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Abstract With the rapid development of digital information, the data volume generated by humans and
machines is growing exponentially. Along with this trend, machine learning algorithms have been formed
and evolved continuously to discover new information and knowledge from different data sources. Learning
algorithms using hyperboxes as fundamental representational and building blocks are a branch of machine
learning methods. These algorithms have enormous potential for high scalability and online adaptation of

predictors built using hyperbox data representations to the dynamically changing environments and stream-
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ing data. This paper aims to give a comprehensive survey of literature on hyperbox-based machine learning
models. In general, according to the architecture and characteristic features of the resulting models, the exist-
ing hyperbox-based learning algorithms may be grouped into three major categories: fuzzy min-max neural
networks, hyperbox-based hybrid models, and other algorithms based on hyperbox representations. Within
each of these groups, this paper shows a brief description of the structure of models, associated learning
algorithms, and an analysis of their advantages and drawbacks. Main applications of these hyperbox-based
models to the real-world problems are also described in this paper. Finally, we discuss some open problems

and identify potential future research directions in this field.

Keywords Hyperboxes - membership function - fuzzy min-max neural network - hybrid classifiers - data

classification - clustering - online learning

1 Introduction

According to Gross (2010), learning is defined as a process of acquiring or changing existing knowledge,
skills, behaviors, or preferences and synthesizing various kinds of information through experience, study, or
being taught. Machine learning is a field of research concerned with the formulation and development of
algorithms which provide the machine with the capability of learning and evolving their behaviors based on
data coming from a variety of sources such as sensors or databases. Mitchell (1997) gave a formal definition
of machine learning algorithms, which are software programs being able to do some tasks T by learning
from experience E and their performance assessed by P. Therefore, when designing a new machine learning
algorithm, one needs to think of what data to collect (E), what decisions the algorithm must generate (T'),

and what metrics are used to assess its performance (P).
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In the era of big data, a question of how we consume different data sources and transform them into
valuable, actionable knowledge has become critically important. Over the last few decades, many data min-
ing methods have been studied and expanded aiming to invent an effective way for discovering meaningful
knowledge and information from raw data. These techniques have contributed to mining diverse patterns
hidden in data repositories (Zakaryazad and Duman, 2016). By comprehending the knowledge underlying
data, one can make important decisions more accurately in numerous fields ranging from business, finance,
medicine to manufacturing sectors. There have been a large number of studies conducted on the subjects of
data mining, data analytics, as well as predictive modeling over the last 50 years with remarkable enhance-
ments of the computing equipment and the algorithms (Gabrys et al, 2005). Within all these studies, many

machine learning algorithms have been developed with an emphasis on pattern clustering and classification.

Most prevalent classes of machine learning techniques for pattern classification are various types of
artificial neural networks (ANNs) (Mukhopadhyay et al, 2002) because of their ability to learn from different
types of input data, immunity to noise, generalization capability, and relatively high accuracy (Kim et al,
2011; Mohammed and Lim, 2017b). It has also been observed that the traditional machine learning models
are trained and their parameters tuned on a given set of training data, and then the best model is deployed
for dealing with specific problems without performing any updates afterward until the maintenance phase
(Fontama et al, 2015). With the exponential growth of digital content and information leading to the rise in
data volume, such conventional batch learning or offline learning techniques face many limitations because
they adapt poorly to the rapid changes of data and suffer from costly re-training when adaptation is needed.
It is desirable to develop robust and scalable machine learning algorithms with the aim of robust adaptation
to evolving data and changing environments. Learning algorithms need to provide the models with the
ability to capture the new features of data in order to reduce the loss of predictive performance. One of the

main issues with respect to the artificial neural networks and conventional classifiers using both incremental
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and batch learning is catastrophic forgetting also known as stability-plasticity dilemma (McCloskey and
Cohen, 1989), which relates to the inability of the classifier to retain previously learnt patterns when new
patterns are absorbed by that classifier (Polikar et al, 2001). Hence, classifiers frequently forget learned
information while learning new information (Grossberg, 2013). To tackle this issue, a classifier has to be
able to remain plastic enough to absorb new information and simultaneously be stable enough to maintain
previously acquired knowledge while learning new information (Grossberg, 2013). Resolving the stability-
plasticity dilemma problem is especially essential when using online-learning for classifiers (McCloskey and

Cohen, 1989; Yang et al, 2004).

In addition to online learning, the effective machine learning model should possess several properties as

follows (Simpson, 1992):

— Non-linear separability: This is ability to construct non-linear class boundaries (Sonule and Shetty, 2017).

— Overlapping region: The model is capable of formulating non-linear decision boundary to minimize the
misclassification error for all overlapping classes.

— Soft and hard decisions: The algorithm should offer both soft and hard decisions. The hard decision
allocates a sample to a single class, while the soft decision outputs the degree-of-fit of that pattern to a
given class.

— Training time: The learning algorithm to train the model should be fast and have the ability to learn
arbitrarily complex class decision boundaries.

— Verification and validation: This property imposes that each machine learning model should have the
mechanisms to verify and validate its performance.

— Adjusting parameters: The model should have as few parameters that need to be adjusted during the

training process as possible.
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Motivated by all the above mentioned issues and desirable properties of the models, machine learning
algorithms based on hyperboxes have been introduced to tackle supervised and unsupervised learning tasks.
Simpson (Simpson, 1992) suggested deploying hyperbox fuzzy sets to generate and store information as
hidden units in the form of neural network architecture. He introduced two kinds of hyperbox-based fuzzy
min-max neural networks, one supervised learning technique for sample classification (Simpson, 1992) and
one model for data clustering (Simpson, 1993). The fuzzy min-max neural network (FMNN) possesses all
useful characteristics mentioned above. Due to the benefits of FMNN, a great deal of its improved variants
have been proposed such as general fuzzy min-max neural network (GFMN) (Gabrys and Bargiela, 2000),
weighted fuzzy min-max neural network (Kim et al, 2004), an adaptive resolution fuzzy min-max neural
network (Rizzi et al, 2002), an inclusion/exclusion fuzzy hyperbox classification network (Bargiela et al,
2004), a fuzzy min-max neural network classifier with compensatory neurons (Nandedkar and Biswas, 2004)
(Nandedkar and Biswas, 2007a), a data-core-based fuzzy min-max neural network (Zhang et al, 2011), a multi-
level fuzzy min-max neural network (Davtalab et al, 2014). Each fuzzy min-max neural network includes
many hyperboxes, each one covers an area determined by its minimum and maximum coordinates in the
n-dimensional sample space. Each hyperbox is associated with a fuzzy membership function calculating
the goodness-of-fit of an input sample to a certain class. From the original version proposed by Simpson
(1992), learning algorithms of the fuzzy min-max neural networks have been significantly enhanced with the
emergence of algorithms combining supervised and unsupervised learning such as in the GFMN (Gabrys and
Bargiela, 2000) and the general reflex fuzzy min-max neural network (GRFMN) (Nandedkar and Biswas,
2009); algorithms dealing with missing data and operating on observable subspaces without missing values
imputation (Gabrys, 2002¢; Castillo and Cardenosa, 2012); combination of multiple hyperbox classifiers at
a model level taking advantage of ensemble performance while reducing impact of user-defined parameters

(Gabrys, 2002b).
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The traditional neural networks are considered as black boxes due to the fact that they are not able to
explain their predicted results. When it comes to data analysis, one of the salient properties is the ability
to extract explanatory rules for inference from data samples (Cheng and Miao, 2011). Therefore, machine
learning models should offer a useful explanatory mechanism of their outcomes to the user. One of such
models is the decision tree (Seera et al, 2015). Fuzzy min-max neural networks can generate explanation
based on the rules deduced from the hyperbox min—max values, but it cannot form a compact rule set
interpretable for end-users because the number of hyperboxes can be large. Therefore, instead of extracting
rules directly from the individual hyperbox level, decision trees have been adopted to obtain rules at the
global level. As a result, many researchers have introduced hybrid models in combination of hyperbox-based
machine learning algorithms with decision trees or other rule extractors to increase the ability to explain the
results for single models such as an enhanced FMNN with an ant colony optimization based rule extractor
(Sonule and Shetty, 2017), a hybrid model of FMNN and the classification and regression tree (Seera et al,
2012) (Seera and Lim, 2014), a fuzzy min-max based clustering tree (Seera et al, 2016), a fuzzy min-max
decision tree (Mirzamomen and Kangavari, 2016), and combining multiple decision trees using the GFMM

neural networks (Eastwood and Gabrys, 2011).

Apart from combination of the fuzzy min-max neural networks and other classification techniques, several
researchers have introduced other methods to construct base hyperboxes and evolve them using optimization
algorithms such as a differential evolution (Reyes-Galaviz and Pedrycz, 2015) and an ant colony optimization

(Ramos et al, 2009).

This paper seeks to classify and clarify the properties of machine learning models based on the hyperbox
representations, learning algorithms, as well as their enhancements. In other words, this work aims to provide

a comprehensive survey of literature on hyperbox-based machine learning algorithms. The core ideas and
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key description of typical algorithms, their expansions, as well as their real-world applications are presented

in detail. We expect to clarify issues as follows:

1. The method of categorizing the machine learning models based on hyperbox representations.

2. What was the development trajectory of the original fuzzy min-max neural networks in the last two
decades.

3. What methods have been deployed to generate hybrid models between different types of FMNN and
other classification or clustering techniques.

4. Apart from network structures, what other methods are used to design and evolve hyperbox-based models.

5. Identifying research gaps in the current hyperbox-based machine learning algorithms and propose new

future research directions.

To the best of our knowledge, this is the first comprehensive survey on hyperbox-based machine learning
algorithms. Regarding the fuzzy min-max neural networks, which is part of our study, there have been several
previously published surveys. Jambhulkar (2014) compared the multi-level fuzzy min-max neural networks
with the original FMNN and its four different variants. However, that survey mentioned only six types of
fuzzy min-max neural networks, and it did not yet analyze the limitations of existing types of networks. To
overcome these drawbacks, Jain and Kolhe (2015) analyzed more details from some additional variants of the
original FMNN, and they concluded that multi-level fuzzy min-max neural networks are the best one among
the discussed methods. However, the survey was only limited to seven types of fuzzy min-max networks,
and the authors used the classification accuracy of training samples as a comparison criterion for fuzzy min-
max classifiers. The high accuracy on the training sample does not guarantee the good performance of the
constructed classifiers because it may reflect overfitting and the loss of generality. In another study, Kulkarni

and Honwadkar (2016) reviewed different types of fuzzy neural networks for classification and clustering.
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They categorized the networks to three groups consisting the ones for classification, clustering, and hybrid
models for both classification and clustering. However, they not only focused on fuzzy min-max networks
but also other types of fuzzy neural networks such as hypersphere and hyperline ones. These three surveys
have not yet clarified the still existing limitations and applications of the fuzzy min-max neural networks to
real-world problems. Recently, there has been a survey on the fuzzy min-max neural networks for pattern
classification until 2017 introduced by Sayaydeh et al (2018). Authors classified the types of fuzzy min-max
neural networks into two groups, i.e., ones with and without contraction process. They summarized the
use of different types of fuzzy min-max neural networks in tackling real-world applications. Nonetheless,
the paper did not present in depth the reasons for the proposals of variants of the original fuzzy min-max
classifier and their improvements compared to previously proposed versions. The research direction part
only mentioned a small aspect regarding the potential of the family of fuzzy min-max neural networks.
Our study is not restricted to the fuzzy min-max neural networks but expands to general hyperbox-based
machine learning algorithms, the combination of hyperbox fuzzy sets and tree-based algorithms, ensembles
of multiple hyperbox-based models, the use of hyperbox fuzzy sets to deal with missing data, and learning

algorithms based on hyperboxes without forming the neural network struture.

The remainder of this paper is structured as follows. Section 2 shows the summary of searching results,
the taxonomy and description of main hyperbox-based machine learning algorithms and their applications
in the real world. In section 3, we describe the background knowledge of machine learning models using
the hyperbox representations. The overview of the architecture and main content of types of fuzzy min-max
neural network and its improved versions are detailed in section 4. Section 5 gives descriptions of hybrid
models based on hyperboxes, while section 6 provides other hyperbox-based machine learning techniques.

The applications of hyperbox-based learning models for practical problems are shown in section 7. Section
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8 discusses main characteristics of hyperbox-based machine learning algorithms presented in this paper as

well as potential research directions. Concluding remarks are described in section 9.

2 Summary and taxonomy of hyperbox-based machine learning algorithms

This survey targets to determine the studies related to machine learning algorithms using the hyperbox
representations and their applications in the real world. We sought for research articles, conference papers or
book chapters in five popular databases including ScienceDirect (2018), IEEE Xplore (2018), Springer Link
(2018), ACM Digital Library (2018), IOS Press (2018). Readers interested in the methods of filtering and

selecting the publications can refer to Appendices A and B for more details.

2.1 Searching results

The searching results over the available databases are shown in Table 1. The ratio of publications from
different research repositories covered in this work are illustrated in Fig. 1. For each search, we collected
some essential information as follows: authors, year of publication, main purpose of forming the new proposal,
brief description of the approach for problem solving, and potential applications of the proposed or existing

methods.

In general, most relevant studies are stored in three key sources, i.e., IEEE Xplore, SpringerLink, and
ScienceDirect. Fig. 2 represents the number of selected papers for this review over years from 1992 to 2018.

It can be clearly seen that after year 2012, the number of studies in this field has been increasing.
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Table 1: Literature search result from different data sources

Source Total results | Screening | Final selection
ScienceDirect 524 45 17
IEEE Xplore 330 54 31
SpringerLink 710 51 23
ACM Digital Library 6 2 1
IOS Press 55 3 2
Other journals and conferences - - 11
Total 1625 155 85

2.2 Summary of main hyperbox-based machine learning algorithms

Based on the contents of selected publications, we classify the hyperbox-based machine learning algorithms
into three groups. The first group comprises studies that construct a neural network architecture from
hyperbox fuzzy sets. Learning algorithms are designed to adjust the placement of hyperboxes to cover the
training samples in the input space. In the process of expanding hyperboxes to include new training patterns,
hyperboxes belonging to different classes are likely to overlap with each other. There are two methods to deal
with this overlapping problems. While several studies use the contraction procedure to avoid overlapping
regions, other researchers introduce specialized hyperboxes to handle overlapping areas. Therefore, fuzzy min-
max neural networks can be divided into two sub-groups depending on the employed mechanism for handling
overlapping hyperboxes. The second group of hyperbox-based machine learning models consists of ones that
integrate the strong points of various fuzzy min-max neural networks and tree-based classification techniques
or the combination of base models to build the ensembles. The last group includes the models without being
connected by network structures. Hyperboxes in these machine learning models are constructed and evolved

using different approaches such as mathematical formulas, or optimization algorithms. The illustration of
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Fig. 1: Proportion of publications from different data sources used in this paper

our classification method for models based on the hyperbox representation is shown in Fig. 3. It is easily

seen that most hyperbox-based machine learning algorithms are organized in the form of neural networks.

Several main types of machine learning algorithms based on hyperboxes have been summarized in Table

2.
Table 2: Summary of hyperboxed-based machine learning algorithms
ID Model Year Type Characteristics
T2.1 Fuzzy min-max classifica- 1992 classification supervised learning; a hybrid neuro-fuzzy system
tion neural network (Simp- built using hyperbox fuzzy sets for sample classifi-
son, 1992) cation; three-step training process - hyperbox expan-

sion, hyperbox overlap test, and hyperbox contraction;

claimed ability to learn online and avoid re-training
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Table 2: Summary of hyperboxed-based machine learning algorithms
ID Model Year Type Characteristics
T2.2 Fuzzy min-max clustering 1993 clustering unsupervised learning; a hybrid neuro-fuzzy system
neural network (Simpson, built using hyperbox fuzzy sets for data clustering;
1993) four-step training process - initialization, hyperbox ex-
pansion, hyperbox overlap test, and hyperbox contrac-
tion; ability to learn online
T2.3 Hyperbox fuzzy classifier 1995 classification using activation and inhibition hyperboxes to extract
(HFC) (Abe and Ming- fuzzy rules directly from numerical inputs; building a
Shong, 1995) membership function between a sample and a rule
T2.4 Stochastic fuzzy min-max 1996; 2001 classification; reinforce- introducing a concept of random hyperboxes to deal
neural network (SFMN) ment with the discrete output space; a stochastic learning
(Likas and Blekas, 1996) automaton is assigned to each hyperbox to manage the
(Likas, 2001) randomness degree in the process of action selection;
reinforcement learning
T2.5 Adaptive resolution min- 1998 classification consisting of the adaptive resolution classifier and
max neural network clas- pruning adaptive resolution classifier; definition of the
sifier (ARC) (Rizzi et al, hybrid and the pure hyperboxes; not depend on sam-
1998) ple presentation order, position and hyperbox size as
in FMNN
T2.6 Modified fuzzy min-max 1998 classification using the same structure as FMNN; changing the
neural network with a new learning algorithm by the hyperbox cutting methods;
batch learning algorithm learning process includes five operations; introducing
(MMM-BL) (Meneganti two kinds of hyperboxes: non-partitionable and parti-
et al, 1998) tionable; proposing a new membership function
T2.7 Two-level classification 1999 classification the first level uses a GFMM classifier to select one of

system with testing in

dynamically changing
environment (2lv-CSWCE)
(Gabrys and Bargiela,

1999)

the n components in the second level; the second level
comprises n neural networks, in which each network is
trained on a part of the training set; the outcomes of

second-level neural networks are classification results
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Table 2: Summary of hyperboxed-based machine learning algorithms

ID Model Year Type Characteristics

T2.8 General fuzzy min-max 2000; 2002 classification and clus- dealing with both labeled, partly labeled, and unla-
neural network (GFMN) tering beled data; inputs are in form of hyperboxes; support
(Gabrys and Bargiela, both online and batch training; dealing with missing
2000) (Gabrys, 2002a) values (Gabrys, 2002c)

T2.9 Top down fuzzy min-max 2001 classification simplifying steps in the learning algorithm of the
(TDFMM) neural network MMM-BL; reducing the complexity; defining two types
(Tagliaferri et al, 2001) of partition for the hyperbox cutting process

T2.10 Top down fuzzy min-max 2001 regression building a regressor based on FDFMM; only one node
regressor (TDFMMR) in the output layer of the network; using clustering to
(Tagliaferri et al, 2001) find class labels of samples; apply to back-propagation

algorithm to adjusting parameters of the membership
function in the hidden neurons

T2.11 Ensemble of neuro-fuzzy 2002 classification; clustering combine hyperbox fuzzy sets of base classifiers; repeat
classifiers (Esb-GFMN) 2-fold splitting of the training data; hyperbox fuzzy
(Gabrys, 2002b) sets from different component classifiers are combined

as inputs to the agglomerative training algorithm

T2.12 Weighted fuzzy min-max 2004-2006 classification; feature a new membership function; assign a weight factor to
(WFMM) neural network extraction each dimension within a hyperbox; new mechanisms
(Kim et al, 2004) (Kim and for expansion, contraction, and weight updating pro-
Yang, 2005) (Kim et al, cedures
2006)

T2.13 Inclusion/Exclusion fuzzy 2004 classification employing the inclusion hyperboxes to include the in-

min-max neural network
(IEFMN) (Bargiela et al,

2004)

put samples of the same class, utilize exclusion hyper-
boxes to cover other overlapped input samples; two-
step training process - hyperbox expansion and overlap

test; inputs are in form of hyperboxes
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Table 2: Summary of hyperboxed-based machine learning algorithms

ID Model Year Type Characteristics

T2.14 Fuzzy min-max neural net- 2004; 2007 classification solving hyperbox overlaps and containment problems
work with compensatory by compensatory neurons; define new membership
neuron (FMCN) (Nand- function and network structure for three types of neu-
edkar and Biswas, 2004) rons: classifying, overlap compensation, containment
(Nandedkar and Biswas, compensation neurons
2007a)

T2.15 Two-phase hyperbox clas- 2007 classification in the first phase, “seed hyperboxes” are constructed
sifier (2-pHC) (Bortolan by means of the fuzzy C-means algorithm; in the sec-
and Pedrycz, 2007) ond phase, these hyperboxes are expanded by genetic

algorithms

T2.16 Modified fuzzy min-max | 2008 classification the first stage performs the training and hyperbox
neural network for two- pruning process, while the second stage deploys the
stage pattern classification rule extraction; use both membership function and Eu-
(MFMNN) (Quteishat and clidean distance in the prediction phase
Lim, 2008b)

T2.17 Hyperbox classifier with 2008 classification the ant colony algorithm is used to evolve the geom-
ant colony optimization - etry of hyperboxes after hyperboxes are grouped into
type 2 (HACO2) (Ramos clusters
et al, 2008)

T2.18 Hyperbox based clustering 2009 clustering using ant colony optimization to scatter the hyper-
with ant colony optimiza- boxes on the feature space; group generated hyper-
tion (HACO) (Ramos et al, boxes into corresponding clusters
2009)

T2.19 General reflex fuzzy 2009 classification; clustering conditions of the input data are the same as the

min-max neural network
(GRFMN) (Nandedkar

and Biswas, 2009)

GFMM networks; a reflex mechanism is deployed to
resolve the hyperbox overlap and containment issues;
define new activation functions of classifying, overlap

compensation, and containment compensation neurons
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Table 2: Summary of hyperboxed-based machine learning algorithms

ID Model Year Type Characteristics

T2.20 Mathematical 2009 classification construct for each class a number of hyperboxes; ini-
programming-based tially, a box is constructed for each class, and then
hyperbox classifier an repetitive algorithm is deployed to form multiple
(MCP/MILP) (Xu and boxes for each class; special constraints are employed
Papageorgiou, 2009) to prevent overlapping of boxes representing different

classes; the optimal position and dimension of each hy-
perbox is identified using a mixed integer linear pro-
gramming method

T2.21 Modified fuzzy min- 2010 classification performing training and hyperbox pruning in the first
max neural network stage and rule extraction using genetic algorithms in
with genetic algorithms the second stage; employ both membership function
(MFMNN-GA) (Quteishat and Euclidean distance in the prediction phase
et al, 2010)

T2.22 Data-core-based fuzzy 2011 classification unlike FMCN, only overlapping neurons are used to
min-max neural network solve the overlap and containment issues; allow ex-
(DCFMN) (Zhang et al, panded hyperboxes to overlap repeatedly with the pre-
2011) vious hyperboxes; define new membership function for

classifying neurons based on the characteristics of data
and the impact of noise

T2.23 Tree ensemble hyperboxes 2011 classification using an ensemble of decision trees to robustly label
via general fuzzy min-max a set of hyperboxes; each hyperbox corresponds to an
neural network (TEH- overlap of leaf nodes; the classifier is built on labelled
GFMN) (Eastwood and hyperbox patterns
Gabrys, 2011)

T2.24 Hyperbox neural network 2011 classification each class is associated with only one hyperbox and a

algorithm (HNN) (Palmer-

Brown and Jayne, 2011)

single neuron; using hyperboxes to classify easy sam-
ples; neurons are trained to classify samples within the

overlapping regions among hyperboxes
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Table 2: Summary of hyperboxed-based machine learning algorithms

ID Model Year Type Characteristics

T2.25 Modified data-core-based 2012 classification proposing a new training algorithm, remove the con-
fuzzy min-max neural traction process without adding any neurons; using
network with new learning center of data in each hyperbox to find the suitable
mechanism (MDCFMN) hyperbox in case of many hyperboxes with the same
(Ma et al, 2012) membership value

T2.26 General fuzzy min-max 2012 classification each input neuron representing categorical data is
neural networks for cate- linked to each hyperbox in the second layer by two con-
gorical data (GFMN-CD1) nections; define a new membership function for both
(Castillo and Cardenosa, numerical and categorical data; modify expansion con-
2012) dition for categorical data; dealing with missing data

T2.27 Offline and online fuzzy | 2012; 2014 classification; regression employing the FMNN for pattern classification and
min-max neural network CART for extracting rules; providing online and of-
and  classification  and fline learning
regression trees (FMM-

CART) (Seera et al, 2012)
(Seera and Lim, 2014)

T2.28 Multi-level fuzzy min-max 2014 classification implementing a multi-level tree structure to form a
neural network (MLF) homogeneous cascading classifier; resolving the over-
(Davtalab et al, 2014) lapped area issue by a multi-level network structure;

the recognition rate for training pattern is 100% po-
tential causing over-fitting

T2.29 Fuzzy min-max neural net- 2015 classification only hyperbox creation and expansion procedures are
work with symmetric mar- performed in the training phase; being simpler and
gin (FMNWSM) (Forghani faster than other types of FMNN; propose new mem-
and Yazdi, 2015) bership function

T2.30 Enhanced fuzzy min-max 2015 classification keeping the structure of the original FMNN; changing

neural network (EFMNN)
(Mohammed and  Lim,

2015)

the learning algorithm by adding more cases for the

hyperbox overlap test and contraction process
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Table 2: Summary of hyperboxed-based machine learning algorithms

ID Model Year Type Characteristics
T2.31 Modified fuzzy min-max 2015 clustering associated each hyperbox fuzzy set with a centroid
neural network for cluster- construction procedure; validating the hyperbox up-
ing (MFMMC) (Seera et al, dating process by ensuring that the data centroid is
2015) still located within that hyperbox; the cophenetic cor-
relation coefficient and centroid are employed to ana-
lyze the cluster validity
T2.32 Enhanced general fuzzy 2016 classification adding a set of binary strings representing discrete at-
min-max neural net- tributes to each hyperbox; each neuron for categori-
works for categorical data cal input is connected to each hyperbox in the second
(GFMN-CD2) (Shinde and layer by only one connection; define new membership
Kulkarni, 2016) function for both categorical and numerical data; de-
fine new expansion condition for categorical attributes;
modify overlap test and contraction procedures
T2.33 Fuzzy min-max clustering 2016 clustering combining online learning and rule extraction; inte-
neural network with the grating a new data centroid into each hyperbox; hy-
clustering tree (FMM-CT) perbox centroids along with their confidence factors
(Seera et al, 2016) are used as input data samples to build the clustering
tree
T2.34 Fuzzy min-max neural net- 2016 classification using the original version of the FMNN; genetic al-
work with genetic algo- gorithms are used to optimize the size of hypeboxes
rithms (FMM-GA) (Azad generated by the FMNN
and Jha, 2016)
T2.35 Fuzzy min-max neural 2016; 2017 classification each decision node of the tree holds a contraction-less

network based decision
tree (FMMDT) (Mirzamo-
men and Kangavari,

2016) (Mirzamomen and

Kangavari, 2017)

fuzzy min-max neural network for batch learning or a
concept adapting contraction less fuzzy min-max neu-
ral network (Mirzamomen and Kangavari, 2017) for
online learning; not using the contraction process; us-
ing neural network to form the splitting condition for

each decision node




18 Thanh Tung Khuat et al.
Table 2: Summary of hyperboxed-based machine learning algorithms

ID Model Year Type Characteristics

T2.36 Enhanced fuzzy min- 2017 classification maintaining the structure of the original FMNN;
max neural network with adding more cases for the hyperbox overlap test and
K-nearest hyperbox expan- contraction operation; adopting K-nearest neighbour
sion rule (KN-EFMNN) principle to select the winning hyperbox for the ex-
(Mohammed and  Lim, pansion process
2017a)

T2.37 Enhanced fuzzy min- 2017 classification having the same features as the KN-EFMNN; deploy-
max neural network with ing a pruning process to reduce the network complex-
K-nearest hyperbox ex- ity
pansion rule and pruning
(EFMNN-II) (Mohammed
and Lim, 2017b)

T2.38 Enhanced fuzzy min—-max 2017 classification adding more cases for the hypberbox overlap test and
neural network with contraction; using outputs of the network to construct
ant colony optimization a graph of AntMinerPlus algorithm for rule extractor;
(EFMNN-ACO)  (Sonule extracting the rule-list and prune rules by paths on
and Shetty, 2017) the graph

T2.39 Modified fuzzy min-max 2017 clustering retaining the architecture of the original fuzzy min-
neural network for data max clustering neural network; introducing a new hy-
clustering (MFMC) (Liu perbox selection rule, a reservation rule, a hyperbox
et al, 2017) entropy measure for contraction process; using a pa-

rameter to avoid boundary overlapping

T2.40 Fuzzy min-max neural 2017 classification using the original version of the FMNN; the particle

network with the parti-
cle swarm optimization
(FMM-PSO) (Azad and

Jha, 2017)

swarm optimization algorithm is deployed to optimize

the size of hypeboxes produced by the FMNN
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Table 2: Summary of hyperboxed-based machine learning algorithms

ID

Model

Year

Type

Characteristics

T2.41

Fuzzy Min-Max neural
network with an ensem-
ble of clustering trees

(FMM-ECT) (Seera et al,

2018

clustering

proposing new rules to check the hyperbox centroid;
using a new measure for the impurity of node; using an
ensemble model of clustering trees; supporting online

learning and rule extraction

2018)

2.3 Summary of applications

Hyperbox-based learning algorithms have been primarily applied to pattern classification problems (Abe and
Ming-Shong, 1995), (Gabrys and Bargiela, 1999), (Ma et al, 2012), (Mohammed and Lim, 2015), (Nandedkar
and Biswas, 2006b), (Nandedkar and Biswas, 2007b), (Quteishat and Lim, 2008b), (Quteishat et al, 2010),
(Rizzi et al, 2002), (Simpson, 1992), (Xu and Papageorgiou, 2009), (Yang et al, 2015), and data clustering
(Simpson, 1993), (Reyes-Galaviz and Pedrycz, 2015), (Liu et al, 2017), (Seera et al, 2016). In addition
to these two types of typical problems, hyperbox-based machine learning techniques have been used to
deal with a great deal of applications in the real world. These applications can be categorized into two
main groups. The first one includes general purpose applications, which are common application problems
applicable to many specific case studies. For instance, image recognition, which is a general problem, contains
different sub-problems such as face detection, character recognition, or signature recognition. Face detection
is likely to be used to construct the access control systems in buildings or medication adherence monitoring
systems in healthcare. The second group comprises the domain-driven applications such as transportation,
cybersecurity, and medicine. Fig. 4 shows the taxonomy of real-world applications of hyperbox-based machine

learning models and the number of selected publications of each class of applications.
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Number of selected publications
s
T

2010

Fig. 2: Selected publications per year

2015 2020

Table 3 summarizes the main studies where the hyperbox-based machine learning models have been

applied to solve the general purpose and domain-driven applications problems in practice.

Table 3: Summary of main application areas

Sector Type of prob- Research sub- Author Year Method Characteristics
lems ject
General purpose speech  recogni- spoken Marathi Doye and Son- 2002 T2.8 modifying the GFMM with a
(subsection 7.1) tion (subsection India digits takke (2002) new transfer function of out-
7.1.3) put layer; reaching 90.2% aver-

age recognition accuracy in the

speaker dependent mode
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Table 3: Summary of main application areas

Sector Type of prob- Research sub- Author Year Method Characteristics
lems ject
speech  recogni- text independent Jawarkar et al 2011 T2.1 dataset comprises speech utter-
tion (subsection | speaker (2011) ances with digits, words, and
7.1.3) sentences in the Marathi lan-
guage of fifty speakers; one
minute duration speech utter-
ance is deployed to train for
each speaker; the maximum ac-
curacy is higher than 96%
color image seg- Deshmukh  and 2006 T2.2 performing adaptive multilevel
mentation Shinde (2006) color image segmentation in
HSV color space; seeking for
clusters of pixels and their la-
General purpose bels; can be used for object
(subsection 7.1) extraction from noisy environ-
ments
color image or Nandedkar and 2009 T2.19 handling a group of pixels in-
) ) video frames | Biswas (2009) stead of individual color pix-
image processing
segmentation els, so reduce computational
(subsection 7.1.1)
expense; different parts in an
image are used to train the
model; online training
shadow removal | Nandedkar 2013 T2.19 detecting and  eliminating
in color images (2013) shadows from color images in-

teractively; deploying GRFMN
as a shadow classifier; the
hyperboxes represent min,
max, and mean values of the

pixels from grids of shadow

and non-shadow regions
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Table 3: Summary of main application areas

Sector

Type of prob-

lems

Research sub-

ject

Author

Year

Method

Characteristics

General purpose

(subsection 7.1)

image recognition

(subsection 7.1.2)

handwritten Chi-

nese character

Chiu and Tseng

(1997)

1997

T2.1

hyperboxes were used because

of the high shape variation
of handwritten Chinese charac-
ters, fuzzy borders of the char-
acter classes, and the difficulty
in representative training pat-
tern in advance; ring-data fea-
tures were extracted from char-
acters and used to train the

FMNN; the learning speed is

rapid

optical character

Nandedkar et al

(2004)

2004

T2.1

system is invariable to transla-
tion, rotation, and scale; rec-
ognizing 26 uppercase letters
of the alphabet from rotation,
translation, and scale invariant

features

Bengali and

Marathi digits

Nandedkar and

Biswas (2006a)

2006

T2.14

invariance with rotation,
translation, and scale invariant
(RTSI) of digits; 300 samples

with 10 classes were used for

testing the model
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Table 3: Summary of main application areas

Sector

Type of prob-

lems

Research sub-

ject

Author

Year

Method

Characteristics

General purpose

(subsection 7.1)

image recognition

(subsection 7.1.2)

face detection

Kim et al (2006)

2006

T2.12

constructing a real-time face
detection system; using weight
factor to consider the relevance
of each feature for computing
the hyperbox membership val-
ues; using weighted FMM for
the skin-color filter; skin-color
and other features of the face
are deployed to train the clas-

sifier

shape

Nandedkar and

Biswas (2006a)

2006

T2.14

building a rotation, trans-

lation, and scale invariant
(RTSI) object recognition sys-
tem; RTSI features of images
are used to train the model;
capable of learning from both
labeled and unlabeled data;
the unlabeled hyperboxes are
considered as floating neurons
removed from the

and are

process of classification

Nandedkar and

Biswas (2009)

2009

T2.19

using data granules as inputs
for object recognition; apply-
ing the GRFMN with granules
constructed from minimum and
maximum values of RTSI fea-

tures in images
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Table 3: Summary of main application areas

Sector

Type of prob-

lems

Research sub-

ject

Author

Year

Method

Characteristics

General purpose

(subsection 7.1)

image recognition

(subsection 7.1.2)

image retrieval

Kshirsagar  and

Kulkarni (2016)

2016

T2.19

color and texture features are
extracted from the images to
train the GRFMN in unsuper-
vised mode aiming to create
different clusters of images in
the form of hyperboxes; clus-
ters are labeled and saved in
database; the model is used to
assess the similarity of each im-
age in the database to a query

image

offline single sig-

nature

Chaudhari et al

(2009)

2009

T2.1

the inputs are digital image

from optical scanner; offline
operation; decision boundaries
are fuzzy; incorporate new and
enhance existing classes with-
out retraining; accuracy is ap-

proximately 53% for single sig-

nature samples per class

online signature

Chaudhari et al

(2010)

2010

T2.14

real time classification; employ-

ing invariant Krawtchouk mo-

ment method for preprocessing
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Table 3: Summary of main application areas

Sector

Type of prob-

lems

Research sub-

ject

Author

Year

Method

Characteristics

General purpose

(subsection 7.1)

image recognition

(subsection 7.1.2)

hand gesture

Kim

(2013)

and Park

2013

T2.12

the system can handle a
three-dimensional image; con-
network is

volutional neural

utilized to extract features
from the motion history data
of hand gestures; using the
WFMM to find the relevance
factor between sample classes
and features; the weight factor
of the WFMM can represent
the relationship of feature
range and its distribution;
IF-THEN rules are extracted

from the classifier

sign language

Kim and

(2013)

Lee

2013

T2.12

three kinds of features from
sign language instances are ex-
tracted; defining an enhanced
membership function of hyper-
boxes with the frequency fac-
tor of the features; extracting
rules based on the relevance
factors between feature values

and sample classes
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Table 3: Summary of main application areas

Sector

Type of prob-

lems

Research sub-

ject

Author

Year

Method

Characteristics

Medicine

section 7.2)

(sub-

diagnostic  ana-

lytics

angiographic dis-

ease status

Kim et al (2004)

2004

T2.12

selecting features to support

for medical diagnosis data;
each feature is associated with
a weight factor; a relevance fac-
tor for each feature to a class
from the trained hyperbox net-
work is computed to select rel-
evant features; doing experi-

ments on a five-class dataset

with 297 patterns

arrhythmia

Bortolan and

Pedrycz (2007)

2007

T2.15

analyzing and classifying elec-
trocardiography (ECG) data;
26 features from ECG and pre-
mature ventricular contraction

signals are used

tumors

Juan et al (2007)

2007

T2.1

clustering gene expression data
into the groups by KNN; choos-
ing the top-ranked genes from
each cluster using an enhanced
fuzzy min-max neural network;
performing experiments on the
round

dataset of the small,

blue-cell tumors with 6567

genes of 88 samples
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Table 3: Summary of main application areas

Sector

Type of prob-

lems

Research sub-

ject

Author

Year

Method

Characteristics

Medicine

section 7.2)

(sub-

diagnostic  ana-

lytics

acute coronary

syndrome

Quteishat and

Lim (2008a)

2008

T2.1

using different variants of the
FMNN; testing the model on
a set of 118 practical medi-
cal records in Penang Hospital,
Malaysia; 16 features related to
the acute coronary syndrome

are extracted

stroke

Quteishat et al

(2010)

2010

T2.21

predicting the Rankine scale
related to the stroke in the
medical records of patients;
datasets contain 661 patient

records; 18 typical features are

extracted

lung cancer

lung cancer

Zhai et al (2014)

Deshmukh and

Shinde (2016)

2014

2016

T2.13

T2.1

detecting lung nodules in X-
ray images by the FMCN and
K-means clustering algorithm;
the lung volume segmentation
from X-ray image for detect-
ing the nodule Candidates;
11 features, including intensity
and geometry features, of these
candidates are extracted and
used to train the FMCN
classifying pathological

lung

cancers; using Lung cancer
data from UCI machine learn-

ing repository for experiment
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Table 3: Summary of main application areas

Sector

Type of prob-

lems

Research sub-

ject

Author

Year

Method

Characteristics

Medicine  (sub-

section 7.2)

diagnostic  ana-

lytics

liver disease

Tran et al (2008)

2018

T2.2

semi-supervised clustering;

training data include 4156

samples of patients from
Gang Thep Hospital and Thai
Nguyen National Hospital; all

input samples are unlabeled

Health-care (sub-

section 7.3)

pattern recogni-

tion

medical risk pro-

files recognition

Ramos et al

(2009)

2009

T2.18

conducting experiments on a
data set including 185 patterns
with 21 features of oral mu-
cosa and a questionnaire for
42 physical characteristics and
habits among the local resi-

dents

fall behavior
recognition of

patients

Jahanjoo et al

(2017)

2017

T2.28

detecting fall from wearable ac-
celeration sensor data; dataset
contains two motion categories,
i.e., fall and daily living ac-
tivities of six males and five
females with various heights
weights, and ages; 43 features

are extracted

Pharmaceutical

(subsection 7.4)

pattern recogni-

tion

drug discovery

Tardu et al

(2016)

2016

T2.20

filtering the compounds in the
initial libraries unsuitable for

drug candidates

Manufacturing

(subsection 7.5)

abnormal opera-
tion and fault de-

tection

cooling system

Meneganti et al

(1998)

1998

T2.6

finding anomalies in the cooling
system of a blast furnace; in-
put data were measured by sen-
sors in the automation system
including three failure classes

and 21 features;
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Table 3: Summary of main application areas

Sector Type of prob- Research sub- Author Year Method Characteristics
lems ject
production line Meneganti et al 1998 T2.6 defect diagnosis for the produc-
(1998) tion line of a hardware plant;
product images are processed
to extract 27 features; classi-
fying defects to one of seven
classes
heat transfer in | Chen et al (2004) | 2004 T2.1 integrating the FMNN with
the condensers of symbolic rule extraction based
circulating water on real sensor data; perform-
Manufacturing abnormal opera-
systems ing experiments on a set of
(subsection 7.5) tion and fault de-
2439 real sensor data samples
tection
with 12 features collected from
the circulating water system of
a power generation plant in
Penang, Malaysia
heat transfer Quteishat and 2007, T2.16 modifying the fuzzy min-max
and blockage Lim (2007, 2008 neural network; using rule ex-
conditions in the | 2008b) traction for binary classifica-
condenser tubes tion of heat transfer conditions;
of circulating doing experiments on a data set
water systems of 2439 samples with 12 fea-
tures from sensor data of the
condenser tubes in a circulat-
ing water system of a power
generation plant
Cybersecurity abnormal opera- intrusion detec- Azad and Jha 2016 T2.34 integrating the genetic algo-
(subsection 7.6) tion and fault de- | tion (2016) rithm to the FMNN to con-

tection

struct a intrusion detection sys-
tem; optimizing hyperboxes by

the genetic algorithm
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Table 3: Summary of main application areas
Sector Type of prob- Research sub- Author Year Method Characteristics
lems ject
intrusion detec- Azad and Jha | 2017 T2.40 combining the particle swarm
tion (2017) optimization (PSO) with the
FMNN to build the intrusion
Cybersecurity abnormal opera- system; hyperboxes are opti-
(subsection 7.6) tion and fault de- mized by the PSO
tection attack intention Ahmed and Mo- 2018 T2.1 real time operation system;
recognition hammed (2018) computing the similarity de-
grees of evidence in every ob-
served attack using the FMNN;
hyperboxes represent the possi-
ble attack evidence
autonomous vehi- Likas and Blekas 1996 T2.4 using the FMNN as an ac-
cle navigation (1996) tion selection network with five
suitable driving commands of
Transportation abnormal opera- the autonomous vehicle; input
(subsection 7.7) tion and fault de- data is the current status of
tection the vehicle determined by eight
sensors
the training sys- Duan et al (2007) 2007 T2.1 integrating the FMNN and re-

tem of robot nav-

igation

inforcement learning; hyper-
boxes represent the segmenta-
tion regions within the state
space of reinforcement learn-
ing; FMNN is used to refine the
ability of detecting faults in the
training process of the obsta-

cle avoidance behavior for the

robot
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Table 3: Summary of main application areas

Sector Type of prob- Research sub- Author Year Method Characteristics
lems ject
Transportation abnormal opera- fault identifi- Lv et al (2015) 2015 T2.1 fault diagnosis in rail vehicle
(subsection 7.7) tion and fault de- cation in rail suspension components; build-
tection vehicle systems ing the fault simulation plat-
form of suspension system; us-
ing 63 useful feature values for
each component fault; classifi-
cation for four types of faults
Electric and elec- | abnormal opera- Seera et al (2012) | 2012 T2.27 features of fault conditions in
tronic engineer- tion and fault de- induction motors induction motors are extracted;
ing  (subsection tection classification of fault condi-
7.8) tions; offline operation
Seera and Lim 2014 T2.27 online motor fault detection;
(2014) extracting fault conditions
from vibration signals
Utilities (subsec- abnormal opera- water distribu- Gabrys and 1999; T2.8 the input samples can be ei-
tion 7.9) tion and fault de- tion systems Bargiela (1999, 2000 ther fuzzy or crisp, unlabeled
tection 2000) or labeled; require the ability

of constant learning without re-
training because of unpredicted
size, states, and anomalies of
the system; training data of
24-h period of operation were
generated by computer simula-
tions including normal operat-
ing states and 10 levels of leak-

ages
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Table 3: Summary of main application areas

Sector

Type of prob-

lems

Research sub-

ject

Author

Year

Method

Characteristics

Utilities (subsec-

tion 7.9)

condition moni-

toring

the running sta-
tus of oil pipeline

system

Zhang et al

(2011)

2011

T2.22

classification of running sta-
tuses including four types; per-
forming 200 simulations with
water rather than oil in a real

pipeline system

power quality

Seera et al (2015)

2015

T2.31

modifying the FMM clustering
neural network to find the root
reason of power supply disrup-
tions and to predict the power
quality for the operation of
medical equipment; performing
the experiments on real data
sets of 1601 samples with 12
features from a hospital in the

state of Pahang, Malaysia

Seera et al (2016)

2016

T2.33

the system is able to explain
when encountering anomalies;
identifying anomalies in power

quality data

oil pipeline inter-

nal status

Liu et al (2017)

2017

T2.39

analyzing inspection data of
the oil pipeline; analyzing the
leakage data to find abnormal

phenomena in the pipeline
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Table 3: Summary of main application areas

Sector Type of prob- Research sub- Author Year Method Characteristics

lems ject
Politics and soci- missing value | imputation of | Castillo and Car- 2012 T2.26 imputing the missing voting in-
ology (subsection | handling missing values in | denosa (2012) tention values from the values

7.10)

surveys of voting

intention polls

of the category with the high-
est membership degree; consid-
ering eleven categories for the
voting intention variables; in-
put features are 16 numerical
and ordered and non-ordered

categorical variables;

3 Overview of fuzzy min-max machine learning models

Fuzzy min-max (FMM) machine learning models comprise hyperboxes and corresponding membership func-

tions which are utilized to generate fuzzy subsets of the n-dimensional sample space (Simpson, 1992). Each

hyperbox occupies a region in the feature space and is defined by pairs of minimum and maximum points.

Fig. 5 represents an example of a three-dimensional hyperbox along with its min-point (V;) and max-point

(W;). Based on new incoming data samples, FMM model generates a number of hyperboxes incrementally to

establish new classes/clusters or tune the existing hyperboxes to cover new samples. It is possible to produce

hyperboxes covering an arbitrary value range in each dimension, but the range from 0 to 1 is widely used

for each dimension to make the computations simpler. Therefore, each hyperbox is usually determined by a

set of minimum and maximum vertices in the n-dimensional unit cube (I™).

Formally, each hyperbox fuzzy set is given by an ordered set
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Fig. 3: Taxonomy of hyperbox-based machine learning models

Bj :{th‘/jawﬁbj(Xhaij)Wj)} (1)

for all h =1,2,..., N where N is the quantity of input data samples, B; is the j*" hyperbox fuzzy set, X, =
(Th1, Tha,s - -, The) € I™ is the A" input data instance, Vi = (vj1,vj2, ..., 0jn) and W; = (wj1, wj2, ..., Wjn)
are minimum and maximum vertices of hyperbox B; respectively, and the membership function of B; is
represented by 0 < b;(Xp, V;, W;) < 1.

The membership function is a crucial component in the fuzzy min-max classification and clustering
techniques. It is utilized to measure the degree to which the h!" input pattern, X}, belongs to the j'"

hyperbox defined by the minimum point V; and the maximum point W;. When the sample is completely
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Sector Types of problems
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handling

Fig. 4: Taxonomy of applications and the number of selected publications

contained within the hyperbox, the degree of membership of X} is one, and it decreases when X; moves

away from the hyperbox B;.
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<I}— Max point: W;

Hyperbox in R®

Min point: V; ——>
Fig. 5: 3-D Hyperbox

By the use of fuzzy min-max model, the first step to classify or cluster an input sample is to compute
its membership function for each class/cluster ¢; by accumulating the membership functions of all the

hyperboxes representing this class/cluster as follows:

C = U bj (2)

JjEK

where K is the set of hyperboxes associated with class/cluster ¢. It is noted that fuzzy union operator in
this equation is the maximum of its membership functions as shown in Eq. 4. The next step is to classify
the pattern to a corresponding class/cluster with the highest degree of membership (Castillo and Cardenosa,

2012).

4 Fuzzy min-max neural network architectures

Fuzzy min-max neural network (FMNN) is a special type of a hybrid neuro-fuzzy system built using hyperbox
fuzzy sets, and it is very competitive with other machine learning methods in terms of accuracy of the

classification or clustering results and online adaptation ability (Joshi et al, 1997). Learning process in the
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fuzzy min-max neural network is realized by properly constructing and tuning hyperboxes in the sample
space. From the FMNN proposed by Simpson (1992), a great deal of studies have introduced different
methods to improve the performance of this type of neural network. As mentioned above, the enhancements
have focused on two main directions. The first direction aims to improve the training algorithms by modifying
the expansion and contraction processes to reach better performance of classification. The second approach
does not require the contraction step, but it targets constructing novel architectures of neural networks with
special neurons responsible for overlapping regions among hyperboxes covering different class labels. In the
following section, the original fuzzy min-max neural network will be first presented, and then its improved

versions are briefly described.

4.1 Original fuzzy min-max neural networks

4.1.1 The original FMM classification network

To better address the stability-plasticity dilemma, the family of adaptive resonance theory (ART) neural
networks with the incremental learning ability was proposed by Carpenter et al (1991, 1992). This type of
neural network adapts the learned prototype only if the input pattern is similar enough to the prototype.
An input sample which deviates too much in comparison with all existing prototypes is considered a new
one, and the ART network will generate a new category with the input sample being the prototype. Inspired
by the learning paradigm of the ART networks and to overcome their observed limitations, Simpson (1992)
proposed the FMM classification neural network, which is a classification technique capable of generating
nonlinear boundaries for splitting the input variables space into classes with any size and shapes (Gabrys,
2002a). The training phase can be carried out with only one pass over the training samples, and it might be

employed for pattern classification tasks (Simpson, 1992; Davtalab et al, 2014).
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Fig. 6 describes a three-layer feed-forward neural network implementing a fuzzy min—max neural classifier.
The FMM structure encompasses three layers in which the first layer (F4) is the input layer, the intermediate
one (Fp) shows hyperbox nodes using their membership function as transition function, and each node in
the last layer (F) represents a class. The number of Fo nodes is equal to the number of output classes. The
output of each node in the layer F renders the degree to which the input value X, fits within an output
class. Each node Bj in the layer Fp shows a hyperbox fuzzy set and is connected with each node of the layer
F 4 via two weights (v;; and w;;) that are the minimum and maximum points of the B; hyperbox and i is the
index of nodes in the layer F'4. The weight connections between nodes in the second-layer and third-layer

nodes are binary values and stored in a matrix U, as shown in Eq. 3.

1, if bj € cg
wjk = (3)
07 if b]‘ ¢ Ck
where b; is the 4t intermediate layer node and ¢ is the k' output layer node. The transfer function for

each node in the output layer is the fuzzy union of the suitable hyperbox fuzzy set values as defined in Eq.

4 for each node in the layer Fg.

cp = m@uf{ bj - wjg 4)
j=

There are two ways to generate the classifier output for each input sample X}. The outputs of the class
nodes F¢ can be utilized directly if a soft decision is required. In contrast, for a hard decision, a winner-
takes-all principle (Kohonen, 1989) is used to select the node in the layer Frx with the greatest ¢ value as

the predicted class for the pattern Xj.
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Fc

Input nodes Hyperbox nodes Class nodes

Fig. 6: Three-layer FMM network

All hyperboxes are produced and tuned in a learning process. When a new training sample X, is provided,
FMM employs the membership function to seek the closest hyperbox matching this sample. The membership

function is shown in Eq. 5 (Simpson, 1992):

1 n
: Z [max(0, 1 — max(0, v - min(1, z; — wj;))) + max(0, 1 — max(0,~ - min(1,vj; — xp,)))] (5)
i=1

bj(Xp) =

n
where b; is the membership function for the §*" hyperbox, Xj, = (w1, %n2, ..., Thn) € I™ is the A" input
sample, V; = (vj1, 02, ..., vjn) and W; = (wj1, wj2, ..., w;n) are min and max points for B; respectively, and
v is a sensitivity parameter regulating how fast the membership function values decrease as the distance

between X; and B; increases.



40 Thanh Tung Khuat et al.

If there is a hyperbox B; with the membership function being equal to 1, meaning that the sample falls
within it, then no further step is required and training phase goes on with the next sample. Otherwise, the
three-step process, i.e., hyperbox expansion, hyperbox overlap test, and hyperbox contraction, is performed
as follows:

a. Hyperbox expansion

In this step, we have to identify a hyperbox with the highest degree of fit using Eq. 5 in order to perform
an expansion process. For an ordered pair {X}, c;} in the training set, where X = (xp1,Zp2, ..., Thn) € I™
is the input sample and ¢, € {1,..., K} is the index of one of K classes, it is expected to find a hyperbox B;
representing the same class as ¢ with the highest membership value and after potential expansion, the size
of the hyperbox not exceeding the user-defined parameter 6 (0 < 6§ < 1) so that it can include a new input

sample X},. The constraint as shown in Eq. 6 must be satisfied for B;:

n-0> Z max(wji, Tpi) — Min(v;, Thi) (6)
i=1

If the extension criterion is met for hyperbox B;, the minimum point of B; is tuned using Eq. 7 and its

maximum point is adjusted using Eq. 8.

new

= min(v;»’fd,xhi),w =1,...,n (7)

new

wif = max(w?, xp;),Vi = 1,...,n (8)

J

If the constraint in Eq. 6 is not satisfied for all existing hyperboxes, a new hyperbox is generated with min

and max points equal to the corresponding input sample so that input pattern is encoded into the network.
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This growth method enables new input samples with new classes to be supplemented without retraining
(Gabrys and Bargiela, 1999).

b. Hyperbox overlap test

This step is to determine whether the expansion generated any overlapping areas between the expanded
hyperbox and the existing ones of other classes. Assume that the hyperbox B; was expanded in the previous
step and the hyperbox By describing another class is being checked for possible overlapping. The overlap

test is based on four cases for each dimension i of two hyperboxes as follows (6 = 1 initially):

Case 1: vj; < Vs < Wy < Wi, 0" = min(wj; — Upi, 6°19)
Case 2: v < Vj; < Wi < Wy, 0" = min(wg; — vji,éold)
Case 3: vj; < Vg < Wi < Wi, 0" = min(min(wy; — vji, Wj; — Vki), gold)
Case 4: v < vj; < Wi < Wi, 0" = min(min(wj; — Vii, Wii — vji),dold)

When §%¢ — §7¢® > 0, then A = 7 and §°¢ = ™%, it means that there is an overlap for the A*?
dimension and the overlap checking proceeds with the next dimension. If not, the testing process stops, and

the next contraction step is flagged as ‘not essential’ by setting A = —1.
c. Hyperboz contraction

If overlap between hyperboxes of different classes does exist, a hyperbox contraction step occurs to
eliminate the overlapping areas by minimally contracting each of overlapped hyperboxes (Simpson, 1992). If
A > 0, the A" dimensions of the two hyperboxes are adjusted. During the contraction stage, the hyperbox
size is kept as large as possible by contracting only one of the n dimensions in each overlapped hyperbox
aiming to provide more robust pattern classification. The same four cases are examined to determine the

adjustment to be performed:
wi + o4

2

Case 1: vja < vpa < wja < WiA, wz?zw:v,’;zw:
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wid + v7d
Case 2: vpa <vja < Wra < WjA, new = 5

new __
WA = V54 =
Case 3a: vja < vpa < WA < wja and (wWra —vj4) < (Wja — vea),
Case 8b: vja < vpa < wpa < wja and (wWga —vja) > (Wja — VkA),

Case 4a: vya < vja < wja < wpa and (WA —vj4) < (Wja — vga),

Case 4b: vpa < vja < wja < wia and (wWga —vja) > (Wja — VkA),

4.1.2 The original FMM clustering network

new __ ,,old
Vja~ = WiA

new __ ,,old
Wia™ = Vka

new __ ,,old
WA = V54
new old

VgA = WiA

The original FMM clustering neural network, which is a method of partitional clustering, was first introduced

by Simpson (1993). Similarly to the FMM classification network, learning in the fuzzy min-max clustering

neural network includes generating and adjusting hyperboxes in the sample space as they come. Once the

fuzzy min-max clustering neural network is trained, it is used to classify a sample presented to the network

by calculating the membership degree of that sample in each of the current hyperbox fuzzy sets. Given an

input sample X}, min point V; and max point W; for the jth hyperbox, its membership function is defined

in Eq. 9.

1 n

bj(Xn, Vi, Wj) = n Z (1 — f(ni— wji, ) — flvji — Thiy )]

i=1

where f(£,7) is a two-parameter ramp threshold function:

1, ifEy>1
FE&)=9¢.4, ifo<e-y<1

0, if&-v<0

(10)
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where v is the sensitivity parameter controlling the speed with which the membership value of an input
sample decreases with its distance from the hyperbox core. When the value of v is large, the fuzzy set
becomes more crisp, and when it is small, the fuzzy set becomes less crisp.

Given a training set T = {X,|h = 1,2,...,m}, where X}, = (¢p1,Zp2, ..., Tpn) € I™ is the input sample,
the learning process starts by choosing a sample from T and seeking the closest hyperbox to that sample
being able to expand for containing the pattern. If there is no hyperbox satisfying the expansion criterion,
a new hyperbox is created and added to the network. This growth method enables existing clusters to be
refined incrementally, and it also allows new clusters to be formed without retraining. Generally, the learning
process of the FMM clustering network comprises four steps, i.e., hyperbox initialization, expansion, overlap
test, and contraction.

a. Hyperbox initialization

As for the training algorithm of the fuzzy min-max clustering neural network, there are two cluster sets
utilized, i.e., the committed set C and the uncommitted set U. The committed set of clusters are those with
their min-max coordinates tuned, while the uncommitted set of clusters are those waiting to be committed.
Initially, the network is set up with an empty committed clusters set and an arbitrary quantity of clusters
in the uncommitted set (Simpson, 1993). The hyperboxes B; that lie in the uncommitted set U have min
points V; initialized to ? and max points W; initialized to ﬁ, where ? is the n-dimensional vector of all
ones and 6> denotes the n-dimensional vector of all zeros. The goal of this initialization process is to make
sure that the first hyperboxes taken out of the uncommitted set U will perform the expansion to result in a
single point identical to the input pattern: V; = W; = X,.

b. Hyperboz expansion

Given a sample X; € T, search for a hyperbox B; € C with the highest degree-of-fit and satisfying

the expansion criteria. The degree of membership b;(X},V;, W;) is computed using Eq. 9. The expansion



44 Thanh Tung Khuat et al.

constraint is determined in the same way as the FMM classification network using Eq. 6. If this criterion is
satisfied, the min and max points are tuned using Eqs. 7 and 8 respectively.

If none of the hyperboxes B; € C satisfy the expansion criterion then a hyperbox in U is selected and
Eqgs. 7 and 8 applied.

c. Hyperboz overlap test

After an expansion operation, an overlap is likely to exist between the expanded hyperbox and the other
existing hyperboxes. Assuming that the hyperbox B; € C is extended in the previous step, the hyperbox
overlap test is executed between the hyperbox B; and all remaining ones By € C. There are four cases used
to test whether the hyperbox Bj; and the hyperbox Bj may form an overlapping region for each of the n
dimensions:

Case 1: vj; < Vg < Wi < Wiy

Case 2: v < vj; < Wi < Wi

Case 3: vj; < Vg < Wi < W

Case 4: v < vy < wjy < Wiy

The hyperbox contraction is used to eliminate the overlap regions among hyperboxes if one of the four
above cases is satisfied.

d. Hyperbox contraction

If there is no overlap, this step is not necessary, else the contraction process is executed for each pair of
overlapping hyperboxes B; and Bj,. Based on the four cases previously presented, the contraction rules are

shown as follows:

old old
Vi T Wy

Case 1: 1f Vi < Vg < Wi < Wi, vl?iew — w;Ll_ew _ 5
pold +wzl‘d

J 7
Case 2: 1f Vi < Vi < Wiy < Wy, U;fbiew — waw s
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. : cw _ o oold e cw _ ) old
Case 3: vj; < vgi < wy < wyg, if wr; —vj; < wj; — Vg, then Ui = wiy else wie = vp;

. ; _ . old _ ,old
Case 4: vi; < v < wjy < Wi, if Wy — vy < Wi — vy, then v = w;?i else w7 = v;-’i

The overlap test and the contraction operations in the FMM clustering network are significantly different
from those in the FMM classification network. The overlap test and the corresponding contraction steps of
the FMNN for classification problem are built to ensure that a dimension with overlap is selected to remove
overlapping regions among classes. Hence, only one dimension with the smallest potential overlap is handled.
On the contrary, in FMM clustering network, the clusters are tuned to remove overlap in every dimension
so that the obtained clusters are more compact (Simpson, 1993).

Four steps above are iterated for each sample in the training data set until cluster stability is attained.
Cluster stability is the case when all min and max vertices of hyperboxes are not changed during consecutive
presentations of samples in the same order. By using the hyperbox generation, expansion, and contraction
processes along with the maximum hyperbox size parameter (6), the algorithm can adjust the existing clusters

or add new clusters to the model as data points come in without specifying the number of clusters apriori.

4.1.83 Analysis of the original fuzzy min-maz neural networks

In this type of neural network, the maximum size of hyperboxes (6) is the most essential factor determining
the number of generated hyperboxes. In general, the larger the value of 6, the fewer hyperboxes produced,
and the network may show higher generality, but the overlapping regions increase, and the capability of
capturing nonlinear boundaries between classes decreases. This also lowers the predictive accuracy of the
trained network. A smaller 6 leads to a larger number of generated hyperboxes and potential overfitting,
thus reducing the generalization ability (Gabrys and Bargiela, 2000; Davtalab et al, 2014). Hence, there is a

trade-off between the generality and predictive accuracy of these networks.
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Generally, the learning process of the FMNN is based on an online adaptation of the hyperboxes (Simpson,
1992; Gabrys and Bargiela, 2000). In other words, online learning provides FMM with the ability to create
new classes and adjust the existing classes without, generally, influencing information already captured in
the network. In principle, this capability allows the FMNN to add new classes and adjust the existing ones
without the demand for retraining Gabrys and Bargiela (1999). Online adaptation is the main feature in a

neural network learning to address the stability-plasticity dilemma (Grossberg, 1980).

Nevertheless, the traditional fuzzy min—max neural network has not yet dealt with several issues as

follows:

— Ezpansion problem. The winner expandable hyperbox in the conventional fuzzy min—max learning algo-
rithms is randomly identified in the case of existing several winner hyperboxes

— Hyperbox boundary problem. Though an overlap eliminating process has been proposed, two newly con-
tracted hyperboxes are still possible to be overlapped on the boundary edge due to the nature of the
contraction formulas

— Problem of contraction process. The contraction approach inadvertently removes from the two overlapping
hyperboxes some unambiguous part of the sample space, while simultaneously retaining some contentious
part of the sample space in each hyperbox (Bargiela et al, 2004). This weakness should be analyzed in
detail in subsection 4.2.2.

— Data representation order problem. The training step conducts a process of dynamic hyperbox creation,
expansion, and contraction in the sample space when an individual training instance is presented. There-
fore, the predictive accuracy depends on the presentation order of the training samples (Meneganti et al,
1998), and the approach is sensitive to outliers and noise (Gabrys, 2002a). As a result, noisy data from

real world applications might cause serious stability issue when deploying the model in practice
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— Mazimum hyperbox size parameter sensitivity problem. As analyzed above, the classification performance
and generalization ability of the fuzzy min-max neural networks depends on the user-defined maximum
hyperbox size threshold. This problem can be partly resolved by using an adaptive maximum hyperbox
size mechanism as presented in Gabrys and Bargiela (2000).

— Membership value problem. The membership function used in the original fuzzy min-max neural networks
assigns a relatively high membership degree to an input pattern being quite far from the cluster centroid as
shown in (Gabrys and Bargiela, 2000). It is necessary to build a membership function that monotonically

decreases with the increase in the distance from the input pattern to the cluster prototype.

In conclusion, the learning algorithm introduced by Simpson builds the connections starting by the first
example and then adds new hyperboxes by a process of expansion/contraction. The algorithm faces two main
problems: the difficulty to determine the threshold value and the dependence of classification performance

on the presentation order of the input samples (Meneganti et al, 1998).

4.2 Enhanced variants of the fuzzy min-max neural networks

Due to the existence of considerable drawbacks in the original fuzzy min-max neural networks, many re-
searchers have made efforts to improve this type of neural network. Enhanced versions have focused on two
directions. While several studies have aimed to overcome the existing restrictions in the training algorithm of
the original FMNN, other studies have changed the network architecture of the original model and proposed
new structures with special neurons to handle the overlapping regions between hyperboxes belonging to

different class labels.
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4.2.1 Modified variants using hyperbox expansion and contraction procedures

First significant extension of the original FMNN is a general fuzzy min-max neural network designed by
Gabrys and Bargiela (2000). The GFMN is built on the basis of expansion and contraction concepts, and
it can deal with both labeled and unlabeled data in a single algorithm. The architecture of GFMN almost
resembles the original fuzzy min-max neural network topology except for two main alterations (Gabrys
and Bargiela, 2000). The first change is that the number of nodes in the input layer has been extended
from n to 2n. Primarily, it allows an input to be a hyperbox rather than a point in the n-dimensional
space. The second modification is that the output layer has been added an extra node to represent all
the unlabeled hyperboxes from the intermediate layer. This helps GFMN to deal with both supervised
learning and unsupervised learning. Other changes in the GFMN in comparison with the original FMNN
comprises the format of input patterns, a new fuzzy hyperbox membership, and adaptive modification of the
maximum hyperbox size. Input samples of the GFMN are able to be in form of fuzzy hyperboxes or crisp
points. The labeled and unlabeled input samples might be handled simultaneously. This feature enables the
algorithm to be adopted for clustering, classification, or a hybrid of clustering and classification (Gabrys and
Bargiela, 2000). The allowable maximum size of hyperboxs, 6, can be modified gradually during the training
process after each presentation of the training instance as follows: 07 = © x 0°!¢, where ¢ is the coefficient
responsible for the decreasing pace of 6 (Gabrys and Bargiela, 2000). Two different algorithm type have been
proposed to train the GFMM models (Gabrys, 2004): an incremental learning (Gabrys and Bargiela, 2000)
and an agglomerative learning (Gabrys, 2002a). The incremental (online) learning is a dynamic hyperbox
expansion and contraction procedure where hyperboxes are generated and tuned in the sample space after
every presentation of a training instance (Gabrys, 2002a). A general idea is the production of quite large

hyperboxes in the early phases of training process and the reduction of the maximum allowable size of the
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hyperboxes in subsequent training executions aiming to accurately capture complicated nonlinear boundaries
among various classes. Nevertheless, this learning strategy, at all incremental learning approaches, results
in the input-output mapping depending on the order of presentation of the training input samples, and the
algorithm is sensitive to outliers and noise (Gabrys, 2002a). The overlapping hyperboxes are also another
undesired result derived from the dynamic feature of the algorithm. The agglomerative learning introduced
in (Gabrys, 2002a) is an alternative and a complimentary method to the incremental learning for an off-
line training process done on a finite training sets. While the incremental learning is more appropriate for
on-line adaptation and is able to tackle large training data sets, agglomerative learning represents robust
behaviour in presence of outliers and noise as well as insensitivity to the order of training samples presentation
(Gabrys, 2004). In contrast to the incremental learning algorithm, the data clustering operation utilizing the
agglomerative learning may be considered as a bottom-up technique where one begins with all individual
samples as the set of initial hyperboxes, and larger representations of the original data groups are formed by

aggregating smaller clusters (hyperboxes) (Gabrys, 2004).

With the aim of generating good classifiers, Gabrys (2004) analyzed five different algorithm-independent
model generation schemes from the GFMM neural network using the agglomerative learning algorithm. These
methods include construction of the predictive models using full training data set, employing a k-fold and
multiple 2-fold cross-validation along with different pruning procedures, and an ensemble of various GFMM
classifiers at the decision or model level. He claimed that the method of generating the GFMM model using
base learning algorithms without any hyperbox pruning steps is swift and able to adapt to the changing
environment. However, it is likely to be overfitted and exhibit a poor generalization performance. In the case
that the classifiers can be built in the off-line modes, the techniques based on the combination of multiple
cross-validation and pruning procedures or the ensemble of base classifiers tend to yield a better classification

accuracy.



50 Thanh Tung Khuat et al.

An interesting property regarding the use of hyperboxes as inputs for the general fuzzy min-max neural
network is the capability of handling missing values in the data. One of the most common methods of tackling
missing values is to replace them with estimated values such as the mean value computed from all patterns.
Nevertheless, this makes data set no longer a good representation of the problem and may result in bad
solutions (Berthold and Huber, 1998). Gabrys (2002c) introduced a method of dealing with missing data
within the classification algorithm automatically by employing the general fuzzy min—max neural network
model. The GFMN represents the missing features as real valued intervals being able to get the whole range
of possible values. In other words, if the value of the i*" feature is missing, the lower bound of hyperbox on
the i*" dimension is assigned to one and its upper bound receive the value of zero. This operation makes the
hyperbox membership associated with the missing feature to be one, and so it does not lead to a decrease
in the overall membership value. This substitution also makes sure that the neural network structure would
not be modified when handling missing dimensions. The only changes of the training algorithm relate to the
way of performing the overlap test and the usage of assumption that the missing features are possible to
get all values (Gabrys, 2002¢). The overlap test is conducted after each hyperboxes updating operation for
only hyperboxes in which their value of maximum point is larger than or equal to their value of minimum
point on every dimension. The ultimate model trained on incomplete data may contain a set of hyperboxes
for which some dimensions are missing or not established. Empirical results illustrated the effectiveness and

performance of the GFMN in dealing with missing data.

In another study, Kim et al (2004); Kim and Yang (2005) proposed a weighted fuzzy min-max (WFMM)
neural network for the sample classification and feature extraction problems. They introduced a new mem-
bership function and expansion scheme by considering a weight factor for each dimension of a hyperbox. This
improvement makes the WFMM less sensitive to the unusual or noisy features in a data set in comparison

with the FMNN (Kim et al, 2004). Therefore, the WFMM may handle better data sets containing highly
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uneven distribution of features or noisy features (Zhang et al, 2011). The use of the weight factor for each
dimension of the hyperbox aims for membership function being capable of taking into consideration both
the happening of samples and the importance level of each input feature (Kim et al, 2006). The architecture
and learning algorithm of the WFMM are similar to the FMNN except for some changes in the hyperbox
membership function and expansion mechanism. In the WFMM, each dimension in the original member-
ship function shown in Eq. 5 is multiplied with a weight factor to take the relevance of each feature into
consideration. These weights are initialized to 1.0 when a new hyperbox is generated, and their values are
updated based on new data coming. To reduce the influence of unusual or noisy samples, Kim et al (2004)
altered the expansion procedure such that the membership values gradually rise for these patterns. In the
later research, Kim et al (2006) introduced an enhanced version of WEMM neural network with changes
in the connection weight of features, membership function, and a new contraction method including the
weight updating mechanism. Like FMNN, the learning algorithm of the modified WFMM neural network

also includes three operations: hyperbox expansion, overlap test, and hyperbox contraction.

With the aim of handling a number of drawbacks of the original FMM neural network, Mohammed and
Lim (2015) introduced an enhanced fuzzy min-max neural network (EFMNN). They retained the structure
of original FMNN and only modified the training algorithm. Authors analyzed three main shortcomings
that may influence the FMNN’s performance. The first drawback is that hyperbox expansion condition can
lead to the increasing of the overlapping region between different classes as several dimensions surpass the
expansion coefficient but sum of all dimensions still falls in the allowable limit. The second shortcoming is that
the original FMNN only use four cases to detect the overlapping area between two hyperboxes belonging
to different classes, so some other overlapping cases might not be uncovered by these tests as shown in
(Mohammed and Lim, 2015). The last disadvantage of the original FMNN is that the subsequent hyperbox

contraction procedure based on four cases is not strong enough to handle all overlapping regions in practice.
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To deal with the first limitation, authors employed a new constraint, in which each dimension of the j**
hyperbox is examined individually to identify if it is larger than the expansion parameter . This mechanism
is the same as that proposed in the GFMM neural network (Gabrys and Bargiela, 2000). Regarding the
second shortcoming, Mohammed and Lim (2015) introduced nine cases for overlap test and corresponding

contraction operations instead of four cases in original FMNN.

In the later study, Mohammed and Lim (2017a) claimed that the expansion rule limitation has still not
been resolved thoroughly in the EFMNN. It is obvious that the expansion process in the original FMNN as
well as the EFMNN concentrates on choosing the hyperbox with the largest value of membership function
to become the sole winner in a set of hyperboxes. This mechanism can result in the production of numerous
small hyperboxes located in the vicinity of the winning hyperbox when the winner cannot meet the expansion
criterion; therefore increasing the network complexity. Based on this analysis, Mohammed and Lim (2017a)
proposed a novel approach, known as the K-nearest hyperbox expansion rule (KN-EFMNN), to decrease the
network complexity by reducing the number of small hyperboxes within the surrounding area of the winning
hyperbox during the training phase. First of all, the hyperbox with the highest membership value is chosen.
All its dimensions are then examined against the expansion conditions. If there is any expansion criterion
violation of the winning hyperbox, the next nearest hyperbox is selected to execute the same examining
process. If all K-nearest hyperboxes cannot satisfy constraints, a new hyperbox is generated to include the
input pattern. A set of K-nearest hyperboxes with the same class label is selected for finding the ultimate
winning hyperbox for the hyperbox expansion procedure, which leads to reducing of the number of small
hyperboxes (Mohammed and Lim, 2017a). Like other classifiers, the EFMNN is sensitive to noise in the data
sets. If noise exists in the training data, it will cause the production of numerous ‘noisy’ hyperboxes; thus
degrading the performance of the model. Besides the K-nearest hyperbox selection rule, Mohammed and Lim

(2017b) introduced a useful strategy to deal with noise, i.e., pruning. This strategy aims to determine and
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delete hyperboxes giving low accuracy, which regularly are produced because of outliers or noise. Hence, the
available data patterns should be split into training, prediction, and test sets. In the learning process, the
training set is utilized to formulate hyperboxes, while the prediction one is then used to prune the trained
network architecture (Mohammed and Lim, 2017b). Although the EFMN and its improved versions outper-
form the original FMNN, the use of the contraction step for the training process may lead to classification

error as analyzed in subsection 4.2.2.

Though hyperbox fuzzy sets can explain their predictive results based on rules extracted directly from
the min-max values, the interpretability of classification is usually not friendly for users. It is due to the fact
that the rule sets become extremely complex in case of a large number of hyperboxes and high dimensions.
Therefore, it is desired to construct the rule extraction methods from hyperboxes to form a compact rule set,
which is capable of accounting for the predictive results. As a result, Quteishat and Lim (2008b); Quteishat
et al (2010) introduced a two-stage pattern classification system using a modified FMNN in the first stage
and a rule extraction procedure in the second stage. Sonule and Shetty (2017) described an enhanced FMNN
model with an ant colony optimization based rule extractor for decision making by a list of rules. In the
two-stage sample classification and rule extraction system using different FMNN models, a data set is divided
into three sections, which are training set, prediction set, and test set. Training set is applied for training the
FMNN, prediction set is responsible for hyperbox pruning and rule extraction, while test set is employed to
assess the performance of classification systems. The first stage of the two-stage classifier comprises FMM
training and pruning, while the second stage is a process of rule extraction. The learning process in this
system is the same as original FMNN. After the network is trained, a pruning operation is implemented to

lower the number of generated hyperboxes.

The pruning technique used by Quteishat and Lim (2008b) relied on a confidence factor similar to

Carpenter’s work (Carpenter and Tan, 1995). Prior to performing the pruning procedure, the confidence
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factor (C'F;) of each hyperbox B; is computed according to its usage frequency and predictive accuracy over
the prediction set. The confidence factor has likelihood of identifying good hyperboxes being ones which
are usually utilized and generally give accurately predicted results or ones that are rarely employed but
highly accurate (Quteishat and Lim, 2008b). This confidence factor is then associated to the fuzzy if-then
rule extracted from the corresponding hyperboxes with the aim of indicating its certainty level to predicted
results. After confidence factor of each hyperbox is calculated, hyperboxes with their values of confidence
factor smaller than a user-defined threshold are removed, and the remaining hyperboxes are utilized in stage
2 of the classification model. Quteishat and Lim (2008b) conducted the rule extraction process once the first

stage is finished.

To enhance the prediction performance, however, in the later work, Quteishat et al (2010) conducted
several preprocessing steps before extracting rules from the modified FMNN] i.e., open hyperbox generation
and genetic algorithm (GA) rule selection. This method is abbreviated MFMNN-GA. An open hyperbox is
a hyperbox with at least one dimension undefined by its minimum and maximum points, whereas a closed
hyperbox is the one with all its minimum and maximum vertices defined. This mechanism is similar to the
method proposed by Gabrys (2002¢) for handling missing values in the input dataset. The non-declared
dimension is considered as the “don’t care” dimension and fully contain the specific “don’t care” feature of
the input space (Quteishat et al, 2010). In the open hyperbox generation, all possible combinations of open
hyperboxes for each hyperbox are checked. After that, all hyperboxes (closed and open) are put through an
evolution process by using the GA (Quteishat et al, 2010). The GA is in charge of evolving and choosing a
set of hyperboxes that are able to generate a good predicted result with a small number of features. This
operation contributes to reducing the complexity of fuzzy rules generated from hyperboxes. In the prediction
stage of the original FMNN, the sample is assigned to the class represented by the hyperbox having the

largest membership value. However, there exists the case that many hyperboxes have high membership
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values for a new input sample. Hence, the winner-takes-all technique in identifying the winner hyperbox
could result in incorrect prediction results. To cope with this issue, Quteishat and Lim (2008b) proposed a
combined method of the membership function and Euclidean distance to predict the output of classification
system. Hyperboxes with membership values larger than a user-defined threshold are selected and stored
to a pool. After that, the Euclidean distances between the input sample and the centroid of the chosen
hyperboxes are identified, and the hyperbox with the shortest distance value is chosen as the winner. This
modification enhanced the classification results in the case that the constructed network contains only the
relatively small number of hyperboxes (Quteishat and Lim, 2008b). However, these proposed classifiers have

lost single pass-through online adaptation power of FMNN (Forghani and Yazdi, 2015).

In another study, Sonule and Shetty (2017) proposed an enhanced fuzzy min-max neural network model
with a rule extractor based on ant colony optimization (EFMNN-ACO) for classifying the data samples and
decision making by rule-list. The output of the EFMNN (Mohammed and Lim, 2015) is used as input of a rule
extractor based on AntMinerPlus algorithm to build a graph. Hyperboxes generated by the neural network
are pruned and the rule extraction process occurs after pruning of the path selection graph. After training
the enhanced fuzzy min-max neural network, its outputs are used to construct a graph of AntMinerPlus
algorithm. This algorithm forms the graph by using min-points, max-points and unit matrix of the classified
hyperboxes. Then the algorithm will perform a process of extracting the rule-list and pruning rules by finding
the paths on the graph. The experimental result of Sonule and Shetty (2017) showed that the quality of rules
is consistent and the number of obtained rules is reduced due to the optimization algorithm. One of the
strong points of this method is that it can optimize simultaneously a list of rules instead of separate rules.
However, training time of the system is longer than other classifiers since there are more cases considered

and the construction of graph in the AntMinerPlus algorithm takes a long time.
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As mentioned in section 4.1.1, the original fuzzy min-max neural network encounters several problems
in the expansion and contractions steps as well as the overlapped boundary after doing contraction. Hence,
Liu et al (2017) proposed a modified fuzzy min—max neural network for data clustering (MFMC) to deal
with those issues. The authors still maintained the architecture of the original FMNN for clustering, but
they introduced several changes for training process such as a hyperbox selection rule, a reservation rule
and a hyperbox entropy measure for contraction process, and a parameter § to avoid boundary overlapping.
When a new training instance is presented, the membership values of all hyperboxes are computed. If no
existing hyperboxes contain the input sample, a hyperbox with the largest membership degree is chosen as
the winner hyperbox and the expansion process is conducted. Nevertheless, there may be numerous winner
hyperboxes in the case of hyperboxes with the same membership values. In this situation, the original
fuzzy min-max clustering neural network will select the final winner hyperbox randomly. In contrast, the
MFMC calculates a centroid for each winner hyperbox to cope with this issue (Liu et al, 2017). After all
centroids of winner hyperboxes are calculated, the distances between input sample and these centroids are
taken into account. Finally, the hyperbox with minimum distance value is the ultimate winner hyperbox to
continue with expansion criteria checking. If there exists an overlapping region, the contraction procedure is
executed. Different from the original fuzzy min—-max learning algorithms which only separate the overlapping
area into half, Liu et al (2017) introduced the method to reserve the hyperboxes with higher performance
when performing the contraction operation. The hyperboxes which include more data with smaller size
are regularly considered to be the ones with higher performance. The reservation ability maintains the good
structure of the whole learning algorithm, avoid disturbing the size of hyperboxes because of noise, and refine
the robustness for the algorithm (Liu et al, 2017). The authors introduced a formula called the hyperbox

entropy (HE) to assess the performance of each overlapping hyperbox. The hyperbox with higher value of
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HE is considered to be a better hyperbox. The contraction process is changed by integrating the value of
hyperbox entropy.

Although Liu et al (2017) made some changes to handle drawbacks of the original fuzzy min-max cluster-
ing neural network, there are still some existing unsolved problems. The method using only four test cases
for the overlapping checking as in the original FMNN is not adequate to verify all situations happening
in the practice as described in (Mohammed and Lim, 2015). The hyperbox selection rule only solves the
case of many winner hyperboxes. If the ultimate winner hyperbox cannot be expanded, it still creates a
new hyperbox to contain the input training sample. This issues can lead to the generation of numerous
hyperboxes with the small size, which causes the network complexity problem. In addition, Liu’s proposal
still implements the hyperbox contraction operation, which is more likely to result in potential errors as
explained in next subsection 4.2.2. Moreover, the performance of model depends highly on the value of the
parameter of maximum hyperbox size 6.

Azad and Jha (2016) argued that the series of expansion and contraction steps lead to the change in
the sizes of hyperboxes and affect the performance of the predictive model. Hence, authors proposed to
use the genetic algorithms to optimize the min-max values of hyperboxes generated by the original FMNN.
Hyperboxes are selected to perform the processes of crossover and mutation to produce better offspring.
The new offspring are verified for possible overlaps and the contraction process is conducted if there is any
existing overlapping region among hyperboxes representing different classes. Finally, the best individuals
in the evolving process will replace the current hyperboxes. In later work, Azad and Jha (2017) used the
particle swarm optimization instead of genetic algorithms, and they obtained a better performance.

To improve the performance of the original fuzzy min-max neural network for clustering problems, Seera
et al (2015) proposed to integrate the centroid information of data samples into each hyperbox to construct

a modified fuzzy min-max neural network for data clustering (MFMMC). With the use of centroid, the
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operations of hyperboxes in the learning process are changed. In practice, the centroid of the hyperbox is
likely to be outside the hyperbox structure when performing the contraction process, so a rule to check the
hyperbox centroid was proposed. This rule forces the centroid to be inside the hyperbox. If the centroid is
outside the hyperbox after expanding the current hyperbox to cover the new pattern and then doing the
contraction step, the structures of two contracted hyperboxes are brought back to those before the process of
expansion and contraction is performed. After that, a new hyperbox is created to contain the input instance.
When the clusters are formed, the centroid information and the cophenetic correlation coefficient metric

(Mirzaei and Rahmati, 2010) are used to evaluate the quality of created clusters.

An attribute of the fuzzy min-max neural networks mentioned above is that all the input variables for
training and classifying processes are continuous numerical values (Castillo and Cardenosa, 2012). When the
categorical variables are presented, they can be substituted by numerical values and treated as continuous
values. However, there is no meaningful correspondence between the continuous values created by this method
and the original categorical ones (Brouwer, 2002). Hence, it is expected to form a new method for handling
categorical variables. Castillo and Cardenosa (2012) proposed a new method to extend the GFMN inputs
for dealing with discrete variables (GFMN-CD1) by formulating the distance between the categories of
categorical variables. Shinde and Kulkarni (2016) also introduced another method to refine the GFMN
for categorical input data (GFMN-CD2). In Castillo and Cardenosa’s proposal, each categorical variable
a; is one point of the p-dimensional space R” represented by a vector a; = (a1, a2, ..., aip) such that
a1 + a2 + ... + a;p = 1. The distance between two categorical variables can be computed according to two
ways, i.e., Euclidean distance or logarithmic distance. Similar to the hyperbox in the numerical dimensions,
each hyperbox fuzzy set in the i*" categorical dimension is determined by two categories eji and fj; with a
full membership (Castillo and Cardenosa, 2012). The authors defined a new membership function for both

numerical and categorical variables. They also extended the architecture of the GFMN (Gabrys and Bargiela,
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2000) to include both numerical and categorical inputs. Compared to GFMN, besides 2n numerical variable
nodes, there are r additional nodes representing the categorical inputs, and each categorical node is connected
to each hyperbox in the second layer by two connection weights - one for each category ej;, fj; defining
boundaries for the i'" categorical variable of the hyperbox B;. The training process for this improved version
also consists of four steps similar to the GFMN. In the architecture proposed by Castillo and Cardenosa
(2012), each input neuron representing categorical data is linked to each hyperbox in the second layer by two
connections corresponding to two categories defining the hyperbox. Shinde and Kulkarni (2016) proposed a
simpler architecture by adding a set of binary strings, where each binary string represents a given discrete
attribute, to each hyperbox fuzzy set of the network. Each neuron for categorical input is connected to each
hyperbox in the intermediate layer by only one connection. If the categorical attribute includes m values,
then it will be represented by a m-bit binary string, and the bit position corresponding to the current value
of that discrete variable is 1 while remaining bit positions are 0s. The authors introduced new membership
functions with the logical bitwise ‘and’ and ‘or’ operators conducted on two binary strings for categorical
variables. The learning algorithm is similar to the GFMN with only small changes to accommodate discrete

data.

4.2.2 Variants with novel training mechanism without using the hyperbox contraction procedure

Two main shortcomings of the learning algorithm developed by Simpson are the sensitivity to the input data
presentation order and the difficulty in finding the maximum hyperbox size. Hence, Meneganti et al (1998)
introduced a novel learning algorithm while keeping unchanged the structure of the fuzzy min-max neural
network. The algorithm begins with building the minimum size hyperboxes covering all patterns of the same
class, in which each class is represented by only one hyperbox. Then, a five-step process including partition,

decomposition, recomposition, removal, and expansion is used to minimize the number of hyperboxes while
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maximizing their dimensions. Authors also proposed a new method to split intersecting hyperboxes, which
represent different classes, based on the similarity. A new membership function using Gaussian function was
introduced to evaluate the similarity level of each pattern against each hyperbox. This learning algorithm
makes the classification performance independent from the sample presentation, and the algorithm does
not employ any threshold. In the later study, Tagliaferri et al (2001) claimed a top-down fuzzy min-max
(TDFMM) classifier by simplifying the complexity of the hyperbox splitting approach proposed by Meneganti
et al (1998). Based on the TDFMM algorithm, they developed a top-down fuzzy min-max regressor to deal
with the regression problem. First of all, clustering methods are deployed to assign the labels to input
patterns. Next, the TDFMM algorithm is utilized to build a hyperbox. The authors introduced a new
membership function to compute the output of the network from activation functions of hidden hyperboxes.

The parameters of the membership function are adjusted using the back-propagation algorithm.

For the design of classification systems, in addition to generalization ability and noise robustness, a high
degree of automation is also one of the most critical properties of data driven modeling tools (Rizzi et al,
2000). As a result, constructive learning algorithms are indispensable to enhance the degree of automation,
make the system work in a self-governing way, and automatically establish structural parameters during
training. Among neuro-fuzzy machine learning algorithms, the fuzzy min-max networks proposed by Simpson
(1992) have the potential to be trained in a constructive way (Rizzi et al, 2002). However, the original
Simpson’s training algorithm for the FMM neural network depends excessively on pattern presentation order
and on position as well as size of the hyperboxes generated during training. These parameters impose the same
condition on covering resolution in the whole input space. This results in reducing the generalization ability
of the neural model. Aiming to tackle these inconveniences, two new learning algorithms were introduced
by Rizzi et al (1998), i.e., the adaptive resolution classifier (ARC) and pruning ARC (PARC) algorithms. In

the improved version of these algorithms, Rizzi et al (2000, 2002) suggested a feasible enhancement of the
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training process by utilizing a new cutting strategy in order to handle recursively hybrid hyperboxes, namely
R-ARC/R-PARC. This procedure cuts a hyperbox into two halves by a hyperplane, perpendicularly to one
coordinate axis and corresponding to an appropriate point. The main aim of these operations is to yield
hyperboxes covering a set of samples belonging to only one class. These hyperboxes would be considered as
pure, otherwise hyperboxes are said hybrid. According to the principles of learning theory, pure hyperboxes
of the same class are fused if no overlaps occur with both pure hyperboxes and hybrid hyperboxes of different
classes (Rizzi et al, 2000). After cutting a hybrid hyperbox, a new coverage L is formed, a fusion operation
is carried out. Then, the net generation procedure is used to find an optimal fuzzy min-max neural network.
The computational expense of the fusion operation is expensive with the complexity being O(g3) (Rizzi
et al, 2002) (¢ is the number of pure hyperboxes in the coverage L), so the effectiveness of ARC algorithm
is dependent mostly on how many times a fusion operation is carried out and on the number of hyperboxes
before the fusion process begins. Hence, a method to improve the ARC algorithm is reduction of the total
number of nets created during training. Rizzi et al (1998) introduced a pruning version of ARC with two
subsequent actions: doing an ARC operation without the fusion procedure and doing a pruning procedure.
The pruning activity terminates if the removal of some pure hyperboxes lead to the incomplete actual
coverage (Rizzi et al, 2002). The pruning operation is to execute an automatic optimization of the network
architecture and to attain noise robustness. The key idea of further enhancement of ARC/PARC algorithm
is to isolate recursively the non-overlapping regions of the training set. Therefore, Rizzi et al (2002) proposed

a recursive ARC algorithm.

The contraction manner in Simpson’s FMM (Simpson, 1992) and general FMM networks (Gabrys and
Bargiela, 2000) has a drawback in which it removes from the two overlapping hyperboxes several zones of the
sample space that was unambiguous while simultaneously maintaining some contentious part of the pattern

space in each hyperbox. For instance, as shown in Fig. 7, some part of the original hyperbox B; now are
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contained in By after the contraction procedure and likewise the original hyperbox By has an overlapping
region with contracted hyperbox Bi. Hence, the overlap removal algorithm yields errors during training pro-
cess. Another issue derived from the contraction process is that it unnecessarily removes parts of the original
hyperboxes (Davtalab et al, 2014). The removal of these parts of hyperboxes implies that the contribution
of the data located in these regions to the network training process is nullified. This problem is more likely
to cause an irreversible loss if the neural network is trained using only one pass through the training data
(Bargiela et al, 2004). In some cases, additional hyperboxes can be generated to include the deleted portions
of the original hyperboxes, for example, the use of adaptive hyperbox size with multiple data presentations
in the GFMM neural network (Gabrys and Bargiela, 2000). This leads to the increase in the number of hy-
perboxes and the reduction in the interpretability of classification results. To tackle these problems, Bargiela
et al (2004) introduced an inclusion/exclusion fuzzy hyperbox classification network (IEFCN), where the

overlapping regions of the sample space are explicitly represented as exclusion hyperboxes.

B>
e New border

—— OId border

Overlap area

Fig. 7: Contraction of hyperboxes B; and Bs with elimination along one coordinate

Unlike the classical FMM neural network, the inclusion/exclusion fuzzy hyperbox classification model

employs two kinds of hyperboxes, which are the inclusion and exclusion ones, and does not use contraction
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to eliminate overlaps. The inclusion hyperboxes cover the input samples of the same class, whilst the exclusion
hyperboxes contain other overlapped input samples. By the use of combination of inclusion and exclusion
hyperboxes, the learning phase from three steps, which are expansion, overlap test, and contraction in classical
FMM, is reduced to two steps (expansion and overlap test) (Davtalab et al, 2014). Similar to GFMN, the
input layer of inclusion/exclution network also has the form of hyperboxes in the n-dimensional sample
space. In the middle layer, there is a set e of exclusion nodes constructed adaptively. The minimum and
maximum points of the exclusion hyperbox are determined when there is a positive value returned from the
overlap test of two hyperboxes showing different classes. If the new exclusion hyperbox accommodates any
of the exclusion hyperboxes created in the previous step, the included hyperboxes are removed from the
set e (Bargiela et al, 2004). The output layer has p 4+ 1 nodes (p is the number of classes) with node ¢py1

representing the exclusion hyperbox class.

The efficiency of the IEFMN is influenced when the number of exclusion hyperboxes is equivalent to that
of inclusion hyperboxes, where percentage of data samples categorized as void class can become unacceptably
high (Nandedkar and Biswas, 2007a). Therefore, Nandedkar and Biswas (2004, 2007a) proposed a fuzzy min-
max neural network with compensatory neurons (FMCNs), which are generated dynamically during learning
process, to tackle hyperbox overlaps and containment problems. The FMCN is also known as the Reflex Fuzzy
Min Max Neural Network (RFMN) since the concept of compensatory neurons (CNs) originates from the
reflex system of human brain. The use of compensatory neurons contributes to removing the contraction
process for the labeled hyperboxes and controlling membership in the overlapped region. Another drawback
of the FMNN is that their performance depends mostly on the maximum allowable hyperbox size 6. To deal
with this limitation, Rizzi et al (1998, 2002) introduced a recursive training algorithm using hyperbox cut
concept to avoid 6 initialization and sample order dependency. Nevertheless, these results have been gained

by performing a recursion procedure, so a single pass-through online adaptation ability is lost. Meantime, the



64 Thanh Tung Khuat et al.

FMCN still maintains a single pass-through and online learning capability (Nandedkar and Biswas, 2007a).
The number of nodes in the input layer of the FMCN is equivalent to the number of dimensions of input vector
X},. The intermediate layer neurons and output layer neurons are separated into two parts: 1) classifying
neuron (CLN) segment and 2) reflex section. The classifying part is used for computing membership values

for various classes.

The Reflex section comprises two subsections, Overlap Compensation Neuron (OCN) part and Contain-
ment Compensation Neuron (CCN) part (Nandedkar and Biswas, 2006a). This section is active whenever a
pattern is inside the class overlapping region. Each node in the intermediate layer presents a n-dimensional
hyperbox, which is dynamically generated during the learning process. Each hyperbox node in the set of
CLN nodes is formed when the training instance presents a class not been met so far or existing hyperboxes
of that class are not able to enlarge further to include it (Nandedkar and Biswas, 2007a). Hyperboxes located
in the second layer of OCN and CCN segments are built whenever the overlap or containment issue occurs
in the network respectively. Each OCN-type node generates two outputs corresponding to two overlapping
classes. OCN is active only if the pattern falls inside the overlapping area. An overlap compensation neuron
renders a hyperbox with size equal to the overlapping area between two hyperboxes belonging to different
classes. The containment compensation neuron is trained to handle the case that a hyperbox of one class
is accommodated fully or partly in a hyperbox of another class. The CCN also renders a hyperbox with
size equal to the overlapping area of two hyperboxes. This neuron is activated only if the pattern belongs
to the containment zone as well. Each CCN-type node has just one ouput and its output is linked to the
class of the hyperbox covering another hyperbox. The FMCN eliminates the usage of contraction procedure,
thus it avoids errors resulting from contraction operation. FMCN may maintain the knowledge of the al-
ready trained samples more effectively in comparison with FMNN and GFMN due to the fact that already

produced hyperboxes are not contracted. The accuracy of FMCN is better in single pass through the data
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(Nandedkar and Biswas, 2007a) as it is able to approximate the complicated structure of data more properly
thanks to the efficient capability of tackling hyperbox overlap and containment. Another benefit of FMCN
is that it can evade the dependency of systems on the learning parameter compared to FMNN and GFMN.

Furthermore, the FMCN is also robust to the noise.

In spite of above strength points, the FMCN also faces the following drawbacks. It does not implement
a suitable membership function for overlap compensatory neurons, thereby it is unable to precisely classify
high percentage of patterns present in overlapping areas. As described in Fig. 8, patterns falling inside the
overlapping region and being closer to hyperbox Bj (the light color regions within the B;) are assigned to
the class label of By and vice versa (Davtalab et al, 2012). Furthermore, FMCN only deals with simple and
containment overlaps, so there would be types of overlaps such that the algorithm cannot remove them,
e.g. two hyperboxes crossing each other. Another case is that hyperboxes including just one point, when
contained in any hyperbox representing another class, will not expand in next steps (Davtalab et al, 2014).
In the learning algorithm, if any overlap between expanded hyperbox and other hyperboxes representing
other classes exists, a compensatory neuron is added to the network. Hence, duplicate nodes are more likely
to be generated. To overcome these disadvantages, Davtalab et al (2012) invented a new fuzzy min-max
model based on fuzzy min-max neural network with modified compensatory neurons. This classification
model is also an online, single-pass and supervised learning method, but the authors made several changes in
the structure of FMCN and training phase to reduce time and space complexity. The new structure reduces
generating and storing useless hyperboxes during the training process, so it results in a faster classifier.
The authors suggested using a new membership function of compensatory nodes to deal with overlapping
areas and increase classification accuracy. Experimental results indicated that the new membership function

tackled the first drawback of FMCN mentioned in above section.
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class 1
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Fig. 8: The way of classifying sample spaces by FMCN

To construct a system being capable of learning from the mixture of labeled and unlabeled data like
the GFMN, Nandedkar and Biswas (2006a) introduced a modified version of reflex fuzzy min-max neural
network (RFMN) by adding floating neurons (RFMN-FN). Like the original RFMN, the REMN with floating
neurons also uses compensatory neurons to uphold the hyperbox dimensions and control the membership
in the overlapping areas among hyperboxes representing different classes. Floating neurons are added to
the network to keep the unlabeled hyperboxes and stop them from contributing to the classification. The
RFMN-FN may be trained by two methods, which are supervised learning and semi-supervised learning
(Nandedkar and Biswas, 2006a). In the mode of semi-supervised learning, after accomplishment of training,
many hyperbox fuzzy sets are more likely to remain unlabeled because of the shortage of evidence for
these sets. Neurons defining such hyperboxes are called “floating neurons”, and they are prevented from
contributing to the output. These neurons may be labeled and influence the output of model if evidence for a

suitable class is found out later on (Nandedkar and Biswas, 2006a). To handle labeled, unlabeled and partly
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labeled data sets, Nandedkar and Biswas (2007b) proposed a general reflex fuzzy min-max neural network

(GRFMN). However, the input pattern to this network is in numeric form.

In the later studies, Nandedkar and Biswas (2009, 2008, 2006b) extended this network for both granular
data and numeric data by representing input sample as a hyperbox X, = [X ;w X}]. GFMN does not make
use of contraction process, but instead, in GRFMN a reflex mechanism is used to tackle the hyperbox overlap
and containment issues. The reflex mechanism comprises compensatory neurons added dynamically to the
network during training procedure (Nandedkar and Biswas, 2007a). These neurons control the membership
value in the overlapping areas. In terms of partly labeled data set, GFMN training algorithm labels an
unlabeled hyperbox upon there is a single labeled pattern falling inside it, meantime the GFMN’s learning
algorithm eliminates the overlap of unlabeled hyperboxes with all other hyperboxes. In constrast, GRFMN
enables the unlabeled hyperbox to overlap with labeled hyperboxes, and it only performs a contraction
process if there is an overlap between two unlabeled hyperboxes (Nandedkar and Biswas, 2007b). GRFMN
implements the same contraction method as GFMN (Gabrys and Bargiela, 2000) for the overlap amongst
unlabeled hyperboxes, in which overlapped hyperboxes are contracted along a dimension with minimal
overlap. It is noted that compensatory neurons are not produced for GRFMN in the pure clustering problem.
The training algorithm of GRFMN is of incremental type, in which data patterns in the training set are
subsequently provided to the algorithm. The network attempts to learn the labeled input samples by finding
the most suitable hyperbox among the existing hyperboxes of the same class to cover those patterns. If no
hyperbox is found, a new hyperbox is added to the network. When an unlabeled sample is presented to
the learning process, the network should attempt to contain it in one of the existing labeled or unlabeled
hyperboxes, otherwise produce a hyperbox without label (Nandedkar and Biswas, 2007b). If any overlap

or containment occurs during hyperbox expansions, a corresponding compensatory neuron is added to the
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network. Contraction operation proposed by Gabrys and Bargiela (2000) is run if there is any overlap between

unlabeled hyperboxes (Nandedkar and Biswas, 2008).

Zhang et al (2011) introduced a data core based fuzzy min-max neural network (DCFMN) with new
structure and learning algorithm. Like FMCN (Nandedkar and Biswas, 2007a), DCFMN also removes the
contraction procedure to reduce classification errors. While FMCN employs the overlapped compensatory
neuron and the containment compensatory neuron to deal with the overlapping region among hyperboxes
from different classes, only one type of neurons, i.e., overlapping neurons (OLNs), is implemented to handle
the overlap and containment issue in DCFMN. As for FMCN, the extended hyperbox is not overlapping
with any prior hyperbox of different class, so the number of hyperboxes in FMCN may be large and this
results in a complex network and waste of time. To overcome this drawback, DCFMN allows the hyperboxes
to be expanded to overlap repeatedly with the previous hyperboxes (Zhang et al, 2011). Hence, the number
of hyperboxes in DCFMN is lower than that in the FMCN and it uses less computation time. Furthermore,
only three kinds of overlap were handled in FMCN, whereas the DCFMN tackles all kinds of overlap (Zhang
et al, 2011). In addition, the authors proposed a new membership formula of classification neurons formed
based on the characteristics of data and the impact of the noise which makes DCFMN more robust as Eq.
11. The membership formula of OLNs built on the basis of the relative position of data within the hyperbox
may remove the impact of different values of data and data normalization. A novel training and classifying
algorithm is introduced to make the resulting classifier faster and more accurate. The learning algorithm
for DCFMN can be divided into two parts: 1) creation and expansion of hyperboxes 2) overlap test, and
construction of OLN if needed. The overlap test takes place after the process of initializing and expanding
hyperboxes over all samples in the training data set. In spite of these advantages, DCFMN cannot accurately

classify high proportion of patterns being located in the overlapping areas, and also is unable to classify all
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learning examples properly either (Davtalab et al, 2014). Moreover, the architecture proposed by Zhang et al

(2011) can only handle numeric data. This method can be extended as GRFMN to deal with granular data.

n

bj(Xp) = min (min(f(zp; — wji + € ¢ji), fvji + € = Ty ¢ji)))) (11)

where € represents noise, c¢ is a difference between the data core in the hyperbox and the geometric center
of the respective hyperbox, and f is a ramp threshold function. € is in charge of restraining the impact of
noise, and its value changes depending on various noise values. The ramp threshold function f(a,b) is given

as Eq. 12.

e~ HDA if > 0,b> 0
F(a,b) =S e=a*(-D/A it g5 0.5 <0 (12)
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where A is employed to control the descending pace of the membership function.

As mentioned above, FMCN and DCFMN deploy compensatory neurons to deal with the overlapping
regions among hyperboxes of different classes. Nonetheless, these networks are unable to classify a high ratio
of patterns positioned in overlapping areas accurately and also face several structural issues in their training
algorithms leading to increased complexity but decreased efficiency (Davtalab et al, 2014). To increase the
classification accuracy in the boundary areas, Davtalab et al (2014) proposed a multi-level fuzzy min-max
(MLF) neural network implementing a multi-level tree structure to construct a homogeneous cascading
classifier. Hyperboxes with different sizes are yielded in various network levels to tackle the overlapping
issue. Each node in the network is a subnet as well as an independent classifier that can classify patterns

belonging to the defined area of sample space. The classifier in root level will classify most nonboundary areas
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of sample space, while each node in the i*" level of the network is in charge of classifying samples inhabiting
in an overlapping region of (i — 1) level. Overlap handling in the MLF is executed after establishment and
adjustment of all hyperboxes, which leads to reduced space and time complexity. MLF is able to classify
samples belonging to boundary regions with a high accuracy thanks to smaller hyperboxes in child nodes.
Experimental results of Davtalab et al (2014) indicated that MLF is more proper than original FMNN;
GFMN, DCFMN, IEFCN and FMCN, and the training process is faster than that of other types of FMM

networks in most cases.

Although FMCN and DCFMN do not use the contraction procedures, they supplement numerous new
neurons to the fuzzy neural network, which turns the neural network out to be more complex than before. To
cope with all issues, Ma et al (2012) introduced a modified data-core-based fuzzy min—max neural network
(MDCFMN) with new learning mechanism. In that algorithm, the contraction process was removed without
adding any new neuron to the network (Ma et al, 2012). The learning algorithm for the MDCFMN only
consists of one procedure: identify if hyperboxes need expand or not and compute the center of gravity of data
in the same hyperbox. When the sample is presented to the model, if there is no existing hyperboxes being
able to cover the sample, then we need to find expandable hyperboxes and expand them. The constraint to
determine whether the hyperbox can be expanded or not is computed for each dimension in the same way
as in the GFMN. If it is satisfied, the minimum and maximum vertices of hyperbox are tuned by using Egs.
7 and 8; otherwise, we need to create a new hyperbox to contain the new data sample. The gravity center of

data in the same hyperbox is recomputed as Eq. 13 after the new data have been added to the hyperboxes.

gi -1+ Xp

n+1 (13)

g =

where g; is the old gravity center; 7 is the number of samples in the hypebox, X}, is the input data.
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It is seen that the modified DCFMN used a recursive procedure to determine the average value of data
located in a hyperbox. The new learning algorithm does not need to perform the overlap test procedure with
the aim of forming the special neurons for overlapping areas, the speed of pattern classification may be raised.
Although the authors indicated that their proposal does not yield an special node for each overlapped area,
they employed such nodes implicitly (Forghani and Yazdi, 2015). While the contraction process is more likely
to lead to classification errors, the formulation of a special node for each overlapped region in training stage
may lead to the complexity in the architecture of neural networks and increase in time and space complexity.
There is an interesting finding that the misclassification probability in the case of both training and test
patterns being from identical probability distribution is minimized if the classifier has symmetric margin
(Vapnik, 2000). However, none of above methods is capable of classifying patterns positioned in overlapped
regions with symmetric margin. Hence, Forghani and Yazdi (2015) proposed a fuzzy min—max neural network
with symmetric margin (FMNWSM). In that approach, only hyperbox expansion procedure is carried out
in training phase. It does not find overlapped regions, does not perform the contraction process to eliminate
overlapped areas and does not yield any special hyperbox for overlapped regions. Due to using only expansion
procedure, the training time of FMNWSM is lower than that of kinds of conventional FMNNs such as FMNN,
GFMN, FMCN, and DCFMN. In real-world applications, data can be infected by noise, which results in
formulating hyperboxes with wrong boundaries. To cope with the impact of noise on class