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Abstract Dealing with partially known or missing data

is a common problem in machine learning. This work is

interested in the problem of querying the true value of

data to improve the quality of the learned model, when

those data are only partially known. This study is in the

line of active learning, since we consider that the pre-

cise value of some partial data can be queried to reduce

the uncertainty in the learning process, yet can consider

any kind of partial data (not only entirely missing one).

We propose a querying strategy based on the concept of

racing algorithms in which several models are compet-

ing. The idea is to identify the query that will help the

most to quickly decide the winning model in the com-

petition. After discussing and formalizing the general

ideas of our approach, we study the particular case of

decision trees in case of interval-valued features and set-
valued labels. The experimental results indicate that, in

comparison to other baselines, the proposed approach

significantly outperforms simpler strategies in the case
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of partially specified features, while it achieves similar

performances in the case of partially specified labels.

Keywords partial data · data querying · active
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1 Introduction

Classical learning schemes assume that every instance

is fully specified, yet there are many cases where such

an assumption is unlikely to hold, and where some fea-

tures or the label (class) of an instance may be only

partially known. Such situations are commonly encoun-

tered in various fields, such as biostatistics (Heitjan,

1993), agronomy (Lagacherie et al, 2000), or economy

(McDonald et al, 2018). These data can be generated

by coarse or censored measurements (see e.g., (Efron,

1981)), anonymization techniques Dobra and Fienberg

(2000), or can be obtained from expert opinions.

Multiple solutions have been proposed to deal with

such problems. A first solution is to try to automati-

cally complete the data by imputing their values (Ru-

bin, 1976; Farhangfar et al, 2008; Lobato et al, 2015).

A second one is to adapt learning methods so that

they can integrate directly imprecise data (Xia et al,

2017). This latter approach has recently gained an in-

creasing attention, both from the theoretical perspec-

tive (Hüllermeier, 2014; Liu and Dietterich, 2014; Ca-

bannnes et al, 2020) and the practical one (Zhang et al,

2016; Utkin, 2019), with applications in different fields

like image or natural language processing (Cour et al,

2011, 2009). However, in both cases the imprecision in

the data usually leads to less accurate models, which in

turn can lead to wrong decisions. It is therefore desir-

able, if possible, to reduce this imprecision in meaning-

ful and efficient ways, to obtain the best possible model.
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This work explores this particular issue: if we have

the possibility to gain more information on some of the

partial instances, which instance and what feature of

this instance should we query to increase the final qual-

ity of the learned model? In the case of a completely

missing label (and to a lesser extent of missing fea-

tures), this problem is known as active learning and has

already been largely treated (Settles, 2009; Ma et al,

2016). However, except for some recent works focus-

ing on k-nn models (Nguyen et al, 2017), we are not

aware of such works for generic partial data. Moreover,

we also deal with the problem of partially specified fea-

tures (i.e., issued from an unreliable sensor, from expert

opinions), a problem that to our knowledge has never

been treated in an active learning setting (the problem

of completely missing features itself has received much

less attention (Settles, 2009, Sec. 5.2.)).

While it may not always be possible to perform such

a querying of partial data, we can think of many situa-

tions where it would be possible. This will be typically

the case when cheap rough measurements can be com-

plemented with a limited number of precise yet costly

ones. For instance, coarse satellite images (Prince, 1991)

or expert opinions (e.g., of building features to detect

problems (Feng et al, 2017)) can be enriched by selected

field measurements. In medicine, data issued from gen-

eral health checks can be made more precise by asking

for complementary exams.

In this paper, we propose to apply an approach

(Nguyen et al, 2018) inspired from the idea of racing

algorithms (Maron and Moore, 1997), initially used to

statistically select an optimal configuration of a given

lazy learning model, and since then applied to other set-

tings such as multi-armed bandits (Busa-Fekete et al,

2014). The idea of such racing algorithms is to oppose a

(finite) set of alternatives in a race, and to progressively

discard losing ones as the race goes along. In our case,

the set of alternatives will be different possible models.

As the data is partial, the performance of each model is

uncertain and several candidate models can be optimal.

The race will consist in iteratively making queries, i.e.

in asking to an oracle the precise value of a partial data.

The key question is then to identify those data that will

help the most to reduce the set of possible winners in

the race and to converge quickly to the optimal model,

hence those data that help the most in differentiating

bad from good models. Provided the set of alternatives

is rich and diverse enough, this should help in improv-

ing the quality of the model finally learned from the

updated data.

We investigate how this general approach can be ap-

plied to decision tree classifiers (Quinlan, 1986; Safavian

and Landgrebe, 1991). Decision trees are well-known to

be sensitive to changes in the data, hence the impor-

tance of querying meaningful data for such classifiers.

We show that detecting the data to query in our method

can be done efficiently for decision trees when either the

labels or the features are imprecise.

As the paper provides many algorithmic as well as

mathematical results, we now provide a detailed de-

scription of the article contents to help the reader to

navigate through it:

– Section 2 provides the necessary notations and pre-

liminaries to understand the paper content;

– Section 3 provides a generic description of the rac-

ing approach we intend to apply in this paper, that

was previously described and applied to SVM in

(Nguyen et al, 2018). In particular, Algorithm 1 pro-

vides a generic description of our partial data query-

ing method, applicable to any learning method. Al-

though its reading is not absolutely necessary to un-

derstand the peculiar application to decision trees,

it is useful to get the general ideas of our approach;

– Section 4 investigates how our general approach can

be applied to decision trees when output labels are

partially known and features precisely known. The

first part of the section, up to Section 4.4, describes

the formal elements and properties used to imple-

ment the querying method. Section 4.4 then pro-

vide details about the algorithmic implementation,

in which Algorithm 2 provides the details of a single

query, and refer to specific algorithms used in each

step of the process;

– Section 5 investigates how our general approach can

be applied to decision trees when features are par-

tially known, which turns out to be trickier to han-

dle than partial labels. Again, the first part (up to

Section 5.4) provides formal justification of the algo-

rithmic procedures. Section 5.4 then provides details

about the algorithmic implementation, with Algo-

rithm 7 being central and describing a general query,

with reference to sub-routines to be used within the

process;

– Finally, some experiments are performed on differ-

ent data sets in Section 6, showing that our method

is particularly interesting in the case where features

are imprecisely known.

As the paper can get heavy in terms of notations,

Table 1 summarizes the main notations and indices used

in the paper.

2 Preliminaries

In classical supervised setting, the goal of the learning

approach is to find a model m : X → Y within a setM
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Symbols Description

Data related notations
X input space, dimension P
Y output space, dimension G
x, y precise input and output
X, Y imprecise input and output
xpn p-th precise coordinate of instance xn

Xp
n p-th imprecise coordinate of instance Xn

λg g-th class among the G possible ones
[N ] the set {1, 2, . . . , N}

Hypothesis-space, model related notations
m a model
M set of models, dimension S
m(x) output of model m for input x
`(y,m(x)) 0-1 loss

`(Y,m(X)),`(Y,m(X)) lower and upper 0-1 losses
R(m) empirical risk of model m
R(m),R(m) lower and upper empirical risks of model m
m∗mm, m∗mM minimin and minimax optimal models
R(mk−l) lower difference of empirical risks between mk and ml

Query related notations
qpn a query: asking for the precise value of the p-th coordinate of instance n
qn a query: asking for the precise label of instance n
Eqp

n
(mk) single effect of query qpn

Jqp
n
(mk,ml) pairwise effect of query qpn

Decision tree related notations
H number of terminal nodes of a tree
Ah h-th terminal node of a tree
Ap

h projection of Ah on the p-th axis
λh class associated to leaf Ah

Experiment related notations
(δ, η) contamination parameters in the experiments

Table 1 Key notations used in this paper

of models from a data set D = {(xn, yn)}Nn=1 ⊂ X × Y
of N input/output samples, where X and Y are respec-

tively the input and the output spaces1. The empirical

risk R(m) associated to a model m is evaluated as

R(m) =

N∑
n=1

`(yn,m(xn)) , (1)

where ` : Y×Y → R is the loss function, and `(y,m(x))

is the loss of predicting m(x) when observing y. The se-

lected model is then the one that minimizes (1), that is

m∗ = arg min
m∈M

R(m) . (2)

Another way to see the model selection problem is to

assume that a model ml is said to be better than mk

(denoted ml � mk) if

R(mk)−R(ml) > 0 , (3)

or, in other words, if the risk of ml is lower than the

risk of mk.

1 As X is often multi-dimensional, we will denote its ele-
ments and subsets by bold letters.

In this work, we are interested in a more general case

where data is potentially only partially known, that is

where general samples are of the kind (Xn, Yn) ⊆ X×Y.

In such a case, Equations (1), (2) and (3) are no longer

well-defined, and there are different ways to extend

them. Two of the most common ways to extend them

is either to use a minimin (optimistic) (Hüllermeier and

Beringer, 2006) or a minimax (pessimistic) approach (Guil-

laume et al, 2017). That is, if we extend Equation (1)

to a lower bound R(m) and an upper bound R(m) such

that

R(m) = inf
(xn,yn)∈(Xn,Yn)

N∑
n=1

`(yn,m(xn))

=

N∑
n=1

inf
(xn,yn)∈(Xn,Yn)

`(yn,m(xn))

:=

N∑
n=1

`(Yn,m(Xn)) , (4)
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R(m) = sup
(xn,yn)∈(Xn,Yn)

N∑
n=1

`(yn,m(xn))

=

N∑
n=1

sup
(xn,yn)∈(Xn,Yn)

`(yn,m(xn))

:=

N∑
n=1

`(Yn,m(Xn)) , (5)

then the optimal minimin m∗mm and minimax m∗mM
models are

m∗mm = arg min
m∈M

R(m) , (6)

m∗mM = arg min
m∈M

R(m) . (7)

The minimin approach usually assumes that data are

distributed according to the model, and tries to find

the best data replacement (or disambiguation) com-

bined with the best possible model (Hüllermeier, 2014).

Conversely, the minimax approach assumes that data

are distributed in the worst possible way, and selects

the model performing the best in the worst situation,

thus guaranteeing a minimum performance of the model

(Guillaume et al, 2017). However, such an approach,

due to its conservative nature, may lead to sub-optimal

models. When having to choose a preferred model in the

race, we will follow the optimistic approach, that is also

in line with the idea of racing algorithms. For a deeper

discussion on the differences between the optimistic and

pessimistic approaches, we refer to (Hüllermeier et al,

2019).

However, in this paper, we are not primarily inter-

ested into learning a single model from partial data,
but want to determine which partial data makes the

potentially best models incomparable, in order to com-

plete such data through query. To define such a set of

potentially optimal models,we will say that a model ml

is better than mk (still denoted ml � mk) if

R(mk−l) = inf
(xn,yn)∈(Xn,Yn)

[
R(mk)−R(ml)

]
> 0 , (8)

which is a direct extension of Equation (3). That is,

ml � mk if and only if it is better under every possi-

ble precise instances (xn, yn) consistent with the partial

instances (Xn, Yn). Such an approach is similar to de-

cision rules used, for instance, in imprecise probability

(Troffaes, 2007). We can then denote by

M∗ = {m ∈M : 6 ∃m′ ∈M s.t.m′ � m} (9)

the set of undominated models within M, that is the

set of models that are maximum with respect to the

partial order �.

X 2

X 1

1

2 3

4

5

m2

m1

R(m1) = 0, R(m1) = 5

R(m2) = 1, R(m2) = 3

R(m1−2) = −1

R(m2−1) = −2

Fig. 1 Illustration of partial data and competing models

Example 1 Figure 1 illustrates a situation where Y con-

sists of two different classes (gray and white), and X
of two dimensions. Only imprecise data are numbered.

Squares are assumed to have precise features. Points 1,

2 and 3 are imprecise with respect to their second fea-

ture. Shaded squares (points 4 and 5) have unknown la-

bels. Assuming that M = {m1,m2} (the models could

be decision stumps, i.e, one-level decision trees (Rodŕıguez

and Maudes, 2008), we would have that m2 = m∗mM is

the minimax model and m1 = m∗mm the minimin one.

The two models would however be incomparable ac-

cording to (8), hence M∗ = M in this case, and the

minimax and minimin rules would have given us differ-

ent answers.

3 Partial data querying: a racing approach

This section presents a general querying scheme based

on racing idea and then investigates the computational

issue of such a scheme for the specific setting of deci-

sion trees.

Both the minimin and minimax approaches (6)-(7)

have the same goal: obtaining a unique model from par-

tially specified data. Our objective in this paper is dif-

ferent: we want to query those data that will increase

the most the accuracy of a learned model. To do so,

we propose to start from a set M of potentially opti-

mal models, and to identify in a racing scheme those

data that will be the most efficient in reducing our un-

certainty about which model is the optimal one within

M, hence are likely to be determinant in differentiat-

ing model quality in general. Much like querying-by-

committee in classical active learning (Abe and Mamit-

suka, 1998), the purpose of the race is to select the query

to be made, as M is unlikely to contain the risk mini-

mizing model. Once the queries have been made, a new

model should be learned from the updated data set.

How we quantify the usefulness of a query within the

race is formalized in what follows.
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Let us first assume that X = X 1 × . . . × XP is

a Cartesian product of P spaces, that a partial data

(Xn, Yn) can be expressed as (×Pp=1X
p
n, Yn), and fur-

thermore that if X p ⊆ R is a subset of the real line,

then Xp
n is a closed interval.

A query on a partial data (×Pp=1X
p
n, Yn) consists in

transforming one of its dimension Xp
n or Yn into the

true precise value xpn or yn, provided by an oracle (an

expert, a precise measuring device). More precisely, qpn
denotes the query made on Xp

n or Yn, with p = P + 1

for Yn. Given a model mk and a data (×Pp=1X
p
n, Yn), we

are interested in knowing two things:

– whether the result of a query can have an effect on

the the empirical risk bounds

R(mk) = [R(mk), R(mk)] ,

which will be the case only if the query can have an

effect on the interval

L(Yn,mk(Xn) = [`(Yn,mk(Xn)), `(Yn,mk(Xn))] .

We will then speak about the single effect of a query,

as we will consider a single model;

– whether the model ml can be preferred to mk af-

ter performing a query, in which case we have to

assess whether the query can have an influence on

the lower bound R(mk−l) or not, since ml will be

preferred to mk as soon as this bound becomes pos-

itive.

This can be formalized by two functions:

Eqpn :M→ {0, 1} , (10)

Jqpn :M×M→ {0, 1} , (11)

such that:

Eqpn(mk) =

{
1 if ∃xpn ∈ Xp

n that reduces R(mk)

0 else .

Jqpn(mk,ml) =

{
1 if ∃xpn ∈ Xp

n that increases R(mk−l)

0 else .

When p = P+1, Xp
n is to be replaced by Yn. Eqpn simply

tells us whether or not the query can affect our evalua-

tion of mk performances, while Jqpn(mk,ml) informs us

whether the query can help to differentiate mk and ml.

Let [S] := {1, 2, . . . , S}. If we denote by

k∗ = arg min
k∈[S]

R(mk)

the currently winning model (racing algorithms do fo-

cus on this model, trying to determine if it is really the

winner of the race), the total effect of a query qpn is

defined as

V alue(qpn) = Eqpn(mk∗) +
∑
k 6=k∗

Jqpn(mk,mk∗) . (12)

This value or utility is then used to assess which data

(label or feature) should be queried next. It should be

noticed that scores (10) and (11) can be modified, for

example to account for different loss functions. Unless

there are other reasons to change it, our choice appears

to be the simplest and most straightforward.

Example 2 In Figure 1, questions related to partial classes

(points 4 and 5) and to partial features (points 1, 2 and

3) have respectively the same potential effect, so we

can restrict our attention to q34 (the class of point 4)

and to q23 (the second feature of point 3). For these two

questions, we have

- Eq34 (m1) = Eq34 (m2) = 1.

- Jq34 (m1,m2) = Jq34 (m2,m1) = 0.

- Eq23 (m1) = 1, Eq23 (m2) = 0.

- Jq23 (m1,m2) = Jq23 (m2,m1) = 1.

This example shows that while some questions may re-

duce our uncertainty about many model risks (q34 re-

duce risk intervals for both models), they may be less

useful than other questions to tell two models apart (q23
can actually lead to declare m2 better than m1, while

q34 cannot).

The effect of a query being now formalized, we can

propose a method inspired by racing algorithms. To cre-

ate the initial set of racing models, a convenient method

is to sample S times a precise data set

D = {(xn, yn) ∈ (Xn, Yn)}Nn=1

and then to learn an optimal model for each such se-

lection. Algorithm 1 summarises the general procedure

applied to find the best query and to update the race.

This algorithm simply searches the query that will have

the biggest impact on the minimin model and its com-

petitors, adopting the optimistic attitude of racing al-

gorithms. Once a query has been made, the data set as

well as the set of competitors are updated, so that only

potentially optimal models remain. Note that in prac-

tice, such a sampling is close to methods used in query-

by-committee approaches (Abe and Mamitsuka, 1998;

Nigam and McCallum, 1998), and makes no specific

assumption about the process that has led to impreci-

sion. Also, as in usual query-by-committee and racing

approaches, we also assume that we work with models

of the same nature and of comparable complexity.

The next Section presents the practical computa-

tions of racing algorithm (Algorithm 1) for the case of

set-valued labels, when the ones for the case of interval-

valued features will be given in the Section 5.
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Algorithm 1: One iteration of the racing al-

gorithm to query data.

Input: data {(Xn, Yn)}Nn=1, set of models
M = {m1, . . . ,mS}

Output: updated data and set of models
1 k∗ = arg mink∈[S]R(mk);

2 foreach query qpn do
3 V alue(qpn) = Eqp

n
(mk∗) +

∑
k 6=k∗ Jqp

n
(mk,mk∗);

4 (n∗, p∗) = arg max(n,p) V alue(q
p
n);

5 Get value xp
∗

n∗ of Xp∗

n∗ ;
6 foreach k, ` ∈ [S]× [S], k 6= ` do
7 Compute R(mk−`) ;
8 if R(mk−`) > 0 then remove mk from M ;

4 Application to decision trees: set-valued

labels

In this section, we consider that the labels of some in-

stances are partially given, but that all the features are

precise. A query will simply be denoted by qn mean-

ing that the label of instance xn is queried. In the

classical setting of decision trees, the input space is

X = X 1 × . . . × XP ⊆ Rp (where R is the real line)

and the output space is Y = {λ1, . . . , λG}, where λg,

g ∈ [G], encode all the possible classes. A decision tree

mk is formally a rooted tree structure consisting of ter-

minal nodes and non-terminal nodes (Quinlan, 1986;

Safavian and Landgrebe, 1991):

- each non-terminal node of the tree is associated to

an attribute Xp (p ∈ [P ]), and to each branch is-

sued from this node is associated a condition on this

attribute that determines which data of the sample

D go into that branch.
- terminal nodes are called leaves. Each leaf is asso-

ciated to a predicted class λh ∈ Y and a partition

element Ah = A1
h × . . . × APh where Aph ⊆ X p. In

the rest of this paper, we will adopt, for each leaf

th, the following notation

th = (Ah, λh)

as such information is enough for the purpose of

making prediction for new instances: for any in-

stance xn ∈ Ah, we have m(xn) = λh.

The next small example illustrates those notations.

Example 3 We consider a given tree trained from data

set D ∈ X with P = 2 attributes, and M = 3 classes.

Input and output spaces are described as follows:

X 1 = [1, 10],X 2 = [10, 20],Y = {a, b, c}.

Figure 2 illustrates a possible decision tree mk for the

above setting.

Assume we have new instances x1 = (2, 17) and

x2 = (6, 11). Then x1 will reach leaf t4 and be assigned

to class mk(x1) = c while x2 will reach leaf t1 with an

assigned class mk(x2) = a.

We will focus on the classical 0 − 1 loss function

defined as follows: for a given instance (xn, yn)

`(yn,mk(xn)) =

{
0 if yn = mk(xn)

1 otherwise .
(13)

In case of partially labelled data, the label is a set

Yn ⊆ Y instead of a single label. The loss in (13) be-

comes an interval L(Yn,mk(Xn) whose bounds are

`(Yn,mk(xn)) = min
λ∈Yn

`(λ,mk(xn)) , (14)

`(Yn,mk(xn)) = max
λ∈Yn

`(λ,mk(xn)) . (15)

Example 4 Let us now continue with the data set and

the decision tree from Example 3. Assume that instances

x1 and x2 are partially labelled with Y1 = {a, c} and

Y2 = {b, c}, respectively. Then using (14) and (15), we

can easily get

L(Y1,mk(X1) = [0, 1] ,L(Y2,mk(X2) = [1, 1] .

The next sections investigate how we can apply the

racing algorithm presented in Section 3 to the practical

case of partial labels in decision trees. We first study

under which conditions a given partial label introduces

imprecision in the empirical risks, before detailing the

computation of querying value scores.

4.1 Instances introducing imprecision in empirical risk

For a given instance (xn, Yn) and a decision tree mk,

the lower and upper losses in (14) and (15) can be de-

termined as follows:

`(Yn,mk(xn)) =

{
0 if mk(xn) ∈ Yn ,
1 otherwise,

(16)

`(Yn,mk(xn)) =

{
0 if {mk(xn)} = Yn ,

1 otherwise.
(17)

Given a decision tree mk, we will say that an in-

stance is imprecise w.r.t. mk if

`(Yn,mk(xn)) 6= `(Yn,mk(xn)) . (18)

The next proposition characterizes simple conditions

under which an instance is imprecise w.r.t. mk.
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X2

t1 = ([1, 10]× [10, 15), a)

X 2
< 15

X1

X2

t3 = ([1, 4]× (17, 20], b)

X 2
> 17

t4 = ([1, 4]× [15, 17], c)

X
2 ≤ 17X 1≤ 4

t2 = ((4, 10]× [15, 20], b)

X
1 > 4

X
2 ≥ 15

Fig. 2 Decision tree illustration mk

Proposition 1 Given a model mk and instance (x, Y ),

then (x, Y ) is imprecise w.r.t. mk if and only if

mk(x) ∈ Y and |Y | > 1 . (19)

Proof Let us first note that by definitions we always have

`(Y,mk(x)) ≤ `(Y,mk(x)) .

Then combining with condition (18) the lower and up-

per losses of an imprecise instance can be determined

explicitly by

`(Y,mk(x)) = 0 and `(Y,mk(x)) = 1 . (20)

Conditions in (13) guarantee that `(Y,mk(x)) = 0 is

equivalent to condition that mk(x) ∈ Y . Furthermore,

condition |Y | > 1 ensures that `(Y,mk(x)) = 1 (other-

wise, {mk(x)} = Y , and both lower and upper losses

will be 0). ut

Proposition 1 simply translates the fact that impre-

cision can happen only if a partial label could contain

the prediction of mk. Using Proposition 1, we can con-

clude that in Example 4, instance x1 is imprecise w.r.t.

mk while x2 is precise, even if it has a partial label.

We are now going to investigate the practical com-

putation of the empirical risk bounds of a single model,

the pairwise risk bounds in a given set M of mod-

els and the effect of querying partial labels on those

risks. It is easy to see that the empirical risk bound

of a given model can be changed only by querying im-

precise instances and the pairwise risk bounds can be

changed if the chosen instance is imprecise w.r.t. at least

one model. We will then focus on those cases in the

next Sections.

4.2 Empirical risk bounds and single effect

Equation (4) (resp. (5)) implies that the computation

of R(mk) (resp. R(mk)) can be done by computing

`(Yn,mk(xn)) (resp. `(Yn,mk(xn))), ∀ n ∈ [N ], and

then by summing the obtained values. Therefore, the

computation of the lower and upper risks of a given

model can be carried out easily after determining the

lower and upper losses of each instance.

Before going to present conditions under which a

query qn have an effect on modifying the interval R(mk)

(or in other words Eqn(mk) = 1), let us first note that a

query qn is effective if and only if L(Yn,mk(Xn) can be

modified. Then, as pointed out in the next proposition,

such effect (i.e Eqn(mk) = 1) will simply hold for all

imprecise instances.

Proposition 2 Given an instance (xn, Yn) and a model

mk, then Eqn(mk) = 1 if and only if (xn, Yn) is impre-

cise w.r.t. mk.

Proof Firstly, it is easy to see that querying any in-

stance that is precise w.r.t. mk will not help to modify

L(Yn,mk(Xn). Furthermore, (20) implies that qn have

an effect by either increasing `(Yn,mk(xn)) or decreas-

ing `(Yn,mk(xn)). We will now show that at least one of

such losses can be changed after querying any imprecise

instance (xn, Yn).

Assuming that λ is the label we get after query qn,

then either λ = mk(xn) or λ 6= mk(xn). In the first

case, both of lower and upper losses will be 0 after per-

forming qn while both lower and upper losses will be

1 in the latter case. In other words, Eqn(mk) = 1 if

(xn, Yn) is imprecise w.r.t. mk. ut

Computation of pairwise risk bounds and the ef-

fect Jqn(mk,ml) will be investigated in the next Sec-

tion. Again, if an instance is precise w.r.t. both models,

then querying it will not affect the pairwise risk bounds.

Therefore, we will focus our interest on instances that

are imprecise with respect to at least one model.

4.3 Pairwise risk bounds and effect

Let us now focus on how to compute, for a pair of mod-

els mk and ml, the corresponding pairwise risk R(mk−l)

and whether a query qn can increase this risk. The com-

putation will be treated in two cases: when an instance
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is imprecise w.r.t. only one model and when an instance

is imprecise w.r.t. both.

First note that, similarly to the empirical risk bounds

of a unique model, the computation of R(mk−l) can be

carried out by simply summing up the values `k−l(Yn,xn)

for all (xn, Yn) with

`k−l(Yn,xn) = inf
yn∈Yn

[
`(yn,mk(xn))− `(yn,ml(xn))

]
.

Furthermore, a query qn can increase R(mk−l) if

and only if it can increase the value `k−l(Yn,xn). This is

why, in this section, we focus on computing `k−l(Yn,xn)

and its possible change after a query qn.

4.3.1 Imprecision with respect to one model

We are going to present the computation of `k−l(Yn,xn)

and the conditions under which Jqn(mk,ml) = 1.

Proposition 3 Given (xn, Yn) and two models mk and

ml s.t. xn is imprecise w.r.t. one and only one model,

we have the following relations:

- if xn is imprecise w.r.t. ml, then

`k−l(Yn,xn) = `(Yn,mk(xn))− 1 . (21)

- if xn is imprecise w.r.t. mk, then

`k−l(Yn,xn) = 0− `(Yn,ml(xn)) . (22)

Proof Since xn is imprecise w.r.t. only one model, the

imprecision is only associated to such a model, and we

can select the worst case: `(yn,m`(xn)) = 1 for Equa-

tion (21) and `(yn,mk(xn)) = 0 for Equation (22). ut

Now we are going to study under which conditions

a query qn can increase `k−l. As the given instance is

imprecise w.r.t. only one model, it can only increase

the pairwise risk by either increasing `(yn,mk(xn)) or

decreasing `(yn,ml(xn)). As shown in the next Propo-

sition, this can always happen, meaning that we sys-

tematically have Jqn(mk,ml) = 1 in this case.

Proposition 4 Given (xn, Yn) and two models mk and

ml s.t xn is imprecise w.r.t. one and only one model,

then query qn can always increase `k−l, or in other

words Jqn(mk,ml) = 1.

Proof We investigate the case where (xn, Yn) is impre-

cise w.r.t. mk, the case for ml can be treated similarly.

Assuming that (xn, Yn) is imprecise w.r.t. mk, then

Proposition 2 ensures that there always exists a label

λ ∈ Yn such that the lower bound `(yn,mk(xn)) will be

increased to 1 after query qn.

Similar claim about decreasing the upper bound

`(yn,ml(xn)) can be carried when (xn, Yn) is impre-

cise w.r.t. ml. ut

4.3.2 Imprecision with respect to both models

For the cases where xn is imprecise w.r.t. both models

mk and ml, the computation of `k−l(Yn,xn) and the

conditions under which Jqn(mk,ml) = 1 will be investi-

gated separately in two circumstances: when mk(xn) =

ml(xn) and when mk(xn) 6= ml(xn).

Proposition 5 Given (xn, Yn) and two models mk and

ml s.t xn is imprecise w.r.t. both models, then the fol-

lowing results hold

- if mk(xn) = ml(xn), then

`k−l(Yn,xn) = 0 and Jqn(mk,ml) = 0 .

- if mk(xn) 6= ml(xn), then

`k−l(Yn,xn) = −1 and Jqn(mk,ml) = 1 .

Proof - Let mk(xn) = ml(xn), then

`(λ,mk(xn)) = `(λ,ml(xn)) ,∀λ ∈ Yn .

Therefore, we always have

`k−l(Yn,xn) = `k−l(Yn,xn) = `k−l(Yn,xn) = 0 .

Furthermore, for any label λ ∈ Yn to be given af-

ter performing query qn, the difference `k−l(Yn,xn)

will be 0. Or in other words, if mk(xn) = ml(xn),

then we can conclude that `k−l(Yn,xn) = 0 and

Jqn(mk,ml) = 0.

- In casemk(xn) 6= ml(xn), as pointed out in Proposi-

tion 1, xn being imprecise w.r.t. both models implies

that mk(xn) ∈ Yn and ml(xn) ∈ Yn. Then there al-

ways exists a label λ in Yn (i.e λ = mk(xn)) s.t.

model mk returns a true prediction while ml returns
a wrong one. In other words, we have `k−l(Yn,xn) =

−1. The effect Jqn(mk,ml) = 1 follows simply by

assuming that label λ = ml(xn) will be given after

querying xn which implies that `k−l(Yn,xn) will be

increased into 1. ut

The next section provides practical algorithms to

perform a single querying step.

4.4 Algorithms

Algorithm 2 summarizes the complete procedure to per-

form an iteration of our querying strategy. Sub-routines

are described in other algorithms. Algorithm 3 com-

putes the individual risk bounds of every model, ac-

cording to the corresponding values of `(Yn,mk(xn))

and `(Yn,mk(xn)). Algorithm 4 simply summarises the

model selection procedure, that will also be used in the

case of interval-valued features.
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Finally, Algorithm 5 summarises the main proce-

dure that determines the value of the different possible

queries, allowing us to pick the best one among all the

possible ones. Let us now analyse the complexity of this

procedure. Lines 1-2 of Algorithm 2 are performed in

O(S × N), as Algorithm 3 is called S times and is in

O(N). Line 3 of Algorithm 2 is in O(S). Finally, since

Algorithm 5 is in O(S), lines 4-5 of Algorithm 5 are in

O(S ×N). So the overall complexity of Algorithm 5 is

in O(S × N), meaning that the approach is computa-

tionally affordable.

Algorithm 2: A single step to query set-

valued data.
Input: Training data set {(xn, Yn}Nn=1, label set

Ω = {λ1, . . . , λG}, set of undominated model
M.

Output: The optimal query qn∗

1 foreach mk ∈M do
2 Compute empirical risk (R(mk), R(mk)) bounds

using Alg. 3;

3 Determine the best model mk∗ and the undominated
model set M using Alg. 4;

4 foreach n ∈ [N ] do
5 Determine the query effect value V alue(qn)

using Alg. 5;

6 Determine qn∗ = arg max
n

V alue(qn);

Algorithm 3: Compute the empirical risk

bounds (R(mk), R(mk)).

Input: Training data set {(xn, Yn}Nn=1, label set
Ω = {λ1, . . . , λG}, model mk.

Output: Empirical risk bounds (R(mk), R(mk))
1 R(mk) = 0, R(mk) = 0;
2 foreach n ∈ [N ] do
3 if |Yn| > 1 then
4 if mk(xn) /∈ Yn then R(mk) = R(mk) + 1;

5 R(mk) = R(mk) + 1

6 else if {mk(xn)} 6= Yn then

R(mk) = R(mk) + 1, R(mk) = R(mk) + 1;

5 Application to decision trees: interval-valued

features

We now deal with the case of interval-valued features,

which is much more involved than the case of partial la-

bels, yet still manageable from a computational point of

view. Such additional difficulties may explain why there

Algorithm 4: Determine the best model mk∗

and the undominated model set M∗.
Input: Model set M, empirical risk bounds

{(R(mk), R(mk))|∀mk ∈M}
Output: The best model mk∗ and the undominated

model set M
1 k∗ = arg minmk∈MR(mk);

2 Rmin = minmk∈MR(mk) ;
3 foreach mk ∈M do
4 if R(mk) > Rmin then Remove mk from M;

Algorithm 5: Determine the effect value of a

query V alue(qn).

Input: Training instance (xn, Yn), undominated
model set M∗.

Output: The querying effect value V alue(qn)
1 Initialize Eqn

(mk∗) = 0, Jqn
= 0;

2 if |Yn| > 1 and mk∗(xn) ∈ Yn then
3 Eqn

(mk∗) = 1;
4 foreach mk ∈M and k 6= k∗ do
5 if mk(xn) ∈ Yn and mk(xn) 6= mk∗(xn)

then Jqn
= Jqn

+ 1;
6 else if mk(xn) 6∈ Yn then Jqn

= Jqn
+ 1;

7 else if |Yn| > 1 then
8 foreach mk ∈M and k 6= k∗ do
9 if mk(xn) ∈ Yn then Jqn

= Jqn
+ 1;

10 V alue(qn) = Eqn
(mm∗) + Jqn

;

are very few active learning methods dealing with miss-

ing features, and none (to our knowledge) dealing with

partially known features, at least to our knowledge.

5.1 Instances introducing imprecision in empirical risk

Before going further, let us remind that, for a given

tree m, each terminal node (which is sufficient in later

analysis) is associated with a partition element

Ah = A1
h × . . . ,×APh , (23)

where Aph can be a closed, open or semi-closed interval

in our case. However, for the sake of practical imple-

mentation and exposure, we will from now on assume

that Aph is a closed interval.

Since we work with interval-valued feature data, for

each instance (Xn, yn), its feature Xn can be repre-

sented as a hyper-cube (similar to terminal node in

(23)) denoted by

Xn = X1
n × . . .×XP

n . (24)

The intersection between partition elements and/or par-

tial instances is nothing else but the one of two hyper-

cubes. Given two such hyper-cubes U = U1× . . .×UP
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X 2

X 1

(A2, 1)

(A3, 1)

(A6, 1)

(A4, 1)

(A5, 0)

(A1, 0)

(X1, 0)

(X2, 1)

Fig. 3 Example of imprecise instance

and V = V 1 × . . . × V P , their corresponding intersec-

tion, denoted by U ∩ V is

U ∩ V = ×Pp=1U
p ∩ V p . (25)

(25) provides a practical way to check whether the inter-

section of two cubic forms is non-empty. More precisely,

we have that U ∩V 6= ∅ iff

Up ∩ V p 6= ∅,∀p ∈ [P ] . (26)

As for the case of partial labels, an instance (X, y)

is said to be imprecise w.r.t. a decision tree mk if

∃x,x′ ∈ X s.t `(y,mk(x)) 6= `(y,mk(x′)) . (27)

Furthermore, as an instance can intersect several parti-

tion elements which are possibly associated to different

labels, then (27) is equivalent to the following relation

∃Ah,Ah′ s.t X ∩Ah 6= ∅,X ∩Ah′ 6= ∅
and λh = y and λh′ 6= y . (28)

Note that (28) can be easily determined using (26). The

following Example gives illustrations of an imprecise

instance w.r.t. a given decision tree.

Example 5 Figure 3 gives an example of a tree mk and

two instances, (X1, 0), (X2, 1).

It is easy to see that (X1, 0) is a precise instance

since it only intersects with a partition element asso-

ciated to label 0. However X2 is imprecise since (28)

holds. More precisely, (X2, 1) intersects with A5 and

A6 whose associated labels are different.

5.2 Empirical risk bounds and single effect

We are now going to investigate how risk bounds R(mk)

can be computed efficiently from data {(Xn, yn)}Nn=1 by

computing bounds L(yn,mk(Xn)), and how the poten-

tial effect of a query qpn (qpn corresponding to ask the true

value within Xp
n) on those bounds can be estimated.

Let us first study how bounds on loss functions can

be estimated. Similarly to the case of set-valued la-

bels, an instance Xn will get the imprecise empirical

risk bounds L(yn,mk(Xn)) = [0, 1] iff it satisfies condi-

tion (28). Otherwise, the corresponding loss is precise

and such an instance can be discarded from the query-

ing process. For example, in Figure 3, we can see that

L(y1,mk(X1)) = [0, 0] while L(y2,mk(X2)) = [0, 1].

Note that a training instance (Xn, yn) is precise if and

only if partition elements that intersect with it either

are all of label yn or all different from yn. To determine

whether such a condition holds, let us firstly introduce

the following information vectors

K = (k1, . . . , kH) , kh =

{
1 if Xn ∩Ah 6= ∅ ,
0 otherwise,

(29)

Byn = (b1yn , . . . , b
H
yn) , bhyn =

{
0 if λh = yn ,

1 otherwise ,
(30)

Cyn = (c1yn , . . . , c
H
yn) , chyn =

{
1 if λh = yn ,

0 otherwise ,
(31)

with H the number of terminal nodes of the decision

tree mk. Note that K can easily be built using (26), and

that B,C have to be built only once. A given train-

ing instance Xn is imprecise w.r.t. mk if and only if

(KB>yn)(KC>yn) 6= 0, where ab> is the dot product of

two vectors a and b. Before going further, let us note

that we can use information vectors to deduce that

`(yn,mk(Xn)) has the precise value 0 and 1, as this

happens when KB>yn = 0 and KC>yn = 0, respectively.

One can see that performing a query qpn can only

change K. Denoting by Kqpn the vector resulting from

qpn, the single effect Eqpn(mk) = 1 if and only if

(KB>yn)(KC>yn) 6= 0

and

∃xpn ∈ Xp
ns.t.(KqpnB>yn)(KqpnC>yn) = 0 .

Verifying whether such a situation happens can be done

by checking the two following conditions

∃xpn ∈ Xp
n s.t (KqpnB>yn) = 0

or ∃xpn ∈ Xp
n s.t (KqpnC>yn) = 0

We will present detailed developments and compu-

tations for the first condition and then present the re-

sult for the second one (which can be developed in a

similar manner). The definition of K ensures that only

elements of value 1 can change to zero after a query,
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since reducing Xp
n can only lead to the fact that a non-

empty intersection with Ah becomes empty. Further-

more, (26) implies that if kh = 1 then for all dimensions

p = 1, . . . , P , we have Xp
n∩A

p
h 6= ∅. Such an observation

ensures that the results after performing qpn, kh = 0 if

and only if ∃xpn ∈ Xp
n s.t xpn ∩ A

p
h = ∅, that is if the

intersection with Ah on dimension p can become empty

after querying Xp
n. It then implies that the condition

∃xpn ∈ Xp
n s.t (KqpnB>yn) = 0 is equivalent to the follow-

ing condition

∃xpn ∈ Xp
n s.t xpn ∩A

p
h = ∅,∀h where khbhyn = 1,

or, in other words, there is a value xpn ∈ Xp
n s.t xpn does

not belong to any of Aph for which the condition khbhyn =

1 holds, that is for this value the resulting hyper-cube

intersects with no leaves having yn as prediction. Such

a condition comes down to check whether the following

assertion is true:

Xp
n \
(
∪khbhyn=1 A

p
h

)
6= ∅. (32)

Similarly, to determine whether

∃xpn ∈ Xp
n s.t (KqpnC>yn) = 0 ,

we can simply investigate whether

∃xpn ∈ Xp
n s.t xpn ∩A

p
h = ∅,∀h when khchyn = 1,

which can be done by checking the condition

Xp
n \
(
∪khchyn=1 A

p
h

)
6= ∅. (33)

The general problem we have to solve is to check whether
an interval Xp

n =
[
apn, b

p
n

]
contains a value that is out-

side the union of some collection of intervals
[
di, d

i]
(here, the intervals Aph satisfying the conditions in (32)

and (33)). Once we notice this, we can rewrite the com-

putational problem in the following form[
apn, b

p
n

]
\ ∪Ii=1

[
di, d

i] 6= ∅ ,
when ∀i = 1, . . . , I,

[
apn, b

p
n

]
∩
[
di, d

i] 6= ∅. (34)

The intuitive idea is that (34) is not satisfied if and

only if ∪Ii=1

[
di, d

i]
is a closed interval including

[
apn, b

p
n

]
.

Then to check whether (34) is satisfied, we just have to

firstly check whether ∪Ii=1

[
di, d

i]
is a closed interval,

and if it is, whether it includes
[
apn, b

p
n

]
. To check that

∪Ii=1

[
di, d

i]
is a closed interval comes down to check

whether there is a gap in the union of intervals. Let

{d(1), . . . , d(I)} be the ordered list of lower bounds, or

starts of intervals. A gap happens if, when increasing

values from apn to bpn, all intervals that have been opened

d(1) d
(1)

d(j) d
(j)

d(j+1)max{d(1), . . . , d(j)}

gap

Fig. 4 Case where ∪I
i=1

[
di, d

i]
is not an interval

are closed before another one starts (as illustrated in

Figure 4). In formal terms, there exists an index j s.t.∣∣{di : d
i
< d(j)}

∣∣ = j − 1 ,

which expresses the fact that before the jth interval

[d(j), d
(j)

] starts, the j − 1 previous ones are closed,

hence their union is not a closed interval. Provided

∪Ii=1

[
di, d

i]
is a closed interval, then checking whether

it includes
[
apn, b

p
n

]
can simply be done by checking that

d(1) ≤ apn ≤ bpn ≤ d
(I)
.

For a given interval
[
apn, b

p
n

]
and a set of interval{[

di, d
i]|i ∈ [I]

}
, then whether there is a value within[

apn, b
p
n

]
that is not included in ∪i

[
di, d

i]
(i.e., whether

condition (34) is satisfied) can be checked using Algo-

rithm 6.

Algorithm 6: Checking whether the condition

(34) is satisfied.

Input:
[
apn, b

p
n

]
, sets

{[
di, d

i]|i ∈ [I]
}

s.t, for ∀i,[
apn, b

p
n

]
∩
[
di, d

i] 6= ∅
Output: Return In = 1 if (34) is satisfied and 0

otherwise
1 Order {d1, . . . , dI} into {d(1), . . . , d(I)} ;
2 foreach i ∈ [I] do

3 if |{dk : d
k
< d(i)}| = i− 1, then

4 Return In = 1 and Stop the Algorithm

5 if mini di > apn then
6 Return In = 1 and Stop the Algorithm

7 else if bpn > maxi d
i
then

8 Return In = 1 and Stop the Algorithm

9 Return In = 0;

Let us now illustrate how to practically determine

the single effect using a simple example.

Example 6 Consider the tree mk and two instances X1,

X2 illustrated in Figure 3. Instance X1 is precise w.r.t.

the model mk, hence querying its feature is useless for
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X 2

X 1

(A2, 1)

(A3, 1)

(A6, 1)

(A4, 1)

(A5, 0)

(A1, 0)

(X2, 1) x12

x12

x22

x22

Fig. 5 Example of determining the single effect

this model. We then focus on determining the effect of

querying the features of X2.

Using (29)-(31), the information vectors associated

to X2 are

K = (1, 1, 1, 1, 1, 1) ,

By2 = (1, 0, 0, 0, 1, 0) ,

Cy2 = (0, 1, 1, 1, 0, 1) .

Let us now investigate whether X2 can become precise

(w.r.t. the model mk) by querying its feature X1
2 . We

have that

∪khbhyn=1A
1
h = A1

1 ∪A1
5

as leaves A1 and A5 are overlapping with X2 and pre-

dict a different class from its true one. We can see on

the picture that A1
1 ∪ A1

5 is a closed interval that does

not includes X1
2 . Then, for any value x12 belonging to

the interval (x12, x
1
2] as illustrated in the Figure 5, we

have that KqpnB>y2 = 0. In other words, we have that

instance X2 can become a precise instance after query-

ing its feature X1
2 .

Similarly, for the case of querying X2
2 , we have that

∪khbhyn=1A
2
h = A2

1 ∪A2
5.

Since A2
1 ∪ A2

5 is not a closed interval, then, for any

value x22 belonging to the interval (x22, x
2
2) (illustrated

in the Figure 5), we have that KqpnB>y2 = 0.

Finally, we conclude that instance X2 can become

a precise instance after querying either X1
2 or X2

2 .

5.3 Pairwise risk bounds and effect

This section focuses on how to compute, for a pair

of models mk and ml, the corresponding pairwise risk

bounds `k−l(yn,Xn) for all instance Xn and whether a

query qpn can increase this risk. In a way similar to the

case of set-valued labels (Section 4.3.2), computations

will be treated in two cases: when the instance is im-

precise w.r.t. only one model; and when it is imprecise

for both.

5.3.1 Imprecision with respect to one model

In case an instance Xn is imprecise w.r.t. one model

(either mk or ml), the pairwise risk bound `k−l(yn,Xn)

can be determined in a way similar to the case of set-

valued labels (Proposition 3). Note that this bound is,

in the context of imprecise features, defined as:

`k−l(yn,Xn) = inf
xn∈Xn

[
`(yn,mk(xn))− `(yn,ml(xn))

]
.

Proposition 6 Given (Xn, yn), and two models mk

and ml s.t Xn is imprecise w.r.t. one and only one

model, then the following results hold

- if Xn is imprecise w.r.t. ml, then

`k−l(yn,Xn) = `(yn,mk(Xn))− 1 . (35)

- if Xn is imprecise w.r.t. mk, then

`k−l(yn,Xn) = −`(yn,ml(Xn)) . (36)

Proof Similar to proof of Proposition 3. ut

Then a query qpn will have an effect Jqpn(mk,ml) =

1 if either qpn increases `(yn,ml(Xn)) or qpn decreases

`(yn,mk(Xn)). The detailed arguments can be found

in the next proposition.

Proposition 7 Given (Xn, yn) and two models mk and

ml s.t. Xn is imprecise w.r.t. one and only one model,

then Jqpn(mk,ml) = 1 if and only if one of the following

conditions holds

- if Xn is imprecise w.r.t. mk, then Jqpn(mk,ml) = 1

if and only if Equation (33) holds for the model mk.

- if Xn is imprecise w.r.t. ml, then Jqpn(mk,ml) = 1

if and only if Equation (32) holds for the model ml.

Proof Let us start with the case when Xn is impre-

cise w.r.t. model mk. The condition that Equation (33)

holds for the model mk simply implies that after per-

forming a query qpn, the loss `(yn,mk(Xn)) becomes

precisely 1. Hence it is clear that the pairwise risk bound

is increased.

Similarly, when Xn is imprecise w.r.t. model ml,

that Equation (32) holds implies that after performing

a query qpn, the loss `(yn,ml(Xn)) is precisely 0 which

results in increasing `k−l(yn,Xn). ut

5.3.2 Imprecision with respect to both models

Note that when an instance Xn is imprecise with re-

spect to both models mk and ml, the pairwise risk

bounds `k−l(yn,Xn) can get values in {−1, 0, 1}. Let

us denote by λml

h the label associated to the partition
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Ah of a tree ml, then the relation between Xn and

leaves of mk and ml can be encoded in matrix form

as follows

Wk,l =

(
wk,li,j

)
i=1,...,Hk,j=1,...,Hl

(37)

where the values of wk,li,j and the corresponding condi-

tions are

wk,li,j Corresponding condition

2 Xn ∩Amk
i ∩Aml

j = ∅
1 Xn ∩Amk

i ∩Aml
j 6= ∅, λ

mk
i 6= yn, λ

ml
j = yn

0 Xn ∩Amk
i ∩Aml

j 6= ∅, λ
mk
i = λml

j

−1 Xn ∩Amk
i ∩Aml

j 6= ∅, λ
mk
i = yn, λ

ml
j 6= yn

(38)

It is easy to see that the matrix Wk,l covers all possible

values of `k−l(yn,Xn), with 2 being an arbitrary value

to denote that Xn prediction does not depend on Amk
i ∩

Aml
j . The pairwise lower risk bound is then simply the

minimum value of elements in matrix Wk,l i.e.,

`k−l(yn,Xn) = min
i,j

wk,li,j . (39)

Before going to determine whether a query qpn can in-

crease the pairwise risk bound `k−l(yn,Xn), note that

whether Xn∩Amk
i ∩Aml

j = ∅ can be easily determined

as a consequence of Equation (25), as we have

Xn ∩Amk
i ∩Aml

j = ×Pp=1X
p
n ∩A

mk
i,p ∩A

ml
j,p.

Then for an instance Xn, its corresponding pairwise risk

bound w.r.t. two models mk and ml can be determined

explicitly using Equations (37) and (38). A query qpn can

increase the pairwise risk bound if and only if it can

increase the value of all elements of value mini,j w
k,l
i,j .

Let

Smin =
{
wk,l
i′ ,j′
|wk,l
i′ ,j′

= min
i,j

wk,li,j
}

(40)

be the set of such elements, then Jqpn(mk,ml) = 1 if ∃
xpn ∈ Xp

n s.t after querying Xp
n, all elements in the set

Smin are increased.

Note that for a given pair
(
Amk
i ,Aml

j

)
, using (26),

we have that their intersection is

Ai,j = Amk
i ∩Aml

j = ×Pp=1A
mk
i,p ∩A

ml
j,p

:= ×Pp=1A
p
i,j , (41)

where Api,j is a closed interval, for p = 1, . . . , P . Fur-

thermore, a query qpn can increase the pairwise risk

bound if ∃ xpn ∈ Xp
n s.t xpn /∈ Api,j , for all wk,li,j ∈ Smin.

The next Proposition provides a practical procedure to

check whether such a condition holds.

X 2

X 1

A2,1(1, 1)

A1,1(0, 1)

A1,2(0, 1)

A2,2(1, 1)

A2,3(1, 0)

A3,2(1, 0)

A3,3(1, 1)

Fig. 6 Example of determining the pairwise effect

Proposition 8 Given a training instance Xn which is

imprecise w.r.t. both models mk and ml, the correspond-

ing Wk,l matrix, assuming that mini,j w
k,l
i,j < 1, then

Jqpn(mk,ml) = 1 if and only if

Xp
n \
(
∪i,j|wk,l

i,j∈Smin
Api,j

)
6= ∅. (42)

Proof Let us first note that if (42) holds, then ∃ xpn ∈
Xp
n s.t xpn /∈ Api,j , for all wk,li,j ∈ Smin. Then the corre-

sponding elements wk,li,j are increased to be 2. It is then

resulting in the increasing of mini,j w
k,l
i,j , or in other

words, the pairwise risk bound `k−l(yn,Xn). ut

Checking whether Equation (42) is true can easily be

reformulated in the form of Equation (34), Algorithm

6 can then be used to perform the check. In practice,

such a check is quadratic in the number of leaves of

the models mk, ml, which remains affordable from a

computational standpoint. The next example illustrates

how to practically determine the effect of queries on the

pairwise risk bounds.

Example 7 Assume that we have two models m1 and

m2 with 3 leaves each, whose intersection of partition

elements is illustrated in Figure 6.

Instance X covers the red region and has label y = 1.

From Figure 6, we can see that X is imprecise w.r.t.

both models m1 and m2, and its corresponding infor-

mation matrix W1,2 can be determined as follows

W1,2 =

1 1 2

0 0 2

2 −1 2


Then it is clear that `1−2(y,X) = −1 and

Smin =
{
wk,l
i′ ,j′
|wk,l
i′ ,j′

= min
i,j

wk,li,j
}

= w1,2
3,2.

Let us now investigate whether the empirical risk

bound `1−2(y,X) can increase by querying the features

of X. It is easy to see that A1
3,2 is a closed interval that

does not include X1. Then we always can find value
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x1 ∈ X1 s.t A1
3,2 ∩ x1 = ∅. In other words, we can

increase the bound `1−2(y,X) by querying X1.

However, as A2
3,2 is a closed interval that includes

X2, there is no value x2 ∈ X2 s.t A2
3,2 ∩ x2 = ∅, or in

other words, the bound `1−2(y,X) can not be increased

by querying X2.

5.4 Algorithms

Algorithm 7 summarizes how to determine the optimal

query for a single querying step in case of imprecise

features. It is very similar to Algorithm 2, but takes

different sub-routines specific to the case of partially

known features.

Algorithm 7: A single step to query interval-

valued data.
Input: Training data set {(Xn, yn)}Nn=1, label set

Ω = {λ1, . . . , λG}, undominated model
set M.

Output: The optimal query qn∗

1 foreach mk ∈M do
2 Compute empirical risk [R(mk), R(mk)] bounds

using Alg. 8;

3 Determine the best model mk∗ and the undominated
model set M∗ using Alg. 4;

4 foreach n ∈ [N ] do
5 Determine (Eq1

n
(mk∗), . . . , EqP

n
(mk∗)) using Alg.

9 with model mk∗ ;
6 Determine the cumulative pairwise effects

(Jq1
n
, . . . , JqP

n
) using Alg. 10;

7 foreach p ∈ [P ] do
8 V alue(qpn) = Eqp

n
(mk∗) + Jqp

n
;

9 Determine (n∗, p∗) = arg max(n,p) V alue(q
p
n);

Algorithm 8: Compute the empirical risk

bounds (R(mk), R(mk)).

Input: Training data set {(Xn, yn)}Nn=1, label set
Ω = {λ1, . . . , λG}, model mk.

Output: Empirical risk bounds (R(mk), R(mk))
1 R(mk) = 0, R(mk) = 0;
2 foreach n ∈ [N ] do
3 Compute K, Byn

and Cyn
using (29)-(31);

4 if KC>yn
= 0 then R(mk) = R(mk) + 1,

R(mk) = R(mk) + 1;

5 if
(
KB>yn

)(
KC>yn

)
6= 0 then

R(mk) = R(mk) + 1;

Algorithm 8 summarises how risk bounds, from which

can be deduced the best potential model (through Al-

gorithm 4, that remains unchanged), can be computed.

Algorithms 9 and 10 describe how potential effects of

querying an instance (Xn, yn), respectively on empirical

risk bounds and on pairwise risk bound, can be deter-

mined. Note that Algorithm 10 computes the sum of the

pairwise effects between the best potential model mk∗

and the other ones. Let us now look at the complexity

of Algorithm 8, assuming that all decision trees have H

leaves. Before doing that, note that checking whether

two hyper-cubes do intersect is in O(P ), according to

Equation (26). Lines 2-3 are in O(S × N × H × P ),

since Algorithm 8 is in O(N × H × P ), as computing

vector K (line 3 of Algorithm 8) is in O(H ×P ). Algo-

rithm 4 remains in O(S). Lines 4-9 of Algorithm 8 is in

O(N ×S ×P ×H4): indeed, in Algorithm 10, lines 7-9

are in O(P ×H4), as we must apply Algorithm 6 to at

most H2 intervals.

In particular, Algorithm 10 treats both the cases

of an instance that is imprecise with respect to both

models, as well as the other cases (other loops): Line 2

determines whether the instance is imprecise w.r.t mk∗ ,

Line 4 whether it is imprecise w.r.t mk. So Lines 4-9

correpond to imprecision with respect to both models,

lines 10-13 to imprecision w.r.t only mk∗ , and lines 15-

19 w.r.t only mk.

Algorithm 9: Determine the single effects

(Eq1n(m), . . . , EqPn (m)).

Input: Training instance (Xn, yn), a model m.
Output: The single effects (Eq1

n
(m), . . . , EqP

n
(m))

1 Initialize (Eq1
n
, . . . , EqP

n
) = (0, . . . , 0);

2 if `(m(Xn), yn) 6= `(m(Xn), yn) then
3 foreach p ∈ [P ] with ‖Xp

n‖ > 0 do
4 In← Alg. 6 with inputs Xp

n,

{Ap
h|khchyn

= 1};
5 if In = 1 then Eqp

n
(m) = 1;

6 In← Alg. 6 with inputs Xp
n,

{Ap
h|khyn

bhyn
= 1};

7 if In = 1 then Eqp
n
(m) = 1;

The overall complexity is polynomial in all param-

eters, which may be considered as reasonable when the

number of partial data, and the complexity of the trees

both remain limited. Also, this is a worst-case complex-

ity, assuming that every feature of every training data is

imprecise, and that every resulting hyper-cube intersect

all leaves of all the decision trees inM. In practice, we

may expect partial features to be quite less numerous,

as well as their intersections with tree leaves.

It should also be noticed that since the models will

not change during the race, and that data will only

be queried iteratively, one can in principle compute all

matrices at the start of the race, and then proceed to
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Algorithm 10: Determine the cumulative

pairwise effects (Jq1n , . . . , JqPn ).

Input: Training instance (Xn, yn), undominated
model set M, best model mk∗ .

Output: The cumulative pairwise effects
(Jq1

n
, . . . , JqP

n
)

1 Initialize (Jq1
n
, . . . , JqP

n
) = (0, . . . , 0);

2 if `(mk∗(Xn), yn) 6= `(mk∗(Xn), yn) then
3 foreach mk ∈M and k 6= k∗ do

4 if `(mk(Xn), yn) 6= `(mk(Xn), yn) then
5 Compute matrix Wk,k∗ defined in (37);

6 if minWk,k∗ < 1 then
7 foreach p ∈ [P ] and ‖Xp

n‖ > 0 do
8 In← Alg. 6 with inputs Xp

n,

{Ap
i,j : wk,k∗

i,j = minWk,k∗};
9 if In = 1 then Jqp

n
= Jqp

n
+ 1;

10 else
11 foreach p ∈ [P ] and ‖Xp

n‖ > 0 do
12 In← Alg. 6 with inputs Xp

n,

{Ap
h of mk∗ |khyn

bhyn
= 1};

13 if In = 1 then Jqp
n

= Jqp
n

+ 1;

14 else
15 foreach mk ∈M and k 6= k∗ do

16 if `(mk(Xn), yn) 6= `(mk(Xn), yn) then
17 foreach p ∈ [P ] and ‖Xp

n‖ > 0 do
18 In← Alg. 6 with inputs Xp

n,

{Ap
h of mk|khyn

chyn
= 1};

19 if In = 1 then Jqp
n

= Jqp
n

+ 1;

a minimal update at each query, thus considerably re-

ducing the time to determine optimal queries. Finally,

it should be noticed that querying data mainly makes

sense when data are scarce (as an increased quantity of

data improves the model accuracy even in the presence

of imperfections).

6 Experiments

In this section, we run experiments on a “contami-

nated” version of 4 standard benchmark data sets as de-

scribed in Table 2. To evaluate the efficiency of our pro-

posal, we compare our racing algorithm with baseline

algorithms whose details will be described separately in

each setting of partial data. Note that when data are

partial and in contrast with classical active learning, it

is usually difficult to divide the data between a set of

training data and a set of data with missing values, es-

pecially if all data are partial. This is why we will do the

queries on the same data we use to train the models. As

the situation where both input and output are partially

given rarely happens in practice, we only focus on two

Table 2 Data set used in the experiments

Name # instances # features # classes
wine 178 13 3

breast-cancer 569 30 2
vowel 990 10 11

segment 2310 19 7

settings: partiality in inputs; and partiality in outputs.

In both cases and for each selection of precise data, we

use a standard CART decision tree learned in which

splits are selected by Gini scores. It should be noted

that changing the scores, e.g. for entropy, has usually

little influence on the result (Dubois et al, 2007), as

most of them are refinements of a unique ordinal no-

tion. The next two subsections present details about

the experimental settings and the results for interval-

valued features and set-valued labels data, respectively.

It should be noted here that our primary goal is to verify

that our approach query useful data, in the sense that

those data are those that make the notion of best model

ambiguous. Once this is confirmed, and after data have

been queried, one could use other learning or aggre-

gation methods such as ensemble learning to optimize

accuracy from queried data.

6.1 Interval-valued features

We follow a 2× 5 fold cross-validation procedure: Each

data set is randomly split into 5 folds. Each fold is

in turn considered as the training set D, while other

folds are used for testing T. For each feature xpn in the

training set, a biased coin is flipped in order to decide

whether or not this example will be contaminated; the

probability of contamination is δ. The level of partiality

δ is fixed to two values (0.3 and 0.6) which correspond to

a low and a high level of imprecision. In case xpn is con-

taminated, a width εpn is generated from a uniform dis-

tribution on the unit interval. Then the generated inter-

val valued data is Xp
n = [xpn+εpn(Dp−xpn), xpn+εpn(D

p−
xpn)] where Dp = minn(xpn) and D

p
= maxn(xpn).

Example 8 Assume that the initial precise observed value

is x = 1, that the domain is [D,D] = [0, 10], and that

we have randomly picked ε = 0.5. In this case, the re-

sulting interval-valued data is X = [0.5, 5.5].

To get the initial set of models for the race, we ran-

domly generate 100 completions of interval-valued data.

From each completion, one tree model (with a minimal

number of training observations in any terminal node

fixed to 3 for first two small data sets and 5 for the two

later ones) is trained and the set of such models is con-

sidered as the initial set of undominated models. The
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budget will be fixed to be the total number of partially

featured values. After each query, we discard the dom-

inated models and determine the best potential model.

In case of multiple minimum risk models, the one with

a minimum value of Rm will be chosen as the best po-

tential model.

The two following baseline algorithms are employed

to query interval-valued data and make comparison about

the evolution of the size of the sets of undominated

models and the performance of the best potential model:

- a random querying strategy where, at each iter-

ation, the queried example and feature will be cho-

sen randomly,

- and the most partial querying strategy designed

such that, at each iteration, examples with the largest

imprecision will be queried.

Those baselines are quite straightforward, and we ex-

pect our method to perform better than those. As we

mentioned in the introduction, we are not aware of

other methods that intends to query the most influ-

ential data when features are partial, hence can only

compare ourselves to those standard baselines in the

case of partial features.

In practice, it may be the case that not all features

appear in the set of racing trees. In those cases, keep-

ing all the features in the instances would disadvantage

both random and most partial querying in the race,

since in this latter only the features present in the trees

are relevant (i.e., will play a role to discard racing mod-

els). To make a comparable setting and to not give an

unfair advantage to our method, we thus eliminate the

features that do not appear in the trained trees.

In order to evaluate the performances of those dif-
ferent strategies, we will use three measures:

- the similarity of the best potential model mk∗ with

a reference model mref is computed on the precise

test set T = {(xt, yt)}Tt=1. This similarity is com-

puted as

|{t ∈ [T ]|mref (xt) = mk∗(xt)}|
T

.

This similarity is 1 if the two models make identical

predictions on the test set (hence have the same

performances), and 0 if they systematically disagree.

The reference model is chosen to be the one in the

initial undominated set that has the best accuracy

on the fully precise training set. It is thus the model

towards which any querying strategy, and the race

in particular, should converge;

- the size of the undominated set M∗, that should

decrease as fast as possible, both to ensure compu-

tational efficiency and model performances.

Data set δ = 0.3 δ = 0.6

# undominated models

Rac. Rand. Most Rac. Rand. Most
Wine 11.6 96.1 82.8 8.8 100 100
Breast 5.8 98.1 100 44.2 100 100
Vowel 25.9 100 100 100 100 100

Segment 1.5 100 100 48.8 50.6 50.6

Similarity to best model

Rac. Rand. Most Rac. Rand. Most
Wine 1 0.96 0.94 0.95 0.84 0.83
Breast 0.97 0.92 0.92 1 0.92 0.94
Vowel 0.68 0.57 0.55 0.35 0.35 0.40

Segment 0.98 0.89 0.86 0.74 0.75 0.8

Table 3 Partial features: results after querying 10% of the
partial data

The 5-folds process is repeated 2 times. The average

size of the sets of models and the average similarity of

the best potential model are reported.

The experimental results are presented in Figure 7

and 8. They show that, using the racing approach, the

size of the undominated set can be quickly reduced and

that the best potential model converges very fast to the

desired model when knowing a small number of the pre-

cise data. The reduction of the size of the set is much

slower for other querying strategies. This is true for

the four tested data sets, and the advantage of using

the racing approach is obvious whether we have little

(δ = 0.3) or a lot (δ = 0.6) of imprecision. The excep-

tion observed for high imprecision (δ = 0.6) in the case

of the segment data set is due to the fact that few fea-

tures are used in the different trees, hence all models are

quite similar, and all querying strategies focus on those

features, converging at comparable speeds. For conve-

nience, Table 3 also summarizes the obtained results

after having queried 10% of the partial data. From the

table, we can see that our approach is usually the best

one, both at discarding sub-optimal models and at get-

ting closer to the optimal one, except for the Vowel and

Segment data sets in case of high imprecision. For the

Segment data set, Figure 8.h confirms that all methods

are comparable, while for the Vowel data set Figure 8.f

shows that our approach is outperforming the others,

yet only at the end of the querying process.

6.2 Set-valued labels

We perform on the same data sets as before (cf. Table

2) and the 2×5 cross-validation procedure as described

for partially featured data (without the feature filtering

step as we only consider the partial labels here).

In order to contaminate a given data set, we used

the following strategy: for each example in the training
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Fig. 7 Interval-valued features: Size of undominated model sets
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Fig. 8 Interval-valued features: Similarity between the current best and reference models
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set, a biased coin is flipped in order to decide whether or

not this example will be contaminated; the probability

of contamination is δ. When an example is contami-

nated, the class candidates are added with probability

η, independently of each other. Thus, the contamina-

tion procedure is parametrized by the probabilities δ

and η, where δ corresponds to the expected fraction

of imprecise examples in a data set, and η reflects the

average number of classes added to contaminated ex-

amples. The expected cardinality of a label set, in case

of contamination, is given by 1 + (G−1)η. In all exper-

iments, δ and η are fixed respectively to 0.3 and 0.8. To

start the race, 100 precise replacements for each impre-

cise labels are randomly chosen. From each selection,

one classification tree is trained. Similarly to the case

of partial features, the minimal number of observations

in any terminal node is fixed to 3 and 5 for the first two

data sets and the later ones, respectively.

To make comparisons, the two baseline querying

schemes are also employed to query set valued-labels:

- a random query strategy where, each time, impre-

cise examples will be chosen randomly to be queried.

- a query by committee approach (QBC) in which

each model is allowed to vote on the labellings of

query candidates. The most informative query is

considered to be the instance for which they most

disagree. The disagreement measure used is the vote

entropy:

x∗VE = argmax
x

−
G∑
g=1

Vx(λg)

S
log

Vx(λg)

S

where Vx(λg) denotes the number of models predict-

ing class λg for a given instance x, and S = |M∗| de-

notes the number of models in the committee. QBC

approaches usually give good performance in active

learning settings with missing labels, and give state-

of-art results (Vandoni et al, 2019).

In a way similar to the interval-valued setting, the size

of the sets of models and the similarity of the best po-

tential model mk∗ w.r.t. to the reference model are re-

ported and used to make comparison.

The experimental results, presented in Figures 9 and

10, show that, among the three approaches, random

queries usually converge more slowly towards the refer-

ence model (except for the vowel data set), while the set

of undominated models decreases similarly for all data

sets and all strategies (with a slight advantage for the

QBC strategy, and a poorly performing random queries

for the segment data set). This contrasts with the par-

tial feature case, where our approach significantly out-

performs the others. A reason for that maybe that the

Data set δ = 0.3, ν = 0.8

# undominated models

Rac. Rand. QBC
Wine 93.8 91.7 94.6
Breast 95.5 87.8 90.4
Vowel 100 100 100

Segment 97.4 94.4 95.6

Similarity to best model

Rac. Rand. QBC
Wine 0.78 0.9 0.94
Breast 0.82 0.88 0.9
Vowel 0.54 0.59 0.74

Segment 0.82 0.97 0.97

Table 4 Partial labels: results after querying 10% of the par-
tial data

case of partial labels offers much less degrees of free-

dom, hence the impact of the querying strategy may be

quite less important than for the feature case. Table 4

summarizes the results for partial labels in the same

way as Table 3 did for the features. We can see that all

results are quite close in this table, as they are in the

figures, and that there is essentially no big differences

between the approaches.

Note that it would have been possible to add many

other more complex baselines, yet since both a random

strategy and a more complex strategy such as QBC are

on par with our proposed approach, we think this is

sufficient to draw some conclusions.

7 Conclusion

The problem of actively learning with partial data has
been little explored in the literature, in particular the

case of partially known features. Indeed, active learning

techniques usually focus on the case where a part of the

labels are completely missing, while a few are known.

To solve the problem, we apply in this paper an ap-

proach based on the idea of racing algorithms to the

specific case of decision trees. To do so, we have devel-

oped a number of efficient algorithms to detect which

data should be queried, in order to identify as soon as

possible the best model among a set of racing ones.

We have then made some experiments to study the

behaviour of our approach, compared to other querying

strategies, starting from the same set of initial models.

Our conclusion is that our approach significantly out-

performs simpler strategies in the case of partially spec-

ified features, while it achieves similar performances in

the case of partially specified labels. We think that this

is due to the fact that partial labels offer much less de-

grees of freedom to the learning algorithms, meaning

that most smart strategies, or even random ones will
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Fig. 9 Set-valued labels: Size of undominated sets
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Fig. 10 Set-valued labels: Similarity between the current best and reference models
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perform similarly. This is not the case for partial fea-

tures, where purely random strategies as well as query-

ing the most partial features perform poorly.

This study considers a non-parametric classifier that

can also be considered as a peculiar rule-based sys-

tem, i.e., decision trees. As such, we can expect some

of the conclusions and algorithmic procedures devel-

oped in this paper to also be applicable to generic rule-

based systems (Hühn and Hüllermeier, 2009). Our pa-

per therefore ideally complements our previous study (Nguyen

et al, 2018), that focused on a parametric linear classi-

fier, i.e., SVMs.
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Hüllermeier E (2014) Preference-based reinforcement

learning: evolutionary direct policy search using a

preference-based racing algorithm. Machine learning

97(3):327–351

Cabannnes V, Rudi A, Bach F (2020) Structured pre-

diction with partial labelling through the infimum

loss. In: International Conference on Machine Learn-

ing, PMLR, pp 1230–1239

Cour T, Sapp B, Jordan C, Taskar B (2009) Learning

from ambiguously labeled images. In: Proceedings of

the 2009 IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), IEEE, pp 919–926

Cour T, Sapp B, Taskar B (2011) Learning from partial

labels. The Journal of Machine Learning Research

12:1501–1536

Dobra A, Fienberg SE (2000) Bounds for cell en-

tries in contingency tables given marginal totals and

decomposable graphs. Proceedings of the National

Academy of Sciences 97(22):11,885–11,892

Dubois D, , Hullermeier E (2007) Comparing proba-

bility measures using possibility theory: A notion of

relative peakedness. International Journal of Approx-

imate Reasoning 45:364–385

Efron B (1981) Censored data and the bootstrap.

Journal of the American Statistical Association

76(374):312–319

Farhangfar A, Kurgan L, Dy J (2008) Impact of im-

putation of missing values on classification error for

discrete data. Pattern Recognition 41(12):3692–3705

Feng C, Liu MY, Kao CC, Lee TY (2017) Deep ac-

tive learning for civil infrastructure defect detection

and classification. In: Computing in civil engineering

2017, pp 298–306

Guillaume R, Couso I, Dubois D (2017) Maximum like-

lihood with coarse data based on robust optimisation.

In: Proceedings of the Tenth International Sympo-

sium on Imprecise Probability: Theories and Appli-

cations (ISIPTA), pp 169–180

Heitjan DF (1993) Ignorability and coarse data: Some

biomedical examples. Biometrics pp 1099–1109
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