
, a 6= b, it takes value 1; otherwise, it takes value 0, mi = 1,

2, · · · ,Mi, i = 1, 2, · · · , I

transportation. Therefore, we consider the character-

istic of weather in the geographical regions involved by

the hazmat transportation, such that the risk is mod-

eled by

Rab = Pab × ρab × Sab × τab

where τab is the weather influence factor that can be

classified into a number of specific weather situations

(which in this work include: clear, foggy, and rainy); and

τab may be assigned with different values corresponding

to the different time segments (implementation details

of which will be given later).

3.3.2 Cost Model

Generally, when scheduling transportation tasks, a car-

rier company looks for a route (between the origin and

destination) for each shipment that would incur only

the minimal overall cost. As such, in this study, the to-

tal cost modeled herein includes travel cost and penalty

cost, with the latter composed of two sub-costing items:

time window cost and half link closure cost. In particu-

lar, the travel cost cab and the total cost Cab from node

a to b within a given network are presented as follows:

cab =
ζab
ι
× θ

δ(TEa, TEb)

=



0, TEb ≤W 1
ab or TEa > W 2

ab

TEb −W 1
ab, TEa ≤W 1

ab,W
1
ab ≤ TEb ≤W 2

ab

W 2
ab −W 1

ab, TEa ≤W 1
ab, TEb > W 2

ab,

TEb − TEa, W 1
ab < TEa, TEb ≤W 2

ab

W 2
ab − TEa, W 1

ab ≤ TEa ≤W 2
ab, TEb ≥W 2

ab

Cab = cab + α [δ(TEa, TEb)]
+
λab

+
[
β1(O1

b − TEb)+ + β2(TEb −O2
b )

+
]
ηb
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[δ(TEa, TEb)]
+ = max{0, δ(TEa, TEb)}

(O1
b − TEb)+ = max{0, (O1

b − TEb)}
(TEb −O2

b )
+ = max{0, (TEb −O2

b )}
where ζab is the link length from a to b; ι indicates

the speed of the vehicle; θ denotes the fuel consump-

tion cost per unit time; TEa and TEb represent the time

that the vehicle arrives at node a and node b, respec-

tively;
[
W 1
ab,W

2
ab

]
is time window of half link closure

from a to b;
[
O1
b , O

2
b

]
is the time window of the earliest

and latest arrival on node b; α the penalty cost of unit

time when the vehicle passes a half closed link; β1 the

penalty cost per unite time over increased waiting time

that is earlier than the earliest arrival time; β2 the cost

penalty per unite time over increased delay time that

is later than the latest arrival time; λab takes value 1

if the vehicle violates the time window over the half

closed link from a to b, else, it takes value 0; ηb takes

value 1 if the vehicle violates the time window of node

b, else it takes value 0.

3.3.3 Time Model

The link travel time function promoted by the Bureau

of Public Roads (BPR) (Branston 1976; Esfandeh et al.

2016) is adopted here:

Tab =
ζab
ι

[
1 + 0.15

(
fab
ϕab

)4
]

where fab and ϕab express the traffic flow and traffic

flow capacity from location a to b, respectively.

3.3.4 Overall Model

Based on the aforementioned component models, we
formulate the following three-level programming model

(U1, U2, U3) for non-fixed destination MDCVRP in

urban hazmat transportation:

min

I∑
i=1

(R1 = R(xi1, xi2, · · · , xiJ , ei1, ei2, · · · , eiI)) (1)

I∑
i=1

(C1 = C(xi1, xi2, · · · , xiJ , ei1, ei2, · · · , eiI)) (2)

I∑
i=1

(T1 = T (xi1, xi2, · · · , xiJ , ei1, ei2, · · · , eiI)) (3)

s.t.

J∑
j=1

djxij ≤ Capi, i = 1, · · · , I (4)

I∑
i=1

xij = 1, j = 1, · · · , J (5)

xij ∈ {0, 1}, i = 1, · · · , I, j = 1, · · · , J (6)

eiu ∈ {0, 1}, i = 1, · · · , I, u = 1, · · · , J, i 6= u (7)

where R1, C1, T1 in U1 represent the following three

objectives in U2, respectively.

The upper level formulation U1 seeks the minimiza-

tion of the total transportation risk, cost and time,

which is affected by a feasible depot assignment strat-

egy (xi1, xi2, · · · , xiJ , ei1, ei2, · · · , eiI). Specifically, con-

straint 4 ensures the capacity satisfaction of depots, and

constraint 5 indicates that each customer is only served

with one depot.

min

Mi∑
mi=1

(
R2 = R

(
ymi
1 , · · · , ymi

Ni
, lmi

1 , · · · , lmi

Vi

))
(8)

Mi∑
mi=1

(
C2 = C

(
ymi
1 , · · · , ymi

Ni
, lmi

1 , · · · , lmi

Vi

))
(9)

Mi∑
mi=1

(
T2 = T

(
ymi
1 , · · · , ymi

Ni
, lmi

1 , · · · , lmi

Vi

))
(10)

s.t.

Ni∑
ni=1

dni
ymi
ni
≤ Cami

,mi = 1, · · · ,Mi (11)

qmi
ni
ymi
ni

= dni ,mi = 1, · · · ,Mi, ni = 1, · · · , Ni (12)

Ni∑
ni=1

ymi
ni
≤ CUC,mi = 1, · · · ,Mi (13)

Mi∑
mi=1

ymi
ni

= 1, ni = 1, · · · , Ni (14)

Vi∑
vi=1

lmi
vi = 1,mi = 1, · · · ,Mi (15)

ymi
ni
∈ {0, 1},mi = 1, · · · ,Mi, ni = 1, · · · , Ni (16)

lmi
vi ∈ {0, 1},mi = 1, · · · ,Mi, vi = 1, · · · , Vi (17)

where R2, C2, T2 in U2 represent the following three

objectives in U3, respectively.

The medium level formulation U2 models the sec-

ond level decision maker’s behavior of minimizing the

total transportation risk, cost and time, which is influ-

enced by a feasible vehicle assignment strategy (ymi
1 , ymi

2

, · · · , ymi

Ni
, lmi

1 , lmi
2 , · · · , lmi

Vi
) and which is subject to a

number of constraints. Particularly, constraint 11 en-

sures the capacity satisfaction for the vehicles, con-

straint 12 guarantees the demand satisfaction for the

customers, constraint 13 dictates that the number of

customers served by each vehicle is no more than the

maximum customer number, constraint 14 indicates that

each customer is visited by a vehicle exactly once, and

constraint 15 demands that each vehicle only visits one

destination depot.

The lower level formulation U3 models the third

level decision maker’s behavior, minimizing the total

transportation risk, cost and time that is influenced

by a feasible route assignment strategy (Zmi

ab ). Again,
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a number of constraints are imposed, including: con-

straints 21-24 that are the same as those convention-

ally imposed while addressing the traveling salesman

problem (in which the origin and destination depot are

different) and satisfying the flow conservation require-

ments; constraint 25 ensures time continuity; and con-

straint 26 that expresses the status of link closure. Note

that obviously, constraints 6, 7, 16, 17 and 27 define the

domains of the relevant decision variables.

min
∑

a,b∈Gmi
,a 6=b

Rmi

ab Z
mi

ab (18)

∑
a,b∈Gmi

,a 6=b

Cmi

ab Z
mi

ab (19)

∑
a,b∈Gmi

,a 6=b

Tmi

ab Z
mi

ab (20)

s.t.
∑

a∈Gmi
a6=i,umi

Zmi
ia −

∑
a∈Gmi
a 6=i,umi

Zmi
ai = 1, i ∈ Gmi

(21)

∑
b∈Gmi
b6=a

Zmi

ab = 1, a ∈ Gmi , a 6= i, umi (22)

∑
a∈Gmi
b6=a

Zmi

ab = 1, b ∈ Gmi
, b 6= i, umi

(23)

∑
a∈Gmi
a6=i,umi

Zmi
aumi

−
∑

a∈Gmi
a6=i,umi

Zmi
umi

a = 1, umi
∈ Gmi

(24)

Zmi

ab (TEa + Tmi

ab − TEb) = 0, a 6= b ∈ Gmi (25)

ξabZ
mi

ab (W 1
ab − T

mi

ab − TEa) (26)

(W 2
ab − TEa) ≥ 0, a 6= b ∈ Gmi

Zmi

ab ∈ {0, 1}, a, b ∈ Gmi
, a 6= b (27)

4 Algorithm

In this section, we propose an improved heuristic frame-

work that is effective for solving the proposed multi-

factor urban hazmat transportation, which is based on

the method of Simon (2008a, b). First, we discuss the

original biogeography-based optimization algorithm. By

considering the multi-level programming, the improved

heuristic framework is provided.

4.1 Original Biogeography-Based Optimization

Algorithm

The original Biogeography-Based Optimization (BBO)

algorithm based on the biogeography theory of the dis-

tribution of species, investigates the relationships be-

tween different species (habitants) in terms of immi-

gration, emigration and mutation.

BBO starts with an initial set of random solutions in

the problem space, forming the initial population. Each

solution in a population is called a habitat. The algo-

rithm assigns each habitat a vector of habitants (similar

to genes in a GA), representing the variables of a cer-

tain problem. The habitats evolve through successive

iterations, called generations. Within each generation,

the habitats are evaluated using Habitat Suitability In-

dex (HSI) (Mirjalili et al. 2014). The habitats evolve

over time based on three main rules as follows (Ma et

al. 2013): (1) Habitants living in habitats with high HSI

are more likely to emigrate to habitats with low HSI.

(2) Habitats with low HSI are more prone to attract

new immigrant habitants from those with high HSI. (3)

Habitats might face random changes in their habitants

regardless of their HSI values.

Each habitat has its own immigration, emigration,

and mutation rates. A good solution has higher emi-

gration rate and lower immigration rate, and vice versa.

The emigration rate (χ%) and the immigration rate (σ%)

are functions of the number of species in the habitat.

These are calculated as follows:

χ% =
E × φ

Φ
(28)

σ% = A× 1− φ
Φ

(29)

where E is the maximum possible emigration rate; %

the number of species of the %th individual in the or-

dered population according to their fitness; φ the num-

ber of habitants; Φ the allowed maximum number of
habitants, which is increased by HSI (the more suitable

the habitat, the higher the number of habitants); and

A the maximum possible immigration rate.

Note that in running the algorithm, the involvement

of the emigration and immigration operation speeds up

the search process for reaching better solutions, and

that the mutation operation maintains the diversity in

the population to avoid being trapped in a local opti-

mum. The mutation rate is defined as follows:

ε% = ε×
(

1− B%
Bmax

)
(30)

where ε is an initial value for mutation defined by the

user, B% is the mutation probability of the %th habitat,

and Bmax = argmax(Bφ), φ = 1, 2, ...,Φ. The general

steps of the BBO algorithm are as follows:

1. Initial set of random habitats.

2. Evaluate habitats by using HSI.

3. Update habitats by using emigration, immigra-

tion and mutation phases.
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4. The BBO algorithm is terminated by the satis-

faction of a termination criterion.

4.2 Improved Biogeography-Based Optimization

Algorithm

As indicated previously, the present formulation of ur-

ban hazmat transportation problem is regarded as an

integration of three optimization problems, including

depot assignment strategy, vehicle assignment strategy

and routing assignment strategy. We propose an im-

proved BBO to solve such a complex and difficult prob-

lem, as shown in Figure 5. The main difference between

the original BBO and the improved version is that the

latter hybridizes the Clarke and Wright saving method

(Clarke and Wright 1964), the neighborhood search al-

gorithm and the Pareto elitism strategy.

Due to the hazmat transportation is a typical multi-

objective problem that is complicated to resolve. In this

work, three objectives are addressed and the Pareto op-

timization is utilized to choice the Pareto sets which

have higher chances to be retained in the next genera-

tion. An example Pareto set is illustrated in Figure 6,

where there are seven possible solutions with regard to

two objectives: objective 1 and objective 2. In this ex-

ample, suppose that the overall aim is to minimize both

objectives. Then, solution 1 is superior to solutions 4, 6

and 7; and solutions 2 and 3 are better than 5, whilst 1,

2 and 3 can not be distinguished in terms of their rel-

ative pros and cons. There is no other set better than

1, 2 and 3. As such, these three possible solutions form

the Pareto set for the given example.

4.2.1 Representation Structure

Route representation is used to encode the solution of

the non-fixed destination MDCVRP. The idea of route

representation is that the customers are listed in the

delivery order within each route. For instance, suppose

that there are six customers numbered 1- 6. If the route

representation is (A 2 4 1 B B 3 6 5 A), then two

routes are required to serve all these six customers. In

the first route, a vehicle departs from the depot, which

is denoted as A, travels to customers 2, 4, and finally

customer 1. After that, the vehicle returns back to the

depot B. In the second route, the vehicle starts with

customer 3, then customer 6, and finally customer 5.

Similarly, the vehicle travels back to the depot A after

serving the customers.

4.2.2 Initialization

Three steps are implemented to generate a feasible ini-

tial habitat. First, the upper decision maker assigns cus-

tomers to each depot. Customers are assigned to the

nearest depots according to the distances from depots

to customers and the destination depot is selected ran-

domly. The way that customers assign to depots is pre-

sented as follows:

If d(A, c) < d(B, c), c is assigned to A

If d(A, c) > d(B, c), c is assigned to B

If d(A, c) = d(B, c), c is assigned to depot randomly

where d(·) is the distance between a depot and a cus-

tomer, A and B are depots, and c denotes a customer.

The second step is for vehicle assignment where the

customers are ranked from the farthest distance to the

nearest distance from the depots. The service regions

are segmented subject to the vehicle capacity constraint.

The third step employs the Clarke and Wright algo-

rithm to solve the routing assignment problem, finding

the travel routes for every service region. This Clarke

and Wright algorithm can be described as follows. Firstly,

the distance matrix should be calculated. Secondly, the

saving value is defined as li,j = d(A, i)+d(A, j)−d(i, j),

in which A is depot and i, j represent customers. All

saving values are collected in the saving list. Thirdly,

the values in the savings list are sorted in decreasing

order. Finally, the route merging procedure starts from

the top of the savings list. The route merging procedure

is repeated until no feasible merging in the savings list

is possible.

4.2.3 Improvement

This step may be implemented through the use of neigh-

borhood search. In this case, the neighborhood of a so-

lution is interpreted as a set of similar solutions attain-

able by making relatively simple modifications to the

original solution. Given an initial habitat, two habitants

are randomly selected from it. The two habitants and

their neighbors are swapped to generate the new habi-

tats. Taking Figure 7 for example, habitants 6 and 8 are

those chosen from the original Habitat. Then, habitant

6 can be swapped with its neighbors habitant 5 and 7

to generate the populations of Habitat 1 and Habitat

3. Similarly, habitant 8 in the original Habitat can be

swapped with its neighbors 10 and 9 to generate Habi-

tat 2 and Habitat 4. So can Habitat 5 be generated,

etc. For Habitat 1, the habitants 1, 4, 6, 5 and 7 are

assigned to Depot A and the rest habitants are assigned

to Depot B by the above mentioned Clarke and Wright

algorithm.
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Fig. 5 Flowchart of improved BBO
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836 102 91 5 38641 5 7Habitat 5
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B

5641

102 47 398

7ADepot A

Depot B

Fig. 7 Neighborhood search algorithm

4.2.4 Habitat Suitability Index (HSI)

In general, a fitting function is used to evaluate the

habitats within a newly generated Habitat. For the ur-

ban hazmat transportation problem, an HSI is intro-

duced to reflect the minimality of objectives related to

total risk, cost and time among all depots involved.

4.2.5 Migration and Mutation

To see how the proposed method works, a conceptual

picture of the migration between the habitats for non-

fixed destination MDCVRP using the improved BBO

is visualized in Figure 8. In this figure, given the min-

imization objectives, habitat 1 is the fittest, followed

by habitat 2, habitat 3, habitat 4. The habitat repre-

sents the customers order that will be visited. It can be

seen that habitat 1 has the highest emigration, whereas

habitat 4 provides the highest immigration. The fourth

habitat accepts many habitants from other habitats as

illustrated in different colors. The green nodes and con-

nections also depict mutation which happen for all the

habitats regardless of their HSI values.

After these operations, the new habitats are gener-

ated using the vehicle assignment and routing assign-

ment strategies. The last step of the proposed method

is Pareto elitism selection, in which some of the Pareto

habitats are saved in order to prevent them from being

corrupted by the evolutionary and mutation operators

in the next generation. These steps are iterated until

a given termination criterion is satisfied (i.e., when the

number of iterations reaches the maximum iteration).

4.3 Genetic Algorithm

Genetic algorithm (De Jong, 2002) is a common method

proposed to deal with optimal problems. It has drawn

considerable attention and successfully applied to a wide

range of areas in real-world problems according to the

biological evolutional behavior and mechanism. This

method constructs a set of feasible solutions and the ex-

cellent fittest individuals are selected for reproduction

through the crossover and mutation operators until the

algorithm converges achieving the stopping criterion.
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Fig. 8 Emigration and immigration

Genetic algorithm has been utilized as a compared al-

gorithm in many optimization problems. For example,

Elbeltagi et al. (2005) designed a genetic algorithm and

other four evolutionary algorithms for solving the con-

tinuous and discrete optimization functions and com-

pared the performance of this five algorithms. Hassan

et al. (2005) compared the performance of the parti-

cle swarm optimization and genetic algorithm by a set

of benchmark test problems and two space system de-

sign optimization problems. Therefore, this genetic al-

gorithm in our study is designed to compare the per-

formance with the original BBO algorithm and the im-

proved BBO algorithm.

In this paper, the processes of genetic algorithm in-

corporates initialization, evaluation, selection, crossover

and mutation operators. The initial solutions are gen-

erated similar to the improved BBO using these three

steps: depot assignment, vehicle assignment as well as

routing assignment. The evaluation function is gener-

ated by the calculation of HSI for all generated solu-

tions. The common used roulette gambling approach is

exploited for the solution selection process. The crossover

operator is implemented in a way of single-point. The

mutation operator in genetic algorithm is similar to

that of improved BBO algorithm, but the mutation

probability is a constant generated by random way.

4.4 Summarizing Note

The improved BBO algorithm is an Evolutionary Al-

gorithm (EA) that offers specific evolutionary mecha-

nisms to each individual in a population. The HSI of

all habitats are improved over the generations since

the habitants of better habitats tend to migrate to the

worse habitats. This guarantees the improvement of

all habitats during generations. Mutation operator en-

hances their exploitation capability. Moreover, differ-

ent mutation constants for each habitant in a popula-

tion may also help BBO outperform GA, which usually

has a single mutation operator for the whole popula-

tion. Finally, the intrinsically different adaptive mecha-

nisms of evolutionary operators and mutations for each

individual assist BBO to provide diverse exploration

and exploitation behaviors while solving problems with

a different scale. A pre-defined number of the Pareto

habitats are retained as elites for the next generation.

In contrast to GA, improved BBO has not only the

additional migration operator, but also the Clarke and

Wright saving method, neighborhood search, and Pareto

elitism retention which are additional to the original

BBO. These significantly enhance the algorithm’s di-

verse exploration and exploitation capability. These prop-

erties of the proposed approach are experimentally ver-

ified below.
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5 Experiments

This section presents experimental evaluation of the

proposed model, using both numerical examples and

a real-world case, and discusses the results.

5.1 Numerical Examples

Numerical experiments are herein carried out to com-

pare improved BBO algorithm that is integrated with

the Clarke and Wright saving method, neighborhood

search and Pareto elitism retention, against BBO and

GA, over three randomly simulated transportation net-

works of different scales. This is set to demonstrate the

solution optimality and computational efficiency. Note

that all systems implemented are coded in Matlab.

5.1.1 Experimental Setup

The three transportation networks tested consist of the

following details: (1) 10 depots and 80 customers, (2) 12

depots and 100 customers, and (3) 14 depots and 120

customers. In terms of naming schemes for easy cross

reference, within these three networks, the depots and

customers are labelled as 1-10 and 11-90, 1-12 and 13-

112, and 1-14 and 15-134, respectively. The locations of

the depots and customers are randomly generated using

a uniform distribution in the space of size 400 by 400

(which is sufficiently large empirically). Each link in-

volves multiple factors: weather situations, traffic flow,

population density, time window, link closures and half

link closures. These networks are constructed for a seg-

ment of 24 hours, between 0:00 mid-night and 11:59
p.m., divided into 1-hour time intervals, with the as-

sumption that the link status remains unchanged once

the hazmat vehicle enters a certain link. The experi-

ment environment and the parameter settings are de-

picted as follows:

1. The accident probabilities are calculated according

to link lengths, Pij = lij × 10−6 where lij is the

length of a link (Abkowitz and Cheng 1988; Kang

et al. 2014).

2. The population density is assumed within the range

of [1131, 1678] people per square kilometer.

3. The affected area by a certain accident is assumed

to be a rectangle centered at the accident location.

Assume that all people within the rectangle will be

affected and people outside this area will not be af-

fected. The affected area can be written as lij ×Θ.

In our case, we consider Θ = 0.5km.

4. The traffic flow and maximum traffic flow capacity

are assumed within the range of [80, 200] and [300,

500] vehicles per hour, respectively.

5. The classification of days into weather types was

done by checking against the parameter of τ (as per

the notion τab over the link from location a to b in

formula A given previously) such that

If τ = 0.2, the day was classified as clear day.

If τ = 0.5, the day was classified as foggy day.

If τ = 1, the day was classified as rain day.

6. Time window, link closure and half link closure are

set as follows: Customer 40 is served within the time

window [14:00, 19:00]pm; link (17, 18) in [12:00,

13:00]pm is half closed; link (21, 28) in [10:00, 11:00]

am is closed; and the number of customers served

by a vehicle is no more than 6. We adopt Euclidean

distance to measure the length of links. The vehi-

cle speed is assumed to be in the interval [55, 65]

km/h. The fuel consumption cost per kilometer is

0.15$. The penalty cost per unit time from the time

window and that for half link closure are set to be

50$ and 30$, respectively. The departure times of

vehicles are assumed at 8:00 am. The customer de-

mand is within the range [80, 260] and capacity of

vehicle is 300.

To ensure appropriate settings for the parameters

used in all implemented algorithms, the problems have

been run 16 times with different values of all the pa-

rameters and those led to the best result are selected.

For example, Figure 9 illustrates the allowed maximum

number of habitants in terms of Pareto solution num-

ber. As shown in this figure, the maximum number of

habitants of 150 gives the best result. Therefore, we set

the maximum number of habitants=150. This is com-

mon practice in the literature and all compared algo-

rithms have been treated equally, in the manner that

they all use the empirically evaluated best parameters.

The resulting parameters in the improved BBO algo-

rithm and also, in the original BBO and GA algorithms

are shown in Table 6.

5.1.2 Results and Discussion

Given the above experimental settings, to demonstrate

the performance of our approach, all compared algo-

rithms are each run for 30 times. The resultant optimal

proportion of Pareto solutions, percentage deviations

(Gap) and run time are shown in Figure 10 and Ta-

ble 7, where the index of proportion of Pareto solution

and Gap are defined as follows:

Pareto proportion =
Pareto number for an algorithm

Total number of Pareto

Gap = −Obtained solution − Best obtained solution

Best obtained solution
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The results of improved BBO in these numerical ex-

amples are explicitly compared with those of BBO and

GA. In Table 7, the first-fourth columns of Table 7 list

the number of depots, the number of customers which

have to be served, the iteration number and population

size, respectively. The proportion of Pareto solutions,

Gap and CPU running time are presented in the sixth-

eighth columns, respectively.

A number of observations can be obtained from these

results. First of all, our improved BBO algorithm pro-

vides more optimal solutions than BBO and GA al-

gorithms for all examples in terms of solutions’ qual-

ity, with (i) more superior proportion Pareto solutions,

and (ii) smaller percentage deviations. Particularlly, the

number of superior Pareto solutions returned by the im-

proved BBO is obviously more than that achievable by

the use of either of the other two algorithms. This is

reflected from sub-figures (d), (e) and (f) in Figure 10.

For example, the proportions of Pareto solutions for the

improved BBO, the original BBO and GA in the net-

work of 10 depots and 80 customers are 78%, 20%, and

2%, respectively.

The results also show that the original BBO algo-

rithm performs better than the improved BBO and GA,

in terms of CPU run time. For example, the run times

for the improved BBO, BBO and GA in the network of

10 depots and 80 customers are 629s, 100s, and 116s,

respectively. However, this is expected as the improved

BBO involves more computation than BBO itself. This

is due to the fact that improved BBO incorporates the

Clarke and Wright saving method and the neighbor-

hood search algorithm for generating the initial inhab-

its. Importantly, the sacrifice of a limited extra amount

of computational effort leads to significantly improved

system performance. Indeed, the optimum proportion

of Pareto solutions for the network of 10 depots and 80

customers is found while the computation time is in-

creased to 629s. According to Table 7, the percentage

deviations of improved BBO are lower than those of

BBO and GA algorithms. For the network of 14 depots

and 120 customers, the Gaps of proportion of Pareto

solutions for the improved BBO as compared to those

of the original BBO and GA algorithm are 0%, 100%,

100%.

Overall, these numerical experimental results demon-

strate that the proposed approach with hybridized ini-

tialization procedure plays an important role in finding

solutions to non-fixed destination MDCVRP, while the

Pareto elitism retention procedure helps transmit the

excellent habitants.
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Fig. 9 Parameter tuning for maximum number of habitants

Table 6 Parameters of heuristic algorithms

Improved BBO
Max emigration rate Max immigration rate Max habitants number Initial mutation probability

1 1 150 0.005

BBO
Max emigration rate Max immigration rate Max habitants number Initial mutation probability

1 1 150 0.005

GA
Crossover probability Mutation probability

1 0.01

Table 7 The results in different transportation network

Depot/customer No. Generation Pop size Algorithm Proportion of Pareto (%) Gap (%) Runtime (s)

10/80 2000 150
Improved BBO 78 0 629

BBO 20 74 100

GA 2 97 116

12/100 1000 50
Improved BBO 80 0 889

BBO 18 78 120

GA 2 98 140

14/120 2000 50
Improved BBO 100 0 1188

BBO 0 100 138

GA 0 100 180



1
6

J
ia

o
m

a
n

D
u

et
a
l.

11

400

11.5

12

Ti
m

e

2000350

12.5

Cost

1800

13

Risk

1600300 1400
1200

250

Improved BBO
 BBO
GA
ideal point

(a) example of 10 depots and 80 customers

11.5

320

12

12.5

2400300

Ti
m

e

13

2200

Cost

13.5

2000280

Risk

1800
260 1600

1400
1200

Improved BBO
BBO
GA
ideal point

(b) example of 12 depots and 100 customers

12

12.5

500

13

13.5

3000

Ti
m

e

14

Cost

400 2500

14.5

Risk
2000300

Improved BBO
 BBO
GA
ideal point

(c) example of 14 depots and 120 customers

11

400

11.5

2000

12

Ti
m

e

350 1800

12.5

Cost

13

1600

Risk

300 1400
1200

250

Improved BBO
BBO
GA
ideal point

(d) example of 10 depots and 80 customers

11.5

400

12

12.5

2400

Ti
m

e

350

13

2200

Cost

13.5

2000

Risk

300 1800
1600

1400250 1200

Improved BBO
 BBO
GA
ideal point

(e) example of 12 depots and 100 customers

12

12.5

300

13

2600

Ti
m

e

13.5

2400

Cost

280 2200

Risk

14

2000
260 1800

1600

Improved BBO
BBO
ideal point

(f) example of 14 depots and 120 customers

Fig. 10 Pareto solutions comparison of three different algorithms in different scales networks
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5.2 Case Study

To further illustrate the effectiveness of the proposed

approach, we present an empirical real case study, ap-

plying the proposed model and solution algorithm to

the problem of liquefied petroleum gas transportation

in Beijing City. Beijing is one of the most highly popu-

lated metropolitan areas in the world. Like most major

cities, its traffic is heavy, especially during the morn-

ing and afternoon rush hours. The hazmat transporta-

tion vehicles are often restricted on certain roads dur-

ing time windows specified by the local government.

For example, in order to assure the safety in highways

during the May Day holiday (from the 1st to 3th of

May), no hazmat trucks from other provinces are al-

lowed to pass through highways in Beijing. There are

nevertheless certain customers (i.e., research institutes)

requiring hazardous materials to be supplied over cer-

tain time windows. To make the case study realistic,

we also consider situations involving half link closure

links (i.e., construction areas) where hazmat vehicles

may pass a certain link by adding penalty cost.

5.2.1 Case Specification

Beijing Oil Products Company of China Petroleum &

Chemical Corporation is one of the large-scale subsidiaries

of Sinopec, which is the main supplier of petroleum

and petrochemicals for the Chinese capital. Petrochem-

ical Logistics are responsible for shipping petrochemical

products from regional depots to distributors mainly by

road.

This case study is a realistic non-fixed destination
MDCVRP instance derived from the real road network

of Sinopec Group, Haidian District of Beijing City. The

problem considered is a virtual distribution of lique-

fied petroleum gas oil depots to a set of geographically

distributed gas stations2. The road network consists of

2 oil depots and 27 gas stations shown in Figure 11,

where A-B and 1-27 represent the labels of all rele-

vant nodes involved in the transportation network. The

case study is constructed for a segment of 24 hours,

between 0:00 mid-night and 11:59 p.m., divided into

1-hour time intervals. It is presumed that the link sta-

tus remains unchanged once a hazmat vehicle enters a

given link. The required data for the case study is col-

lected in the format of maps from official websites, and

the population density along each link is estimated by

linking Beijing Census data to the route data based on

geographic information. The accident probabilities are

2 Electronic map of China petroleum & chemi-
cal corporation Beijing oil products company. See at:
http://wap.bjoil.com/portal/map.jsp

calculated according to link lengths, Pij = lij × 10−6

where lij is the length of a link (Abkowitz and Cheng

1988; Kang et al. 2014). It is practically assumed that

a hazmat accident will affect an area that is of a 500m

radius circle, based on the recommendations in Fan et

al. (2015). The traffic flow and maximum traffic flow

capacity are provided by Beijing Traffic Management

Bureau3. The dataset of weather conditions is obtained

from Beijing Meteorological Service4. The number of

customers served by a vehicle is no more than 6. The

vehicle speed is set to be within the interval [55, 65]

km/h. The fuel consumption cost is 0.15$ per kilome-

ter. The penalty cost per unit time for the given time

window and that for passing through a half link closure

are 30$ and 30$, respectively. The departure times of

vehicles are assumed to be at 8:00 am. The customer

demand is within the range [80, 130] and the capac-

ity of each vehicle is 400. Details on time window, link

closure and half link closure are given in Table 9. The

parameters in the improved BBO algorithm and those

in the original BBO and GA are as shown in Table 6.

5.2.2 Results and Analysis

To assess the quality of the solutions provided by the

proposed approach, we compare the improved BBO al-

gorithm with the original BBO and GA. Figure 12 shows

the results of Pareto solutions comparison, where Fig-

ure 12.a) illustrates the Pareto solutions for each al-

gorithm, and Figure 12.b) depicts the Pareto solutions

obtained by Pareto optimization for the solutions of

Figure 12.a). From these figures we can see that the im-

proved BBO algorithm provides more superior Pareto

solutions as compared to BBO and GA.

Table 8 presents a tabular representation of the re-

sults of Figure 12. The first twenty results from row 2

to 21 are obtained by the improved BBO. The latter

eighteen results from row 23 to 40 are solved by us-

ing the original BBO, and the remaining solutions are

obtained by GA. The first column shows the routes of

Pareto solutions for each of the three algorithms, where

the numbers and letters represent gas stations and oil

depots, respectively. For example, the number 1 rep-

resents Beianhe gas station. Columns 2-4 of Table 8

present the total risk, total cost and total time of the

Pareto solutions. These results show that the average

risk, average cost of the improved BBO are 6690 and

30, which are less than 7580 and 33 obtained by BBO

and 7974 and 31 by GA, although the average transpo

3 Beijing traffic management bureau. See at:
http://cgs.bjjtgl.gov.cn/roadpublish/Map/trafficOutNew1.jsp
4 Beijing meteorological service. See at:

http://www.bjmb.gov.cn
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Table 8 Results with different algorithms

Route R C T PC TW HC Pa(%)

A-25-26-B,A-24-23-B,A-21-18-B,A-19-16-B,A-15-12-10-B,A-14-11-B,A-7-9-B, A-4-2-B,A-6-5-B,B-3-1-13-A,B-8-17-20-A,B-22-27-A 5897 36 4.51 10:24
A-27-26-B,A-24-23-B,A-21-18-B,A-19-17-B,A-16-15-12-B,A-10-14-B,A-11-7-B,A-9-2-B,A-6-5-B,B-3-1-4-A,B-8-13-20-A,B-22-25-A 5914 35 4.43 11:24
A-25-26-B,A-24-23-B,A-21-18-B,A-19-16-B,A-15-10-12-B,A-14-11-B,A-7-9-B,A-4-2-B,A-6-5-B,B-3-1-13-A,B-8-17-20-A,B-22-27-A 5930 34 4.30 10:18
A-25-27-B,A-26-24-B,A-23-22-B,A-21-18-B,A-17-16-13-B,A-12-10-B,A-11-7-B,A-9-2-B,A-6-5-B,B-1-3-4-A,B-8-15-14-A,B-19-20-A 6019 34 4.30 11:23
A-25-26-B,A-24-20-B,A-21-18-B,A-19-17-B,A-15-12-10-B,A-14-11-B,A-7-9-B,A-4-2-B,A-6-5-B,B-3-1-13-A,B-8-16-22-A,B-23-27-A 6020 34 4.29 10:27
A-25-27-B,A-26-24-B,A-23-22-B,A-21-18-B,A-19-17-B,A-16-13-12-B,A-11-7-B,A-9-2-B,A-6-5-B,B-1-3-4-A,B-8-10-15-A,B-14-20-A 6042 33 4.15 11:13
A-25-27-B,A-26-23-B,A-20-21-B,A-18-19-B,A-17-16-15-B,A-14-10-B,A-7-1-B,A-4-2-B,A-6-5-B, B-8-9-13-A,B-12-11-3-A,B-22-24-A 6084 32 3.99 10:01
A-25-27-B,A-26-24-B,A-23-21-B,A-18-19-B,A-17-16-15-B,A-14-10-B,A-7-1-B,A-4-2-B,A-6-5-B,B-9-8-13-A,B-12-11-3-A,B-20-22-A 6116 31 3.89 09:55
A-25-27-B,A-26-24-B,A-23-20-B,A-18-19-B,A-17-16-15-B,A-14-10-B,A-7-1-B,A-4-2-B,A-6-5-B,B-8-9-13-A,B-12-11-3-A,B-22-21-A 6246 31 3.87 10:02
A-25-27-B,A-26-23-B,A-20-21-B,A-18-19-B,A-17-16-15-B,A-14-10-B,A-7-1-B,A-4-2-B,A-6-5-B, B-8-9-13-A,B-12-11-3-A,B-22-24-A 6379 31 3.83 10:03
A-25-27-B,A-26-23-B,A-20-21-B,A-18-19-B,A-17-16-15-B,A-14-10-B,A-7-1-B,A-4-2-B,A-6-5-B,B-9-8-13-A,B-12-11-3-A,B-22-24-A 6431 30 3.74 10:01 91%
A-25-26-B,A-24-23-B,A-20-21-B,A-18-19-B,A-17-16-15-B,A-14-10-B,A-7-1-B,A-4-2-B,A-6-5-B,B-8-9-13-A,B-12-11-3-A,B-22-27-A 6474 30 3.69 09:59
A-27-26-B,A-24-23-B,A-20-21-B,A-18-19-B,A-17-16-15-B,A-14-10-B,A-7-1-B,A-4-2-B,A-6-5-B,B-8-9-13-A,B-12-11-3-A,B-22-25-A 6478 29 3.67 10:12
A-25-27-B,A-26-24-B,A-23-20-B,A-18-19-B,A-17-16-15-B,A-14-10-B,A-7-1-B,A-4-2-B,A-6-5-B,B-8-9-13-A,B-12-11-3-A,B-22-21-A 6520 29 3.61 09:56
A-25-27-B,A-26-24-B,A-23-20-B,A-21-18-B,A-17-15-B,A-10-13-B,A-4-3-B,A-7-1-8-B,A-6-5-B,B-9-12-A,B-11-16-A,B-14-2-A,B-19-22-A 6824 29 3.59 09:47
A-25-27-B,A-26-23-B,A-20-21-B,A-18-19-B,A-17-16-15-B,A-14-10-B,A-7-1-B,A-4-2-B,A-6-5-B,B-8-9-13-A,B-12-11-3-A,B-22-24-A 6946 28 3.44 09:37
A-25-27-B,A-26-24-B,A-23-21-B,A-19-17-B,A-13-12-10-B,A-16-11-B,A-4-1-B,A-9-2-B,A-6-5-B,B-7-3-A,B-8-15-14-A,B-18-20-A,B-22-A 7069 27 3.32 09:11
A-25-27-B,A-26-24-B,A-22-21-B,A-19-17-B,A-13-12-10-B,A-16-11-B,A-4-1-B,A-9-2-B,A-6-5-B,B-7-3-A,B-8-15-14-A,B-18-20-A,B-23-A 7637 26 3.22 09:31
A-26-24-B,A-20-18-B,A-19-17-B,A-15-12-10-B,A-14-11-B,A-7-4-B,A-1-9-B,A-2-8-B,A-6-5-B,B-13-16-A,B-22-3-A,B-21-23-A,B-25-27-A 8401 25 3.11 09:23
A-25-27-B,A-26-24-B,A-23-20-B,A-18-19-B,A-17-16-15-B,A-10-13-B,A-14-11-B,A-7-2-B,A-6-5-B,B-1-3-4-A,B-9-8-12-A,B-22-21-A 1036425 3.10 10:05

Average 6690 30 3.80 0.00

A-24-6-B,A-27-4-12-B,A-13-19-B,A-7-9-B,B-15-18-A,B-25-21-A,B-20-23-1-A,B-11-15-A,B-14-3-A,B-26-16-8-A,B-2-10-A,B-22-17-A 6584 43 4.33 12.0 08:36
A-24-23-1-B,A-22-21-B,A-16-27-B,A-20-5-B,B-18-10-A,B-15-13-19-A,B-8-11-12-A,B-14-3-A,B-17-2-A,B-4-6-A,B-26-7-A,B-9-25-A 6636 33 4.18 10:59
A-10-24-B,A-27-4-12-B,A-13-19-B,A-7-6-B,B-15-18-A,B-25-21-A,B-20-23-1-A,B-11-5-A,B-14-3-A,B-16-26-8-A,B-2-9-A,B-22-17-A 6646 41 3.95 13.5 08:33
A-10-19-B,A-27-17-12-B,A-13-24-B,A-7-6-B,B-15-18-A,B-25-21-A,B-20-23-1-A,B-11-5-A,B-14-3-A,B-26-16-8-A,B-2-9-A,B-22-4-A 6804 32 4.02 11:51
A-10-19-B,A-27-17-12-B,A-13-2-B,A-7-21-B,B-15-18-A,B-25-6-A,B-20-23-1-A,B-11-5-A,B-14-3-A,B-26-4-8-A,B-9-24-A,B-22-16-A 6850 31 3.89 10:49
A-10-6-B,A-25-9-B,A-21-5-B,A-4-3-8-B,B-18-19-A,B-7-15-A,B-23-17-A,B-22-2-A,B-13-20-12-A,B-11-14-A,B-27-26-A,B-16-24-1-A 6879 30 3.75 2.5 08:55
A-24-18-B,A-25-9-B,A-21-16-B,A-4-15-27-B,B-6-17-A,B-7-3-A,B-19-8-1-A,B-12-13-20-A,B-23-2-A,B-14-5-A,B-26-22-A,B-10-11-A 6980 28 3.53 09:00
A-10-9-B,A-16-2-B,A-12-13-19-B,A-7-21-B,B-15-18-A,B-25-6-A,B-20-23-1-A,B-11-5-A,B-14-3-A,B-26-4-8-A,B-17-24-A,B-22-27-A 7132 28 3.52 10:47
A-10-6-B,A-25-9-B,A-21-5-B,A-4-3-8-B,B-18-22-A,B-7-15-A,B-23-17-A,B-19-2-A,B-13-20-12-A,B-11-14-A,B-27-26-A,B-16-24-1-A 7641 35 3.31 10.5 08:39
A-10-6-B,A-25-9-B,A-21-5-B,A-4-27-8-B,B-18-19-A,B-26-15-A,B-23-7-A,B-22-11-A,B-13-20-12-A,B-2-14-A,B-24-17-A,B-16-3-1-A 7754 36 3.20 10.5 08:39 10:41-10:45 4.5%
A-10-6-B,A-25-9-B,A-21-5-B,A-4-3-8-B,B-18-19-A,B-7-15-A,B-23-17-A,B-22-2-A,B-13-20-12-A,B-11-14-A,B-27-26-A,B-16-24-1-A 7856 35 3.29 10.5 08:39
A-10-9-B,A-16-17-12-B,A-13-19-B,A-7-21-B,B-15-18-A,B-25-6-A,B-20-23-1-A,B-11-5-A,B-14-3-A,B-26-4-8-A,B-2-24-A,B-22-27-A 7918 27 3.4 10:29
A-2-6-B,A-25-9-B,A-21-5-B,A-4-3-B,A-19-B,B-18-8-A,B-7-15-A,B-27-17-A,B-22-10-A,B-13-20-12-A,B-11-14-A,B-23-26-A,B-16-24-1-A 8183 35 3.24 10.5 08:37
A-10-6-B,A-25-17-B,A-7-5-B,A-20-27-B,A-9-B,B-26-19-A,B-18-15-A,B-14-4-A,B-21-11-A,B-13-3-12-A,B-2-1-A,B-23-24-A,B-16-22-8-A 8282 26 3.34 09:34
A-10-6-B,A-25-9-B,A-21-5-B,A-4-3-8-B,B-18-19-A,B-7-15-A,B-23-17-A,B-22-2-A,B-13-20-12-A,B-11-14-A,B-27-26-A,B-16-24-1-A 8291 34 3.27 10.5 08:39
A-10-11-B,A-25-9-B,A-21-5-B,A-4-3-8-B,B-18-19-A,B-13-15-23-A,B-17-22-A,B-2-7-A,B-20-12-A,B-6-14-A,B-27-26-A,B-16-24-1-A 8442 34 3.26 10.0 08:40
A-10-11-B,A-25-9-B,A-21-5-B,B-4-3-8-A,B-18-19-A,B-13-15-23-A,B-17-22-A,B-2-7-A,B-20-12-A,B-6-14-A,B-27-26-A,B-16-24-1-A 8502 33 3.14 10.0 08:40
A-22-6-B,A-1-9-B,A-21-16-B,A-4-3-B,A-5-B,B-18-8-15-A,B-13-19-A,B-17-11-A,B-12-24-20-A,B-14-2-A,B-27-23-A,B-26-7-A,B-10-25-A 9068 32 3.31 7.5 08:45

Average 7580 33 3.55 6.00

A-9-22-B,A-26-7-B,A-23-16-1-B,A-19-10-B,B-17-20-A,B-14-15-A,B-13-8-27-A,B-18-3-A,B-11-4-12-A,B-24-21-A,B-6-25-A,B-5-2-A 6652 37 4.26 8.5 10:43 11:14-11:19
A-14-25-B,A-7-11-B,A-24-21-B,A-17-1-13-B,B-19-27-A,B-20-22-A,B-23-3-16-A,B-15-4-A,B-18-2-A,B-6-10-A,B-26-5-A,B-12-9-8-A 6690 30 3.71 10:02
A-25-2-B,A-8-11-1-B,A-16-26-B,A-19-14-B,B-23-7-A,B-6-20-A,B-17-4-15-A,B-12-13-3-A,B-10-5-A,B-27-22-A,B-18-9-A,B-21-24-A 6876 29 3.66 09:57
A-14-5-B,A-9-20-B,A-15-1-22-B,A-10-21-B,B-13-12-25-A,B-7-19-A,B-8-23-4-A,B-16-6-A,B-11-3-A,B-24-27-A,B-18-17-A,B-26-2-A 7010 30 3.42 5.0 09:50 10:44-10:49
A-15-13-5-B,A-26-22-B,A-23-24-B,A-11-B,B-21-10-A,B-4-8-9-A,B-19-2-A,B-12-27-3-A,B-18-25-A,B-17-20-A,B-7-1-A,B-14-16-A,B-6-A 7510 29 3.66 09:18
A-13-22-15-B,A-11-5-B,A-16-2-B,A-19-26-B,B-7-10-A,B-6-20-A,B-27-3-12-A,B-23-1-8-A,B-18-24-A,B-14-9-A,B-4-21-A,B-17-25-A 7545 28 3.49 11:00 4.5%
A-6-2-B,A-26-18-B,A-13-5-1-B,A-19-16-B,B-3-14-A,B-27-12-17-A,B-10-4-A,B-23-24-8-A,B-15-7-A,B-20-25-A,B-21-22-A,B-9-11-A 7621 28 3.46 09:39
A-17-5-B,A-22-7-B,A-24-2-B,A-18-10-B,A-3-B,B-26-14-A,B-4-1-12-A,B-16-8-20-A,B-13-25-A,B-21-23-A,B-6-19-A,B-27-11-A,B-9-15-A 8065 27 3.36 09:25
A-17-5-B,A-12-15-24-B,A-14-16-B,A-9-26-B,B-20-27-A,B-7-18-A,B-1-8-11-A,B-13-4-3-A,B-23-19-A,B-6-21-A,B-10-22-A,B-25-2-A 8308 27 3.32 10:06
A-7-1-8-B,A-12-13-18-B,A-26-17-B,A-5-B,B-11-16-A,B-10-9-A,B-22-19-A,B-24-15-A,B-14-27-A,B-25-4-A,B-20-3-A,B-23-6-A,B-21-2-A 9101 26 3.29 10:07 09:35-09:39
A-5-2-B,A-23-19-B,A-3-4-1-B,A-7-6-B,B-17-21-A,B-18-25-A,B-26-27-A,B-24-22-A,B-9-8-15-A,B-12-20-16-A,B-14-10-A,B-13-11-A 9459 35 3.24 8.5 08:43 09:57-10:00
A-15-12-13-B,A-9-16-B,A-2-4-B,A-5-7-B,B-14-27-A,B-20-25-A,B-19-8-A,B-17-10-A,B-22-26-A,B-23-11-A,B-18-21-A,B-24-3-1-A,B-6-A 1085243 3.13 16.5 08:27 10:30-10:35

Average 7974 31 3.5 3.20
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Fig. 11 Case study network

Table 9 Time window, link closure and half link closure

Link/ node (4,8) (4,15) (5,18) 6

Time window [9-12]
Link closure [11-13] [12-13]
Half closure [12-13]

rtation time of improved BBO is higher than that of

BBO or GA. We can see that the total risk increases

drastically as the total cost and total time decrease
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(a) Pareto solutions for three algorithm
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(b) Superior Pareto solutions

Fig. 12 Pareto solutions comparison

for improved BBO. This indicates that the total risk

and the total cost and total time are in conflict with

each other, in this multi-objective optimization prob-

lem (of hazardous materials transportation network).

It can also be seen that in order to avoid the use of a

link with high risk, the total cost and total time are

increased in the optimization solutions. As the popula-

tion density and weather conditions are associated with

the total risk, and traffic congestion is related with the

total time, we can observe that the Pareto solutions

from the improved BBO algorithm opt for a link with

congestion for decreasing risk, while avoiding the use of

any high risk link.

Columns 5-6 in Table 8 show the penalty cost and

the arrival time of node 6 regarding time window and

”TW” represents time window. In the penalty cost col-

umn, the line ”—” indicates that the route does not

generate any penalty cost. As the time of arriving at
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node 6 along a certain route exceeds the allowable time

window [9:00, 12:00], the corresponding solutions gen-

erate penalty costs that vary as the time segment ex-

ceeds the allowable time. For example, the first solution

in BBO, due to the arrival time at node 6 being 08:36,

and the time window at node 6 is [09:00, 12:00], trans-

porting through this route generates a penalty cost of

$12. Note that the average penalty cost returned by the

improved BBO algorithm is lower than that of running

the original BBO and GA algorithms.

The column under “Half link closure” represented

by “HC” of Table 8 lists the start and end time of pass-

ing half closed link and the line ”—” indicates that the

corresponding route does not include any half link clo-

sure. For example, the 10th solution returned by BBO,

the time segment passing through the link (5, 18) is

(10:41, 10:45) while the no entry time is [12:00, 13:00].

By looking at the ”Half link closure” column, most

routes do not include this half closed link and the time

segments that pass the half closed link do not fall within

the forbidden time segment. Thus, the algorithm does

not generate any penalty cost for all solutions. There-

fore, the only penalty costs come from the constraint

of time window. These results imply that the Pareto

solutions returned by three algorithms avoid the use of

the half closed link, thereby helping minimize the total

cost.

All solutions obtained from these three algorithms

also meet the link closure constraints. The last col-

umn is ”Pareto proportion” obtained by implementing

Pareto optimization for all Pareto solutions. The pro-

portions of superior Pareto solutions (blue font) for im-

proved BBO, BBO and GA are 91%, 4.5% and 4.5%, re-

spectively. These results demonstrate that the improved

BBO algorithm provides more superior Pareto solutions

than BBO and GA.

Jointly drawn from the above results, it can be sum-

marized that the Pareto solutions returned by the im-

proved BBO algorithm are superior to those obtained

by the original BBO and GA. They effectively avoid

closed links, while achieving considerable reductions in

the associated penalty cost due to half link closures and

time window (by altering the assignment and schedul-

ing schemes). This is at the small expense of the compu-

tation times required (which are 313.3s, 32.3s and 39.7s,

respectively for improved BBO, BBO and GA). The

longer CPU run time required by the improved BBO is

largely attributed to the increased computational bur-

den in search for the superior Pareto solutions. Im-

portantly, the improved BBO provides the more supe-

rior Pareto solutions still within a practically accept-

able time. In short, the above experimental results have

shown that the improved BBO algorithm is efficient and

practical to analyze and solve the non-fixed destination

MDCVRP with hazmat transportation problems that

involve multiple factors.

6 Conclusions and Further Research

This paper has presented a novel formulation of the

non-fixed destination MDCVRP for urban hazmat trans-

portation. A multilevel programming model has been

proposed to minimize the total transportation risk, cost

and time, with many other factors potentially adversely

affecting these three key issues also addressed, includ-

ing: weather conditions, traffic conditions, population

density, time window, link closures, and half link clo-

sures. This enables the model and solutions to take into

better account of the specificities of real-life applica-

tions. To obtain optimal solutions to the programming

model given a particular problem, an improved BBO al-

gorithm has been designed to effectively search for the

best strategies allocating customers to depots and cus-

tomers to vehicles, and determining the optimal routing

solutions with respect to a certain group of depots, ve-

hicles and customers. This improved BBO algorithm

integrates the Clarke and Wright saving method and

the neighborhood search algorithm for generating the

initial inhabits as well as Pareto elitism retention for

finding the optimal solutions. Comparative experiments

have been carried out to evaluate the performance of

the proposed approach, with both simulated numerical

examples and a real-world problem case.

The experimental results indicate that the proposed

work entails more diverse exploration and exploitation

of the potential solutions, than typical existing tech-

niques. Whilst the improved BBO performs the best on

optimality, but the time consumed still seems to be in a

practically acceptable order or magnitude. The results

also confirm the modeling hypotheses in that the pop-

ulation density and weather conditions are associated

with total risk, and that traffic congestion is related

with total time. Due to the high congestion link may

have the low risk, the The Pareto solutions returned

by the improved BBO algorithm are able to choose the

congestion link for decreasing risk, avoiding the use of

high risk links. This is very important for dangerous

goods transportation in urban areas.

In future studies, it would be interesting to inves-

tigate the other transportation patterns of urban haz-

mat transportation, addressing further factors such as

special-line transportation, road toll, and fatigue driv-

ing. Also, making use of Big Data to exploit the real

historical statistics of road accidents is worth investigat-

ing, in an attempt to derive more realistic urban hazmat

transportation models and their solutions. Typically,
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for catering the large scale transportation corporations

(Amozon, FedEx, UPS), the artificial intelligence (ma-

chining learning, deep learning) would be applied to

deal with the complex and large scale cases.
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