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Abstract Data augmentation has become a standard

step to improve the predictive power and robustness of

Convolutional Neural Networks by means of the syn-

thetic generation of new samples depicting different de-

formations. This step has been traditionally considered

to improve the network at the training stage. In this

work, however, we study the use of data augmentation

at classification time. That is, the test sample is aug-

mented, following the same procedure considered for

training, and the decision is taken with an ensemble

prediction over all these samples. We present compre-

hensive experimentation with several datasets and en-

semble decisions, considering a rather generic data aug-

mentation procedure. Our results show that performing

this step is able to boost the original classification, even

when the room for improvement is limited.
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1 Introduction

Deep convolutional neural networks have been one of

the biggest breakthroughs in the field of Pattern Recog-

nition and Image Analysis [23]. These networks allow

learning a hierarchy of features suitable for the recogni-

tion task by means of a series of stacked convolutional

layers. Although these networks were initially proposed

decades ago [24], several factors have contributed to

their eventual success.

On the one hand, some of these contributions are

of a technological nature: more powerful computational

capabilities or an efficient use of graphical units; or of

a logistical nature, like having bigger amounts of (la-

beled) data. Others, however, are purely methodolog-

ical. For example, the use of activation functions that
palliate the so-called vanishing gradient problem, such

as the Rectified Linear Units [11], smart initialization of

the network weights [32], modifications to the gradient

descent scheme [9], and so on. Note, however, that most

of these improvements have focused especially on solv-

ing technical issues, like those that make the network

converge, or do it more efficiently.

On the other hand, another set of contributions have

focused on making these networks be more accurate, or

better said, generalize better and prevent over-fitting.

An example of such contributions is dropout, a scheme

that randomly disconnect neurons from the network at

each step of the gradient descent [30]. Even some deriva-

tives of this technique has been proposed — such as

DropConnect [34] — and it is expected that this type

of modifications continue to arise in the short-term.

Despite all of the above, the start of the Deep Learn-

ing era is often located at the work of [20], which pre-

sented the widely known AlexNet. This model, in addi-

tion to proposing a really deep convolutional network
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(at least for that time, we can now find much deeper

networks), showed the importance of what has been

called data augmentation.

Data augmentation is a step focused on generating

a set of synthetic samples out of those in the training

set, with the aim of boosting the performance. Actually,

data augmentation is related to the term perturbation-

based methods, which also modify the input data. In

some works, both augmentation and perturbation might

be equivalent [13,26]. However, perturbation methods

traditionally focus on variations of input features [1,

37,3], whereas data augmentation is considered at the

whole sample level [12].

There are several ways to do data augmentation in

images (rotation, color variation, random occlusions,

etc.), although the goodness of each one is strongly

dependent on the task at issue. The intention of this

process is twofold: i) since these neural networks need

to be trained on a large set of data, data augmentation

might boost the performance by increasing the size of

the original training set, ii) if the augmentation proce-

dure creates examples that mimic expected distortions,

the network might be more robust to variations at test

stage. In addition, some proposals try to learn this aug-

mentation from data to optimize the eventual perfor-

mance [25].

The contribution of this work is to further study

data augmentation, not only for training but also for

the test stage. The main idea is that test samples are

also augmented, producing a series of new synthetic test

samples. The model has then to predict the category of

the original input as well as the category of the aug-

mented ones. The final decision is eventually taken con-

sidering all these predictions by means of some kind of

ensemble mechanism. To demonstrate the goodness of

this methodology, we perform exhaustive experiments

with a number of neural configurations, image datasets,

and ensemble strategies. The results, validated with sta-

tistical significance tests, show that this procedure al-

lows a general improvement of the classification accu-

racy, even in those cases where there is little room for

improvement.

The rest of the work is structured as follows: related

works concerning ensemble decision and convolutional

neural networks are described in Section 2; the ensem-

ble prediction scheme using data augmentation is de-

tailed in Section 3; the experimental setup is described

in Section 4, while results are reported in Section 5. Fi-

nally, main conclusions are drawn in Section 6, along

with some discussion about future work.

2 Related work

Classification systems have been widely studied within

the pattern recognition field. The classical scheme is

based on a sequential model that consists in extracting

features from a sample, using a classification technique

and obtaining a hypothesis [10]. This scheme has been

exploited in order to attain fairly complex techniques

with which to improve classification accuracy, such as

Artificial Neural Networks [16] or Support Vector Ma-

chines [5]. The evolution in this field, however, has led

to the development of new schemes in supervised learn-

ing.

For example, with the recent advances in deep neu-

ral networks, the task of extracting features is no longer

a separate process that depends, in most cases, on users’

expertise, but the network itself learns which features

are most useful for the task at hand. From another point

of view, several classification scheme emerged based on

the assumption that it is more robust to combine a set

of hypotheses than to use just one [17]. These schemes

combine the scores of individual classifiers (usually called

weak classifiers) to produce a final score. They are com-

monly referred to as ensemble classifiers. A wide analy-

sis of this kind of algorithms can be found in the book

of [21]. Recently, both scenarios have been considered

together.

There are many ways to combine decisions under the

convolutional neural network paradigm. The closest to

what has traditionally been done is to train different

neural networks whose predictions are combined at the

time of classification. The differences among networks

can be found at several levels: different topology — or

same topology with different initialization —, different

optimization algorithm or different training data. It can

also be done through the network itself by establish-

ing different convolution branches that are eventually

joined by means of concatenation, summation or max-

out [29].

In our case, we consider the well-establish data aug-

mentation step to improve the capabilities of the net-

work. Data augmentation has been systematically ap-

plied to improve the training of neural networks and

make them more robust against distortions of the input.

Since the popularity given by the work of Krizhevsky

et al. [20] for improving object recognition, data aug-

mentation has been applied in a wide variety of applica-

tions like acoustic modeling [7], speech recognition [18]

or biometrics [31,2].

Our object of study, nonetheless, does not conflict

with any of the mechanisms considered above, but rather

serves as a complement to all of them. We consider

the use of data augmentation at prediction time. For
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each sample to be classified, a set of augmented samples

is obtained. They are then processed by the network,

yielding a series of predictions. Eventually, these predic-

tions are combined, as would be done in any ensemble

system.

Test data augmentation has been slightly consid-

ered in some previous works, focused on very specific

tasks [27,28,14]. Our objective is, therefore, to study

test data augmentation in a comprehensive way, so that

general conclusions about this procedure can be drawn.

Unlike previous works, we provide a proper formula-

tion of the methodology, as well as a thorough exper-

imentation to validate the approach with a number of

datasets, different neural models, many data augmenta-

tion strategies, and several ways of combining the neu-

ral decisions. In addition, our results are validated with

statistical significance tests in order to minimize the

possibility that the differences in accuracies are due to

chance variation.

3 Ensemble of deep predictions with data

augmentation

The scheme studied in this work is very simple to ap-

ply, which, in addition to the good results it provides,

makes it a very good tool to improve the predictive

power of Convolutional Neural Networks. To apply it

to a particular task, the recipe involves three elements:

a labeled training set, a network topology, and a data

augmentation procedure that allows generating an arbi-

trary number of new examples. Note that this is indeed

a very common scenario nowadays.

First, the network is trained in a supervised way

using the training set. In spite of not being strictly re-

quired, the training stage can be carried out applying

data augmentation to the training set. Then, at the

time of classifying an input query, the process entails

three steps:

1. The sample is augmented — with the same proce-

dure considered previously — until obtaining T new

elements.

2. Each of the T+1 samples is predicted by the trained

network.

3. The decision about the actual sample received is

taken with all the predictions made, following some

kind of combination strategy.

A summary of this process is illustrated in Fig. 1.

The last step needs a strategy to combine the differ-

ent predictions computed by the network. Let Ω denote

the categories of the task. Let x0 be the test query, and

x1 . . . xT represent the T generated test samples from

x0. Let P (w|xi) denote the probability that the net-

work gives xi to belong to class w. If we denote ŵ as

the decision finally taken by the ensemble, we consider

in this work the following policies:

– Average (avg). The label predicted is that which

maximizes the average probability among the pre-

dictions for each sample.

ŵ := arg max
w∈Ω

∑T
i=0 P (w|xi)
T + 1

– Maximum (max). It proposes the label for which

the maximum probability is reached in any of the

predictions.

ŵ := arg max
w∈Ω

max
0≤i≤T

P (w|xi)

– Mode (mode). It takes the class which receives the

majority of votes among the different predictions.

ŵ := arg max
w∈Ω

T∑
i=0

1w=argmaxw′∈Ω P (w′|xi)

Our premise is that it might exist some samples that

are noisy — that is, they can be easily confused with

other categories — yet if we apply data augmentation

in the same way as done during training, it is more un-

likely that all the augmented samples also look similar

to the same different category. Thus, taking all these

samples into account, a more robust prediction must

be obtained.

Below we show a series of experiments in which it is

verified that this procedure somehow allows improving

the classification figures.

4 Experimental setup

The present work aims at performing an analysis that

can be generalizable to a wide range of applications but,

specifically, those whose entries can be represented by

images. For this reason, we consider several datasets of

this nature, a rather general data augmentation proce-

dure and a series of network topologies. A description

of the experimental setup followed is presented in this

section.

4.1 Datasets

Although deep neural networks can be used in a wide

variety of problems, we restrict ourselves to considering

image datasets. This decision has been taken for two

reasons: on the one hand, data augmentation is more

established for this type of tasks; on the other hand, this
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Fig. 1 Classification scheme studied in this work. The Convolutional Neural Network (CNN) is trained conventionally con-
sidering a data augmentation procedure. At the time of classification, this process is applied to the query and a prediction is
made on all samples obtained. The final decision is taken with all the predictions following some type of aggregation.

Name Instances Classes Shape

USPS 9 298 10 16 × 16

MNIST 10 000 10 28 × 28

MPEG-7 1 400 70 35 × 35

HOMUS 15 200 32 40 × 40

NIST 9 984 26 32 × 32

CIFAR10 10 000 10 32 × 32

Table 1 Description of the image datasets used in the exper-
imentation.

kind of datasets allows us to use a general data augmen-

tation procedure that can serve as a generic scenario.

A total of 6 datasets are considered: the United

States Postal Office (USPS) [15] and MNIST [24] datasets

of handwritten digits with binary images; the MPEG-7

shape silhouette dataset [22]; the Handwritten Online

Musical Symbol (HOMUS) [6], which depicts binary im-

ages of isolated handwritten music symbols; the NIST

SPECIAL DATABASE 19 (NIST) of isolated charac-

ters [35], from which a subset of the upper case char-

acters was selected; and the reference dataset within

the computer vision community CIFAR-10 [19], con-

sisting of 32 × 32 color images representing 10 differ-

ent categories (subset of the 80 million tiny images

dataset [33]).

The details of these datasets are summarized in Ta-

ble 1. In some specific cases (such as MNIST, NIST and

CIFAR10) the number of samples used is lower than

those available. The reason is to reduce the overload

when running experiments with different values of data

augmentation.

At each experiment carried out, a 5-fold cross-validation

process has been applied to provide more robust figures

with respect to the variance of the training data.

4.2 Data augmentation

The idea of our work is to present a scenario that can

be generalizable to other situations. That is why we do

not exhaustively search the best data augmentation for

each considered dataset, which would obviously vary

the figures. Instead, we consider a rather generic data

augmentation process. Specifically, we make use of a

simple procedure in which the possible types of defor-

mations are the following ones:

– Rotation in the range of [−30◦,+30◦]. More aggres-

sive rotations might conflict with characters.

– Horizontal and vertical translation in a range of

[−10 %,+10 %] with respect to each dimension of

the image. Note that two deformations are actually

performed in this case (one per each dimension).

– Zoom of [−10 %,+10 %]. When filling the gaps cre-

ated by a negative zooming, the value of the closest

pixel in the original image is taken.

This process takes an input image and produces T

new images in which these transformations are applied

at the same time, choosing values at random within

the range of each type. Note that all ranges considered

admit a zero value that means that no transformation

is applied. An example of augmented data is illustrated

in Fig. 2.

4.3 Network models

In order to perform a comprehensive analysis of the

results, we use three different network topologies based

on its size and depth. A brief description of each one is

presented below:

– Small: it consist of two stacked convolutional layers

with 3 × 3 kernel and 32 filters, followed by a 2 ×
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Original Augmentations

a)

b)

c)

Fig. 2 Examples of data augmentation applied to data CI-
FAR (a), HOMUS (b), and MPEG-7 (c) datasets. The gener-
ated samples might depict several deformations at the same
time, namely rotation, zoom and translation.

2 max-pooling and dropout of 25%. Then, a fully-

convolutional layer with 128 units and dropout of

50% is added.

– Medium: it begins with two blocks consisting of two

convolutional plus 2 × 2 max-pooling plus dropout

(25%) layers, with 64 filters and 3×3 kernel and 128

filters and 5×5 kernel, respectively. These blocks are

followed by two fully-connected layers of 32 units,

with dropout of 50 %.

– Advanced: it comprises two blocks of 3× 3 convolu-

tion plus 2 × 2 max-pooling plus 20 % of dropout,

with 256 and 128 filters, respectively. Then, two

blocks of 3 × 3 convolution plus 20 % of dropout,

with 128 and 64 filters, respectively. The final block

comprises three fully-connected layers with 10 % of

dropout, with 512, 256 and 128 units, respectively.

These network have been fixed after slightly tuning

their configurations for improving the accuracy in the

considered corpora.

The learning of the network weights is performed

by means of stochastic gradient descent [4], considering

the adaptive learning rate proposed by Zeiler [36].

5 Results

In this section we present the results obtained in our

experiments. From now on, Ttrain denotes the factor of

data augmentation at training (the number of samples

obtained from an original one with the augmentation

procedure). Analogously, Ttest denotes the same factor

during test.

The development for the first experiment is as fol-

lows: for each dataset, Ttrain factors of 0 (no augmen-

tation) and 5 are applied with the generic procedure

discussed in the previous section. For each case, we mea-

sure the classification error achieved by the three net-

work models with test data augmentation factor rang-

ing from 0 to 15, in which every ensemble decision

scheme is computed.

The results of this experiment are shown in Table 2.

For the sake of comparison, the best value obtained

among the test data augmentation factors is shown in

each case. Column orig means the original classifica-

tion, ie. no data augmentation at test is performed.

An initial remark to begin with is that, as expected,

the traditional use of data augmentation during train-

ing helps to boost the performance of the neural net-

works. However, data augmentation at the test stage

does not succeed if it has not been considered data aug-

mentation during training. This is seen in the fact that

in most rows with Ttrain = 0, the best value obtained is

in the orig columns. Furthermore, when data augmen-

tation is considered during the training of the networks,

the best results are then found when performing test

data augmentation and combination during the predic-

tion. Since these two procedures — data augmentation

during both training and prediction — are not exclu-

sive, but can be used simultaneously, the goodness of

our proposal is clearly validated.

Concerning the specific procedure of test data aug-

mentation, the avg method has been reported as the

best way to combine decisions, which basically performs

an average of the probability given to each class. In

some cases, mode also manages to improve the figures

(HOMUS, CIFAR10 or MPEG-7 with the advanced

model) yet to a lesser extent. In contrast, max com-

bination seems less adequate and only makes a signifi-

cant contribution in one case (USPS with the advanced

model).

As regards the network topology, the small model

tends to not improve the original results, regardless of

the training augmentation factor and the combination

method, whereas the results do improve with test data

augmentation and combination with medium and ad-

vanced models.

As a general conclusion from these experiments, the

data augmentation at the classification stage is bene-

ficial since the best results for each dataset (consider-

ing all cases) are obtained when this process is used.

It does not overlap with the traditional procedure of

data augmentation during training, but they are com-

plementary.

In many cases, however, the improvement from test

data augmentation is not numerically significant. The

problem is that the conventional strategies already achieve

good results in many of the considered datasets. That is

why, in order to verify the goodness of the process, we

carry out a more in-depth analysis on those datasets in

which there is room for improvement, namely CIFAR10

and MPEG7.



6 Calvo-Zaragoza et al.

small medium advanced

Dataset Ttrain orig avg max mode orig avg max mode orig avg max mode

CIFAR10
0 45.63 44.77 47.52 45.30 39.74 40.44 41.57 41.14 37.94 38.32 39.60 39.14

5 39.33 36.83 38.41 37.70 33.59 30.38 32.70 31.09 33.17 31.14 32.17 31.57

HOMUS
0 12.86 17.40 17.56 20.86 8.09 10.60 10.57 12.25 8.20 10.35 10.45 11.30

5 8.40 8.05 8.72 8.27 4.73 4.34 4.84 4.39 4.47 4.26 4.49 4.27

MNIST
0 2.20 3.54 3.52 4.06 1.61 2.40 2.53 2.59 1.54 2.10 2.25 2.38

5 1.20 1.42 1.50 1.49 0.87 0.87 1.00 0.87 0.71 0.70 0.73 0.73

MPEG7
0 17.07 18.57 18.50 42.86 20.21 22.07 22.50 39.29 15.64 20.00 20.00 36.64

5 13.00 14.22 13.93 16.00 11.07 11.00 11.50 11.57 9.86 8.93 10.00 9.36

NIST
0 5.96 9.52 9.48 15.47 3.83 5.52 5.52 6.98 3.73 5.64 5.61 7.63

5 3.56 3.98 4.21 4.31 2.40 2.30 2.47 2.35 2.38 2.29 2.55 2.40

USPS
0 1.83 2.98 2.92 8.14 1.45 2.18 2.17 5.70 1.71 2.83 2.86 4.34

5 1.26 1.38 1.33 1.45 0.91 0.94 0.99 0.97 0.90 0.86 0.82 0.86

Average
0 13.79 16.21 16.27 22.30 11.60 13.25 13.29 17.00 10.69 12.65 12.68 15.82

5 10.62 10.64 11.07 11.07 8.15 7.67 8.26 7.84 7.83 7.39 7.84 7.51

Table 2 Mean error rate over a 5-fold cross validation for each dataset considered (average results are also presented) and
data augmentation during training with respect to the network model and way of combining decisions. Column orig means
the original classification, ie. no data augmentation at test is performed. The figures presented depict the best lowest error
obtained with test data augmentation ranging from 0 to 15.

First, since it is a differential factor, we increase the

factor of data augmentation in the training set, con-

sidering values of 0, 5, 10 and 15. Table 3 presents the

results of this new experiment. For the sake of readabil-

ity, we restrict ourselves to the use of the avg ensem-

ble combination, which has been reported as the best

strategy for this scheme. It can be appreciated that the

considered data augmentation procedure is indeed prof-

itable but higher factors are not expected to decrease

the error (see Fig. 3).

The first conclusion that can be drawn from this

new experiment is that the augmentation at the train-

ing stage directly influences the goodness of the aug-

mentation at the test stage. That is why there is only

one case in which it is possible to improve with test

data augmentation without doing augmentation during

training (CIFAR10, small model). Intuitively, this phe-

nomenon may be explained by a higher likelihood of

augmented test data being more similar to some of the

generated data during training.

It can be seen that the depth of the network model

influences the figures but to a lesser extent. Amongst

the cases including training data augmentation, only

for MPEG7 with the small model the best prediction

is just to classify the original samples. In the rest of

the cases, a decreasing error tendency is seen as more

samples in the test stage are combined. While the very

first cases are not robust, giving irregular results, the

best overall figures usually come from Ttest ≥ 8. The

trend of these results is illustrated in Fig. 4 (CIFAR10)

and 5 (MPEG-7). Note that to better appreciate the

curves, the scales on the Y axis have been adjusted for

each particular case.

Eventually, test data augmentation allows improv-

ing the performance of the classification for each dataset:

in CIFAR10, from an error of 30.37 (Ttrain = 15, medium

model) to 27.70 (same row, Ttest = 14); in MPEG7,

from an error of 7.24 (Ttrain = 15, advanced model) to

6.14 (same row, Ttest = 14).

Although these improvements are not huge, it should

be noted that they are achieved using exactly the same

elements as those used in the conventional case: a Con-

volutional Neural Network, a training set, and an data

augmentation process. It is, therefore, advantageous to

consider the test data augmentation procedure to fully

exploit the powerful of the classification scheme.

In addition, it is important to emphasize that the

specific procedure of data augmentation has proven to

play a fundamental role in this process. In our work,

we have used a generic data augmentation to serve uni-

formly for all datasets considered. The fact of consider-

ing task-dependent data augmentation is likely to im-

prove the figures attained in this work.
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Fig. 3 Impact of data augmentation during training for MPEG7 and CIFAR10 datasets.

5.1 Statistical significance tests

Previous section presented the average figures obtained

in our experiments. It allowed us to analyze the gen-

eral trend of the study. However, statistical tests are

considered in this section for comparing the results ob-

jectively [8]. Specifically, Wilcoxon signed-rank tests are

used, which allow comparing results obtained by pairs.

To perform these tests, the results obtained in each

folder of the considered datasets are used, amalgamat-

ing the network models.

Table 4 reports the results of such test for the first

experiment, with a significance established to 0.05. The

figures considered for computing the test are those that

represent the best factor of test data augmentation for

each case. Symbol 3 state that the test is significantly

accepted, that is, that the results obtained by the scheme

in the row is significantly better than the ones obtained

by the scheme in the column.

These statistical results clarify the aforementioned

trends. When there is no data augmentation in train-

ing, the data augmentation in prediction is detrimen-

tal (top of the table). Furthermore, it can also be seen

that the augmentation in training effectively improves

the results obtained in any condition (bottom-left of

the table). The most interesting part is that in which

the schemes are compared with augmentation in both

training and prediction (bottom-right): in this case, it

is reflected that the test data augmentation with avg

combination allows a significant improvement with re-

spect to the other schemes. The combination mode also

improves the original results, whereas the combination

max does not imply any significant improvement.

In the second experiment we focused on increasing

the factor of training data augmentation to measure

its impact on the results with a test data augmentation

factor ranging from 1 to 15. Recalling from the previous

section, only avg combination was considered because

of its superior performance against other combinations.

Table 5 reports the statistical tests restricted to the

best value of test data augmentation for each case.

It can be observed that as the factor of training data

augmentation is increased, results are significantly bet-

ter than their peers. In these cases, data augmentation

at prediction time is also always beneficial. It is inter-

esting to observe that even in some cases, test data aug-

mentation significantly outperforms the results against

a higher factor of training data augmentation, as hap-

pens with Ttrain = 10 avg against Ttrain = 15 orig).

6 Conclusions

This paper studies the use of data augmentation at the

time of classification. This strategy consists in consider-

ing the generation of augmented data from a given test

query, whose classification is made with a combination

of the predictions obtained with all the samples (the

original and the generated ones). We present compre-

hensive experimentation with several types of combi-

nations, image datasets, convolutional network models,

and general data augmentation procedures.

Our results show a direct relationship between the

training and test data augmentation. Without the first,

the second seems to be harmful. However, if the same

data augmentation is considered in both cases, the clas-

sification can be improved with respect to the con-

ventional scenario. These results have been validated

through statistical significance tests, thereby demon-
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Ttest

Dataset Ttrain model 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

CIFAR10

0

small 45.63 47.68 47.01 46.21 45.80 45.84 45.41 45.06 45.08 44.95 44.90 44.79 44.95 44.94 44.77 44.82

medium 39.74 41.58 42.45 41.93 41.77 41.54 41.11 41.01 41.03 40.92 40.80 40.74 40.48 40.60 40.48 40.44

advanced 37.94 39.52 39.62 39.50 39.60 39.35 39.15 39.00 38.93 38.90 38.49 38.32 38.51 38.52 38.35 38.41

5

small 39.33 38.99 39.24 38.63 38.68 38.15 38.24 37.76 37.59 37.29 37.26 37.20 36.98 36.83 36.98 36.96

medium 33.59 33.16 33.06 32.21 32.04 31.82 31.61 31.50 31.24 31.40 31.09 31.03 30.67 30.51 30.38 30.59

advanced 33.17 33.36 32.89 32.22 32.28 31.97 31.62 31.71 31.34 31.59 31.45 31.31 31.30 31.32 31.27 31.14

10

small 37.56 37.76 37.53 37.22 37.05 36.92 36.79 36.57 36.21 36.49 36.42 36.47 36.35 36.38 36.20 36.17

medium 31.09 30.57 30.51 29.89 29.08 29.05 28.55 28.66 28.65 28.40 28.23 28.47 28.23 28.30 28.31 28.37

advanced 31.72 31.71 31.41 31.11 30.63 30.55 29.96 29.88 29.80 29.80 29.69 29.67 29.70 29.59 29.53 29.43

15

small 38.13 37.70 37.71 37.47 36.89 36.65 36.71 36.67 36.51 36.60 36.61 36.57 36.67 36.61 36.67 36.77

medium 30.37 29.85 29.56 29.12 29.01 28.76 28.35 28.06 28.10 28.07 27.87 28.08 27.91 27.88 27.70 27.73

advanced 31.87 31.35 30.98 30.64 30.36 30.01 29.96 30.30 29.98 30.01 29.86 29.89 29.83 29.75 29.64 29.60

MPEG7

0

small 17.07 18.57 24.93 30.93 34.79 37.64 39.28 40.29 41.07 40.79 41.57 42.07 41.64 41.71 42.07 41.86

medium 20.21 22.07 24.93 26.71 28.07 29.72 30.57 30.93 31.43 31.78 32.14 32.93 33.14 32.79 33.00 32.21

advanced 15.64 20.00 28.29 32.14 33.00 33.14 33.43 33.21 34.00 34.50 34.64 33.79 34.14 34.36 35.22 34.86

5

small 13.00 14.22 16.36 15.00 15.00 14.71 14.71 15.00 15.14 15.00 15.28 14.86 15.00 15.07 15.00 15.14

medium 11.07 11.72 12.64 12.14 11.86 12.22 12.14 11.21 11.14 11.07 11.29 11.14 11.21 11.07 11.21 11.00

advanced 9.86 10.79 10.93 10.50 10.86 10.22 10.64 10.57 9.93 9.86 10.00 9.64 9.57 9.07 8.93 9.29

10

small 11.50 13.21 13.07 13.07 12.71 12.43 13.14 12.86 12.93 12.79 12.93 12.14 12.36 12.72 12.21 11.78

medium 9.00 9.00 9.07 9.07 8.78 8.57 8.57 8.71 8.57 8.50 8.72 8.07 8.22 8.21 8.14 8.21

advanced 7.43 8.07 7.43 7.07 7.29 7.00 7.57 7.07 7.07 6.78 6.64 6.71 6.43 6.64 6.21 6.50

15

small 10.57 11.07 11.43 10.93 10.72 10.79 10.43 10.36 10.21 10.64 10.64 10.64 10.36 10.36 10.36 10.50

medium 7.50 7.64 7.21 7.00 6.50 6.64 6.93 6.64 6.29 6.50 6.64 6.71 6.57 6.72 6.79 6.79

advanced 7.14 7.24 7.21 7.22 6.57 6.57 6.71 6.57 6.57 7.14 7.07 6.64 6.57 6.29 6.14 6.21

Table 3 Mean error rate over a 5-fold cross validation for CIFAR10 and MPEG7 datasets. Ttrain indicates the data augmen-
tation factor during training; Ttest indicates data augmentation factor during test. Column Ttest = 0 means that no data
augmentation at test is performed. In all figures, the ensemble decision is avg.

Ttrain = 0 Ttrain = 5
orig avg max mode orig avg max mode

orig - 3 3 3
avg - 3 3
max - 3

Ttrain = 0

mode -
orig 3 3 3 3 -
avg 3 3 3 3 3 - 3 3
max 3 3 3 3 -

Ttrain = 5

mode 3 3 3 3 3 3 -

Table 4 Statistical significance tests with the results of the first experiment. Symbol 3 states that the test is significantly
accepted (the scheme in the row improves the scheme in the column). Significance has been set to p < 0.05.

strating that the approach considered is generally ben-

eficial.

In this sense, it has been reported that the most

suitable combination is a weighted vote of each predic-

tion (avg) and that improvements are not obtained if

the augmentation factor in test is low (less than 8 in

our experiments). However, the classification error de-

creases in most of the cases, in a percentage dependent

on the dataset and the network model used.

As a significant result, this scheme allows decreasing

the error from 30.37 to 27.70 in CIFAR10 with the same

neural model. The result is not striking by itself but is

very interesting if considering that this scheme does not



Ensemble classification from deep predictions with test data augmentation 9

small medium advanced

37
38
39
40
41
42
43
44
45
46
47
48

0 2 4 6 8 10 12 14

e
rr
o
r

Ttest

Train augmentation of 0

30
31
32
33
34
35
36
37
38
39
40

0 2 4 6 8 10 12 14

e
rr
o
r

Ttest

Train augmentation of 5

28
29
30
31
32
33
34
35
36
37
38

0 2 4 6 8 10 12 14

e
rr
o
r

Ttest

Train augmentation of 10

26

28

30

32

34

36

38

40

0 2 4 6 8 10 12 14

e
rr
o
r

Ttest

Train augmentation of 15

Fig. 4 Error rate obtained in CIFAR10 for each network model and data augmentation factor in training with respect to data
augmentation factor in test (avg strategy).

require any new element, only what is available in the

original scenario.

The future line of work is aimed at performing the

whole process in a smart way to improve both effi-

ciency and effectiveness. In this work, all original sam-

ples are augmented the same number of times using the

same transformations. It would be interesting to infer

in which cases it is worth doing test data augmentation.
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