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Abstract 

    Nowadays, people pay increasing attention to health, and the integrity of medical records 

has been put into focus. Recently, medical data imputation has become a very active field 

because medical data usually have missing values. Many imputation methods have been 

proposed, but many model-based imputation methods such as expectation-maximization and 

regression-based imputation based on the variables data have a multivariate normal distribution, 

which assumption can lead to biased results. Sometimes this becomes a bottleneck, such as 

computationally more complex than model-free methods. Furthermore, directly remove 

instances with missing values, this approach has several problems, and it is possible to lose the 

important data, produce ineffective research samples, and cause research deviations, and so on. 

Therefore, this study proposes a novel clustering-based purity and distance imputation method 

to improve the handling of missing values. In the experiment, we collected eight different 

medical datasets to compare the proposed imputation methods with the listed imputation 

methods with regard to the results of different situations. In imputation measures, the area under 

the curve (AUC) is used to evaluate the performance of the imbalanced class datasets in MAR 

and MCAR experiments, and accuracy is applied to measure its performance of the balanced 

class in MNAR experiment. Finally, the root-mean-square error (RMSE) is also used to 

compare the proposed and the listing imputation methods. In addition, this study utilized the 

elbow method and the average silhouette method to find the optimal number of clusters for all 

datasets. Results showed that the proposed imputation method could improve imputation 

performance in the accuracy, AUC, and RMSE of different missing degrees and missing types.    

Keywords: Health records; Data imputation; Clustering; Missing values; Purity-based k nearest 

neighbors imputation (PkNNI); distance-threshold nearest neighbors imputation (DNNI). 
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1. Introduction 

Nowadays, everyone is concerned about the state of their health and pays increasing 

attention to healthcare issues, with physicians confirming disease diagnosis from the relevant 

medical records of the patient. However, the medical records usually have missing values due 

to, for example, privacy of patients, evading medical examination, and avoiding medical 

treatment, etc. Missing data have a limitation when interpreting research results because a 

missing data problem is typically used by removing the observation with missing values. This 

may exclude the important information that is of theoretical interest and increase the 

misclassification cost, such as type I and Type II errors. In addition, the main drawbacks of 

removed instances with missing values will reduce the number of samples; the estimates will 

have larger standard errors and possible analysis bias. Hence, in medical research, data 

imputation has become an important research issue. Furthermore, medical data usually are 

imbalanced classes where the class distributions are not represented equally, which will produce 

a misclassification cost problem. 

To handle missing values, many researchers have proposed various types of techniques, 

but many model-based imputation methods such as expectation-maximization and multiple 

imputation based on the variables data have multivariate normal distribution [1]. More 

assumptions can lead to biased results, and the model becomes difficult to learn; sometimes, 

this is a bottleneck, such as computationally more complex than model-free methods. In 

addition, most of them have not implemented a complete evaluation of all missing degrees and 

missing types. The most common method is to remove the records with missing values, making 

it possible to lose important data, produce ineffective samples, and cause research deviations. 

In previous work on handling missing values, there are several common methods to replace the 

missing values [2], such as the average of other complete values and average of same class 

values (class average imputation). After replacing the missing values, they usually have better 

accuracy than that of the original datasets [3], and these replaced missing values methods are 

usually called imputation methods [4]. However, a common imputation approach has a 

shortcoming of deleted missing values, potentially removing something important and causing 

research bias. 

From the mentioned problems above, this study proposes a novel clustering-based purity 

and distance imputation method to improve the handling of missing values. Because the 

proposed imputation is a hybrid method, and the attributes data do not obey multivariate normal 

distribution. The proposed approach is combined k-mean with Purity-based k Nearest 



 

Neighbors Imputation (PkNNI) and Combined clustering with Distance-threshold Nearest 

Neighbors Imputation (DNNI). The main difference between the two approaches (PkNNI and 

DNNI) and the proposed method is to find the optimal number of clusters and adapt the two 

kNN related approaches to obtain the optimal results for the eight medical datasets. Medical 

data have the higher MDs; hence the research works need to check a higher percentage of 

complete data (e.g., normally more than 50% of the total cases) and needed to impute less than 

three values per patient [5]. Therefore, this study simulated a massive missing degree (in the 

traditional definition is 360%, but the MD definition of this paper is 20%) to handle missing 

values. In evaluating metrics of imputation methods, most previously used accuracy and RMSE, 

but medical data usually are imbalanced classes. Therefore, this paper applied accuracy, the 

area under the curve (AUC), and root-mean-square deviation (RMSE) to handle the problem of 

imbalanced classes. 

In summary, the objectives and contributions of this study are listed as follows: 

(1) propose two novel algorithms based on the combined clustering with Purity-based k 

Nearest Neighbors Imputation (PkNNI) and combined clustering with Distance-threshold 

Nearest Neighbors Imputation (DNNI) to estimate the missing values, 

(2) apply the elbow and average silhouette methods to find the optimal number of clusters 

consistently, 

(3) compare the proposed imputation methods with the listing imputation methods in different 

missing degrees and missing types, 

(4) evaluate the performance of the proposed imputation method by using Root-Mean-Square 

Error (RMSE), classification accuracy, and AUC, and 

(5) apply the proposed imputation method to medical data with missing values. 

The rest of this paper is organized as follows: Section 2 describes the related work, 

including medical data imputation, missing values type, clustering technique, and imputation 

methods. Section 3 introduces the concept of the proposed method and the proposed procedure. 

Section 4 outlines experiments and results. The discussions and findings are provided in Section 

5. At last, the conclusions are given in Section 6.  

2. Related work 

This section introduced the related literature, including medical data imputation, missing 

value types, clustering technique, and imputation method. 

2.1 Medical data imputation 

    Medical data imputation is an active area of research because medical data are relevant to 



 

the health of patients and physician decision making, and therefore it is more important than 

any other type of data. The physician needs to refer to the medical record of patients for 

diagnosing their patients, and if the medical records have some errors, it may lead to diagnostic 

errors. It is very hard to achieve a complete record of medical data because there are various 

reasons for data with missing values, such as patient privacy, human negligence, and medical 

equipment dysfunction.  

Missing values are most common when clinical trials are carried out because medical data 

are from various clinical trials, field experiments, or any other traditional mechanism. Proper 

care must be taken to handle missing values suitably and accurately. Hence, there are many 

challenges of missing value imputation in medical data; these challenges are listed in the 

follows. (1) A simple removal to handle missing values would be to discard the whole records, 

which essentially contains the missing value of an attribute, and this does not solve the problem. 

Measuring missing value incurs additional cost, whereas previously reported statistical methods 

result in reduced performance compared to when all variables are measured. (2) The higher 

missing degrees in the electrical health records have been previously reported from 20% to 80% 

[6]. Hence the majority of the research works normally presented a higher percentage of 

complete data (e.g., normally more than 50% of the total cases) and needed to impute less than 

three values per patient [5]. (3) The selection of the imputation method is a challenge, using the 

model-based or model-free method? (4) Evaluating imputation performance is also a challenge; 

most previously used accuracy and RMSE, but medical data usually are imbalanced classes.  

In summary, missing medical values could face imputation, deletion, or classification of 

missing type. To avoid bias, classifying the pattern of missing values is an efficient step to select 

appropriate imputation methods to improve data consistency. Many imputation methods have 

been used in the medical field [4, 7-9], such as multiple imputation, expectation-maximization 

imputation, k nearest neighbor imputation, and Chained Equation Multiple Imputation (MICE). 

These studies are briefly introduced as follows. Sterne et al. [10] used MI in epidemiological 

and clinical research. Jerez, Molina, Subirats, and Franco [11] used artificial neural networks 

combined data imputation to prognosis breast cancer. García-Laencina et al. [12] proposed 

using k-nearest neighbor, mode, and expectation-maximization imputation for five-year 

survival prediction of breast cancer patients with unknown discrete values. Pombo, Rebelo, 

Araújo, and Viana [13] combined data imputation and statistics to design a clinical decision 

support system; the next year, they also proposed a patient-oriented method of a pain evaluation 

system [14] that produced tailored alarms, reports, and clinical guidance on the basis of 

collected patient-reported data, which was a clinical decision support systems.    



 

2.2 Missing values type  

In the real world, the collected datasets are usually incomplete because of reasons such as 

human negligence, equipment failure, network disconnection, data not originating from the 

same source, postprocessing errors, and collection phase having noise; we called these cases of 

non-structures missingness. Rubin [15] reported that there are three types of missing values, 

Missing At Random (MAR), Missing Completely At Random (MCAR), and Missing Not At 

Random (MNAR). This study focuses on the nonstructured missingness problem, which has 

three types: MAR, MCAR, and MNAR.  

MAR type can be defined as a missing data point that does not depend on missing data but 

depends on some of the observed data. i.e., the missingness is conditional on another variable. 

MCAR type that if missingness does not depend on either the observed data points or missing 

data, that is, a missing data point, is completely random. MNAR type is when missing values 

in a variable are related to the values of the variable itself, even after controlling for other 

variables. MNAR can have two origins, missingness depending on attributes of the instance of 

other missing data or a missing element dependent on its own value [15].  

In practice, there are two ways of handling missing values, one is marginalization [16], 

and the other is imputation. Marginalization is deleting or ignoring missing values, and it is the 

most common approach in handling missing values. Marginalization may cause research bias 

by deleting data records/instances with missing values; data imputation can maintain the 

original dataset and avoid the problem of research bias. 

2.3 Clustering 

Cluster analysis or clustering is the task of grouping a set of objects in such a way that 

objects in the same group (called a cluster) are more similar (in some sense) to each other than 

to those in other groups (clusters). It is the main task of exploratory data mining and a common 

technique for statistical data analysis, used in many fields, including machine learning, pattern 

recognition, image analysis, information retrieval, bioinformatics, data compression, and 

computer graphics. 

Clustering is a machine learning technique that involves the grouping of data points. Given 

a set of data points, we can use a clustering algorithm to classify each data point into a specific 

group. In theory, data points that are in the same group should have similar properties (features), 

while data points in different groups should have highly dissimilar properties. Clustering is a 

method of unsupervised learning, which is a common technique for statistical data analysis used 

in many fields. In data science, we can use clustering analysis to gain valuable insights from 



 

the collected data and visualize which group data points fall. 

There are many clustering methods, such as connectivity-based clustering (hierarchical 

clustering), centroid-based clustering, distribution-based clustering, and density-based 

clustering. This study uses k-means clustering, which is centroid-based clustering, where 

clusters are represented by a central vector, and the center of the cluster may not necessarily be 

a member of the data set. When the number of clusters is fixed to k, we find k cluster centers 

and assign the objects to the nearest cluster center so that the squared distances from the cluster 

are minimized [17]. K-means clustering is defined as follows. 

Suppose there is a set of d-dimensional data: 

           𝑿𝒊∈ 𝑹𝒅, i = 1,2, . . . , n                                   (1) 

We set k (for k ≤ n) clusters{𝑆1, 𝑆2, … , 𝑆𝑘} , k-means clustering minimizes the error square 

between the data and the cluster center within the cluster. The mathematical formula is defined 

as follows: 

         𝒂𝒓𝒈𝝁 𝒎𝒊𝒏 ∑ ∑ ‖𝒙𝒊 − 𝒏𝒊=𝟏𝑲𝒄=𝟏 𝝁𝒄‖𝟐                            (2) 

where 𝝁𝒄 denotes the cluster center, and ‖𝒙𝒊 − 𝝁𝒄‖ is Euclidean distance. Its algorithm steps 

are listed as follows: 

1. Initially, randomly set the k cluster center. 

           𝜇𝑐(0)  ∈  𝑅𝑑  , 𝑐 = 1,2, . . . , 𝑘                        (3) 

2. Calculate the instances classified into each cluster, where (𝑡) is the 𝑡𝑡ℎ operation 

  𝒔𝒄(𝒕) =  {𝒙𝒊 : ‖𝒙𝒊−𝝁𝒄(𝒕)‖  ≤  ‖𝒙𝒊−𝝁𝒄∗(𝒕)‖, ∀𝒊 = 𝟏, … , 𝒏}    (4) 

3. Update the cluster center (𝑛𝑐 data in cluster 𝑐.)  

         𝝁𝒄(𝒕+𝟏) =  𝒔𝒖𝒎(𝒔𝒄(𝒕))𝒏𝒄 =  ∑ 𝒙𝒊𝒏𝒄𝒊=𝟏  |𝒙𝒊 ∈ 𝑺𝒄(𝒕)                (5) 

4. Repeat Steps 2 and 3 until the cluster center no longer changes: 

         𝑺𝒄(𝒕+𝟏) =  𝑺𝒄(𝒕), ∀𝒄= 𝟏, . . . , 𝒌                          (6) 

Determining the best number of clusters is an important problem in the k-means clustering 

algorithm. There is much-related research, but two of the most famous and common methods 

are as follows: 

(1) Elbow method 

The purpose of clustering is to minimize the total variation within the cluster and maximize 

the total variation between clusters; the elbow method [18] determines the number of clusters. 

First, set a value of k. When the data are divided into k clusters, the sum of squares error (SSE) 

within the cluster is the smallest; then, k is the best number of clusters: 



 

              Min ∑ 𝑊(𝐶𝑘)𝑘𝑘=1                                     (7) 

where 𝐶𝑘 denotes the k-th cluster, and 𝑊(𝐶𝑘) is the error sum of squares (SSE) within the 

cluster. 

(2)  Average silhouette method  

In addition to calculating the SSE, another method of measuring the effect of clustering is 

the average silhouette method [19]. The silhouette coefficient measures the effect of clustering 

on the basis of the cohesion and dispersion of each data point(i); its equation is as follows: s(𝑖) = |𝑏(𝑖)−𝑎(𝑖)|max {𝑎(𝑖),𝑏(𝑖)}                                    (8) 

where 

a(i) denotes the average distance between data point (i) and other data points in the cluster; 

b(i) is the average distance between data point (i) and the data points of the other clusters, taking 

the minimum value; |𝑏(𝑖) − 𝑎(𝑖)| means to take an absolute value for 𝑏(𝑖) − 𝑎(𝑖); 𝑠(𝑖) is silhouette coefficient 0≤ 𝑠(𝑖) ≤ 1，which can be considered as a data point(i) if the 

indicator is appropriate within the cluster to which it belongs, 𝑠(𝑖) close to 1 means that the 

data are properly clustered, and when 𝑠(𝑖)= 0, it denotes that the number of clusters is 1.  

2.4 Imputation method 
This section introduced the related imputation methods, including simple, multiple, kNN 

family, and computational intelligence imputation.  

2.4.1 Simple imputation 

The simple imputation is common imputation methods [4, 16]; these include zero 

imputation, average imputation, and class average imputation. The Zero Imputation (ZI) is the 

simplest imputation function that fills the missing values with zero. Average Imputation (AI) 

[16] replaces a missing value with the averages of the corresponding attribute on the entire 

dataset. The class average imputation (CAI) or concept mean imputation replaces the missing 

value with the average of the attribute over all instances within the same class label. 

2.4.2 Multiple imputation 

Multiple imputation methods have been applied in medical studies [20-21], including 

multivariate imputation by chained equation (MICE) and expectation-maximization imputation. 

Zhang [20] introduced a multivariate imputation by chained equation (MICE) by using the R 

package in medical research. Ondeck et al. [21] used multiple imputation in arthroplasty 

research and presented the results of comparisons between the demographic characteristics of 



 

patients with and without missing preoperative albumin and hematocrit values. 

2.4.3 kNN family imputation 

Recently, the k-Nearest Neighbor Imputation (kNNI) has become widely applied in 

medical imputation [22]. In kNNI, a dataset is divided into two sub-datasets: one is the dataset 

that contains incomplete data with missing values, and the other has complete data without any 

missing values. The missing values of the incomplete data are replaced by the average of the 

corresponding attribute of its kNN, and the kNN average is computed with the complete data. 

However, this method tends to cover noise and outliers to be part of the predictive value; it may 

affect the accuracy of the imputation. In kNNI family, Troyanskaya et al. [23] proposed a 

weighted kNN imputation (WkNNI); Keerin et al. [24] proposed a cluster-directed framework 

with neighbor-based imputation; and Lee and Styczynski [25] proposed a new no-skip kNN to 

impute MNAR values. Additionally, Cheng et al. [26] proposed the Purity k-Nearest Neighbors 

Imputation (PkNNI) is an extension of kNNI, which is based on purity training and purity 

imputation. Furthermore, Cheng et al. [27] proposed a distance nearest neighbors Imputation 

(DNNI) was also expanded by kNNI.  

2.4.4 Computational intelligence imputation 

There are many Computational intelligence imputations [28], such as neural networks, 

random forests, and fuzzy c-means (FCM), etc. Awan et al. [29] proposed a class-specific 

distribution by adapting the popular conditional generative adversarial networks (CGAN) to 

impute the missing data. We briefly introduce FCM imputations because this study is based on 

clustering imputation techniques. Hathaway and Bezdek [30] proposed four FCM imputation 

techniques, and they pointed out that whole data strategy and partial distance strategy are faster 

to end, but the optimal completion strategy (OCS) and nearest prototype strategy (NPS) were 

outperformed over the first two methods based on accuracy and misclassification errors. In 

addition, Al Shami et al.[31] applied FCM-based OCS and NPS to compare four statistical 

imputation methods in their work for accurately substitute missing scores when producing the 

intelligent synthetic composite indicators. Therefore, we briefly introduced FCM-based OCS 

and NPS methods as follows. (1) In OCS approach, the missing values are viewed as additional 

attributes to be optimized and then impute missing values at each iteration till it reaches the best 

estimates, (2) NPS is a OCS modification, which computes the partial distances, and missing 

values are estimated by their nearest prototype counterparts during each iteration. In the hybrid 

clustering- based imputation method, Dinh et al. [32] proposed a framework of clustering mixed 

numerical and categorical data with missing values, it used the decision-tree-based method to 

find the set of correlated data instance and used the mean and kernel-based methods to obtain 



 

cluster centers at numerical and categorical attributes, and they applied the dissimilarity 

measure to calculate the distances between instance and cluster centers. 

3. Proposed imputation method 

    Many previous studies directly deleted data with missing values, which may remove the 

key dataset information and cause research bias. Recently, many studies have applied statistical 

methods, such as hot-deck imputation [33] and cold deck imputation [34], to estimate the 

missing values. So far, there have been many studies that directly removed outliers from a 

collected dataset, but the outliers usually had their practical meanings in the real world, such as 

traffic and popular holiday sightseeing sites. Jerez et al. [35] reported that artificial intelligence 

imputation is better than traditional statistical imputation; therefore, this study proposes an 

artificial intelligence imputation method to estimate missing values. i.e., the proposed method 

is based on conditional attributes by k-means to cluster the dataset. Then, we applied PKNNI 

and DNNI imputation to estimate the missing values. This study used PkNNI and DNNI 

imputations because PkNNI can help calculate the purity of the same class, and DNNI can 

calculate the weight distance to find the nearest-neighbor group. Furthermore, this study 

employed elbow and average silhouette methods to determine the best clustering number. 

3.1 PkNNI and DNNI imputations 
The PkNNI and DNNI imputations are the main techniques in the proposed method. Hence, 

the following introduces the computational steps of PkNNI and DNNI imputations and 

equations to explain the mathematics and meaning. 

(A) The PkNNI Imputation [26]: The PKNNI can be divided into two parts, one is purity 

training, and the other is purity imputation. 

(1) Purity training is to compute the purity of each complete instance to obtain the purity of 

the i-th instance, and the purity training 𝑃𝑡( 𝑖 ) is defined as: 𝑃𝑡( 𝑖 ) = ∑ 𝑉(𝐶(𝑖), 𝑁𝑠)𝑘1𝑠=0                                  (9) 

where the C(i) is the i-th complete instance from datasets X, 𝑘1 is the number of the 

nearest neighbors for purity calculations. N_s denotes the s-th nearest neighbor instance, 

and the function V( ) returns the class label between instance C(i) and N_s to identify 

whether they are the same or not. The function vote() is expressed as: 𝑉(𝐶(𝑖), 𝐶(𝑗)) {   1 , 𝑖𝑓 𝐿(𝑖) = 𝐿(𝑗) −1 , 𝑖𝑓 𝐿(𝑖) ≠ 𝐿(𝑗)                        (10) 

where the L(𝑖) denotes the i-th class label from datasets 𝑋, to deduce whether the instance 𝐶(𝑖) is pure or not by comparing the class label 𝐿(𝑖) and 𝐿(𝑗). 



 

(2) Purity imputation is based on the complete instances and purity values to predict the 

missing values, and the imputation equation 𝑀(𝑖, 𝑗) is defined as follows: 𝑀(𝑖, 𝑗) =  ∑ 𝑅(𝑆,𝑗)𝑘2𝑆=1𝑘2                                    (11) 

where 𝑀(𝑖, 𝑗) represents the i-th instance and its j-th attribute, which is the missing value. 𝑘2 is the number of nearest neighbors, and 𝑅(𝑆, 𝑗) represents the s-th nearest instance 

and its j-th attribute, which is a collection that contains all positive purity instance 

information from the complete instance. 

(B) DNNI imputation [27]: The computational steps of DNNI are introduced as follows.  

(1) Calculate the weight set of the distance between each incomplete instance (using no 

missing values) and all complete instances; the weight set is defined as Equation (12): 𝑊 = [𝑤1, 𝑤2, … , 𝑤𝑚] = [ |𝑋|2 ∑ ||𝑦1−𝑥1𝑥𝜖𝑋 || 2(𝑝−1) , |𝑋|2 ∑ ||𝑦2−𝑥2𝑥𝜖𝑋 || 2(𝑝−1) , … , |𝑋|2 ∑ ||𝑦𝑚−𝑥𝑚𝑥𝜖𝑋 || 2(𝑝−1)]           (12) 

where wm is the weight of m-th incomplete data, and |X| represents the cardinality of the 

complete data points for training. Additionally, y1 is the first instance of incomplete data, 

x1 is the first instance of complete data, and p is the weighted distance parameters.  

(2) Apply the W weight set to compute the weighted distance 𝐷𝑖𝑗  between x and y. The 

calculated equation is defined as follows: 𝐷𝑖𝑗 = [𝑑𝑖1, 𝑑𝑖2, … 𝑑𝑖𝑛] = [(w𝑖(𝑦𝑖 − 𝑥1)2), (w𝑖(𝑦𝑖 − 𝑥2)2), … ,(w𝑖(𝑦𝑖 − 𝑥𝑛)2)]  (13) 

where dij is the weighted distance between yi and xi, wi is the weight of yi incomplete data, 

yi is the ith incomplete data, and xi is the i-th complete data.  

(3) Imputation: The set of weighted distance Dij has an adapted threshold to determine the set 

of nearest neighbors. The distance threshold is utilized to adjust the optimal nearest 

neighborhood for estimating missing values; hence the proposed method does not set the 

k value of the nearest neighborhood. That is, dij is less than the threshold, and then xi will 

be added to the set of nearest neighbors. The imputation method is based on the adapted 

threshold to obtain the reference points, then apply central tendencies to estimate missing 

values from the set of nearest neighbors. The central tendencies have average, median, and 

geometric mean. 

3.2 Proposed computational procedure 

    To easily understand the computational procedure from data collection to evaluation, we 



 

used Figure 1 to show a visual flow. The computational procedure includes the important 

clustering data and data imputation. The five steps are introduced in detail as follows. 

 

Figure 1. Computational procedure of this study 

 



 

Step 1. Data collection 

    This step collected eight datasets to verify whether the proposed method was better than 

the listing imputation methods. The eight datasets were seven medical datasets from the UCI 

dataset repository and one stroke dataset collected from The International Stroke Trial database 

[36], which is a real-world dataset. The stroke dataset had missing values, but the seven other 

UCI datasets had no missing values. Therefore, this study uses different missing degrees to 

simulate missing values and verify the proposed imputation. 

Step 2. Data preprocessing 

Before the imputation step, the class attribute was converted from numeric to a character 

(symbol), and we merged multi-column class attributes into the one-column class attribute for 

the subsequent experiments. Next, on the basis of the different ratios of missing values, we 

generated missing values; that is, we randomly removed some data values from the original 

datasets on the basis of different missing degrees. “Missing degree” means the percentage of 

missing values in the datasets. Missing values were simulated in all conditional variables except 

the class label. In MAR and MCAR missing values types, the missing degree is defined as 

follows: 

𝐌𝐢𝐬𝐬𝐢𝐧𝐠 𝐝𝐞𝐠𝐫𝐞𝐞(𝐌𝐃) =  𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒎𝒊𝒔𝒔𝒊𝒏𝒈 𝒗𝒂𝒍𝒖𝒆𝒔𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 (𝒊𝒏𝒔𝒕𝒂𝒏𝒄𝒆𝒔 × 𝒂𝒕𝒕𝒓𝒊𝒃𝒖𝒕𝒆𝒔)               (14) 

This study chooses 5%, 10%, 15%, and 20% MDs in MAR and MCAR types to verify the 

performance of the proposed imputation method and compare it with that of listed imputation 

methods. The 20% MD in this study has been a very large missing ratio; we used the climate 

model dataset with 18 attributes and 540 instances as an example, as shown in Table 3. From 

equation (12), we set 20% as MD, and then there are 1944 missing values (0.2 = 1944/(18 ×540) . However, we used the MD of previous studies to calculate this case; the MD was 

1944/540=360%. This study used a larger MD (20%) to simulate the experiment in MAR and 

MCAR types, the main difference that this study had considered the number of attributes. After 

the simulation of different MDs, each different MD dataset was partitioned into a complete and 

incomplete sub-dataset. Hence, each dataset had 16 sub-datasets: 5%, 10%, 15%, and 20% 

complete sub-dataset and 5%, 10%, 15%, and 20% incomplete sub-datasets in MAR and 

MCAR types. 

Step 3. Clustering 

    From Step 2, this step employed k-means to cluster the 5%, 10%, 15%, and 20% complete 

sub-dataset in MAR and MCAR types for each dataset. Clustering meant that each datum in the 



 

same cluster might have had some relationship with another. This step used k-means clustering 

to cluster all complete sub-dataset in MAR and MCAR types for each dataset. 

To find the best number of clusters, this step used two more famous and common methods to 

determine the best k. One was the elbow method [18] to find the best k, where the data were 

divided into k clusters, and the SSE within the cluster was the smallest (as Figure 2). The other 

was the average silhouette method [19]; the silhouette coefficient measures the clustering effect 

on the basis of cohesion and dispersion of each data point(i) based on Equation (6). When s(i) 

was close to 1, it meant that the data were properly clustered (Figure 3).  

Step 4. Data Imputation 

   In this step, all incomplete sub-datasets in MAR, MCAR, and MNAR types for each dataset 

were replaced by the proposed imputation method and the listed imputation methods. From 

Step 3, after optimal clustering, the complete sub-datasets were divided into three, five clusters, 

and the optimal number of clusters because this study wanted to confirm whether the best 

performance was the best k clusters; the number of clusters was set as odd numbers (3, 5, etc.). 

Next, this step used the computational steps of PkNNI (Equations (9) - (11)) and DNNI 

(Equations (12) and (13)) in Section 3.1 to estimate all incomplete MAR and MCAR sub-

datasets.  

Step 5. Classification and Evaluation 

    After imputation, the accuracy, AUC, and RMSE were applied to evaluate the performance 

of the proposed imputation. This study used the area under the receiver operating characteristic 

curve (AUC) because the receiver operating characteristic curves (ROC) has the diagnostic 

ability in imbalanced classes, and it can treat between positive detection rates and false alarm 

rates. Besides, the AUC is a measure of discriminative strength between these two rates without 

considering misclassification costs or class prior probabilities [37].   

First, this step used C4.5, MLP, NB, BN, and LibSVM classifiers to evaluate accuracy and AUC. 

The classification results were calculated by using the confusion matrix [38]; the accuracy is 

defined as follows: 

                    Accuracy = 𝑡𝑝+𝑡𝑛𝑡𝑝+𝑓𝑛+𝑓𝑝+𝑡𝑛 × 100                      (15) 

where tp is true positive, fp denotes false positive, fn represents false negative, and tn is true 

negative.  

After imputation, this study used eight datasets to evaluate the accuracy, AUC, and RMSE. We 

used accuracy when data with class balance; if the dataset was imbalanced classes, then this 

study applied AUC to measure their performance.  



 

Second, this study employed RMSE as the evaluation criteria to see whether there was bias in 

each imputation method. RMSE is an evaluation criterion to measure the bias between 

estimated values and real values. The RMSE formula is defined as follows:  

          RMSE =  √1𝑛 ∑ 𝑒𝑖2𝑛𝑖=1                                    (16) 

where 𝑒𝑖, i = 1, 2, . . . , n denotes the bias between estimated values and the real values. 

4. Experiments and results 

    This section presents the experimental environment, datasets, and experimental results. 

4.1 Experimental environment and dataset 

   In this study, the experimental environment was Python (Python 2.7) on AMD RyzenTM  7 

2700X, 3.7 GHz 8-cores 16-threads CPU with a Windows 10 Home operating system to 

implement missing values imputation and comparison. Furthermore, the imputation methods 

and parameters are listed in Table 1. The k-means parameter was set as k=  {2, 3, 5}, and kNNI 

was k=  {3, 5, 7, 9}. In PkNNI, we set 𝑘1 = {3,5,7,9} 𝑎𝑛𝑑 𝑘2 = {3,5,7,9}as the parameters, 

and set threshold = {0.1,0.2, … , 1.9} as DNNI parameters.  

After imputation, this study implemented data classification and evaluated the performance of 

the proposed and listing imputation methods, and the parameter settings of classifiers are shown 

in Table 2. In the experiment, this study selected eight datasets, seven medical datasets from the 

UCI Machine Learning Repository, and one dataset from a real-world stroke dataset. The stroke 

dataset from IST [36] contains data between 1991 and 1996, its pilot phase was between 1991 

and 1993, and it has 100% baseline data and over 99% complete follow-up data. It has 19,436 

instances, 112 feature attributes with acute stroke. After screening and removing the irrelevant 

attributes, the stroke dataset had 39 attributes and 4241 instances for this study. 

Table 1. Imputation method and parameters  

Imputation method Parameter Reference 

AI None Donders, van der Heijden [3] 

[2][[tijnen and Moons [3]CAI None Donders, van der Heijden [3] 

Stijnen and Moons [3]ZI None Donders, van der Heijden [3] 

Stijnen and Moons [3]MI None Rubin [15] 
KNNI t1 K = {3,5,7,9} Batista & Monard [22] 
PKNNI t1 𝐾1 = {3,5,7,9} 𝐾2 = {3,5,7,9} Cheng et al. [26] 
DNNI threshold={0.1,0.2,…,1.9} Cheng & Haung [27] 
kMeans + PkNNI   Proposed 

kMeans + DNNI  Proposed 

best k + PkNNI  Proposed 

best k + DNNI  Proposed 
 Note. “best k” denotes the optimal cluster number based on the elbow method and average silhouette methods. 



 

Table 2. Parameter settings of classifiers 

Classifier Parameters Reference 

C4.5 Confidence Factor:0.25 Quinlan [39]  

MLP Hidden Layers: (attributes + 
classes)/2 

Learning Rate: 0.3 

Momentum Rate:0.2 

Validation Threshold:20 

Mitra and Pal [40] 

Naïve Bayes None John and langley [41] 
Bayes Network None Pearl and Russell [42] 
LibSVM Cost: 1.0 

Gamma: 0 

Kernel Type: radial basis 
function 

Chang and Lin [43] 

 

We employed the eight datasets to verify whether the proposed imputation method was 

better than the listing imputations. The numbers of classes, attributes, imbalanced class, and 

instances of the UCI medical and stroke datasets are listed in Table 3. From Table 3, we see that 

all of the selected datasets are imbalanced classes, except for stroke datasets. Therefore, the 

AUC metric is used in the experiment of seven UCI datasets. 

Table 3 Experimental dataset information. 

Dataset Number of 
classes 

Number of 
attributes 

Imbalanced class 

(ratio of class instances) 
Number of 
instances 

Liver disorders 2 7 Yes (145/200=0.73) 345 

Acute inflammations 4 6 Yes (20:40:31:19, 40/19=2.1)  120 

ILPD 2 10 Yes (416/167=2.49) 583 

Banknote  2 5 Yes (762/610=1.25) 1372 

Blood transfusion 2 5 Yes (570/178=3.20) 748 

Climate model 2 18 Yes (46/494=0.09) 540 

Haberman's survival 2 4 Yes (225/81=2.78) 306 

Stroke 2 39 No (2096/2145=0.977) 4241 

 

4.2 MAR and MCAR experiments 

    This experiment was divided into an internal and an external experiment; the internal 

experiment was to verify the performance of the proposed imputation method in different 

cluster numbers, MDs, and missing values types. After imputation, we employed the C4.5, MLP, 

NB, BN, and LibSVM classifiers to compare the accuracy of the best number of clusters with 

three and five clusters. The different imputation comparison was to compare the proposed 



 

imputation with the listing imputation methods in different cluster numbers, MDs, and missing 

value types. In this experiment, the stroke dataset itself had missing values that belonged to the 

MNAR type, while the seven UCI datasets had no missing values. Therefore, this study used 

5%, 10%, 15%, and 20% MDs to simulate missing values and verify the proposed imputation. 

4.2.1 Internal comparisons 

    This section outlines applying elbow and the average silhouette methods to obtain a 

consistent optimal cluster number and compares PkNNI and DNNI with regard to two (the best 

number of clusters), three, and five clusters in different MDs, and missing value types. After 

implementing elbow and the average silhouette methods, the best number of clusters of the 

collected eight datasets is two clusters. Here, we only show the results of the liver disorders and 

ILPD datasets in MAR and MCAR types, and the five other datasets are listed in Appendix A. 

(1) Liver disorders dataset 
First, we implemented the elbow and average silhouette methods to obtain the best number 

of clusters, shown in Figures 2 and 3. Figures 2 and 3 obtained two clusters as the consistent 

best number of clusters for the liver-disorders dataset. Then, we applied the best number of 

clusters (two clusters), three, and five clusters, combining PkNNI and DNNI to impute the 

missing values in MAR and MCAR types.  

 

Figure 2. Elbow method showing the best k (liver-disorders dataset). 
 

 



 

 

Figure 3. s(i) of different k for the average silhouette method (liver-disorders dataset). 
After imputation, the C4.5, MLP, NB, BN, LibSVM classifiers were employed to compute and 

compare their accuracy. Table 4 shows that the three clusters combined with PkNNI had the 

best average AUC for all MDs in MAR-type missing values. 

Figure 4 shows the no clustering results compared with those with clustering; the three clusters 

combined with PkNNI had the best AUC, and the five clusters combined with PkNNI had the 

worst result in different MD. Table 5 shows that the three clusters combined with PkNNI had 

the best result for all MDs in MCAR. Figure 5 shows the no clustering results compared with 

those with clustering; the three clusters combined with PkNNI had the best AUC in 5% and 

15% MDs, and the no clustering combined with PkNNI had the better AUC in 10% and 20% 

MD. The best number of clusters combined with PkNNI was the worst result in all different 

MDs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Table 4. AUC results of proposed imputation in MAR (liver disorders dataset). 
MD proposed C4.5 MLP NB BN LibSVM Average 

5% 

best k +PkNNI 0.69 0.76 0.66 0.54 0.70 0.67 

best k +DNNI 0.69 0.76 0.65 0.59 0.69 0.68 

3 clusters +PkNNI 0.70 0.75 0.65 0.58 0.70 0.68 

3 clusters +DNNI 0.67 0.71 0.63 0.58 0.66 0.65 

5 clusters +PkNNI 0.69 0.74 0.66 0.55 0.72 0.67 

5 clusters +DNNI 0.68 0.72 0.66 0.55 0.70 0.66 

10% 

best k +PkNNI 0.71 0.77 0.65 0.69 0.72 0.71 

best k +DNNI 0.70 0.75 0.65 0.68 0.69 0.69 

3 clusters +PkNNI 0.72 0.79 0.70 0.64 0.74 0.72 

3 clusters +DNNI 0.72 0.74 0.67 0.67 0.71 0.70 

5 clusters +PkNNI 0.68 0.73 0.64 0.54 0.70 0.66 

5 clusters +DNNI 0.69 0.72 0.64 0.60 0.68 0.67 

15% 

best k +PkNNI 0.71 0.78 0.68 0.71 0.73 0.72 

best k +DNNI 0.71 0.74 0.65 0.72 0.66 0.70 

3 clusters +PkNNI 0.73 0.83 0.70 0.68 0.77 0.74 

3 clusters +DNNI 0.72 0.79 0.68 0.72 0.73 0.73 

5 clusters +PkNNI 0.69 0.75 0.64 0.54 0.72 0.67 

5 clusters +DNNI 0.70 0.73 0.63 0.66 0.69 0.68 

20% 

best k +PkNNI 0.73 0.78 0.69 0.69 0.74 0.73 

best k +DNNI 0.73 0.74 0.66 0.74 0.69 0.71 

3 clusters +PkNNI 0.77 0.80 0.68 0.74 0.76 0.75 

3 clusters +DNNI 0.78 0.76 0.64 0.76 0.69 0.73 

5 clusters +PkNNI 0.68 0.77 0.67 0.63 0.73 0.70 

5 clusters +DNNI 0.72 0.71 0.66 0.69 0.67 0.69 

Note: “best k” denotes the optimal number of clusters where k=2. 
 

 

 
Figure 4 Average AUC of proposed method for different MDs and cluster number in MAR 
(liver disorders). 
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Table 5. AUC results of proposed imputation in MCAR (liver disorders dataset). 
MD proposed C4.5 MLP NB BN LibSVM Average 

5% 

best k +PkNNI 0.65 0.73 0.64 0.53 0.70 0.65 

best k +DNNI 0.64 0.71 0.64 0.55 0.69 0.65 

3 clusters +PkNNI 0.65 0.74 0.65 0.55 0.71 0.66 

3 clusters +DNNI 0.66 0.73 0.64 0.57 0.70 0.66 

5 clusters +PkNNI 0.65 0.73 0.64 0.53 0.64 0.65 

5 clusters +DNNI 0.65 0.71 0.64 0.53 0.68 0.64 

10% 

best k +PkNNI 0.68 0.74 0.66 0.57 0.66 0.66 

best k +DNNI 0.68 0.72 0.66 0.57 0.64 0.65 

3 clusters +PkNNI 0.68 0.77 0.65 0.61 0.72 0.69 

3 clusters +DNNI 0.66 0.72 0.64 0.53 0.65 0.64 

5 clusters +PkNNI 0.68 0.74 0.66 0.56 0.66 0.68 

5 clusters +DNNI 0.65 0.72 0.66 0.57 0.64 0.65 

15% 

best k +PkNNI 0.68 0.71 0.62 0.65 0.69 0.67 

best k +DNNI 0.73 0.69 0.62 0.66 0.69 0.68 

3 clusters +PkNNI 0.73 0.77 0.65 0.68 0.73 0.71 

3 clusters +DNNI 0.69 0.71 0.62 0.69 0.67 0.68 

5 clusters +PkNNI 0.69 0.76 0.65 0.68 0.7 0.69 

5 clusters +DNNI 0.68 0.69 0.62 0.66 0.65 0.66 

20% 

best k +PkNNI 0.72 0.76 0.61 0.66 0.71 0.69 

best k +DNNI 0.71 0.74 0.60 0.73 0.63 0.68 

3 clusters +PkNNI 0.72 0.77 0.66 0.7 0.71 0.71 

3 clusters +DNNI 0.69 0.69 0.62 0.71 0.63 0.67 

5 clusters +PkNNI 0.71 0.79 0.7 0.66 0.72 0.71 

5 clusters +DNNI 0.72 0.74 0.68 0.73 0.70 0.71 

Note: “best k” denotes the optimal number of clusters where k=2. 
 

 

Figure 5. Average AUC of proposed method for different MDs and cluster numbers in MCAR 
(liver-disorders data) 
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(2) ILPD dataset 
    The best number of clusters of the elbow and average silhouette methods were two clusters 

for the ILPD dataset. Next, we used two (the best number of clusters), three, and five clusters 

combined with PkNNI and DNNI to impute the missing values in MAR and MCAR types. After 

imputation, the C4.5, MLP, NB, BN, and LibSVM classifiers were applied to calculate and 

compare their accuracy. Table 6 shows that the three clusters combined with DNNI had the best 

AUC for the four MDs in MAR type. Figure 6 indicates that the three clusters combined with 

DNNI had the best average AUC in 5%, 10%, and 15% MDs.  

Table 6. AUC results of proposed imputation for different cluster mumbers in MAR (ILPD). 
MD proposed C4.5 MLP NB BN LibSVM Average 

5% 

best k +PkNNI 0.68 0.76 0.73 0.73 0.50 0.68 

best k +DNNI 0.67 0.73 0.75 0.78 0.50 0.69 

3 clusters +PkNNI 0.67 0.74 0.75 0.76 0.50 0.68 

3 clusters +DNNI 0.68 0.73 0.75 0.78 0.50 0.69 

5 clusters +PkNNI 0.61 0.74 0.73 0.73 0.50 0.66 

5 clusters +DNNI 0.67 0.75 0.75 0.76 0.50 0.69 

10% 

best k +PkNNI 0.65 0.76 0.72 0.81 0.61 0.71 

best k +DNNI 0.64 0.76 0.72 0.82 0.60 0.71 

3 clusters +PkNNI 0.71 0.79 0.75 0.77 0.63 0.73 

3 clusters +DNNI 0.73 0.81 0.77 0.82 0.61 0.75 

5 clusters +PkNNI 0.65 0.76 0.73 0.75 0.52 0.68 

5 clusters +DNNI 0.72 0.77 0.77 0.81 0.55 0.72 

15% 

best k +PkNNI 0.73 0.81 0.78 0.77 0.59 0.74 

best k +DNNI 0.75 0.82 0.81 0.83 0.60 0.76 

3 clusters +PkNNI 0.73 0.80 0.75 0.82 0.60 0.74 

3 clusters +DNNI 0.77 0.82 0.78 0.84 0.64 0.77 

5 clusters +PkNNI 0.72 0.83 0.75 0.77 0.69 0.75 

5 clusters +DNNI 0.75 0.83 0.78 0.83 0.63 0.76 

20% 

best k +PkNNI 0.76 0.79 0.81 0.81 0.64 0.76 

best k +DNNI 0.77 0.79 0.83 0.87 0.64 0.78 

3 clusters +PkNNI 0.76 0.80 0.78 0.79 0.63 0.75 

3 clusters +DNNI 0.77 0.79 0.80 0.86 0.57 0.76 

5 clusters +PkNNI 0.74 0.79 0.76 0.79 0.57 0.73 

5 clusters +DNNI 0.77 0.81 0.81 0.86 0.65 0.78 

Note: “best k” denotes the optimal number of clusters where k=2. 
 

In MCAR, Table 7 shows that the three clusters combined with PkNNI had a better result for 

the l0%, 15%, and 20% MDs in MCAR. Figure 7 shows that the three clusters combined with 

PkNNI had the best average AUC in 10% and 15% MDs.  

 

 



 

 

Figure 6. Average AUC of proposed method for different MDs and cluster numbers in MAR 
(ILPD data). 
 

(3) All seven UCI datasets 

We now summarize the results of all datasets in the following. 

(a) In MAR, each dataset has 24 average AUC (4 different MDs × 3 different clusters × 2 

imputation methods). The comparison is based on the same MD to count the number of 

wins, but the average AUC of banknote and Acute dataset could not distinguish their 

differences, then we only made 30 comparison results. The best k clusters won 11 times 

(included eight even), the three clusters won 12 times (contained six even), and the five 

clusters succeeded four times (including three even) in four different MDs of the five 

datasets, as shown in Table A of the appendix. Then, the proposed “three clusters + PkNNI” 

had better AUC in the seven UCI datasets. 

(b) In MCAR, the comparison was made 42 results (3 different clusters × 2 imputation 
methods × 7 datasets); the best k clusters won 17 times (included 10 even), the three 
clusters won 20 times (contained 12 even), and the five clusters succeeded 13 times 
(including 12 even) in four different MD of seven datasets, as shown in Table B of the 
appendix. Then, the proposed “three clusters + PkNNI” had better accuracy in the seven 
UCI datasets. 
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Table 7. AUC results of proposed imputation with the best k, three, and five clusters in 
MCAR (ILPD). 

MD Proposed C4.5 MLP NB BN LibSVM Average 

5% 

best k +PkNNI 0.69 0.75 0.74 0.75 0.50 0.69 

best k +DNNI 0.68 0.75 0.74 0.76 0.50 0.69 

3 clusters +PkNNI 0.66 0.72 0.74 0.75 0.50 0.67 

3 clusters +DNNI 0.66 0.72 0.76 0.75 0.50 0.68 

5 clusters +PkNNI 0.67 0.75 0.75 0.75 0.53 0.69 

5 clusters +DNNI 0.69 0.76 0.77 0.77 0.51 0.70 

10% 

best k +PkNNI 0.65 0.76 0.76 0.78 0.57 0.70 

best k +DNNI 0.64 0.74 0.77 0.80 0.52 0.69 

3 clusters +PkNNI 0.67 0.76 0.76 0.78 0.56 0.71 

3 clusters +DNNI 0.70 0.74 0.78 0.80 0.52 0.71 

5 clusters +PkNNI 0.66 0.73 0.74 0.76 0.51 0.68 

5 clusters +DNNI 0.68 0.73 0.77 0.79 0.51 0.70 

15% 

best k +PkNNI 0.70 0.77 0.78 0.83 0.52 0.72 

best k +DNNI 0.73 0.76 0.78 0.84 0.54 0.73 

3 clusters +PkNNI 0.70 0.78 0.78 0.83 0.61 0.74 

3 clusters +DNNI 0.74 0.71 0.75 0.87 0.51 0.72 

5 clusters +PkNNI 0.69 0.76 0.78 0.78 0.51 0.70 

5 clusters +DNNI 0.73 0.76 0.81 0.83 0.54 0.73 

20% 

best k +PkNNI 0.72 0.81 0.77 0.88 0.69 0.77 

best k +DNNI 0.71 0.76 0.79 0.88 0.67 0.76 

3 clusters +PkNNI 0.73 0.79 0.77 0.88 0.59 0.75 

3 clusters +DNNI 0.72 0.73 0.76 0.84 0.51 0.71 

5 clusters +PkNNI 0.74 0.8 0.77 0.85 0.66 0.76 

5 clusters +DNNI 0.71 0.76 0.74 0.83 0.58 0.72 

Note: “best k” denotes the optimal number of clusters where k=2. 
 

 



 

 
Figure 7. Average AUC of proposed method for different MDs and cluster numbers in MCAR 
(ILPD data). 
 

4.2.2 Different imputation comparisons 

After the internal experiment, most datasets show that no clustering had the worst result. 

Hence, this section outlines the external experiments to compare the proposed imputation with 

the listing imputation methods in the different cluster numbers, MDs, and missing types.  

(1) AUC metric: 

The results are shown in Tables 8 and 9 for the open seven datasets in MAR and MCAR. 

From the experimental results, we summarize the results of the seven open UCI datasets in the 

following. 

(a) In MAR, the proposed imputation is better than the listing imputation methods for the seven 

UCI datasets in all different MDs, as shown in Table 8. In addition, the proposed combined 

clustering with PkNNI is slightly better than the combined clustering with DNNI. 

(b) In MCAR, similarly, the proposed method has a better average AUC than the listing 

imputation methods for the seven UCI datasets in all different MDs, as shown in Table 9. 

In addition, the proposed combined clustering with PkNNI is better than the combined 

clustering with DNNI.  
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Table 8. Average AUC of proposed imputation and listing methods in MAR. 

Dataset MD PkNNI DNNI NPS OCS kNN MI MICE 

Acute  

inflammations 

 

5% 1.00 1.00 0.99 1.00 0.99 0.98 0.98 

10% 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

15% 1.00 1.00 0.96 0.98 0.98 0.97 0.97 

20% 1.00 1.00 0.98 0.97 0.96 0.96 0.98 

Banknote 

5% 0.99 0.99 0.96 0.96 0.97 0.97 0.97 

10% 0.99 0.98 0.95 0.95 0.95 0.95 0.94 

15% 0.98 0.98 0.93 0.93 0.94 0.93 0.93 

20% 0.98 0.99 0.92 0.92 0.92 0.92 0.92 

Blood  

transfusion 

5% 0.71 0.71 0.68 0.68 0.67 0.68 0.68 

10% 0.72 0.72 0.67 0.67 0.67 0.67 0.67 

15% 0.76 0.76 0.67 0.67 0.67 0.67 0.67 

20% 0.78 0.78 0.67 0.67 0.66 0.67 0.67 

Climate  

model 

5% 0.82 0.81 0.79 0.79 0.78 0.79 0.79 

10% 0.85 0.84 0.78 0.78 0.77 0.78 0.78 

15% 0.81 0.82 0.78 0.78 0.78 0.78 0.77 

20% 0.82 0.86 0.77 0.77 0.77 0.77 0.77 

Haberman  

survival 

5% 0.63 0.61 0.61 0.60 0.60 0.60 0.60 

10% 0.64 0.61 0.60 0.60 0.60 0.60 0.60 

15% 0.63 0.65 0.60 0.62 0.60 0.60 0.60 

20% 0.66 0.67 0.62 0.62 0.61 0.61 0.61 

ILPD 

5% 0.68 0.69 0.54 0.54 0.54 0.54 0.54 

10% 0.73 0.75 0.54 0.54 0.54 0.54 0.54 

15% 0.75 0.77 0.54 0.54 0.54 0.54 0.54 

20% 0.76 0.78 0.54 0.54 0.54 0.54 0.54 

Liver-disorders 

5% 0.68 0.68 0.62 0.62 0.61 0.62 0.61 

10% 0.72 0.70 0.59 0.60 0.59 0.58 0.59 

15% 0.74 0.73 0.60 0.60 0.58 0.59 0.59 

20% 0.75 0.73 0.59 0.59 0.60 0.60 0.60 

Note: where the best average AUC is listed for each MD. 

 

 

 

 

 

 

 

 

 



 

Table 9. Average AUC of proposed imputation and listing method in MCAR 

Dataset MD PkNNI DNNI NPS OCS kNN MI MICE 

Acute  

inflammations 

 

5% 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

10% 1.00 1.00 1.00 1.00 0.99 0.99 0.99 

15% 1.00 1.00 1.00 1.00 0.99 0.99 0.99 

20% 1.00 1.00 0.99 0.99 0.97 0.98 0.98 

Banknote 

5% 0.98 0.98 0.97 0.97 0.98 0.97 0.97 

10% 0.98 0.98 0.96 0.96 0.96 0.96 0.96 

15% 0.98 0.98 0.95 0.95 0.95 0.94 0.94 

20% 0.98 0.98 0.94 0.94 0.94 0.93 0.93 

Blood  

transfusion 

5% 0.71 0.71 0.67 0.67 0.67 0.68 0.68 

10% 0.72 0.72 0.67 0.67 0.67 0.67 0.67 

15% 0.73 0.74 0.66 0.66 0.67 0.67 0.67 

20% 0.77 0.77 0.66 0.65 0.66 0.66 0.66 

Climate  

model 

5% 0.81 0.80 0.79 0.79 0.78 0.78 0.78 

10% 0.83 0.80 0.78 0.77 0.76 0.77 0.77 

15% 0.84 0.79 0.76 0.76 0.76 0.76 0.76 

20% 0.82 0.77 0.75 0.75 0.72 0.75 0.74 

Haberman  

survival 

5% 0.63 0.62 0.61 0.61 0.61 0.61 0.61 

10% 0.62 0.61 0.61 0.61 0.60 0.60 0.60 

15% 0.64 0.62 0.61 0.61 0.61 0.60 0.60 

20% 0.63 0.62 0.61 0.60 0.60 0.60 0.60 

ILPD 

5% 0.69 0.70 0.54 0.54 0.54 0.54 0.54 

10% 0.71 0.71 0.54 0.54 0.53 0.54 0.54 

15% 0.74 0.73 0.54 0.54 0.53 0.53 0.53 

20% 0.77 0.76 0.54 0.54 0.54 0.54 0.53 

Liver disorders 

5% 0.66 0.66 0.60 0.60 0.59 0.60 0.60 

10% 0.69 0.65 0.60 0.60 0.59 0.60 0.60 

15% 0.71 0.68 0.57 0.57 0.56 0.56 0.56 

20% 0.71 0.71 0.58 0.58 0.58 0.57 0.57 

Note: where the best average AUC is listed for each MD. 

 

(2) RMSE metric 

    To verify the performance of the proposed imputation, we used RMSE as the other 

evaluation criterion. From the MAR and MCAR experiments, we only experimented on 

clustering combined with the different imputation methods in RMSE evaluation. In MAR and 

MCAR, we repeated 10 times to randomly remove some data values on the basis of different 



 

MDs in each UCI dataset. Then, we could calculate the error between actual values and 

imputation values. In each dataset, we took the minimal average RMSE from 12 average RMSE 

(4 different MDs ×  3 different cluster numbers) for each imputation method in MAR and 

MCAR, where the average RMSE was the average of 10 imputed datasets for each MD. The 

minimal RMSE of seven imputation methods in MAR and MCAR is shown in Table 10. In 

MAR, we could see that the combined clustering with PkNNI imputation had the best 

performance (minimal average RMSE) in seven imputation methods, as shown in Table 10 and 

Figure 8. In MCAR, the combined clustering with DNNI imputation had the minimal average 

RMSE in the seven imputation methods, as shown in Table 10 and Figure 9.  

 

Table 10. Comparison of the minimal average RMSE in MAR and MCAR 

Dataset DNNI PkNNI NPS OCS MI MICE kNN 

MAR 

Acute Inflammations 0.0889  0.0883  0.7143  0.69475 0.2804  0.3042  0.1009  

Banknote 0.4178  0.4070  3.2272  3.0593  0.4186  0.4179  0.5441  

Blood 1.0392  1.0392  5.5560  5.5463 1.9776  2.2471  1.1858  

Climate model 0.2372  0.2372  0.2886  0.2885  1.6205  1.6328  1.6983  

Haberman survival 3.3265  3.3265  13.6485  13.6005  4.7795  4.7767  4.3562  

ILPD 88.7349  88.5346  177.7185  171.8210  89.7255  93.2407  290.6026  

Liver disorders 0.2816  0.2815  19.4455  18.6196  0.2864  0.2941  0.3296  

MCAR 

Acute inflammations 0.2541  0.2441  0.8229  0.7607  0.2875  0.2958  0.3311  

Banknote 3.0017  3.0017  3.2178  3.0992  10.2733  10.2629  12.6589  

Blood transfusion 7.5191  7.5292  732.0909  738.0240  7.9024  7.8543  10.8998  

Climate model 0.2369  0.2373  0.2919  0.2893  109.6393  109.3239  120.3876  

Haberman survival 7.3265  7.3265  9.9404  9.9862  106.5238  116.7198  131.5385  

ILPD 10.9346  10.9846  138.8616  135.2440  11.0020  11.0953  12.8745  

liver-disorders 10.7165  10.7166  17.2383  17.2417  10.9865  10.8172  13.1283  

 

 



 

 

Figure 8. Minimal RMSE of seven imputation methods in MAR. 
Note: ILPD* denotes that the RMSE of ILPD dataset is processed by (RMSE/10) to plot this figure 
because it has a large RMSE.   

 

 
Figure 9. Minimal RMSE of seven imputation methods in MCAR. 

Note: blood*, Climate*, Haberman*, and ILPD* denote that the RMSE of the four datasets is processed by 

(RMSE/10) to plot the figure because they have a large RMSE. 

 

4.3 MNAR experiment 
The MNAR refers to the patients who are not willing to provide the relevant data to the 

physician due to her privacy, and the missing values are subject to the unobserved patient 

attributes. The stroke dataset itself had missing values that belonged to the MNAR type. This 
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study directly clustered the complete dataset and imputed the incomplete dataset, and then 

classified the imputed dataset by five classifiers to verify the proposed imputation. From Table 

3, the stroke dataset is balanced classes, and this study uses classification accuracy and AUC to 

measure comparison results.  

In an internal comparison, the results of the stroke dataset were shown in Table 11, 

indicating that the three clusters combined with DNNI had the best average accuracy. In no 

clustering and different cluster numbers, Figure 10 shows that DNNI was better than PkNNI in 

the average accuracy of five classifiers, and clustering imputation was better than no clustering 

imputation. In an external comparison, Table 12 shows that the proposed DNNI imputation had 

the best average accuracy and AUC among the seven imputation methods 

 

Table 11. Proposed method in MNAR for stroke dataset (best k and three, and five clusters). 

Method C4.5 MLP NB BN LibSVM Average 

best k+PkNNI 91.33 80.60 65.24 65.96 75.40 75.71 

best k+DNNI 94.05 83.02 65.16 78.48 74.25 78.99 

3 clusters+PkNNI 91.35 80.98 65.17 65.05 75.01 75.51 

3 clusters+DNNI 94.00 83.23 65.25 78.17 74.55 79.04 

5 clusters+PkNNI 91.67 81.05 65.28 65.36 75.54 75.78 

5 clusters+DNNI 94.29 81.97 65.64 78.65 74.55 79.02 

 

 

 

Figure 10. Average of the accuracy of the proposed method for different number of clusters in 

MNAR (stroke dataset) 
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Table 12. Average accuracy of proposed and the listing methods in MNAR (stroke dataset) 

 PkNNI DNNI NPS OCS MICE MI kNN 

Best average 

accuracy 
75.78 79.04 70.58 70.66 70.50 70.53 70.64 

Best average 

AUC 
0.66 0.69 0.64 0.64 0.64 0.63 0.64 

 

5 Discussions and findings 

After the MAR, MCAR, and MNAR experiments, we provide some discussions and 

findings as follows.  

(A) Cluster numbers effect 

After determining the number of clusters by the elbow and the average silhouette methods, 

the best number of clusters in the collected eight datasets is two clusters. However, all best AUC 

and RMSE do not belong to two clusters from internal and different imputation comparisons.  

Figures 4-7 and 10 show that the combined clustering with PkNNI and DDNI can obtain better 

AUC than no clustering for the collected datasets. Overall, the best combination of the proposed 

imputation is the combined three clusters with PkNNI because the different datasets have 

different numbers of classes, data properties, and disadvantages of k-means. The disadvantages 

of k-means clustering are (1) selecting appropriate k, (2) dependent on initial values, (3) outliers 

impacting bias, and (4) assuming all variables have the same variance. 

Similarly, FCM-based imputation also has some disadvantages. For example, OCS [30-31] 

used initial values and available feature values to calculate FCM cluster prototypes, and the 

missing values were estimated based on these biased cluster prototypes. Hence, the computation 

of the FCM cluster prototype and the imputation of the missing value would influence each 

other. In addition, Li et al. [44] developed a fuzzy clustering algorithm based on the nearest 

neighbor interval (FCM-NNI) to enhance the performance. Therefore, we suggest that FCM-

based imputation can add some methods to enhance its performance.   

(B) RMSE metric 

The selected seven UCI datasets had no missing values, and then this study simulated four 

different MDs to handle missing values. Therefore, we can use RMSE to evaluate the 

performance of different imputation methods because the seven UCI datasets have actual values 

to calculate the RMSE. We experimented on the combined clustering with different imputation 

methods in RMSE evaluation, as shown in Table 10. For MAR, we can see that the combined 

clustering with PkNNI imputation had the minimal average RMSE in seven imputation methods. 



 

In MCAR, the combined clustering with DNNI imputation had the minimal average RMSE in 

the seven imputation methods. Results showed that the proposed imputation was better than the 

listed imputation methods because clustering would aggregate similar data points in one cluster.  

From Table 10 and Figures 8-9, we see that the imputation method has large RMSE in 

MAR of ILPD dataset because the attribute values of age ranged from 4 to 90 and its average 

was 45, and the attribute values of Alkphos Alkaline Phosphatase range from 62 to 2110 and its 

average=208. Similarly, the NPS and OCS imputations have large RMSE in MCAR of ILPD 

and Blood transfusion dataset because the ILPD attributes range as above mentioned and the 

attribute range of the Blood transfusion dataset are listed as follows: recency (months since the 

last donation) range is [0, 74] and average=9.5; frequency (total number of donation) range is 

[1, 50] and average=5.515; monetary (total blood donated in c.c.) range is [250, 12500] and 

average=1378.676; time (months since the first donation) range is [2, 98] and average=34.282. 

(C) MNAR imputation  

    MNAR missing values is a non-ignorable non-response, and its data is neither MAR nor 

MCAR. That is, the missing values of the variable have their reason based on privacy [45]. The 

stroke dataset is collected by questionnaire of stroke patients, which had missing values that 

belonged to MNAR type. In MNAR, we could not calculate their RMSE because the missing 

values did not have actual values, and this study only used accuracy and AUC to evaluate their 

performance. After the experiments, the proposed imputation (three clusters + DNNI) had the 

best average accuracy and AUC from the seven imputation methods in the stroke dataset. The 

stroke dataset has many category attributes, but the proposed imputation also has the best 

performance, indicating that the proposed imputation method is viable. In this experiment, the 

best performance is three clusters combined with DNNI because the best fitting clusters 

combining with the imputation methods is an important factor.  

(D) Multiple-combined imputation methods 

In recent years, there are many hybrid imputation methods. Zhang et al. [46] proposed a 

flexibly combines three techniques: self-organizing feature map clustering, the fruit fly 

optimization algorithm, and the least squares support vector machine to impute spatiotemporal 

missing values. Dubey and Rasool [47] presented the combined k-means clustering with the 

weighted KNN to impute the missed value, and their results outperformed mean substitution 

and FCM imputation. This study proposed the combined k-means clustering with PkNNI and 

DNNI imputation, and the experimental results showed that the proposed imputation was better 

than the listing imputation methods in the eight datasets. We find that the combined local 

similarity structure of the dataset (using k-means, or self-organizing map, or FCM clustering) 



 

with an imputation method can enhance the performance. Therefore, we suggest that FCM, MI, 

MICE, and kNN imputation methods can be added some advanced techniques to strengthen 

their imputation ability. 

6. Conclusion  

    This study has proposed clustering-based purity and distance imputation methods to 

improve performance. After MAR, MCAR, and MNAR experiments, the proposed imputation 

was found to be better than the other imputation methods in seven UCI datasets and a stroke 

dataset, except for the acute inflammations dataset. In the RMSE of MAR and MCAR 

experiments, the combined clustering with PkNNI (DNNI) imputation had the minimal average 

RMSE in the seven imputation methods. Results showed that the proposed imputation was 

better than the listed imputation methods, mainly because clustering would aggregate similar 

data points in one cluster. To obtain the optimal number of clusters, we applied the elbow 

method and average silhouette method to obtain a consistent optimal number of clusters, and 

the best cluster number was two in the eight datasets. The number of classes of the seven 

datasets was two classes except for the acute inflammations dataset with four classes, as shown 

in Table 3, and the acute inflammations dataset almost had category attributes. From the results 

and findings, we summarized the contribution and applicability of the proposed method as 

follows.  

(1) The proposed imputation is a hybrid method, and the attributes data do not obey multivariate 

normal distribution. i.e., the proposed approach is combined k-mean with the two kNN related 

approaches. The main difference between the two approaches (PkNNI and DNNI) and the 

proposed method is to find the optimal number of clusters and adapt the two kNN related 

approaches to obtain the optimal results for the eight medical datasets. Because PkNNI with 

two parameters needs to train for optimal results, DNNI with different averages and thresholds 

must adapt to obtain the optimal results. 

(2) Medical data have the higher MDs; hence the research works need to check a higher 

percentage of complete data (e.g., normally more than 50% of the total cases) and needed to 

impute less than three values per patient [6]. However, this study simulated 360% MD 

(MD=20% in this paper) to handle missing values. Especially in the practical stroke dataset, 

there were 69 attributes with 4242 instances and 6578 missing values; hence traditional MD is 

155% (MD=2.25% in this paper). In addition, the largest MD of the single attribute was 95% 

and needed to impute 14 values per patient.  

(3) In selecting the imputation method, Sim et al. [48] suggested, according to the 



 

characteristics of the dataset (especially the patterns of missing values). This study proposed a 

hybrid imputation to handle missing values in MAR, MCAR, and MNAR types; the different 

imputation method has its advantages and disadvantages; hence a set of optimal combinations 

may be derived using the estimated results.  

(4) How to evaluate imputation performance is an important issue. Most previously used 

accuracy and RMSE, but medical data usually are imbalanced classes; this paper applied 

accuracy, RMSE, and AUC to overcome the problem of imbalanced classes. 

In future work, we can utilize the frequency-based or neighbor-count imputation to improve the 

performance of the category dataset and combine it with other model-free imputation methods 

to conduct massive experiments.  
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Appendix:  

Table A. Internal comparison for the other UCI datasets in MAR 

MD Method Banknote Blood  Climate  Acute  Habermans  Liver ILPD 

5% 

best k+PkNNI 0.98 0.71 0.81 1.00 0.62 0.67 0.68 

best k+DNNI 0.98 0.71 0.81 1.00 0.61 0.68 0.69 

3 clusters+PkNNI 0.98 0.71 0.81 1.00 0.62 0.68 0.68 

3 clusters+DNNI 0.98 0.71 0.81 1.00 0.60 0.65 0.69 

5 clusters+PkNNI 0.98 0.71 0.80 1.00 0.62 0.67 0.66 

5 clusters+DNNI 0.98 0.71 0.80 1.00 0.61 0.66 0.69 

10% 

best k+PkNNI 0.98 0.73 0.86 1.00 0.64 0.71 0.71 

best k+DNNI 0.98 0.73 0.84 1.00 0.64 0.69 0.71 

3 clusters+PkNNI 0.98 0.71 0.85 1.00 0.65 0.72 0.73 

3 clusters+DNNI 0.98 0.72 0.84 1.00 0.60 0.70 0.75 

5 clusters+PkNNI 0.98 0.71 0.85 1.00 0.64 0.66 0.68 

5 clusters+DNNI 0.98 0.72 0.80 1.00 0.61 0.67 0.72 

15% 

best k+PkNNI 0.98 0.76 0.83 1.00 0.63 0.72 0.74 

best k+DNNI 0.98 0.74 0.81 1.00 0.63 0.70 0.76 

3 clusters+PkNNI 0.98 0.75 0.87 1.00 0.63 0.74 0.74 

3 clusters+DNNI 0.98 0.76 0.82 1.00 0.64 0.73 0.77 

5 clusters+PkNNI 0.98 0.74 0.87 1.00 0.63 0.67 0.75 

5 clusters+DNNI 0.98 0.74 0.81 1.00 0.64 0.68 0.76 

20% 

best k+PkNNI 0.98 0.78 0.92 1.00 0.65 0.73 0.76 

best k+DNNI 0.98 0.78 0.86 1.00 0.65 0.71 0.78 

3 clusters+PkNNI 0.98 0.77 0.92 1.00 0.66 0.75 0.75 

3 clusters+DNNI 0.98 0.77 0.86 1.00 0.67 0.73 0.76 

5 clusters+PkNNI 0.98 0.76 0.88 1.00 0.66 0.70 0.73 

5 clusters+DNNI 0.98 0.77 0.83 1.00 0.68 0.69 0.78 

 

Table B Internal comparison for the other UCI datasets in MCAR 

MD Method Banknote Blood  Climate Acute Habermans Liver ILPD 

5% 

best k+PkNNI 0.98 0.70 0.80 1.00 0.63 0.65 0.69 

best k+DNNI 0.98 0.70 0.79 1.00 0.62 0.65 0.69 

3 clusters+PkNNI 0.98 0.70 0.81 1.00 0.63 0.66 0.67 

3 clusters+DNNI 0.97 0.70 0.80 1.00 0.62 0.66 0.68 

5 clusters+PkNNI 0.98 0.69 0.80 1.00 0.63 0.65 0.69 

5 clusters+DNNI 0.97 0.70 0.79 1.00 0.63 0.64 0.70 

10% 

best k+PkNNI 0.98 0.71 0.83 1.00 0.61 0.66 0.70 

best k+DNNI 0.98 0.72 0.79 1.00 0.60 0.65 0.69 

3 clusters+PkNNI 0.98 0.71 0.82 1.00 0.61 0.69 0.71 

3 clusters+DNNI 0.98 0.71 0.79 1.00 0.60 0.64 0.71 

5 clusters+PkNNI 0.98 0.71 0.82 1.00 0.61 0.68 0.68 

5 clusters+DNNI 0.97 0.71 0.80 1.00 0.61 0.65 0.70 

15% 

best k+PkNNI 0.98 0.74 0.84 0.99 0.65 0.67 0.72 

best k+DNNI 0.98 0.75 0.78 0.99 0.64 0.68 0.73 

3 clusters+PkNNI 0.98 0.73 0.81 1.00 0.62 0.71 0.74 

3 clusters+DNNI 0.97 0.74 0.79 1.00 0.62 0.68 0.72 

5 clusters+PkNNI 0.98 0.73 0.83 1.00 0.64 0.69 0.70 

5 clusters+DNNI 0.97 0.73 0.79 1.00 0.62 0.66 0.73 

20% 

best k+PkNNI 0.98 0.76 0.82 1.00 0.63 0.69 0.77 

best k+DNNI 0.98 0.76 0.77 1.00 0.60 0.68 0.76 

3 clusters+PkNNI 0.98 0.77 0.84 1.00 0.62 0.71 0.75 

3 clusters+DNNI 0.98 0.77 0.77 1.00 0.60 0.67 0.71 

5 clusters+PkNNI 0.98 0.76 0.82 1.00 0.62 0.71 0.76 

5 clusters+DNNI 0.98 0.76 0.77 1.00 0.62 0.71 0.72 

 

 

 



Figures

Figure 1

Computational procedure of this study



Figure 2

Elbow method showing the best k (liver-disorders dataset).

Figure 3



s(i) of different k for the average silhouette method (liver-disorders dataset).

Figure 4

Average AUC of proposed method for different MDs and cluster number in MAR (liver disorders).

Figure 5

Average AUC of proposed method for different MDs and cluster numbers in MCAR (liver-disorders data)



Figure 6

Average AUC of proposed method for different MDs and cluster numbers in MAR (ILPD data).

Figure 7

Average AUC of proposed method for different MDs and cluster numbers in MCAR (ILPD data).



Figure 8

Minimal RMSE of seven imputation methods in MAR.

Figure 9

Minimal RMSE of seven imputation methods in MCAR.



Figure 10

Average of the accuracy of the proposed method for different number of clusters in MNAR (stroke
dataset)
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