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Abstract A growing concern about the environmen-
tal impact of manufacturing processes and in partic-

ular, the associated energy consumption, has recently
driven some researchers within the scheduling commu-
nity to consider energy costs in addition to more tradi-

tional performance-related measures, such as satisfac-
tion of due-date commitments. Recent research is also
devoted to narrowing the gap between real-world ap-
plications and academic problems by handling uncer-

tainty in some input data. In this paper we address the
job shop scheduling problem, a well-known hard prob-
lem with many applications, using fuzzy sets to model

uncertainty in processing times and with the target of
finding solutions that perform well with respect to both
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due-date fulfilment and energy efficiency. The resulting
multiobjective problem is solved using an evolutionary

algorithm based on the NSGA-II procedure, where the
decoding operator incorporates a new heuristic proce-
dure in order to improve the solutions’ energy consump-

tion. This heuristic is based on a theoretical analysis
of the changes in energy consumption when a solution
is subject to slight changes, referred to as local right

shifts. The experimental results support the theoretical
study and show the potential of the proposal.

Keywords job shop scheduling · fuzzy durations ·
multiobjective · due dates · energy efficiency · genetic

algorithm

1 Introduction

Scheduling problems appear in a growing number of
domains, including engineering, management science or
distributed and parallel computing. One of the most rel-
evant problems is the job shop problem in its numerous
variants, since it is considered to be a reference for many
practical applications (e.g. wafer fabs in the semicon-
ductor industry often function as job shops) (Jain and
Meeran 1999; Pinedo 2016). It also poses a challenge to
the research community due to its complexity (Garey
and Johnson 1979).

The most common objective in the literature con-
sists in finding solutions minimising the execution time
span of the project, known as makespan. However, due-
date satisfaction has also occupied researchers (Koula-

mas 1994) and its interest is growing in recent years
as on-time fulfilment gains importance in modern pull-
oriented supply chain systems, and keeping job due
dates is a prerequisite for serving customers within the
promised delivery time and avoiding out-of-stocks costs
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(González et al. 2012; González and Vela 2015; Kuhp-

fahl and Bierwirth 2016). The use of due-date satis-

faction measures such as the total weighted tardiness

(TWT) in production scheduling helps the companies

in increasing their logistic service and creating compet-

itive advantage.

More recently, the growing environmental awareness

translates into concerns about the carbon footprint of

every industrial process. In this new context, produc-

tion scheduling can play a key role in reducing the en-

ergy consumption of factories and industrial plants or

the use of fossile fuels in hybrid production systems

by incorporating energy efficiency to the range of ob-

jectives under consideration (Tian et al. 2015; Zhang

and Chiong 2016; Paolucci et al. 2017). In particular,

for those production systems where machines cannot be

completely turned off during idle periods (since restart-

ing them may require a high energy consumption, or the

frequent turn on and off may damage the machines),

the stand-by energy consumption incurred by idle ma-

chines constitutes an energy cost that should be min-

imised (Liu et al. 2014).

Mainstream approaches usually assume that sched-

uling problems are deterministic; in particular, it is as-

sumed that all activity durations are precisely known

in advance and do not change as the solution is being

executed. Still, in many real-world applications design

variables are subject to perturbations or changes, caus-

ing optimal solutions to the original problem to be of

little or no use in practice (Herroelen and Leus 2005;

Aytung et al. 2005). This is why there exists an increas-

ing interest on taking into consideration uncertainty

in some of the input variables. To this end, fuzzy sets

provide an interesting framework to tackle uncertainty

in scheduling (Dubois et al. 2003). In particular, the

fuzzy job shop problem, a job shop with uncertain du-

rations modelled using fuzzy numbers, has received in-

creasing attention during the last years (Abdullah and

Abdolrazzagh-Nezhad 2014; Palacios et al. 2016).

In the following, we consider a multiobjective fuzzy

job shop problem with two different (possibly conflict-

ing) objectives: the total weighted tardiness, related to

due-date satisfaction, and the total non-processing en-

ergy, related to energy costs. The simultaneous minimi-

sation of both objectives has been the goal of several

recent contributions (Firas and Denis 2015; González

et al. 2017; Liu et al. 2016; Zhang and Chiong 2016).

Most of these propose successful solving methods based

on the well-known multiobjective genetic algorithm tem-

plate NSGA-II (Deb 2014). However, ideal conditions

are assumed and no uncertainty is taken into account.

We thus propose to advance in this line of research by

incorporating uncertainty in processing times. To this

end, we first extend the existing definition of the to-

tal non-processing energy, to the fuzzy context. Then,

we propose a new powerful decoding algorithm to be

used in the NSGA-II specific for this problem. The pro-

posal is based on a theoretical study of the behaviour of

schedules in terms of fuzzy total non-processing energy

consumption when they are subject to slight changes in

activity starting times.

The remaining of this paper is organised as follows.

After introducing some preliminary concepts in Sec-

tion 2, a formal statement of the multiobjective problem

is given in Section 3, with a novel definition of the non-

processing energy function adapted to the fuzzy con-

text. Section 4 presents a theoretical analysis of how

tasks in a given schedule can be right-shifted without

increasing the non-processing energy. This provides the

basis for the solving method proposed in Section 5,

a multiobjective evolutionary algorithm that incorpo-

rates a novel heuristic strategy to reduce the non-processing

energy in a schedule without affecting the total weighted

tardiness. Finally, Section 6 reports experimental re-

sults to empirically evaluate the contribution of the

proposed heuristic and provides results on a new set of

benchmark instances for future reference. Finally, some

remarks and conclusions are drawn in Section 7.

2 Preliminaries

2.1 Multi-objective optimisation

A multi-objective optimisation problem is an optimisa-

tion problem considering multiple objective functions

f1, . . . , fG, G ≥ 2. Besides the usual decision variable
space X of feasible solutions there exists an additional

space called the objective space Z, so every solution

x ∈ X is associated to an objective vector z = f(x) =

(f1(x), . . . , fG(x)) ∈ Z. It is usually understood that

Z ⊆ RG, that is, fk associates to each decision variable

x a value fk(x) ∈ R. It suffices however that fk(x) is

in a totally ordered set 〈L,≤L〉, so fk induces a com-

plete pre-order ≤k (a complete, reflexive and transi-

tive relation) in the set of decision variables defined by

x ≤k y if and only if fk(x) ≤L fk(y). Given this map-

ping f : X → Z, solutions in X may be compared in

terms of some ordering relation in the objective space

Z, most commonly, a Pareto order.

In a minimisation problem, the objective is to min-

imise f(x) subject to x ∈ X. Let x,y ∈ X be two fea-

sible solutions; in a minimisation context, x is said to

dominate y, denoted x ≺ y, iff ∀k = 1, . . . , G, fk(x) ≤
fk(y) and there exists at least one objective k∗, 1 ≤
k∗ ≤ G, such that fk∗(x) < fk∗(y). In other words, x

is no worse than y in all objectives and is strictly better
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in at least one of them. We also say that x is preferred

to y or non-dominated by y and that y is dominated

by x. A solution x∗ ∈ X is Pareto-optimal if it is non-

dominated by any other solution, that is, there exists

no other solution x ∈ X such that x ≺ x∗. The set of

Pareto-optimal solutions receives the name of Pareto-

optimal set or Pareto set in short, and its mapping in

the objective space is called Pareto front.

2.2 The job shop problem

The classical job shop scheduling problem, or JSP in

short, consists in scheduling a set of jobs {J1, . . . , Jn} on

a set of physical resources or machines {M1, . . . ,Mm},
subject to a set of constraints. There are precedence con-

straints, so each job Jj , j = 1, . . . , n, consists of mj ≤ m
tasks (o(j, 1), . . . , o(j,mj)) to be sequentially scheduled.

There are also resource constraints, whereby each task

o(j, l) requires the uninterrupted and exclusive use of a

machine νo(j,l) ∈M for its whole processing time po(j,l).

We assume w.l.o.g. that tasks are indexed from 1 to

N =
∑n
j=1mj , so we can refer to a task o(j, l) by its

index o =
∑j−1
i=1 mi + l and simply write νo, po to refer

to its machine and processing time. The set of all tasks

is denoted O = {0, . . . , N}, where 0 is an initial dummy

task with zero processing time that precedes the first

task of each job (i.e. o(j, 0) = 0,∀j = 1, . . . , n)).

Additionally, each job Jj has a due date dj , that is,

a time by which it is desirable that the job be completed

and a weight wj representing its relevance. Finally, in

an energy-aware context, we follow (Liu et al. 2014) and

assume that the energy consumption per time unit of

a machine Mk while it is idle is given by its idle power

level P idlek .

A solution to this problem is a schedule, i.e. an al-

location of starting times for each task, which, besides

being feasible (in the sense that all precedence and re-

source constraints hold), is optimal according to some

criteria, in our case, reducing due-date violation and

energy consumption.

2.3 Fuzzy durations

In real-life applications, the exact processing time of a

task is rarely known in advance. It is reasonable how-

ever to have some (uncertain) knowledge about the

duration, possibly based on previous experience. The

crudest representation of such uncertain knowledge would

be a human-originated confidence interval and, if some

values appear to be more plausible than others, then

a natural extension is a fuzzy interval or fuzzy num-

ber. The simplest model is a triangular fuzzy number

or TFN, denoted â = (a1, a2, a3), given by an inter-

val [a1, a3] of possible values and a modal value a2 ∈
[a1, a3]. Its membership function takes the following tri-

angular shape:

µâ(x) =


x−a1
a2−a1 : a1 ≤ x ≤ a2
x−a3
a2−a3 : a2 < x ≤ a3

0 : x < a1 or a3 < x.

(1)

Triangular fuzzy numbers (or, more generally, fuzzy in-

tervals) are widely used in scheduling as a model for un-

certain processing times (Abdullah and Abdolrazzagh-

Nezhad 2014; Dubois et al. 2003; Palacios et al. 2016).

The job shop problem requires four operations on

TFNs: addition, substraction, product by a constant

and the maximum. These are usually defined by ex-

tending the corresponding operations on real numbers

using the Extension Principle, so for any pair of TFNs

â and b̂ and for any r ∈ R, the first three operations

can be expressed as follows:

â+ b̂ = (a1 + b1, a2 + b2, a3 + b3). (2)

â− b̂ = (a1 − b3, a2 − b2, a3 − b1). (3)

râ = (ra1, ra2, ra3). (4)

Obviously, the above operations are also applicable in

the case where either â or b̂ are in fact real numbers

(â = (a, a, a) or b̂ = (b, b, b)) and subsume the usual

arithmetic operations for real numbers.

Unfortunately, computing the extended maximum is

not that simple and the set of TFNs is not even closed

under this operation. Hence, it is common in the fuzzy

scheduling literature to approximate the maximum of

two TFNs component-wise:

max(â, b̂) ≈ (max(a1, b1),max(a2, b2),max(a3, b3)).

(5)

Besides its extended use, several arguments can be given

in favour of this approximation (cf. (Palacios et al.

2016)).

The membership function µâ of a fuzzy time â may

be interpreted as a possibility distribution on the real

numbers (Dubois and Prade 2000), representing the set

of more or less plausible, mutually exclusive values of a

variable a (in our case, the underlying uncertain time).

Since a degree of possibility can be viewed as an up-

per bound of a degree of probability, µâ also encodes a

whole family of probability distributions. This allows to

define the expected value of a TFN â (Heilpern 1992):

E[â] =
1

4
(a1 + 2a2 + a3). (6)
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The expected value is linear and it induces a total or-

dering ≤E in the set of TFNs (Fortemps and Roubens

1996), so for any two TFNs â, b̂, â ≤E b̂ if and only if

E[â] ≤ E [̂b]. Clearly, if ∀i ∈ 1, 2, 3, ai ≤ bi, then â ≤E b̂.

3 Problem formulation

In this work we address a job shop scheduling problem

with fuzzy durations (fuzzy JSP or FJSP in short) with

the aim of finding a solution that is efficient in terms

of energy consumption and, at the same time, respects

due dates as much as possible. Hence, we consider two

(perhaps conflicting) objectives: minimise due-date vi-

olation and minimise energy-consumption.

A schedule s can be determined by a partial task

processing order on all machines, which may be rep-

resented by a linear processing order σ. Such sched-

ule (starting and, consequently, completion times of all

tasks) may be easily computed based on σ using a semi-

active schedule builder (Palacios et al. 2014). For every

task o 6= 0 with processing time p̂o, let PMo(σ) denote

the task preceding o in the machine sequence provided

by σ and let PJo denote its predecessor in the job se-

quence (for o = o(j, l), PJo = o(j, l − 1)). The earliest

feasible starting time of o, ŝo(σ), and corresponding

completion time ĉo(σ) are TFNs given by:

ŝo(σ) = max(ĉPJo , ĉPMo(σ)) (7)

ĉo(σ) = ŝo(σ) + p̂o (8)

with ŝo(σ) = ĉo(σ) = (0, 0, 0) if o = 0.

The completion time of each job Jj in the resulting

schedule s is the completion time of the last task in

that job, given by:

Ĉj(s) = ĉo(j,mj)(σ). (9)

The resulting schedule s is fuzzy in the sense that

the starting and completion times of all tasks are fuzzy

numbers, interpreted as possibility distributions on the

values that these times may take. Notice however that

the task processing ordering σ from which the schedule

derives is deterministic; there is no uncertainty regard-

ing the order in which tasks are to be processed.

3.1 Total weighted tardiness

To measure the performance of a schedule s in terms

of due-date violation, it is possible to compute the tar-

diness of each job Jj w.r.t its due date dj , denoted

T̂j(s, dj), measuring the extra time taken to complete

the job after its due date, that is:

T̂j(s, dj) = max{0̂, Ĉj(s)− d̂j}. (10)

The total weighted tardiness for the schedule across all

jobs is then defined as:

T̂WT (s) =

n∑
j=1

wj T̂j(s, dj). (11)

3.2 Energy efficiency

Regarding energy efficiency, we adopt an energy con-

sumption model from Liu et al. (2014), also used in

González et al. (2017). This model assumes that ma-

chines cannot be turned off when idle (for example when

turning on/off takes excessive energy or time) and that

machine power levels remain constant while processing

a task. In consequence, the objective of reducing the

total electricity consumption of a job shop comes down

to reducing the total non-processing energy (NPE), i.e.

the energy consumed when machines are idle (i.e. on,

but not processing any job).

When processing times are deterministic, the NPE

depends on the starting and completion times of the

first and last tasks to be processed in each machine

respectively (cf. (González et al. 2017)). In contrast,

when durations are fuzzy, different non-processing en-

ergy consumptions may be obtained depending not only

on which are the first and last tasks to be processed in

each machine but on the order in which tasks are to

be processed on each machine. A trivial extension of

the original expression for the NPE to the fuzzy frame-

work is therefore not possible. Instead, we propose a

new definition for the fuzzy case in the following.

Let nk be the number of tasks scheduled on machine

Mk and let σk(s) = (0, σ(1, k), . . . , σ(nk, k)) be the pro-

cessing order of tasks in machine k for a schedule s. The

idle time between the q-th and the (q+1)-th tasks pro-

cessed on Mk according to σk(s) is a fuzzy quantity

Îk(s, q, q + 1) measuring the gap between the comple-

tion of task σ(q, k) and the start of task σ(q + 1, k).

Considering that in a feasible schedule the minimum

possible gap has to be zero:

Îk(s, q, q + 1) = max{0̂, ŝσ(q+1,k) − ĉσ(q,k)}. (12)

Notice that for the schedule s to be feasible, the two

consecutive tasks σ(q, k) and σ(q+1, k) in machine Mk

cannot overlap. Given the fuzzy arithmetic introduced

in Section 2.3, this means ciσ(q,k) ≤ siσ(q+1,k) for i =

1, 2, 3. Therefore, we can express the fuzzy idle time

Îk(s, q, q + 1) component-wise as follows:

I1k(s, q, q + 1) = max(0, s1σ(q+1,k) − c
3
σ(q,k)),

I2k(s, q, q + 1) =s2σ(q+1,k) − c
2
σ(q,k), (13)

I3k(s, q, q + 1) =s3σ(q+1,k) − c
1
σ(q,k).
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Clearly, the total idle time for a machine Mk is the sum

of all the idle times between every two consecutive tasks

on that machine and the total non-processing energy is

a TFN defined as:

N̂PE(s) =

m∑
k=1

(
P idlek

nk−1∑
q=1

Îk(s, q, q + 1)

)
(14)

Let us illustrate with an example how, unlike the

crisp case, the NPE value is heavily dependent on the

task processing order and the uncertainty present in the

starting and completion times of every task scheduled

in the machine. Consider a problem with two jobs J1,

J2 and only one task per job, o(1, 1) and o(2, 1), both

requiring the same machine and with processing times

p̂o(1,1) = (3, 3, 3) and p̂o(2,1) = (1, 4, 8). Independently

of the order in which we schedule the tasks, the machine

will start processing tasks at (0,0,0) and it will finish

at (4,7,11). However, if task o(1, 1) is scheduled before

task o(2, 1), then:

ŝo(1,1) =(0, 0, 0),

ĉo(1,1) =ŝo(2,1) = (3, 3, 3), and

ĉo(2,1) =(4, 7, 11).

and therefore

N̂PE(s) =P idle max{(0, 0, 0), ŝo(2,1) − ĉo(1,1)}
=P idle(0, 0, 0) = (0, 0, 0).

On the other hand, if task o(2, 1) is scheduled first, then:

ŝo(2,1) =(0, 0, 0),

ĉo(2,1) =ŝo(1,1) = (1, 4, 8), and

ĉo(1,1) =(4, 7, 11).

and therefore

N̂PE(s) =P idle max{(0, 0, 0), ŝo(1,1) − ĉo(2,1)}
=P idle(0, 0, 7) = (0, 0, 7P idle).

In the first case, there is no uncertainty regarding the

completion time of the first task and, consequently, the

starting time of the next one, so the gap can be exactly

known (in the example, it is zero). On the contrary, in

the second case there is uncertainty regarding when the

first task will finish and also about the starting time of

its successor. Therefore, uncertainty is present in the

idle time between both tasks.

For the sake of simplicity, when no possible confu-

sion is possible regarding the processing order σ or the

schedule s, notation may be simplified by writing ŝo,

Ĉj , T̂j and so on.

3.3 Resulting problem

In summary, we consider a biobjective job shop sched-

uling problem with uncertain task processing times tak-

ing the form of triangular fuzzy numbers where, for any

feasible schedule s, the objective vector is(
T̂WT (s), N̂PE(s)

)
.

The problem can be denoted J |p̂o|
(
T̂WT , N̂PE

)
ac-

cording to the usual α|β|γ notation introduced in Gra-

ham et al. (1979).

Notice that each of the objective values T̂WT (s)

and N̂PE(s) belongs to the set of TFNs, which is to-

tally ordered under the relation ≤E , as explained in

Section 2.3. Even if the the objective space is not a

subset of R2, the Pareto front (or its approximation

by a solving method) can still be visualised in R2 by

identifying each objective with its expected value.

4 Heuristic reduction of energy consumption

A good knowledge and understanding of subspaces of

schedules is of key importance when designing search

methods, their properties and how to obtain schedules

pertaining to a particular subspace, since it allows to

reduce the search space without risking the possibility

of finding good solutions. Of particular interest is the

subspace of semi-active schedules (Pinedo 2016). These

are feasible schedules such that no task may start ear-

lier without changing the processing order on any of the

machines. It is common practice to restrict the search

of an optimal solution to this subspace, since it is guar-

anteed to contain an optimal solution for any regular

performance measure, that is, any measure that is non-

decreasing w.r.t. job completion times. In particular,

the TWT is a regular performance measure. In conse-

quence, to minimise TWT it suffices to consider semi-

active schedules. This is still the case for semi-active

fuzzy schedules (Palacios et al. 2014), which can be ob-

tained from a task processing order as explained in Sec-

tion 3.

On the contrary, the NPE (both the deterministic

and fuzzy version) is a non-regular performance mea-

sure. For instance, it can increase if we decrease the

starting time of the first task in a machine while main-

taining all other tasks (hence, job completion times) un-

changed. In (González et al. 2017) it is proposed to use

a post-optimisation procedure to improve the energy-

consumption of semi-active schedules in a deterministic

setting. This procedure is not directly applicable to the

fuzzy problem, but it inspires the following study on
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how idle times and the associated N̂PE value can be

reduced in a fuzzy schedule. To this end, we introduce

the concept of local right shift, intuitively, a change

consisting in “moving a task block to the right on the

Gantt chart while preserving the task sequence”. It is

a move inspired in the left-shift used by Sprecher et al.

(1995) to formally define to formally define semi-active

schedules for the deterministic RCSP, later adapted to

the job shop with setup times in Artigues et al. (2005)

and to the fuzzy job shop in Palacios et al. (2014).

Definition 1 Let s be a feasible schedule. A one-period

local right shift of a task o in s is a move giving another

feasible schedule s′ such that

∃i ∈ {1, 2, 3} : s′io = sio + 1, s′jo = sjo ∀j 6= i

s′u = su∀u ∈ O − {o}.
(15)

A local right shift of a task o is one or more successfully

applied one-period local right shifts of task o.

Intuitively, a one-period right shift of o consists in de-

laying in one unit one of the components of o’s fuzzy

starting time ŝo without changing the other compo-

nents of ŝo nor changing the starting time of the remain-

ing tasks. A local right shift of o consists in delaying at

least one of (and possibly all) the components of ŝo
without changing the starting times of any of the other

tasks nor changing their relative order in each machine.

Notice that within a local right shift each intermediate

derived schedule has to be feasible by definition.

Let us study how a one-period right shift of a task

affects the N̂PE value. In the following, let s be a fea-

sible schedule and let σk(s) = (0, σ(1, k), . . . , σ(nk, k))

be the processing order of tasks in machine Mk accord-
ing to s. Let s′ be the schedule that results from a one-

period right shift of task σ(q, k) with q ∈ {1, . . . , nk}
and let i ∈ {1, 2, 3} be the component such that s′iσ(q,k) =

siσ(q,k) + 1.

Lemma 1 If q ∈ {2, . . . , nk − 1}, that is, the task is

neither the first nor the last one in its machine, then:

– if i = 1 and c3σ(q−1,k) > s1σ(q,k), the expected value

of N̂PE decreases:

E[N̂PE(s′)] = E[N̂PE(s)]− 1

4
P idlek ;

– if i = 3 and c3σ(q,k) ≥ s1σ(q+1,k), the expected value

of N̂PE increases:

E[N̂PE(s′)] = E[N̂PE(s)] +
1

4
P idlek ;

– in all other cases, E[N̂PE] does not change.

Proof Notice that, from all the elements contributing

to the total non-processing energy in (14), only Î(s, q−
1, q) and Î(s, q, q+1), the idle gaps between σ(q, k) and

its preceding and succeeding tasks in the machine may

change after the one-period right shift of σ(q, k). Let us

see, according to (13), how these idle gaps change de-

pending on the component where the one-period right

shift takes place.

Case i = 1.

I3(s′, q, q + 1) = I3(s, q, q + 1)− 1,

while the other components of this gap do not change.

Hence,

E[Î(s′, q, q + 1)] = E[Î(s, q, q + 1)]− 1

4
.

If c3σ(q−1,k) > s1σ(q,k), then c3σ(q−1,k) ≥ s′1σ(q,k) and it

follows that

I1(s′, q − 1, q) = I1(s, q − 1, q) = 0

while the other components remain unchanged. Hence,

E[Î(s′, q − 1, q)] = E[Î(s, q − 1, q)] = 0

and, thanks to the linearity of the expected value

E[N̂PE(s′)] = E[N̂PE(s)]− 1

4
P idlek .

If c3σ(q−1,k) = s1σ(q,k), then c3σ(q−1,k) < s′1σ(q,k), so

I1(s, q − 1, q) = 0 and I1(s′, q − 1, q) = 1 while the

other components remain unchanged. Hence,

E[Î(s′, q − 1, q)] = E[Î(s, q − 1, q)] +
1

4

and

E[N̂PE(s′)] = E[N̂PE(s)].

Finally, if c3σ(q−1,k) < s1σ(q,k), it is also the case that

c3σ(q−1,k) < s′1σ(q,k), so

I1(s′, q − 1, q) = I1(s, q − 1, q) + 1,

while the other components do not change and, follow-

ing the same reasoning as above,

E[N̂PE(s′)] = E[N̂PE(s)].

Case i = 2. In this case

I2(s′, q, q + 1) = I2(s, q, q + 1)− 1

and

I2(s′, q − 1, q) = I2(s, q − 1, q) + 1,

while the other components do not change, so

E[N̂PE(s′)] = E[N̂PE(s)].
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Case i = 3.

I3(s′, q − 1, q) = I3(s, q − 1, q) + 1,

while the other components of this gap do not change.

If c3σ(q,k) < s1σ(q+1,k), we have

I1(s′, q, q + 1) = I1(s, q, q + 1)− 1

and the other components of the gap do not change.

Thus

E[N̂PE(s′)] = E[N̂PE(s)].

If c3σ(q,k) ≥ s
1
σ(q+1,k), we have

I1(s, q, q + 1) = I1(s′, q, q + 1) = 0

and its other components do not change, so

E[N̂PE(s′)] = E[N̂PE(s)] +
1

4
P idlek .

ut

Lemma 2 A 1-period right shift of the first task on a

machine (q = 1) always decreases the expected NPE

E[N̂PE(s′)] = E[N̂PE(s)]− 1

4
P idlek

except when i = 3 and c3σ(1,k) ≥ s1σ(2,k), in which case

it remains unchanged.

A 1-period right shift of the last task (q = nk) always

increases the expected NPE

E[N̂PE(s′)] = E[N̂PE(s)] +
1

4
P idlek

except when i = 1 and c3σ(nk−1,k) > s1σ(nk,k), in which

case it remains unchanged.

Proof For the first task, q = 1, it suffices to realise that

only Î(s, q, q + 1) changes in the NPE expression (14)

and proceed as in the proof of Lemma 1.

For the last task, q = nk, Î(s, q − 1, q) is the only

idle gap that changes. Reasoning as in Lemma 1, we

obtain the result. ut

The above indicates which is the largest local right

shift of a task that does not increase E[N̂PE] and is not

infeasible in the sense that it does not produce overlaps

with the successor in the machine or the job.

Proposition 1 Let SJσ(q,k) denote the successor of task

σ(q, k) in its job and let

lsM i
σ(q,k) = siσ(q+1,k) − p

i
σ(q,k), i = 1, 2, 3 (16)

be the ith component of the latest possible starting time

of σ(q, k) satisfying machine feasibility and

lsJ iσ(q,k) = siSJσ(q,k) − p
i
σ(q,k), i = 1, 2, 3 (17)

be the ith component of the latest possible starting time

of σ(q, k) satisfying job precedence constraints. Then,

the latest possible starting time for σ(q, k) obtained with

a local right-shift of itself that is non-increasing in E[N̂PE]

is given by the following:

– For q = 1:

s′3σ(1,k) = min{lsM3
σ(1,k), lsJ

3
σ(1,k)}

s′2σ(1,k) = min{s′3σ(1,k), lsM
2
σ(1,k), lsJ

2
σ(1,k)} (18)

s′1σ(1,k) = min{s′2σ(1,k), lsM
1
σ(1,k), lsJ

1
σ(1,k)}

– For q ∈ {2, . . . , nk − 1}:

s′3σ(q,k) = min{max{s3σ(q,k), s
1
σ(q+1,k) − p

3
σ(q,k)},

lsJ3
σ(q,k)}

s′2σ(q,k) = min{s′3σ(q,k), lsM
2
σ(q,k), lsJ

2
σ(q,k)} (19)

s′1σ(q,k) = min{s′2σ(q,k), lsM
1
σ(q,k), lsJ

1
σ(q,k)}

– For q = nk:

s′3σ(nk,k) = s3σ(nk,k)

s′2σ(nk,k) = s2σ(nk,k) (20)

s′1σ(nk,k) = max{s1σ(nk,k),min{c3σ(nk−1,k), s
′2
σ(nk,k)

}}

Proof For a local right shift of σ(q, k) to be feasible, it

must hold:

s′iσ(q,k) ≤ lsM
i
σ(q,k),∀i ∈ {1, 2, 3}

s′iσ(q,k) ≤ lsJ
i
σ(q,k),∀i ∈ {1, 2, 3}

s′1σ(q,k) ≤ s
′2
σ(q,k) ≤ s

′3
σ(q,k)

The first inequality preserves feasibility in the machine,

the second one in the job and the third one ensures

that the resulting starting time is a TFN. Applying

Lemmas 1 and 2, we get the expressions for the latest

possible starting time obtained with a local right-shift

not increasing E[N̂PE]. ut

5 Multi-objective genetic algorithm

The most extended and well-known method for solv-

ing multi-objective problems is the procedure known

as non-dominated sorting genetic algorithm NSGA-II

(Deb et al. 2002). Roughly speaking, this is a genetic

algorithm (GA) emphasising the non-dominated solu-

tions using an elitist principle together with an explicit

diversity preserving mechanism.

The algorithm starts from a random initial popu-

lation P0. This population is then evaluated and the

algorithm iterates over a number of generations, keep-

ing the set of non-dominated solutions found so far,
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Require: An FJSP instance
Ensure: A schedule

Best← ∅
Generate a pool P0 of random solutions.
Evaluate P0

i← 0
while i < maxMOEA do

Off(Pi)← ∅
while |Off(Pi)| < |Pi| do
{z1, z2} ← Select two individuals from Pi
{z′1, z′2} ← Apply recombination to {z1, z2}
Off(Pi)← Off(Pi) ∪ {z′1, z′2}

Evaluate Off(Pi);
Pi+1 ← Apply crowded tournament to Pi ∪Off(Pi);
Update Best with the non-dominated solutions in Pi+1

if Best remains unchanged then

i← i + 1;
else

i← 0;
return Best

Fig. 1: Main steps of the multiobjective evolutionary

algorithm

which approximates the Pareto set. At each iteration i,

a new population Off(Pi) is built from the current one

Pi by applying the genetic operators of selection and

recombination, and such that |Off(Pi)| = |Pi|. In this

work, the selection is performed with random pairs and

the GOX crossover and inversion mutation operators

are used for recombination, which have proved to per-

form very well in multiobjective FJSP problems (Pala-

cios et al. 2017). The next generation Pi+1 is obtained

from Off(Pi) ∪ Pi using the crowded tournament selec-

tion operator from (Deb et al. 2002) as follows. After

initialising Pi+1 = ∅, the non-dominated solutions from

Off(Pi) ∪ Pi are added to Pi+1. If they are less than

|Pi|, these solutions are removed from Off(Pi)∪Pi and

the process is repeated with the remaining ones until

|Pi+1| = |Pi|. If the size of Pi+1 exceeds |Pi|, a crowd-

ing distance criterion is applied to filter out the least

diverse solutions from the last set of solutions added to

Pi+1. Finally, the algorithm stops if the approach to the

Pareto set remains constant for maxMOEA consecutive

iterations. A pseudocode description of the multiobjec-

tive evolutionary algorithm can be found in Fig. 1

The problem-specific parts of the NSGA-II proce-

dure are the coding and the decoding and evaluation.

For our problem, the genotype codifies a solution as a

permutation with repetitions, as introduced in (Bier-

wirth 1995). This is a permutation of the set of tasks,

where each task o(j, l) is represented by its job number

j. For example, for a problem with 3 jobs:

J1 = {o(1, 1), o(1, 2)},
J2 = {o(2, 1), o(2, 2), o(2, 3)},
J3 = {o(3, 1), o(3, 2), o(3, 3)},

a topological order of tasks σ = (o(2, 1), o(1, 1), o(2, 2),

o(3, 1), o(2, 3), o(3, 2), o(3, 3), o(1, 2)) is codified by the

sequence xσ = (2, 1, 2, 3, 2, 3, 3, 1). This coding scheme

covers all feasible schedules and no unfeasible one.

During the evaluation phase, every chromosome is

decoded by generating an associated schedule and then

the vector of fitness values (T̂WT , N̂PE) is computed.

Based on the results from Section 4 we propose a de-

coding strategy consisting of two steps. First, a semi-

active schedule is built from the task order encoded in

the chromosome x as explained in Section 3. Thus we

search in the subspace of semi-active schedules, which

is dominant for T̂WT . Second, local right shifts that

are non-increasing in E[N̂PE] are applied to tasks in

the resulting schedule taking care not to deteriorate the

other performance measure (i.e. T̂WT ). To this end, the

last task of each job is not right-shifted if that leads to

an increase on the total weighted tardiness. The remain-

ing tasks are right-shifted in inverse topological order

following Proposition 1. By doing this, E[N̂PE] is likely

to decrease (and will never increase) and, at the same

time, T̂WT will not change. We shall refer to this strat-

egy as Heuristic Reduction of Energy Consumption, or

HREC for short. The detailed heuristic decoding proce-

dure can be seen in Fig. 2. Here, SemiactiveSGS refers to

the procedure that produces a fuzzy semi-active sched-

ule from a task order as explained in Section 3 and SMo

denotes the successor of task o in the machine sequence.

Require: a fuzzy JSP P , a chromosome x
Ensure: a schedule s′ for problem P

s = SemiactiveSGS(P,x)
θ is the array of tasks codified by s
while θ is not empty do

remove o the last task in θ
if o is the last task scheduled in a machine then

ŝ′o = ŝo
else {not the last task in a machine}

if o is the last task of a job j then
tJio = max{dj − pio, s

i
o}, i = 1, 2, 3

else {not the last task of a job}
tJio = lsJio, i = 1, 2, 3

if o is the first task scheduled in a machine then

s′3o = min{lsM3
o , tJ

3
o }

else {not the first task in a machine}
s′3o = min{max{s′3o , s1SMo − p3o}, tJ3

o }
s′2o = min{s′3o , lsM2

o , tJ
2
o }

s′1o = min{s′2o , lsM1
o , tJ

1
o }

return the schedule s′;

Fig. 2: Decoding procedure HREC to generate a sched-

ule from a chromosome
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6 Experimental study

The main purpose of provide an empirical assessment of

the proposed decoding algorithm. To this end, we shall

compare two versions of NSGA-II, one using HREC to

decode chromosomes and the other one using simply

SemiactiveSGS to obtain semi-active fuzzy schedules. In

the sequel, we shall refer to these variants of NSGA-II

as MO-HREC and MO-SA respectively.

6.1 Problem instances

Similar works for deterministic biobjective job shop with

TWT and NPE such us (Liu et al. 2014; González et al.

2017) conduct experiments on the well-known instance

FT10. We follow these works using FT10 but we also

consider the other two instances FT06 (6 jobs and 6

machines) and FT20 (20 jobs and 5 machines) in the

set. This should provide us with a more thorough and

varied set of experimental results. Obviously, the origi-

nal instances need to be modified to incorporate fuzzy

durations, machine idle power consumption values, job

weights and due dates.

Regarding fuzzy durations, we use the fuzzy ver-

sions of these instances FTF06, FTF10 and FTF20 from

(Palacios et al. 2016). They were are obtained following

a fuzzification process, originally proposed by Fortemps

(1997) for trapezoidal fuzzy numbers, so the original

crisp processing time po of a task o coincides with the

modal value p2o of the fuzzy processing time p̂o as well

as with its expected value E[p̂o].

Machine idle power consumption levels P idlek are

those proposed by Liu et al. (2014) and used in González

et al. (2017). This is also the case for job weights for

FTF10. For the remaining instances, we follow a stan-

dard procedure from the literature (Singer and Pinedo

1998): the first 20% of jobs in the problem instance get

a weight of 4, the next 60% get a weight of 2, and the

final 20% get a weight of 1.

To obtain due dates, we also follow Singer and Pinedo

(1998), with a slight modification to account for the fact

that processing times are fuzzy, so dj = k
∑mj
l=1 p

2
o(j,l)

where k, taking values in {1.5, 1.6, 1.7, 1.8} is a tight-

ness factor. This expression, used for the first time by

Palacios and Derbel (2015), actually yields the same

due date values as in the deterministic setting (since

the modal value for the fuzzy duration coincides with

the original processing time) and is pretty natural. In

a deterministic setting, the sum of the processing times

of all operations in a job provides a lower bound of the

job’s completion time, so the due date is obtained by

multiplying this lower bound by a tightness factor. In

the fuzzy setting, since p2ij = E[p̂ij ], by linearity of the

expected value,
∑mj
l=1 p

2
o(j,l) = E[

∑mj
l=1 p̂o(j,l)] ≤ E[Ĉj ]

also provides a lower bound for the expected job com-

pletion time and dj is simply the result of multiplying

this lower bound by a given tightness factor k. In this

way, 4 different sets of due dates for the jobs (decreas-

ingly tight) are obtained, so a total of 12 instances is

obtained from the original three.

All experiments reported in this section have been

implemented in C++ and run on a PC Intel core i5-

2400 (3,1 Ghz, 6Mb cache).

6.2 Comparison between MO-HREC and MO-SA

The comparison between the two multi-objective algo-

rithms is made in terms of hypervolume (HV ) (Fleis-

cher 2003; Zitzler and Thiele 1998) and the unary ad-

ditive ε indicator (Iε+) (Zitzler et al. 2003). In absence

of the optimal Pareto front, PO∗, we approximate the

reference set RF by the non-dominated elements of the

union of all sets of solutions reached along all the exper-

iments (Talbi 2009). When using these metrics, it is ad-

vised to normalise the values of the objective functions.

Let fi(s) be the value of the i-th objective function for

a solution s ∈ S, its normalised value is the following:

fi(s) =
fi(s)− f−i (S)

f+i (S)− f−i (S)
, (21)

where f−i (S) = min{fi(s) : s ∈ S} is a lower bound

of the objective function fi in the set S, and f+i (S) =

1.05 × max{fi(s) : s ∈ S} is an upper bound thereof.

The correction factor 1.05 helps avoiding null HV val-

ues, which can be troublesome in different cases.

Table 1 summarises the results obtained after 10

runs of both MO-HREC and MO-SA. For each instance,

it shows the average hypervolume (HV ) and ε-indicator

(Iε+) across the 10 sets of non-dominated solutions ob-

tained by each algorithm, with standard deviation val-

ues between brackets. For each instance, a Kolmogorov-

Smirnov test for normality is run over the results of

each algorithm. In case of normality, algorithms are

compared by means of an unpaired t-test, whereas a

Mann-Whitney-U test is used otherwise. In each row,

and for each metric, we highlight in bold those values

that are significantly better than their counterparts ac-

cording to these tests.

We can see that incorporating the HREC strategy

as decoding operator clearly improves the performance

of NSGA-II both in terms of HV and Iε+. In fact, MO-
HREC outperforms MO-SA on every instance, with sta-

tistically significant differences in all cases for HV and

in all but two cases for the Iε+ indicator.
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HV Iε+

Inst. k MO-SA MO-HREC MO-SA MO-HREC

FTF06 1.5 0.895 (0.000) 0.913 (0.001) 0.027 (0.000) 0.002 (0.001)

1.6 0.908 (0.002) 0.924 (0.001) 0.020 (0.000) 0.004 (0.001)

1.7 0.908 (0.000) 0.927 (0.000) 0.021 (0.001) 0.001 (0.001)

1.8 0.913 (0.000) 0.930 (0.000) 0.018 (0.000) 0.000 (0.000)

FTF10 1.5 0.767 (0.014) 0.808 (0.016) 0.049 (0.009) 0.034 (0.013)

1.6 0.783 (0.016) 0.812 (0.016) 0.047 (0.010) 0.039 (0.015)

1.7 0.786 (0.011) 0.829 (0.017) 0.052 (0.008) 0.034 (0.013)

1.8 0.826 (0.018) 0.846 (0.019) 0.046 (0.010) 0.036 (0.015)

FTF20 1.5 0.686 (0.015) 0.724 (0.011) 0.061 (0.009) 0.030 (0.009)

1.6 0.709 (0.011) 0.734 (0.015) 0.049 (0.008) 0.024 (0.008)

1.7 0.715 (0.011) 0.739 (0.009) 0.052 (0.006) 0.033 (0.009)

1.8 0.712 (0.015) 0.749 (0.011) 0.062 (0.011) 0.029 (0.006)

Table 1: Comparison, in terms of HV and the Iε+ values, between MO-SA and MO-HREC.
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Fig. 3: EAF plots comparing NSGA-II using HREC and SA on instance FTF06 (MO-SA - MO-HREC on the left
and MO-HREC - MO-SA on the right).

Figures 3, 4 and 5 further illustrate the comparison

between both algorithms. They depict for all instances

the difference between the empirical attainment func-

tions or EAFs (Grunert da Fonseca et al. 2001) ob-

tained by both algorithms using the visualisation tool

proposed in Lopez-Ibañez et al. (2010) . The EAF plots

show that MO-HREC clearly dominates MO-SA in the

region with lower (better) energy consumption in all

instances with probability close to 1 in some areas for

all instances. Only on some instances (e.g. FTF06 with

k = 1.6, FTF10 with k = 1.8 or FTF20 with k = 1.7)

there is some probability (between 0.2 and 0.4) that

MO-SA dominates MO-HREC in a small region of the

objective space, corresponding to the lowest E[T̂WT ]

values but highest energy costs. On small instances

stemming from FT06 the sets of solutions obtained by

MO-SA are dominated by the solutions obtained by

MO-HREC with a probability very close to 1 in almost

every region. This supports our theoretical analysis,

showing the potential of the heuristic reduction of the

energy without a significant loss of performance in tar-

diness.

7 Conclusions

In this paper we have considered the problem of reduc-

ing energy consumption in job shop scheduling while

keeping a good level of satisfaction in job delivery times.

Since energy awareness is a real concern in many real

projects, we have tried to reduce the gap between aca-

demic and real-world by considering uncertainty in task
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Fig. 4: EAF plots comparing NSGA-II using HREC and SA on instance FTF10 (MO-SA - MO-HREC on the left

and MO-HREC - MO-SA on the right).
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Fig. 5: EAF plots comparing NSGA-II using HREC and SA on instance FTF20 (MO-SA - MO-HREC on the left

and MO-HREC - MO-SA on the right).

processing times, modelled with triangular fuzzy num-

bers. This results in uncertainty both in energy con-

sumption, measured as the Total Non-processing Elec-

tricity Consumption (NPE), and in due-date satisfac-

tion, measured as the Total Weighted Tardiness (TWT).

We have provided a first definition and theoretical study

on the properties of fuzzy NPE. This has allowed us

to propose a schedule generation scheme including a

heuristic reduction of energy consumption (HREC). Ex-

perimental results have shown that including this heuris-

tic strategy in a well-known multi-objective evolution-

ary algorithm such as NSGA-II improves its perfor-

mance with respect of simply using a decoder producing

semi-active schedules. The empirical attainment func-

tions obtained by both versions of NSGA-II indicate

that the sets of solutions obtained using HREC tend to

yield lower energy costs than those obtained using a

fuzzy semi-active scheduler, without significant loss in

quality in terms of due-date satisfaction.
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González MA, Oddi A, Rasconi R (2017) Multi-objective op-
timization in a job shop with energy costs through hy-
brid evolutionary techniques. In: Proceedings of the 27th
International Conference on Automated Planning and
Scheduling (ICAPS-2017), pp 140–148

Graham R, Lawler E, Lenstra J, Rinnooy Kan A (1979) Opti-
mization and approximation in deterministic sequencing
and scheduling: a survey. Annals of Discrete Mathematics
4:287–326

Grunert da Fonseca V, Fonseca CM, Hall AO (2001) In-
ferential performance assessment of stochastic optimis-
ers and the attainment function. In: Zitzler E, Thiele
L, Deb K, Coello Coello CA, Corne D (eds) Evolution-
ary Multi-Criterion Optimization, Springer, pp 213–225,
DOI 10.1007/3-540-44719-9 15

Heilpern S (1992) The expected value of a fuzzy number.
Fuzzy Sets and Systems 47:81–86

Herroelen W, Leus R (2005) Project scheduling under uncer-
tainty: Survey and research potentials. European Journal
of Operational Research 165:289–306

Jain AS, Meeran S (1999) Deterministic job-shop schedul-
ing: Past, present and future. European Journal of Oper-
ational Research 113:390–434

Koulamas C (1994) The total tardiness problem: review and
extensions. Operations Research 42(6):1025–1041, DOI
10.1287/opre.42.6.1025

Kuhpfahl J, Bierwirth C (2016) A study on local search neigh-
bourhoods for the job shop scheduling problem with total
weighted tardiness objective. Computers & Operations
Research 261:44–57

Liu Y, Dong H, Lohse N, Petrovic S, , Gindy N (2014) An in-
vestigation into minimising total energy consumption and
total weighted tardiness in job shops. Journal of Cleaner
Production 65:87–96, DOI 10.1016/j.jclepro.2013.07.060

Liu Y, Dong H, Lohse N, Petrovic S (2016) A multi-objective
genetic algorithm for optimisation of energy consump-
tion and shop floor production performance. International
Journal of Production Economics 179:259–272, DOI
10.1016/j.ijpe.2016.06.019
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Schedule generation schemes for job shop problems with
fuzziness. In: Schaub T, Friedrich G, O’Sullivan B (eds)
Proceedings of ECAI 2014, IOS Press, Frontiers in Arti-



Multi-objective evolutionary algorithm for solving energy-aware fuzzy job shop problems 13

ficial Intelligence and Applications, vol 263, pp 687–692,
DOI 10.3233/978-1-61499-419-0-687

Palacios JJ, Puente J, Vela CR, González-Rodŕıguez I (2016)
Benchmarks for fuzzy job shop problems. Information Sci-
ences 329:736–752, DOI 10.1016/j.ins.2015.09.042
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