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Abstract
In practical applications of graph theory, indeterminacy factors always appear in graphs.Uncertain randomgraphwas proposed
via chance theory, in which some edges exist with degrees in probability measure and others exist with degrees in uncertain
measure. This paper discusses the contributions of edges for connectivity of an uncertain random graph and proposes concepts
about significance of edges, according to which edges are classified. In addition, this paper presents algorithms for calculating
connectivity index and significance of edges of an uncertain random graph. Examples are given to illustrate algorithms and
methods.
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1 Introduction

In reality, decisions are usuallymade in the state of indetermi-
nacy, which means the outcomes cannot be exactly predicted
in advance. In order to deal with this phenomenon, two
mathematical systems are frequently used: one is probability
theory founded by Kolmogorov in 1933, and the other one
is uncertainty theory founded by Liu (2007). When there are
no samples available to estimate a probability distribution,
uncertainty theory is applied to evaluating the belief degree,
at which each event will happen. When applying uncertainty
theory to the research on graph theory, although this kind of
research skill is not entirely new in mathematics, it is cer-
tainly surprising that ideas of uncertainty theory are often
useful in tackling extremal problems in graph theory.

Graph theory is the study of graphs, which are mathe-
matical structures used to model pairwise relations between
objects. When investigating graphs with certain property in
graph theory, normally there are two ways. One way is to
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obtain exact formulas or structural conditions by combinato-
rial enumeration or structural analysis. This is the traditional
deterministic method. The other way is to estimate the belief
degree of the event that graphs have this property. In 1961,
Erdos andRenyi (1959) proposed themodel of randomgraph,
inwhich appropriate probability distributions and probabilis-
tic ideas were used to approximate a variety of exact values.

However, probability theory is not suitable for every
indeterministic phenomenon. Especially, when there are no
sufficient samples or data, it is impossible to determine the
distribution functions of random variables. For example, dur-
ing the coronavirus outbreaks in early 2020, researchers used
networks and graphs to estimate the outbreak sizes. As this is
a novel virus, the only data they could use were from medi-
cal institutions and experts’ experiences. The data were very
inaccurate and subjective. So it was not very suitable to apply
probability theory to characterize the indeterministic factors
in the models. When probability theory is not suitable for
some indeterministic phenomenon, some researchers tried
to apply other theories there. For example, some researchers
applied fuzzy theory (Zadeh 1965) to graphs and proposed
the model of fuzzy graph (Rosenfeld 1975). However, as
fuzzy theory lacks the property of self-duality, there may be
somemisunderstandings and contradictions during the appli-
cation of fuzzy graphs.

So when there are no sufficient samples or data, uncertain
theory could be applied to evaluating the belief degrees of
indeterministic factors. Gao and Gao (2013) proposed the
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model of uncertain graph via uncertainty theory. Parameters
of uncertain graphs were discussed. The Euler index was dis-
cussed by Zhang and Peng (2012), and the connectivity index
was discussed by Gao and Gao (2013). Later, Gao discussed
the cycle index (Gao 2013), the regularity index (Gao 2014)
and the tree index (Gao 2016). In Gao et al. (2019) investi-
gated theα-connectedness index. In Li et al. (2018) discussed
thematching number, and Rosyida et al. (2018) discussed the
uncertain chromatic number. In addition, Zhou et al. (2014a)
investigated the inverse shortest path problem in an uncer-
tain graph in 2015. Also Gao et al. (2015) investigated the
distribution function of the diameter in an uncertain graph.
Gao and Qin (2016) presented algorithms for calculating the
edge-connectivity.

In many cases, uncertainty and randomness simultane-
ously appear in one complex system. To deal this kind of
systems, Liu (2013b) proposed the chance theory with con-
cepts of uncertain random variable, chance measure and
chance distribution. Liu (2014) introduced the model of
uncertain random graph and the model of uncertain random
network via chance theory. In an uncertain random graph,
some edges exist with degrees in probability measure and
other edges exist with uncertain measure. Liu (2014) dis-
cussed the connectivity index of an uncertain random graph.
In 2016, the Euler index of an uncertain random graph was
discussed by Zhang et al. (2017). In 2018, the cycle index
of an uncertain random graph was discussed by Chen et al.
(2018).

Among all properties and structures of graphs, connectiv-
ity is the most fundamental one. The measure of the event,
that an uncertain graph or an uncertain random graph is con-
nected, is called its connectivity index. Gao and Gao (2013)
determined the connectivity index of an uncertain graph. Liu
(2014) determined this index of an uncertain random graph,
which is a generalization of previous result. In this paper,
we will propose a method to evaluate the contributions of
edges for the connectivity of an uncertain random graph
and will define concepts about the significance of edges for
connectivity. Edges will be classified by their significance.
An algorithm for calculating significance of edges and some
related algorithms will also be presented here.

The remainder of the paper is organized as follows. In
Sect. 2, we will give a brief summaries of chance theory and
the model of uncertain random graph. Some necessary defi-
nitions and notations of graph theory will also be presented.
In Sect. 3, we will propose the concepts of the significance
of edges for connectivity and will classify edges into differ-
ent categories. In Sect. 4, algorithms will be presented, and
examples will be given to illustrate the method. The last sec-
tion will be a brief summary.

2 Preliminary

In this section, we will introduce some preliminary knowl-
edge about chance theory, graph theory and the model of
uncertain random graph.

2.1 Chance theory

In many cases, uncertainty and randomness both appear in
one complex system. In order to solve these complex systems,
Liu (2013b) proposed chance theory, whichwas soon applied
to many optimization problems. Interested readers may refer
to references (Ke et al. 2015; Liu and Ralescu 2014; Qin
2018; Wen and Kang 2016; Zhou et al. 2014b).

Let (Γ ,L,M) and (Ω,A,Pr) be an uncertainty space
and a probability space, respectively. Then the product
(Γ ,L,M) × (Ω,A,Pr) is called a chance space. Elements
inL×A are called events in the chance space. For each event
Θ , its chance measure was defined by Liu (2013b) as

Ch{Θ} =
∫ 1

0
Pr{ω ∈ Ω|M{γ ∈ Γ |(γ, ω) ∈ Θ} ≥ x}dx .

An uncertain random variable was defined by Liu (2013b) as
a function ξ from a chance space (Γ ,L,M) × (Ω,A,Pr)
to the set of real numbers such that {ξ ∈ B} is an event in
L×A for any Borel set B. An uncertain random variable is
called a Boolean uncertain random variable if it takes values
0 or 1. Similarly, an uncertain variable is called a Boolean
uncertain variable if it takes values 0 or 1. A function with n
variables is called a Boolean function if it is a mapping from
{0, 1}n to {0, 1}.
Theorem 1 Liu (2013a) Assume that η1, η2, . . . , ηm are
independent Boolean random variables, i.e.,

ηi =
{
1 with probability measure ai
0 with probability measure 1 − ai

for i = 1, 2, . . . ,m, and τ1, τ2, . . . , τn are independent
Boolean uncertain variables, i.e.,

τ j =
{
1 with uncertain measure b j

0 with uncertain measure 1 − a j

for j = 1, 2, . . . , n. When f is a Boolean function,
ξ = f (η1, η2, . . . , ηm, τ1, τ2, . . . , τn) is a Boolean uncer-
tain random variable such that

Ch{ξ = 1} =
∑

(x1,...,xm )∈{0,1}m

( m∏
i=1

μi (xi )
)
f ∗(x1, . . . , xm),
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where

f ∗(x1, . . . , xm)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

sup
f (x1,...,xm ,y1,...,yn)=1

min
1≤ j≤n

v j (y j ),

if sup
f (x1,...,xm ,y1,...,yn)=1

min
1≤ j≤n

v j (y j ) < 0.5

1 − sup
f (x1,...,xm ,y1,...,yn)=0

min
1≤ j≤n

v j (y j ),

if sup
f (x1,...,xm ,y1,...,yn)=1

min
1≤ j≤n

v j (y j ) ≥ 0.5,

μi (xi ) =
{
ai if xi = 1
1 − ai if xi = 0

(i = 1, 2, . . . ,m),

v j (y j ) =
{
b j if y j = 1
1 − b j if y j = 0

( j = 1, 2, . . . , n).

2.2 Notations of graphs

Graphs in this paper are finite simple graphs, which have no
multi-edges and loops. Terms and notations not defined here
are referred to Bondy and Murty (2008).

A graph G is an ordered pair (V , E), where V is the set of
vertices and E is the set of edges. Without loss of generality,
we assume that V = {v1, v2, . . . , vn}. Two distinct vertices
vi and v j are called adjacent if there is an edge e linking vi
and v j . Then, vi and v j are called the two endpoints of e. We
also use (vi , v j ) to represent this edge. The adjacency matrix
of G, denoted by A(G), is an n × n matrix

⎛
⎜⎜⎜⎝

a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...

an1 an2 · · · ann

⎞
⎟⎟⎟⎠ ,

where

ai j =
{
1, if (vi , v j ) ∈ E(G)

0, otherwise.

As G is a simple graph, A(G) is a symmetric matrix with
aii = 0 for i = 1, 2, . . . , n.

A walk is a sequence v1e1v2e2v3 . . . vkekvk+1 such that
ei = (vi , vi+1) for i = 1, 2, . . . , k. A walk is called a path
if v1, v2, . . . , vk+1 are distinct. A graph is called connected
if for every pair of distinct vertices, there is a path linking
them. The following is a well-known result in graph theory.

Theorem 2 Let G be a simple graph. Then G is connected if
and only if I + A(G)+ A(G)2 +· · ·+ A(G)n−1 > 0, where
I is the identity matrix.

2.3 Uncertain random graphs

In the study of graph theory, edges and vertices of graphs are
always deterministic. But in practical problems, indetermi-
nate factors always appear. So when graphs are applied to
these problems, it is reasonable to assume that some edges in
graphs exist with some degrees. These degrees could be of
probability measure or uncertain measure. Liu (2014) intro-
duced the model of uncertain random graph. In an uncertain
random graph, all edges are independent, and some edges
exist with degrees in probability measure, while other edges
exist with degrees in uncertain measure.

A graph is of order n if it has n vertices. Without loss of
generality, in the rest of this paper, we assume that graphs are
always of order n. LetV be a set of n vertices.We assume that
V = {1, 2, . . . , n}. So there are n(n − 1)/2 possible edges
between them. We define two disjoint collections of edges,

U = {(i, j) | 1 ≤ i < j ≤ n and (i, j) are uncertain edges},
R = {(i, j) | 1 ≤ i < j ≤ n and (i, j) are random edges},

with U ∪ R = {(i, j) | 1 ≤ i < j ≤ n}. Note that determin-
istic edges are regarded as special uncertain ones.

The uncertain random adjacencymatrix is an n×nmatrix

A =

⎛
⎜⎜⎜⎝

α11 α12 · · · α1n

α21 α22 · · · α2n
...

...
. . .

...

αn1 αn2 · · · αnn

⎞
⎟⎟⎟⎠ ,

where αi j represent the truth values in uncertain measure or
probability measure that the edges between vertices i and j
exist, i, j = 1, 2, . . . , n, respectively. As graphs considered
in this paper are simple graphs,A is a symmetric matrix, and
αi i = 0 for i = 1, 2, . . . , n.

Definition 1 (Liu (2014)) Assume V is the collection of
vertices, U is the collection of uncertain edges, R is the
collection of random edges, and A is the uncertain random
adjacency matrix. Then the quartette G = (V,U ,R,A) is
said to be an uncertain random graph.

For an uncertain random graph G = (V,U ,R,A), write

X =

⎛
⎜⎜⎜⎝

x11 x12 · · · x1n
x21 x22 · · · x2n
...

...
. . .

...

xn1 xn2 · · · xnn

⎞
⎟⎟⎟⎠
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Fig. 1 Uncertain random graph G with all realization graphs

and

X =

⎧⎪⎪⎨
⎪⎪⎩
X

∣∣∣
xi j = 0 or 1, if (i, j) ∈ R
xi j = 0, if (i, j) ∈ U
xi j = x ji , i, j = 1, 2, . . . , n
xii = 0, i = 1, 2, . . . , n

⎫⎪⎪⎬
⎪⎪⎭

. (1)

For any X ∈ X, the extension class of X is defined by

X∗ =

⎧⎪⎪⎨
⎪⎪⎩
Y

∣∣∣
yi j = xi j , if (i, j) ∈ R
yi j = 0 or 1, if (i, j) ∈ U
yi j = y ji , i, j = 1, 2, . . . , n
yii = 0, i = 1, 2, . . . , n

⎫⎪⎪⎬
⎪⎪⎭

. (2)

As there are n(n−1)
2 edges in G, there are 2

n(n−1)
2 possible

realizations of edges. Each realization could be represented
by a simple graph, which is called a realization graph. Let H
be a realization graph with adjacency matrix Y . Then there
exists X ∈ X, such that Y ∈ X∗. The chance measure of the
event that the realization graph H appears, is

⎛
⎝ ∏

(i, j)∈R
νi j (Y )

⎞
⎠

(
min

(i, j)∈U
νi j (Y )

)
,

where

νi j (Y ) =
{

αi j , if yi j = 1
1 − αi j , if yi j = 0.

Example 1 Let G = (V,U ,R,A) be an uncertain random
graph (shown in Fig. 1), where V = {1, 2, 3}, R = {(1, 2)},
U = {(1, 3), (2, 3)}, and

A =
⎛
⎝ 0 0.4 0.9
0.4 0 0.7
0.9 0.7 0

⎞
⎠ .

As G has 3 edges, it has 23 realizations, whose realization
graphs are H1, H2, . . . , H8. The chance measure of the event
that H1 appears is

(1 − 0.4) × min{1 − 0.7, 1 − 0.9},

which equals to 0.04.
An uncertain random graph G = (V,U ,R,A) becomes

a random graph (Erdos and Renyi 1959; Gilbert 1959) if
U = ∅. This is actually the widely used random graph model
G{n, (pi j )} (Bollobás 2011). Then,

X =
⎧⎨
⎩X

∣∣∣
xi j = 0 or 1, i, j = 1, 2, . . . , n
xi j = x ji , i, j = 1, 2, . . . , n
xii = 0, i = 1, 2, . . . , n

⎫⎬
⎭ .

For any X ∈ X, X is the adjacency matrix of a realization
graph, which appears with probability

∏
1≤i< j≤n

νi j (X).

An uncertain random graph G = (V,U ,R,A) becomes
an uncertain graph (Gao and Gao 2013) ifR = ∅. Then,

X =
⎧⎨
⎩X

∣∣∣
xi j = 0 or 1, i, j = 1, 2, . . . , n
xi j = x ji , i, j = 1, 2, . . . , n
xii = 0, i = 1, 2, . . . , n

⎫⎬
⎭ .

For any X ∈ X, X is the adjacency matrix of a realization
graph, which appears with uncertain measure

min
1≤i< j≤n

νi j (X).

3 Significance of edges for connectivity

An uncertain random graph G is connected for some real-
izations and is disconnected for some other realizations. The
measure of the event thatG is connected, denoted by ρ(G), is
called the connectivity index of the uncertain random graph.

Gao and Gao (2013) determined the connectivity index of
an uncertain graph. Later, Liu (2014) generalized this result
to uncertain random graphs by chance theory.

Theorem 3 Liu (2014) Let G = (V,U ,R,A) be an uncer-
tain random graph. Then,

ρ(G) =
∑
X∈X

( ∏
(i, j)∈R

vi j (X)
)
f ∗(X)

where

f ∗(X) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

sup
Y∈X∗, f (Y )=1

min
(i, j)∈U

vi j (Y ),

if sup
Y∈X∗, f (Y )=1

min
(i, j)∈U

vi j (Y ) < 0.5

1 − sup
Y∈X∗, f (Y )=0

min
(i, j)∈U

vi j (Y ),

if sup
Y∈X∗, f (Y )=1

min
(i, j)∈U

vi j (Y ) ≥ 0.5,
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vi j (Y ) =
{

αi j , if yi j = 1
1 − αi j , if yi j = 0

(i, j) ∈ U ,

f (Y ) =
{
1, if I + Y + Y 2 + · · · + Yn−1 > 0
0, otherwise,

X is the class of matrices satisfying (1), and X∗ is the exten-
sion class of X satisfying (2).

Corollary 1 Gao and Gao (2013) Let G = (V,A) be an
uncertain graph. Then,

ρ(G) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

sup
X∈X, f (X)=1

min
1≤i< j≤n

vi j (X),

if sup
X∈X, f (X)=1

min
1≤i< j≤n

vi j (X) < 0.5

1 − sup
X∈X, f (X)=0

min
1≤i< j≤n

vi j (X)

if sup
X∈X, f (X)=1

min
1≤i< j≤n

vi j (X) ≥ 0.5,

where

X =
⎧⎨
⎩X

∣∣∣
xi j = 0 or 1, i, j = 1, 2, . . . , n
xi j = x ji , i, j = 1, 2, . . . , n
xii = 0, i = 1, 2, . . . , n

⎫⎬
⎭ ,

vi j (X) =
{

αi j , if xi j = 1
1 − αi j , if xi j = 0,

f (X) =
{
1, if I + X + X2 + · · · + Xn−1 > 0
0, otherwise.

In a simple graph, some edges are critical to its connec-
tivity. Each minimal cut of the graph consists of these edges.
Similarly, in an uncertain random graph, some edges are very
important to its connectivity. That means the connectivity
index is very sensitive to the measure of these edges. Mean-
while, some edges are irrelevant to the connectivity, and the
connectivity index is not sensitive to the measure of them.
Here, we give a method to evaluate the significance of edges
to the connectivity of an uncertain random graph.

For a matrix

A =

⎛
⎜⎜⎜⎝

a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...

an1 an2 · · · ann

⎞
⎟⎟⎟⎠

and for 1 ≤ i < j ≤ n, let A+(i j) be the matrix obtained
from A by changing both ai j and a ji to 1. Let A−(i j) be the
matrix obtained from A by changing both ai j and a ji to 0,
for 1 ≤ i < j ≤ n.

Let G = (V,U ,R,A) be an uncertain random graph.
For any edge (i, j) (1 ≤ i < j ≤ n), let G+(i j) =
(V,U ,R,A+(i j)) and G−(i j) = (V,U ,R,A−(i j)) be the
(i, j)-reinforcing graph and the (i, j)-relaxation graph ofG,

respectively. Note that edge (i, j) always exists in G+(i j),
while in G−(i j), the edge between vertices i and j does not
exist.

Theorem 4 Let G = (V,U ,R,A) be an uncertain random
graph. For any edge (i, j) (1 ≤ i < j ≤ n),

ρ(G−(i j)) ≤ ρ(G) ≤ ρ(G+(i j)).

Proof For any connected realization graph H of G, assume
that Y is the adjacency matrix of H . By Theorem 2, I +
Y + Y 2 + · · · + Yn−1 > 0. As Y+(i j) ≥ Y , I + Y+(i j) +
Y+(i j)2 + · · · + Y+(i j)n−1 > 0. Then the graph with adja-
cency matrix Y+(i j) is a connected realization graph of
G+(i j) and appears with greater measure than H . Thus,
ρ(G) ≤ ρ(G+(i j)). Similarly, ρ(G−(i j)) ≤ ρ(G). �	
Definition 2 Let G = (V,U ,R,A) be an uncertain ran-
dom graph. The significance of the edge between vertices
i and j (1 ≤ i < j ≤ n), denoted by δ(i j), is
ρ(G+(i j)) − ρ(G−(i j)). The reinforcing significance of
edge (i, j), denoted by δ+(i j), is ρ(G+(i j)) − ρ(G). The
relaxation significance of edge (i, j), denoted by δ−(i j), is
ρ(G) − ρ(G−(i j)).

SinceG−(i j) is the uncertain randomgraph obtained from
G by losing edge (i, j), δ−(i j) is the change of connectivity
index to this loss. Then, δ−(i j) shows the direct contribu-
tion of edge (i, j) to the connectivity. Since G+(i j) is the
uncertain randomgraph obtained fromG by guaranteeing the
existence of edge (i, j), δ+(i j) shows the gain in connectiv-
ity when reinforcing this edge. This is actually the potential
contribution of edge (i, j) to the connectivity.

The following proposition follows from Theorem 4 and
Definition 2.

Proposition 1 Let G = (V,U ,R,A) be an uncertain ran-
dom graph. For edge (i, j) (1 ≤ i < j ≤ n), we have:

(1) δ(i j) = δ+(i j) + δ−(i j);

(2) 0 ≤ δ+(i j), 0 ≤ δ−(i j) and 0 ≤ δ(i j) ≤ 1.

3.1 Significance of uncertain edges

In an uncertain random graph G = (V,U ,R,A), let us
define four collections of edges,

U00 = {(i, j) ∈ U | δ+(i j) = 0 and δ−(i j) = 0},
U01 = {(i, j) ∈ U | δ+(i j) = 0 and δ−(i j) > 0},
U10 = {(i, j) ∈ U | δ+(i j) > 0 and δ−(i j) = 0},
U11 = {(i, j) ∈ U | δ+(i j) > 0 and δ−(i j) > 0}.

Note that U00, U01, U10 and U11 form a partition of U .
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For each (i j) ∈ U00, δ(i j) = δ+(i j) + δ−(i j) = 0. Then,
edge (i, j) has no direct or potential contributions to the
connectivity. This edge is irrelevant to the connectivity.

For each (i j) ∈ U01, it is partially significant for ρ(G) and
has a direct contribution to the connectivity. This edge is an
essential part for the connectivity, and losing it will decrease
ρ(G). However, this edge is not the weakest part, and there
is no need to reinforcing it.

For each (i j) ∈ U10, it is partially significant for ρ(G) and
has a potential contribution to the connectivity. This edge is
not an essential part for the connectivity, and losing it does
not decrease ρ(G). However, when reinforcing this edge, it
will reorganize the essential structure for connectivity and
make the original weakest part dispensable. Therefore, ρ(G)

will increase.
For each (i j) ∈ U11, it is highly significant for ρ(G) and

is critical for the connectivity. This edge is an essential part
for the connectivity, and also the weakest part. So increasing
(or decreasing) αi j will increase (or decrease) ρ(G).

3.2 Significance of random edges

For each (i, j) ∈ R,ρ(G),ρ(G+(i j)) andρ(G−(i j)) satisfy
the following theorem.

Theorem 5 Let G = (V,U ,R,A) be an uncertain random
graph. For each random edge (i, j),

ρ(G) = αi jρ(G+(i j)) + (1 − αi j )ρ(G−(i j)).

Proof Choose (i0, j0) ∈ R. Write R′ = R − {(i0, j0)}. Let
X, X+ and X− be the class of matrices of G, G+(i j) and
G−(i j) satisfying (1), respectively.

Note that xi0 j0 = 1 for any X ∈ X+, and xi0 j0 = 0 for
any X ∈ X−. Thus, X = X+ ∪ X− and X+ ∩ X− = ∅. By
Theorem 3,

ρ(G) =
∑
X∈X

( ∏
(i, j)∈R

vi j (X)
)
f ∗(X)

=
∑
X∈X+

( ∏
(i, j)∈R

vi j (X)
)
f ∗(X)

+
∑
X∈X−

( ∏
(i, j)∈R

vi j (X)
)
f ∗(X)

= αi0 j0

∑
X∈X+

( ∏
(i, j)∈R′

vi j (X)
)
f ∗(X)

+(1 − αi0 j0)
∑
X∈X−

( ∏
(i, j)∈R′

vi j (X)
)
f ∗(X)

= αi0 j0ρ(G+(i j)) + (1 − αi0 j0)ρ(G−(i j)).

�	

Theorem 6 Let G = (V,U ,R,A) be an uncertain random
graph. For any (i, j) ∈ R, either δ+(i j) = δ−(i j) = 0, or
both δ+(i j) and δ−(i j) are positive.

Proof For any (i, j) ∈ R, by Theorem 5, ρ(G) =
αi jρ(G+(i j)) + (1 − αi j )ρ(G−(i j)). Then,

αi j (ρ(G+(i j)) − ρ(G)) = (1 − αi j )(ρ(G) − ρ(G−(i j))),

which means

αi jδ+(i j) = (1 − αi j )δ−(i j).

Therefore, either δ+(i j) = δ−(i j) = 0, or both δ+(i j) and
δ−(i j) are positive. This proves the theorem. �	

By Theorem 6, random edges could be classified into two
categories.

R00 = {(i, j) ∈ R | δ+(i j) = 0 and δ−(i j) = 0}.
R11 = {(i, j) ∈ R | δ+(i j) > 0 and δ−(i j) > 0},

Note that R00 and R11 form a partition ofR.
For each (i j) ∈ R00, δ(i j) = δ+(i j) + δ−(i j) = 0.

Then, edge (i, j) has no direct or potential contributions to
the connectivity. This edge is irrelevant to the connectivity.

For each (i j) ∈ R11, it is highly significant for ρ(G) and
has both direct and potential contributions. So increasing (or
decreasing) αi j will increase (or decrease) ρ(G).

4 Algorithm and example

In this section, we will present an algorithm for calculat-
ing connectivity index of an uncertain random graph, and an
algorithm for calculating the significance of edges. Examples
will be given to illustrate the algorithms.

In graph theory, Prim’s Algorithm and Kruskal’s Algo-
rithm are two well-known algorithms to find a minimum
spanning tree in a weighted simple graph. Both are greedy
algorithms. For a simple graph with n vertices and m edges,
the complexity of Prim’s Algorithm is O(n2). The complex-
ity of Kruskal’s Algorithm is O(m logm). Therefore, Prim’s
Algorithm ismore effective for dense graphs,whileKruskal’s
Algorithm is more effective for sparse graphs.

Lemma 1 Gao and Gao (2013) In an uncertain graph G =
(V,A) of order n, a maximum spanning tree T is a con-
nected subgraph with vertex set V and edge set E, such
that |E | = n − 1 and min(i, j)∈E (αi j ) is maximum. Then,
ρ(G) = min(i, j)∈E (αi j ).

123



On the significance of edges for connectivity in uncertain random graphs 8995

By Lemma 1, in order to find the connectivity index of
an uncertain graph, it is sufficient to find a maximum span-
ning tree. Both Prim’s Algorithm and Kruskal’s Algorithm
could be modified for finding a maximum spanning tree in
an uncertain graph.

LetG = (V,U ,R,A) be an uncertain random graph. Let
X be the class of matrix satisfying (1) ofG. For each X ∈ X,
let AX = (ai j )n×n be the matrix satisfying

ai j =

⎧⎪⎪⎨
⎪⎪⎩

xi j , if (i, j) ∈ R
αi j , if (i, j) ∈ U
a ji , if i > j
0, if i = j .

As deterministic edges could be viewed as special uncertain
edges, GX = (V,AX ) is an uncertain graph. By Theorem 3
and Corollary 1,

ρ(G) =
∑
X∈X

( ∏
(i, j)∈R

vi j (X)
)
f ∗(X)

=
∑
X∈X

( ∏
(i, j)∈R

vi j (X)
)
ρ(GX ).

Therefore, ρ(G) could be calculated by the following algo-
rithm.
Algorithm 1. Algorithm for calculating connectivity index
of an uncertain random graph G = (V,U ,R,A).
Step 1.Let X0 = (xi j )n be an n×nmatrix such that xi j = 1 if
αi j > 0, and xi j = 0 ifαi j = 0. If I+X0+X2

0+· · ·+Xn−1
0 >

0, then go to Step 2; otherwise, stop and the connectivity
index of G is 0;
Step 2. Generate the set X. Set ρ(G) = 0;
Step 3. Choose X ∈ X. Generate the uncertain graph
GX . If GX is a dense graph, then determine ρ(GX ) by
Modified Prim’s Algorithm. If GX is a sparse graph, then
determine ρ(GX ) by Modified Kruskal’s Algorithm. Reset
ρ(G) = ρ(G)+(

∏
(i, j)∈R vi j (X))ρ(GX ) andX = X−{X};

Step 4. If X �= ∅, then go to Step 3; otherwise, stop. The
value of ρ(G) is the connectivity index of G.

Modified Prim’s Algorithm.Algorithm for calculating the
connectivity index of an uncertain graph G = (V,A).
Step 1.Let X = (xi j )n be an n×nmatrix such that xi j = 1 if
αi j > 0, and xi j = 0 ifαi j = 0. If I+X+X2+· · ·+Xn−1 >

0, then go to Step 2; otherwise, stop and ρ(G) = 0;
Step 2. Set V1 = {1}, V2 = {2, 3, . . . , n} and E = ∅.
Step 3.Choose i ∈ V1 and j ∈ V2 such that αi j is maximum.
Reset V1 = V1 ∪ { j}, V2 = V2 − { j} and E = E ∪ {(i, j)};
Step 4. If |E | ≤ n − 2, then go to Step 3; if |E | = n − 1,
then stop and let ρ(G) = min

(i, j)∈E(αi j ).

Modified Kruskal’s Algorithm. Algorithm for calculating
the connectivity index of an uncertain graph G = (V,A).

Fig. 2 Calculating connectivity index by Algorithm 1

Step 1.Let X = (xi j )n be an n×nmatrix such that xi j = 1 if
αi j > 0, and xi j = 0 ifαi j = 0. If I+X+X2+· · ·+Xn−1 >

0, then go to Step 2; otherwise, stop and ρ(G) = 0;
Step 2. Set E = ∅ and set E0 to be the set of all edges of G.
Set each vertex to be a subtree.
Step 3.Choose (i, j) ∈ E0 such thatαi j ismaximum. If i and
j are in two different subtrees, then combine the two subtrees
into one. Reset E = E ∪ {(i, j)} and E0 = E0 − {(i, j)}.
Otherwise, reset E0 = E0 − {(i, j)}.
Step 4. If |E | ≤ n − 2, then go to Step 3; if |E | = n − 1,
then stop and let ρ(G) = min(i, j)∈E (αi j ).

Example 2 Let G = (V,U ,R,A) be an uncertain graph
(shown in Fig. 2), where V = {1, 2, 3, 4, 5, 6, 7}, U =
{(1, 2), (1, 3), (1, 4), (1, 6), (1, 7), (2, 3), (6, 7)},
R = {(1, 5), (3, 4)} and

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0.9 0.4 0.6 0.8 0.9 0.3
0.9 0 0.7 0 0 0 0
0.4 0.7 0 0.4 0 0 0
0.6 0 0.4 0 0 0 0
0.8 0 0 0 0 0 0
0.9 0 0 0 0 0 0.1
0.3 0 0 0 0 0.1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

By Algorithm 1, in Step 1, it is easy to check that when all
edges exist, the realization is connected. So ρ(G) > 0.
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Fig. 3 ρ(GX3 ) = 1∧0.9∧0.9∧0.7∧0.6∧0.3 = 0.3 ρ(GX4 ) =
1 ∧ 1 ∧ 0.9 ∧ 0.9 ∧ 0.7 ∧ 0.3 = 0.3

In Step 2, as G has 2 random edges, there are 22 matrices
in X, which are listed as follows:

X1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, X2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

X3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 1 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
1 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, X4 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 1 0 0
0 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 1 0 0 0 0
1 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

In Step 3, as X = {X1, X2, X3, X4}, there are four uncer-
tain graphs GX1 , GX2 , GX3 and GX4 , which are shown in
Fig. 2. Obviously, GX1 and GX2 are disconnected. Thus,
ρ(GX1) = ρ(GX2) = 0. By Modified Prim’s Algorithm
or Modified Kruskal’s Algorithm, maximum spanning trees
of GX3 and GX4 could be found (Fig. 3). Then, ρ(GX3) =
ρ(GX4) = 0.3. Therefore,

ρ(G) =
∑
Xk∈X

( ∏
(i, j)∈R

vi j (Xk)
)
f ∗(Xk)

=
∑
Xk∈X

( ∏
(i, j)∈R

vi j (Xk)
)
ρ(GXk ).

= 0 + 0 + 0.8 × (1 − 0.4) × 0.3 + 0.8 × 0.4 × 0.3

= 0.24.

Next, we present an algorithm for calculating the signifi-
cance of edges.

Algorithm 2. Algorithm for calculating significance of
edges in an uncertain random graph G = (V,U ,R,A).

Step 1. Set E = R ∪ U . Calculate ρ(G) by Algorithm 1;
Step 2. Choose (i, j) ∈ E . Calculate ρ(G+(i j)) by Algo-
rithm 1;
Step 3. If (i, j) ∈ R and ρ(G) = ρ(G+(i j)), then set
δ+(i j) = δ−(i j) = δ(i j) = 0 and go to Step 5. Otherwise,
go to Step 4;
Step 4. Calculate ρ(G−(i j)) by Algorithm 1. Set δ+(i j) =
ρ(G+(i j))−ρ(G), δ−(i j) = ρ(G)−ρ(G−(i j)) and δ(i j) =
ρ(G+(i j)) − ρ(G−(i j));
Step 5. Reset E = E − {(i, j)}. If E �= ∅, then go to Step 2;
otherwise, stop.

Example 3 For the uncertain random graph in Example 2,
we apply Algorithm 2 to calculate the significance of edges.
Recall that ρ(G) = 0.24. The results are shown in Table 1.

From values in Table 1, edge (1, 5) and edge (1, 7) are
very important for the connectivity. Edge (1, 4), edge (1, 6)
and edge (6, 7) are partially significant for the connectiv-
ity. The rest four edges actually have no contribution to the
connectivity.

Random edge (1, 5) is highly significant, because it is the
only edge connecting vertex 5. The graph is disconnected
without this edge. In graph theory, this kind of edge is called
a bridge. So this edge is critical for the connectivity.

Uncertain edge (1, 7) is also very important for the con-
nectivity. In order to connect vertex 7 to other vertices in
G, at least one of edge (1, 7) and edge (6, 7) must exist. As
edge (1, 7) has greater truth value, each maximum spanning
tree will choose this edge. Also, this edge has the mini-
mum truth value among all edges of maximum spanning
trees. So increasing α17 will increase the measure of each
maximum spanning tree. Therefore, the connectivity index
will increase. On the contrary, when losing edge (1, 7), each
maximum spanning tree has to choose edge (6, 7). Thus, the
measure of each maximum spanning tree will decrease, and
the connectivity index will decrease.

Table 1 Significance of edges

(i j) (12) (1, 3) (1, 4) (1, 5) (1, 6)

ρ(G+(i j)) 0.24 0.24 0.24 0.3 0.24

ρ(G−(i j)) 0.24 0.24 0.096 0 0.08

δ+(i j) 0 0 0 0.06 0

δ−(i j) 0 0 0.144 0.24 0.16

δ(i j) 0 0 0.144 0.3 0.16

(i j) (1, 7) (2, 3) (3, 4) (6, 7)

ρ(G+(i j)) 0.512 0.24 0.24 0.512

ρ(G−(i j)) 0.08 0.24 0.24 0.24

δ+(i j) 0.272 0 0 0.272

δ−(i j) 0.16 0 0 0

δ(i j) 0.432 0 0 0.272
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For uncertain edge (1, 6), δ+(16) = 0 and δ−(16) > 0.
When reinforcing edge (1, 6), the weakest part for connec-
tivity (which is edge (1, 7)) is still an essential part. So there
is no need to reinforcing this edge. However, when losing
this edge, in order to connect vertex 6 to other vertices, each
maximum spanning tree has to choose edge (6, 7), whose
truth value is the smallest. Thus, the measure of each maxi-
mum spanning tree will decrease, and the connectivity index
will decrease. The significance of edge (1, 4) is similar to
that of (1, 6).

For uncertain edge (6, 7), δ+(67) > 0 and δ−(67) = 0.
As each maximum spanning tree will choose edge (1, 7) to
connect vertex 7, deleting edge (6, 7) does not change max-
imum spanning trees. Therefore, ρ(G) remains the same.
When increasing α67, as long as it is greater than 0.3, each
maximum spanning tree will choose edge (6, 7) instead of
edge (1, 7). Thus, the measure of each maximum spanning
tree will increase, and the connectivity index will increase.

The rest edges are not important for connectivity. Take
uncertain edge (1, 2) for example.Without this edge, vertex 2
could still be connected to vertex 1 and other vertices through
vertex 3 with relatively big measure. When reinforcing edge
(1, 2), the weakest part for connectivity is still an essential
part. So edge (1, 2) is an unimportant edge for connectivity.

5 Conclusions

In this paper, we discussed how to evaluate the contributions
of edges for connectivity of an uncertain random graph. Con-
cepts to describe the significance of edges were proposed.
Edges were classified into different categories based on their
significance. The different performances on significance of
random edges and uncertain edges were stated. This paper
also presented algorithms for calculating connectivity index
and significance of edges. Examples were given to illustrate
algorithms and methods.

It is worth pointing out that this significance of edges
could be applied to some optimization problems, such as
the shortest path problems, the Chinese Postman Problems.
Significance of edges for other graph properties, such as con-
nectivity, distance, can be further studied in the future for
uncertain random graphs.
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