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New Graph-based Features For Shape Recognition

Narges Mirehi · Maryam Tahmasbi · Alireza

Tavakoli Targhi

Abstract Shape recognition is a main challenging problem in computer vision.
Different approaches and tools are used to solve this problem. Most existing ap-
proaches to object recognition are based on pixels. Pixel-based methods are de-
pendent on the geometry and nature of the pixels, so the destruction of pixels
reduces their performance. In this paper, we study the ability of graphs as shape
recognition. We construct a graph that captures the topological and geometrical
properties of the object. Then, using the coordinate and relation of its vertices,
we extract features that are robust to noise, rotation, scale variation, and artic-
ulation. To evaluate our method, we provide different comparisons with state-of-
the-art results on various known benchmarks, including Kimia's, Tari56, Tetrapod
and Articulated dataset. We provide the analysis of our method against different
variations. The results confirm our performance, especially against noise.
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1 Introduction

Shape is a significant concept in image understanding. It includes considerable
meaningful properties of an object and provides stability to different object defor-
mations (such as articulation, occlusion, and noise) and transformations ( such as
rotation, translation, scale and etc.). Therefore the development of object descrip-
tors which include shape information is an essential problem. For this purpose,
different approaches are presented such as skeletal, geometrical and graph-based
methods [3,16,11,19,20,21,9]. The skeleton is a connected set of medial lines in-
side the shape along the limbs that captures the shape of the boundaries. Some
proposed methods utilize the skeleton for object recognition [12,17,20]. Skeleton-
based methods are sensitive to noise on the boundary. In fact, little variation or
noise in the object can cause considerable deformations and redundant branches
in the skeleton and its topology might be disturbed. Siddiqi et al. presented shock
graph which represents skeleton information of an object in a directed acyclic
graph [17]. It encodes the local variation of the radius function along the medial
axis in the nodes of the graph. Macrini et al. introduced bone graph that improved
stability over shock graph. Its nodes represent the non-ligature segments of the
medial axis and its edges show the ligature segments that capture the relational
information between medial parts [12].

Yang et al. suggested a hierarchical skeleton-based algorithm to increase the
stability of skeleton pruning which captures different levels of skeletons [20].

Some interesting geometric and graph-based approaches in shape recognition
include shape context [3], inner-distance [11], graph edit distance [7], triangle area
representation [1], height function [19], invariant multi-scale [21] and hierarchical
characteristic number contexts (HCNC) [9].
The major disadvantage of geometric features is sensitivity to articulation and
some deformations. Belongie defined a shape context (SC) descriptor which for
every contour point, stores the distribution of the rest of the points with respect
to it. The shape context of every point is a histogram of relative coordinates of
remaining points in log-polar space, which leads to more sensitivity of the descrip-
tor to nearby sample points than to farther points [3]. Alajlan proposed triangle
area representation (TAR) to measure the convexity and concavity of boundary
points. The triangles are formed by boundary points in different sale levels and
their area of a boundary point is signed by positive, negative or zero in convex,
concave or straight line position respectively [1]. Gao et al. suggested graph edit
distance (GED) which measures the similarity between pairwise graphs in inexact
graph matching. GED is defined as the cost of the least sequence of edit operations
needed to transform a graph into another [7].
Payet and Todorovic introduced a hierarchical graph to describe an object. The
nodes of this graph include the geometric properties of corresponding parts, and
the edges store the strength of neighbor and interactions between the parts. Their
matching algorithm finds a subgraph isomorphism of the minimum cost [15].

Ling and Jacobs introduced the inner-distance shape context (IDSC) approach
[11]. To compute the inner-distance of a shape, a graph is constructed; its vertices
are the contour points and the edges are drawn between points that their connect-
ing segment lies inside the shape. The length of the edges equals the Euclidean
distance between nodes, so does the distance between different contour points and
the shortest path between them in this graph.
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Another geometric method was proposed based on height functions [19]. The
method considers a fixed number of points on the boundary of an object and
for each point measures the height of other points from its tangent line. The shape
is described using smoothing the height functions. Nevertheless, height functions
can be sensitive to articulation and the feature vector for each contour point is
long.
Yang et al. proposed an invariant multi-scale method to capture local and global
data of the object [21]. This method considers circles with different radii on each
boundary point and measures features such as area, arc length and central dis-
tance of boundary points inside these circles. The similarity between objects is
calculated via dynamic programming algorithm.
Jia et al. introduced Hierarchical projective invariant contexts (HCNC) method
by computing characteristic number values on a series of 5 sample points on the
object contour [9]. HCNC is based on local features and is sensitive to noise.

Different graph-based methods were presented in recent decade [7,15]. Most of
these methods store intended features in nodes and edges of a graph and use this
graph for efficient object matching. In fact, the role of graph in matching is more
important than that of representation [7].

All mentioned approaches have some limitations and suffer sensitivity to noise,
articulation and some deformations. In this paper, we study object recognition
from graph theory viewpoints. Graphs are robust with respect to rotation, artic-
ulation, and noise, so they can be effective tools to capture the image properties.
These graphs have limited number of vertices and make the size of the problem
fixed in different scales. So, it can be used as powerful tools in shape recognition.
We use Growing Neural Gas (GNG) algorithm [6] to construct the graph. This
algorithm constructs a GNG graph model of input data incrementally.

Two principal properties of this graph are low dimensionality and topological
preservation, i.e. the number of vertices of the graph does not depend on image
scale and it is not sensitive to articulation and noise on the boundary. In this graph,
every vertex has a coordinate, so we can use geometric properties of the graph as
well. Also, in other research, GNG graph is applied to hand gesture recognition
[13]. We use both topological and geometrical properties of this graph to extract
meaningful features from the image. Both theoretic discussions and experimental
results show that our method is invariant to articulation, noise, occlusion, rotation,
and scale. To evaluate our method, we compare our results on various challenging
benchmarks that include different variations.

The rest of this paper is organized as follow: we introduce our method, con-
struct the GNG graph and extract its outer boundary in section 2, then we define
the features in section 3 and the matching algorithm in section 4, and in sec-
tion 5, we compare the results and evaluate our approach. Finally, we present the
conclusion and open problems in section 6.

2 Methodology

In this section, we introduce our proposed method. We use a graph to approximate
the object. The vertices are scattered almost uniformly inside the object. The main
steps of our proposed method are:
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1. Constructing a graph that models the object useing Growing Neural Gas
(GNG) algorithm [6]. The constructed graph is called GNG graph.

2. Extracting the outer boundary of the GNG graph, using computational geom-
etry approaches and extracting geometrical and topological features from this
graph.

3. Measuring the similarity between objects using dynamic programming algo-
rithm.

2.1 Why GNG graph

Our method is based on a graph with vertices uniformly placed inside the image.
This graph must have the following properties:

– The vertices are placed almost uniformly inside the object and the edges have
almost equal lengths.

– The number of vertices is fixed and does not depend on the scale of the object.
– The graph is robust with respect to noises. It must ignore the holes and cracks

inside and the noise on the boundary of the object.

Different approaches can be chosen to construct this graph. We choose GNG
algorithm because it well satisfies the mentioned properties, the running time is
satisfiable and can be extended to 3d object representation and object tracking [8,
14,18]. Also, since the structure is not fixed but adaptable, GNG can learn new
evolving patterns in an online learning process and is able to adapt to dynamic
changing operating conditions [5].

2.2 Constructing the GNG graph

Growing neural gas algorithm (GNG) is an unsupervised incremental algorithm
which learns the topology of the input data utilizing competitive Hebbian learning
[6]. It fills the area of an object by vertices almost uniformly distributed inside it
and describes the distribution of input data using less space. The output of the
algorithm is a graph preserving the topological structure of input data. The GNG
algorithm is presented in the following [6]:

GNG algorithm

1. Start the GNG graph with two neurons a and b in random positions wa and
wb.

2. Generate a new input x of input space.
3. Find the nearest node s1 and the second nearest node s2 to the input vector

x.
4. Increase the age of all adjacent edges of s1. (every edge includes a parameter

of age with the initial value of zero).
5. Increase the error variable of s1 by the square of the Euclidean distance between

it and the input vector x (Every node i has an error variable ei which is
initialized as zero).

∆errors1 = ‖ ws1 − x ‖2
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6. Move the location of s1 and its neighbors (n) with a multiple of ǫb and ǫn
toward input vector, respectively.

∆ws1 = εb(x− ws1)

∆wn = εn(x− wn)

7. If s1 and s2 are connected by an edge, set the age of this edge to zero or else
add an edge with age zero between s1 and s2.

8. Remove all edges with age larger than αmax.
9. When the comparison is finished, insert new node r between a node q with

maximum error variable and its neighbor f which has the largest value of error
variable.

wr = (wq + wf )/2

– Insert edges connecting r with q and f , and remove the original edge be-
tween q and f .

– Decrease the error variables of q and f by multiplying with a constant α.
10. Decrease all error variables by multiplying them by a constant σ.
11. If the stopping criterion (e.g, the number of inputs is a multiple of a parameter

λ) is not yet fulfilled, go to Step 2.

Fig. 1: The different steps of GNG algorithm on a binary image of Kimia 's 216.

Figure 1 shows a sample image and its GNG graph. To construct the GNG graph,
the parameters must be chosen in a way that a more accurate graph results with
less computation time. We tested different parameters and let N = 350, λ = 50,
αmax = 50, α = 0.5, σ = 0.995, ǫb = 0.05, ǫn = 0.005, where N is the number
of neurons. We exprimented GNG graph with various number of neurons from
150,200,250,300,350 and observed that 350 neurons are sufficient. After applying
the GNG algorithm, some corrections might still be needed.
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– Some edges in the GNG graph are redundant, it means that they go through
the background. We find and remove these edges from the graph. In order to
do so, we find the middle point of each edge and consider its nine neighbors,
if most of them belong to the background, we remove the edge.

– We suppose that the GNG graph is connected. If not, we choose the connected
component with the largest number of nodes. Disconnectivity happens in the
presence of noise, or multiple objects are formed in the image. We suppose that
the image contains only one object.

2.3 Extracting the outer boundary of the GNG graph

In this phase, we extract the outer boundary of the GNG graph. If the graph is
2-connected, then the outer boundary is a cycle, otherwise, it is a closed walk. So,
we can store its vertices in a cyclic array, C, in clockwise order of appearance. The
idea is similar to the idea of a convex hull algorithm [4].

Outer boundary extraction

1. Find the leftmost vertex v and its neighbor u with the smallest clockwise angle
with the vertical half-line crossing v.

2. Insert v and u in C.
3. Consider the two last vertices i and i− 1 in C and for all vertices j, adjacent

to i, compute the size of the clockwise angle at i between the edges i, i− 1 and
i, j.

4. Select a vertex with minimum angle as the next vertex on the boundary and
insert it in C.

5. If the last two vertices in C are equal to initial vertices (u and v), exit otherwise
go to step 3. (This helps passing the cut vertex, if exists.)

Figure 2 shows an example of a GNG graph and its outer boundary.

Fig. 2: a) The outer boundary extraction b) red vertices show the outer boundary
of the graph.
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3 Feature extraction

Although the vertices on the outer boundary of GNG graph capture the special
information of the object, the relation between boundary and internal vertices
can provide new topological features that lead to better recognition. We introduce
features for each vertex on the outer boundary, then compute and combine these
features to describe global and local properties of the shape.

The features are: perimeter (P ), boundary-in-disk (B), convex hull-area (CH)
and distance-to-center (C) for outer boundary vertices of GNG.

Given an object, let U = {u1, u2, ..., un} define the sequence of outer boundary
vertices in clockwise order. A feature vector Fi = (Pi, Bi, CHi, Ci) is computed
for every outer boundary vertex ui, i ∈ {1, ..., n}. Fi consists of four features Pi,
Bi, CHi and Ci with lengths |Pi| = m1, |Bi| = m2, |CHi| = m3, |Ci| = m4 and∑4

j=1 mj = m. So Fi can be considered as a m dimensional vector. We compute

Fi for every outer boundary vertex ui, i ∈ {1, ..., n} and define F = F (U) =
(F1, F2, F3, ..., Fn) which is a m× n matrix.
Let G be the GNG graph of an object and V (G) be the set of vertices in G. For
every two vertices v, u ∈ V (G), d(u, v) shows their distance in G.

For every outer boundary vertex ui and for every integer j, let Dj(ui) = {v ∈

V (G) : d(v, ui) ≤ j} be the discrete disk of radius j around ui and D̄j(ui) = {v ∈

V (G) : d(v, ui) = j} be the boundary of the discrete disk. Figure 3 shows the
discrete discs around a vertex in a sample image. We define four features P , B,
CH and C for a given object A with outer boundary vertices U = {u1, u2, ..., un}

as follows:

Fig. 3: The scales 1-3 around the black vertex are shown and the vertices with the
same distances 1-3 from black vertex are specified in the same color.

– Perimeter (P ):
For each outer boundary vertex ui, perimeter counts the number of vertices
that are in D̄j(ui) for j ∈ {1, ..., m1}. Small values of j describe local properties
while larger values represent global properties of the shape.
Figure 4-a shows an example of this feature.

– Boundary-in-disk (B):
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The number of outer boundary vertices inside Dj(ui) for each outer boundary
vertex ui where j ∈ {1, ..., m2} is called boundary-in-disk. If the boundary has
peaks and troughs inside the disk, this number is bigger, so this feature can
keep the shape of the boundary, if it is computed for different radii (see figure
4-b).

– Convex hull-area (CH):
For each outer boundary vertex ui and integer j ∈ {1, 2, ..., m3}, let S be the
convex hull of vertices in Dj(ui) that are on the outer boundary of G. The
number of vertices of Dj(ui) that are inside S is called convex hull-area.

– Distance-to-center (C): For vertex ui, distance-to-center (C) is measured as
the ratio of distances between ui and the center of G and j, j ∈ {1, ..., m4}.

Fig. 4: a) An example of feature P for two different vertices ui and uk when j = 3.
Here Pi = 3 and Pj = 11. The vertices in D̄3(ui) or D̄3(uk) are colored in gray. b)
An example of feature B for two vertices ui and uk when j = 4. Here Bi = 8 and
Bk = 15. These vertices are colored in gray.

Fig. 5: An example of CH at two vertices ui and uk for j = 3. Here CHi = 11
and CHk = 6. These vertices are colored in gray.

Yang et al. in [21] considered circles with different radii on each boundary
point. They defined a major zone as the connected region of the object which is
inside the circle and contains the center of it. They computed features including
area and length of the boundary segment of major zone, and the distance between
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the center of circle and the center of major zone. To determine the scale number m
(maximum radius), they follow this condition: if the average difference of features
between neighboring scales m and m+ 1 is less than a threshold, The scale m is
enough [21]. We applied a similar approach to determine m1,m2,m3 and m4.

4 Similarity measuring and matching

We apply Dynamic programming (DP) to find an optimal matching between two
objects and consider the matching cost as the dissimilarity value of them. DP is
an effective method for contour matching with high accuracy. Let {p1, p2, ..., pn}

and {q1, q2, ..., qm} be the boundary sequence of two objects A and B respec-
tively. A matching π from A to B is defined as a mapping from {p1, p2, ..., pn} to
{q1, q2, ..., qm} where pi is mapped to qπ(i) if π(i) 6= 0 and otherwise pi remains un-
mapped. The cost of π is defined as

∑n

i=1 c(pi, qπ(i)), where c(pi, qπ(i)) equals the
Euclidean distance between feature vectors pi and qπ(i). DP computes a matching
with minimum cost between sequences of boundary points of two objects.

We compute outer boundary vertices of the GNG graph and consider them as
boundary points in DP. Figure 6 shows the examples of matching between two
different objects.

Fig. 6: A matching between outer boundary vertices of two objects. Dashed lines
show the mapping. a) shows a matching with articulation and b) shows a matching
with occlusion.

5 Comparison

To evaluate our method, we provide experimental comparison with the state-of-
the-art methods on challenging benchmark datasets Kimia's 99, Kimia's 216 [16],
Tetrapod [10], Tari56 [2] and Articulated dataset [11]. These datasets are well-
known in the object recognition area and have been used by various methods
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to evaluate [3,11,19,21,20]. The datasets include the challenges scale variation,
rotation, articulation, intra-class variation, and missing parts. The retrieval rate
is measured by the so-called bull 's eyes score. It measured the similarity between
an object and all other objects. The number of objects belonging to the same class
among the top 1 to n most similar objects is counted (parameter n is different in
various datasets). Every object in the dataset is used as a query, and the retrieval
result for the total dataset is computed by averaging among all objects [19].

Fig. 7: Some images of Kimia 's 99 dataset.

Table 1: Exprimental comparison of our method with state-of-the-art methods on
Kimia's 99

Kimia's 99 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

SC [3] 99 97 91 88 84 83 76 76 68 62
IDSC [11] 99 97 92 89 85 85 76 75 63 53
Path similarity[10] 99 99 99 99 96 97 95 93 89 73
Invariant multi-scale [21] 99 99 99 99 98 97 95 94 90 83
Hierarchical skeletons [20] 99 99 99 96 94 95 91 89 85 77
Ours 99 98 96 96 96 94 95 90 88 86

5.1 Kimia's dataset

The Kimia's dataset is a widely used benchmark dataset in shape classification
[16]. It contains Kimia's 25, Kimia's 99 and Kimia's 216 datasets. The Kimia's
25 is a small dataset and contains only 25 objects, so we consider Kimia's 99 and
Kimia's 216 to evaluate our method.
Kimia's 99: Kimia's 99 has 99 images grouped into 9 different classes that oc-
clusions, articulations and missing parts occur in this data set (see figure 7). The
retrieval result is summarized as the number of top 1 to top 10 most similar ob-
jects of correct category (the best possible retrieval rate is 99). The comparison
of results on Kimia's 99 is reported in table 1. Our performance is comparable on
Kimia's 99.
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Fig. 8: Some images of Kimia 's 216 dataset [20].

Kimia's 216: Kimia's 216 includes 216 images from 18 categories. Figure 8 shows
some objects of Kimia's 216. Our results on Kimia's 216 are reported in table 2.
It shows our method has considerable performance among other approaches.

Table 2: Experimental comparison of our method with state-of-the-art methods
on Kimia's 216

Kimia's 216 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th

SC [3] 204 199 192 187 185 181 175 166 160 163 155
IDSC [11] 216 198 189 176 167 156 136 130 122 118 108
Path similarity [10] 216 216 215 216 213 210 210 207 205 191 177
Invariant multi-scale [21] 216 216 214 210 207 207 201 194 188 182 163
Hierarchical skeletons [20] 216 216 213 212 209 197 196 192 193 172 169
Ours 216 216 214 212 211 206 210 200 195 186 163

Fig. 9: Some images of Tetrapod dataset [20].
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Table 3: Exprimental comparison of our method with state-of-the-art methods on
Tetrapod dataset

Tetrapod 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

SC [3] 100 80 70 53 53 51 40 28 27 27
IDSC [11] 120 118 106 101 90 83 77 69 70 56
Path similarity[10] 120 109 101 98 81 78 68 66 65 59
Hierarchical skeletons [20] 120 118 106 100 95 90 84 71 83 81
Ours 120 119 114 113 112 110 111 99 99 95

11th 12th 13th 14th 15th 16th 17th 18th 19th 20th

SC [3] 29 27 25 32 32 23 31 26 20 28
IDSC [11] 57 45 38 29 41 35 26 27 30 21
Path similarity [10] 59 49 50 42 43 35 39 31 33 36
Hierarchical skeletons [20] 68 73 67 77 68 67 60 51 56 43
Ours 83 83 78 76 67 61 62 52 44 45

5.2 Tetrapod dataset

Tetrapod contains 120 images from similar tetrapod animals and grouped into 6
classes deer, camel, elephant, cattle, dog, and horse [10] (see figure 9). The high
intra-class similarity of the dataset is very challenging. As shown in table 3, Our
method achieved considerably better performance than other approaches with the
bull 's eyes score.

Fig. 10: All images of tari56 dataset [20].
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5.3 Tari56 dataset

Tari56 is introduced for evaluating on non-rigid objects by Tari [2]. It includes
56 similar articulated shapes grouped in 14 classes with 4 shapes in any class
(see figure 10). Yang et al. implemented different source code methods on Tari56
and presented an experimental comparison with them [20]. We use the reported
compared results in [20] to evaluate our method. The results of comparison on
Tari56 with the bull 's eyes score are listed in table 4. It shows that our results
are significantly better among all other approaches.

Table 4: Experimental comparison of our method with state-of-the-art methods
on Tari56 dataset

Tari56 dataset 1st 2nd 3rd 4th

SC [3] 52 17 10 10
IDSC [11] 56 46 37 28
Path Similarity [10] 56 49 44 40
Hierarchical skeletons [20] 56 51 50 33
Ours 56 55 53 53

Fig. 11: All images of articulated dataset [11].

5.4 Articulated dataset

Articulated dataset provided by Linge and Jacobs [11] contains 40 images from
8 different classes and each class has 5 articulated shapes to different degrees.
In addition to articulation, high similarity between different classes of scissors is
challenging. Figure 11 shows all images of this dataset. The results of comparison
are listed in table 5. Our results on this dataset are comparable to other methods.
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Table 5: Experimental comparison of our method with state-of-the-art methods
on articulated dataset

Articulated dataset 1st 2nd 3rd 4th

SC [3] 20 10 11 5
IDSC [11] 40 34 35 27
Height functions [19] 38 35 28 19
HCNC [9] 40 38 29 22
Invariant multi-scale [21] 40 37 35 30
Ours 39 37 34 26

5.5 Analysis properties of our method

To study the behavior of different features in the presence of noise, articulation,
scale, rotation, occlusion an intra-class variation, we made an experimental study
as follows. We selected 5 images from a class of Kimia's 216, then we create new
images with changing the scale and rotation of these images, afterwards we plot
the features of objects to compare their diagrams. Figure 12 shows these diagrams.
In order to make the comparison easier, we start the boundary list from the red
circle shown in each figure. Columns 1 to 4 present the plot of features Perime-
ter, Boundary-in-disk, Convex hull-area and Distance-to-center, respectively. The
values shown in these diagrams are the average of values in different scales.

5.5.1 Scale

We represent the image of objects by graphs with a fixed number of vertices.
Therefore objects with different scales are represented as graphs with the same
size, so our method is invariant to scale. Rows 1 and 3 in figure12 show the plot
of different features for two different scales of an image. As these plots show, the
features dot not change seriously when the scale changes.

5.5.2 Rotation

Graphs have interesting characteristics which can play an important role in object
recognition: graphs do not change by rotation, so, our method is robust to rotation.
Experimental studied approve this statement. Rows 1 and 2 in figure 12 show the
same object with different rotations. Comparing columns 1 to 4 in these rows show
that the corresponding features are very similar.

5.5.3 Occlusion

A significant property of GNG graph is its low dimensionality. It models objects
with low dimensional subspaces which reflect the topological structure of them.
Since GNG graph preserves the topological properties of the image, occlusion and
missing parts have little effect on this graph. Rows 4 and 5 in figure 12 show
images that include occlusion. We see that the missing parts do not destruct the
features of other parts and matching other parts help correct object recognition.
Figure 6-b shows the matching when the missing parts have occurred.
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Fig. 12: The diagram of features perimeter (P ), boundary-in-disk (B), convex
hull-area (CH) and distance-to-center (C).

5.5.4 Intra-class variation

Rows 6 and 7 of figure 12 represent the examples of intra-class variations. We see
that the corresponding columns 1, 2 and 4 are very similar. The general structure
of the features such as the main peaks in the diagrams are similar.

5.5.5 Articulation

Articulation is an other challenge in object recognition. We evaluated our method
on Articulated dataset. In this part, we take a look to different features in ar-
ticulated objects. Some features like the distance in graph do not depend on the
coordinate and hence do not change in articulation. Figure 13 shows objects with
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different articulations and their corresponding GNG graph and the shortest path
between two vertices of it. The length of inner distances is similar without using
normalization.

Fig. 13: First row shows objects with different articulations and second row
shows their GNG graph and inner paths between black vertices.

Fig. 14: The objects from the same class with different articulations and the plot
of correspondence features. Red circles show the beginning position of boundary.
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In a second observation, we take a look at the plot of different features in some
images with articulation. Figure 14 shows these plots.

5.5.6 Robustness against noise

Noise is a common problem in real world applications. In this section we select
an image from Kimia's 216 dataset and add Gaussian noise with zero mean and
standard deviation σ as 0.2, 0.4, 0.6, 0.8 and 1 to all pixels on each image in both
x and y directions. These images are shown in figure 15.

Fig. 15: The same object with Gaussian noises in different standard deviations.

Finding the boundary in the images with noise is a challenging problem. We
used the algorithm in [19] for these images and show the result in figure 16.

Fig. 16: The sample points of outer boundary extracted by [19].

As figure 16 shows, the boundary can be very messy therefor the features
extracted from boundary do not work properly in object recognition. But in figure
17 shows despite the loss of image pixels, GNG graph models object as well and
the outer boundary of object is detected with high accuracy.

Finally, we plot the features of noisy images of figures 15 (see figure 18). We
also applied Gaussian noises on all images in Kimia’s 216 and reported the results
of recognition algorithm in table 6.

5.6 Our contribution

Pixel-based methods are dependent on the geometry and nature of the pixels, so
the destruction of pixels such as small inner holes, the noise of the boundary, and
the dispersion of pixels mainly bother them and reduce their ability. Most existing
pixel-based methods are contour-based and are dependent on other methods to
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Fig. 17: The GNG graph of object with Gaussian noise σ = 1.

Table 6: Experimental results on Kimia's 216 with Gaussian noises in different
standard deviations

Kimia's 216 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th

σ = 0 216 216 214 212 211 206 210 200 195 186 163
σ = 0.2 215 215 216 210 208 210 209 202 194 185 161
σ = 0.4 215 216 213 211 211 211 209 198 196 182 158
σ = 0.6 216 215 216 212 209 210 208 198 200 189 164
σ = 0.8 215 216 214 211 211 210 205 196 195 188 151
σ = 1 214 213 212 210 207 204 205 197 191 186 159

extract the contour of objects, while extracting the contour of objects in a noisy
space is a challenging problem. To avoid the limitation of pixel-based methods, this
paper introduces a more flexible method based on the graph. We show the ability
of graphs to shape representation. Our performance is similar and comparable to
well pixel-based methods. In fact, we introduce a new space for object recognition
with significant properties which can be improved by other researches. Our main
contributions are:

– Object representation in graph space.
– Outer boundary extraction without dependence on pixel-based algorithms.
– Definition of new graph-based features that capture the topological and geo-

metrical properties of the object.
– High flexibility against articulation.
– Considerable stability against noises and small inner holes.
– No need to normalize the features, which reduces computational errors.
– Tracking ability of the behavior of nodes in online images [18].

Also, our method preserves the advantage of other methods such as stability
against translation, sale, rotation, occlusion and missing parts. We show many
pixel-based features can be defined with graphs. We defined features similar with
Invariant multi-scale [21] in graph domains without the limitation of pixel against
noises.
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Fig. 18: The features of the same object with Gaussian noises in different standard
deviations (figure 15).

6 Conclusion and future work

This work provides a novel graph-based approach for object recognition. In this
paper, we study the role of graph in image representation. We model objects with
GNG graphs and use the coordinate and relation of vertices to extract topological
features that are robust to noise, rotation, scale variation, and articulation. These
features describe global and local properties of an object. The proposed method
uses DP to measure the similarity between objects. We evaluate our methods on
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different known benchmarks. We analyze our method to articulation, scale, occlu-
sion, and rotation. The experimental results indicate comparability of our method
with state-of-the-art methods. Also, we evaluate our method in the presence of
noises. The results show the high ability of our method against noises. In this
work, we showed that object recognition can be improved using graphs for image
representing and extracting topological features. Hand gesture and American sign
language recognition are interesting problems because of high intra-class similar-
ities between different signs. Studying the performance of our method on these
problems can be interesting.
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