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Abstract When the observed data are imprecise, the uncertain regression model is more suitable for the linear regression

analysis. Least squares estimate can fully consider the given data and minimize the sum of squares of residual error, and

can effectively solve the linear regression equation of imprecisely observed data. On the basis of uncertainty theory, this

paper presents an equation deformation method for solving unknown parameters in uncertain linear regression equations.

We first establish the equation deformation method of one-dimensional linear regression model, and then extend it to the

case of multiple linear regression model. We also combine the equation deformation method with Cramer’s rule and matrix,

and propose the Cramer’s rule and matrix elementary transformation method to solve the unknown parameters of the un-

certain linear regression equation. Numerical examples show that the equation deformation method can effectively solve the

unknown parameters of the uncertain linear regression equation.

Keywords equation deformation method · least squares estimate · linear regression model · uncertainty theory

1 Introduction

Regression analysis is an important branch of statistics. It

is a kind of statistical method to study the relationship be-

tween response variables and explanatory variables. Regres-

sion analysis is also one of the most commonly used and
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important statistical tools [1], and its application fields are

very wide. Linear regression is an important model of re-

gression analysis. One-dimensional linear regression can be

described by linear equation, and multivariate linear regres-

sion can be described by linear combination of variables

[2]. Linear regression can describe the linear relationship

between random variables, but it requires precise data, and

the random variables obey or are close to probability dis-

tributions. But in fact, the observed data of many practical

problems are imprecise or the information obtained is not

sufficient, or even some practical problems have no data.

The traditional regression analysis encountered difficulties

at this point. When observed data is imprecise or informa-

tion is not available, we often invite domain experts to es-

timate the extent to which the event is likely to occur, or to

predict the possible range of the event [3]. We call the data
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given by experts as the belief degree, but the belief degree

usually does not approximate the probability distribution, so

we need a new way to deal with the belief degree. Uncer-

tainty theory [4][10] is very good at studying and analyzing

of belief degree.

Liu [4] founded the uncertainty theory in 2007, and grad-

ually perfected and developed it [5]−[7][11]. With the deep-

ening of the research, uncertainty theory has been applied to

many fields and achieved good results [18]−[23]. The first

question is how to construct uncertainty distributions of un-

certain variables, Liu [6] first proposed uncertain statistics in

2010 that solved this problem. Chen and Ralescu [14] esti-

mated the distance from Tianjin to Beijing in 2012 which

liu proposed questionnaire survey and the results showed

very efficient. To estimate the unknown parameters in the

uncertainty distribution, Liu [6] proposed a principle of least

squares in 2010. With the further study of uncertain statis-

tics, Wang and Peng [15] puts forward the method of mo-

ments to estimate the unknown parameters, Guo, Wang and

Gao [16] proposed an uncertain linear regression model in

2014. Yao and Liu [8] puts forward a point estimation method

for solving unknown parameters of uncertain regression equa-

tion through the principle of least square method in 2018,

which is a method of processing imprecisely observed data.

In 2018, Song and Fu [12] proposed a least square method

to solve the unknown parameters of uncertain multiple linear

regression. Chen [13] proposed Tukey′s biweight estimation

for uncertain regression model with imprecise observations

in 2020.

The least squares estimate can solve the parameters of

linear uncertain regression equation, but it needs some ad-

vanced mathematics foundation. When there are many ex-

planatory variables or large amount of data, the least squares

estimate will encounter some difficulties. This paper presents

an equation deformation method for solving unknown pa-

rameters of linear regression. The equation deformation method

can solve the unknown parameters only by using the defor-

mation of the equations, which is easy to understand and

easy to use.

The remained organizational structure of this paper is as

follows: In the second section, this paper first gives the cal-

culation formula of expected value. Then the uncertain re-

gression model is introduced and the least squares estimate

for solving the unknown parameters is given. In Section 3,

based on the uncertainty theory, we proposed the equation

deformation method to solve the unknown parameters, and

deduces the solving process in detail. Then, we extend the

equation deformation method to multiple linear regression

model. Then in Section 4, according to the Cramer’s rule and

the elementary transformation of the matrix, we proposed

auxiliary solutions of the equation deformation method. In

the fifth section, we verified the feasibility of the equation

deformation method through a numerical example and com-

pared it with the existing method. Finally, we have made a

summary.

2 Uncertain regression model

In 2007, Liu [4] founded the uncertainty theory based the

three axioms of Normal Axiom, Duality Axiom and Subad-

ditivity Axiom. In 2009, Liu [7] perfected the uncertainty

theory through the Product Axiom. The uncertainty theory

defines the uncertain variables and the uncertainty distribu-

tion, and the inverse uncertainty distribution is used to solve

the expected value. Readers interested in uncertainty theory

can read the Reference [11] for other basic concepts and the-

ories of uncertainty theory.

In this section, we first introduced the concept and calcu-

lation method of expected value. Then, we give the uncertain

regression model and introduced the least squares estimate

method to solve the regression equation.

Theorem 2.1 [6] Assumed that the uncertain variable ξ

has an regular uncertainty distribution Φ. then

E[ξ] =

∫ 1

0

Φ−1(α)dα. (1)

Theorem 2.2 [6] Let ξ and η be independent and positive

uncertain variables with regular uncertainty distribution Φ

and Ψ , respectively. then

E[ξη] =

∫ 1

0

Φ−1(α)Ψ−1(α)dα. (2)

Assumed that (x1, x2, · · · , xp ) be a vector of explana-

tory variables, and the corresponding response variable be

y. Now, we assumed that (x1, x2, · · · , xp) have a functional

relationship with y, and can be expressed in the following

regression model

y = f(x1, x2, · · · , xp|β) + ε (3)

where β is the vector of the unknown parameters, and ε is a

disturbance term [11].

We will call

y = β0 + β1x1 + β2x2 + · · ·+ βpxp + ε (4)

a linear regression model [11].

Now we assumed that we have a set of imprecisely ob-

served data,

(x̃i1, x̃i2, · · · , x̃ip, ỹi), i = 1, 2, · · · , n (5)
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A new uncertain linear regression model based on equation deformation 3

where x̃i1, x̃i2, · · · , x̃ip, ỹiare independent uncertain vari-

ables with regular uncertainty distributions Φi1, Φi2, · · · ,

Φip, Ψi, i = 1, 2, · · · , n, respectively.

Based on the above imprecisely observed data, Yao-liu

[8] proposed the least squares estimate of β in the regression

model

y = f(x1, x2, · · · , xp|β) + ε. (6)

The parameters β is the solution of the following minimiza-

tion problem

min
β

n
∑

i=1

E[(ỹi − f(x̃i1, x̃i2, · · · , x̃ip|β))
2]. (7)

If the minimization solution is β∗, then the fitted regression

equation is y = f (x1, x2, · · · , xp | β
∗ ).

When p = 1, we call

y = β∗

0 + β∗

1x1 (8)

a one-dimensional linear regression equation. When p > 1,

we call

y = β∗

0 + β∗

1x1 + β∗

2x2 + · · ·+ β∗

pxp (9)

the multiple linear regression equation.

Then for each index i(i = 1,2,· · · ,n), the term

ε̃i = (ỹi − f(x̃i1, x̃i2, · · · , x̃ip|β
∗) (10)

is called the i−th residual [9].

Let the disturbance term ε is uncertain variable, its ex-

pected value and variance can be estimated as

ê =
1

n

n
∑

i=1

E[ε̃i], (11)

and

σ̂2 =
1

n

n
∑

i=1

E[(ε̃i − ê)2], (12)

where ε̃i are the i−th residual, i = 1,2,· · · ,n, respectively

[9].

3 The equation deformation method

In this section, based on the uncertainty theory, we proposed

an equation deformation method for solving unknown pa-

rameters. The idea of equation deformation method is to

construct a set of equations with the same number of un-

known parameters and solve them with expected value. Then,

we extend the equation deformation method to multiple lin-

ear regression equations.

3.1 Equation deformation method for one-dimensional

linear regression model

we always assumed that (x̃i, ỹi), i = 1, 2, · · · , n be a set

of imprecisely observed data, where x̃i, ỹi are independent

uncertain variables with regular uncertainty distributions Φi,

Ψi, i = 1, 2, · · · , n, respectively.

We supposed that (x̃i, ỹi), i = 1, 2, · · · , n, satisfied the

linear regression equation

ỹi = β0 + β1x̃i, (13)

where β0 and β1 are the unknown parameters.

Equation (13) has two unknown parameters. According

to mathematical equation theory, we only need two indepen-

dent equations. If Equation (13) has a solution, we can def-

initely solve it. Equation (13) contains n independent equa-

tions, and unknown parameters can be solved by arbitrarily

selecting two equations. However, the selected equations are

very one-sided and cannot represent the overall properties of

the variables. In order to fully consider the influence of the

value of variables and minimize the error, we construct two

new equations. The detailed process is as follows.

We can take the expected values of both sides of the

Equation (13), turn it into a real coefficient equation, and

we get

E[ỹi] = β0 + β1E[x̃i]. (14)

Add the n equations in Equation (14), and we get

n
∑

i=1

E[ỹi] = nβ0 + β1

n
∑

i=1

E[x̃i]. (15)

Equation (15) is transformed into

1

n

n
∑

i=1

E[ỹi] = β0 + β1

1

n

n
∑

i=1

E[x̃i]. (16)

According to Equation (1), Equation (16) is converted

into

1

n

n
∑

i=1

∫ 1

0

Ψ−1
i (α)dα

= β0 + β1

1

n

n
∑

i=1

∫ 1

0

Φ−1
i (α)dα.

(17)

Multiply both sides of Equation (14) by E[x̃i], and we

get

E[ỹi]E[x̃i] = β0E[x̃i] + β1E[x̃i]
2. (18)
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4 Shuai Wang et al.

Add the n equations in Equation (18), and we get

n
∑

i=1

E[ỹi]E[x̃i] = β0

n
∑

i=1

E[x̃i] + β1

n
∑

i=1

E[x̃i]
2. (19)

According to Equations (1) and (2), Equation (19) is

converted into

n
∑

i=1

∫ 1

0

Ψ−1
i (α)dα

∫ 1

0

Φ−1
i (α)dα

= β0

n
∑

i=1

∫ 1

0

Φ−1
i (α)dα

+ β1

n
∑

i=1

[∫ 1

0

Φ−1
i (α)dα

]2

.

(20)

Solved Equations (17) and (20), and we got the esti-

mated values of β0 and β1.

The derivation of one-dimensional linear regression of

equation deformation method is relatively simple. On the ba-

sis of considering all the data, we reasonably construct two

equations, and the unknown parameters can only be solved

through the equation deformation and expected value. The

equation deformation method does not need the foundation

of advanced mathematics and is easy to understand and cal-

culate.

3.2 Equation deformation method for multiple linear

regression model

The equation deformation method can solve the unknown

parameters of one-dimensional linear regression, then can it

solve the unknown parameters of multiple linear regression

equation? Let’s go ahead and derive it.

Assumed that there is a linear functional relationship

between uncertain variables (x̃i1, x̃i2, · · · , x̃ip) and ỹi. In

order to solve the p + 1 unknown parameters of linear re-

gression equation, a more effective method is to establish

p + 1 equations. On the basis of the uncertainty theory, we

proposed an equation deformation method to solve the un-

known parameters of linear regression equation by using the

expected value. The equation deformation method can fully

considered the imprecisely observed data. The specific steps

are as follows.

Step 1. Assume that the linear regression equation is

ỹi = β0 + β1x̃i1 + β2x̃i2 + · · ·+ βpx̃ip (21)

where β0, β1, β2, · · · , βp are unknown parameters.

Add up the n equations in Equation (21), then

n
∑

i=1

ỹi = nβ0 + β1

n
∑

i=1

x̃i1 + β2

n
∑

i=1

x̃i2

+ · · ·+ βp

n
∑

i=1

x̃ip

(22)

Multiply both sides of Equation (21) by x̃i1, then we get

x̃i1ỹi = β0x̃i1 + β1(x̃i1)
2 + β2x̃i1x̃i2

+ · · ·+ βpx̃i1x̃ip.
(23)

Add up the n equations in Equation (23), then

n
∑

i=1

x̃i1ỹi = β0

n
∑

i=1

x̃i1 + β1

n
∑

i=1

(x̃i1)
2

+ β2

n
∑

i=1

x̃i1x̃i2 + · · ·+ βp

n
∑

i=1

x̃i1x̃ip.

(24)

Multiply both sides of Equation (21) by x̃i2, then we get

x̃i2ỹi = β0x̃i2 + β1x̃i1x̃i2 + β2(x̃i2)
2

+ · · ·+ βpx̃i2x̃ip.
(25)

Add up the n equations in Equation (25), then

n
∑

i=1

x̃i2ỹi = β0

n
∑

i=1

x̃i2 + β1

n
∑

i=1

x̃i1x̃i2

+ β2

n
∑

i=1

(x̃i2)
2 + · · ·+ βp

n
∑

i=1

x̃i2x̃ip,

(26)

And so on, Multiply both sides of Equation (21) by x̃ip,

then we get

x̃ipỹi = β0x̃ip + β1x̃i1x̃ip + β2x̃i2x̃ip

+ · · ·+ βp(x̃ip)
2.

(27)

Add up the n equations in Equation (27), then

n
∑

i=1

x̃ipỹi = β0

n
∑

i=1

x̃ip + β1

n
∑

i=1

x̃i1x̃ip

+ β2

n
∑

i=1

x̃i2x̃ip + · · ·+ βp

n
∑

i=1

(x̃ip)
2.

(28)

So we have p equations as follows
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n
∑

i=1

x̃ij ỹi = β0

n
∑

i=1

x̃ij + β1

n
∑

i=1

x̃i1x̃ij

+ β2

n
∑

i=1

x̃i2x̃ij + · · ·+ βp

n
∑

i=1

x̃ipx̃ij ,

j = 1, 2, · · · , p.

(29)

There are a total of p+ 1 equations together with Equa-

tion (22) and Equation (29). If there are numerical solutions

exists for p+1 unknown parameters, the β0, β1, β2, · · · , βp

can be solved by p+ 1 equations .

Step 2. In Equations (22) and (29), x̃i1, x̃i2, · · · , x̃ip,

ỹi, i = 1, 2, · · · , n are imprecisely observed data, we can’t

solve them directly. We can take the expected value of both

sides of Equations (22) and (29), turn them into real coeffi-

cient equations, and we get

n
∑

i=1

E[ỹi] = nβ0 + β1

n
∑

i=1

E[x̃i1]

+ β2

n
∑

i=1

E[x̃i2] + · · ·+ βp

n
∑

i=1

E[x̃ip],

n
∑

i=1

E[ỹix̃ij ] = β0

n
∑

i=1

E[x̃ij ] + β1

n
∑

i=1

E[x̃i1x̃ij ]

+ β2

n
∑

i=1

E[x̃i2x̃ij ] + · · ·+ βp

n
∑

i=1

E[x̃ipx̃ij ],

j = 1, 2, · · · , p.

(30)

Step 3. The x̃i1, x̃i2,· · · ,x̃ip ,ỹi are independent un-

certain variables with regular uncertainty distributions Φi1,

Φi2,· · · , Φip, Ψi ,i = 1, 2, · · · , n, respectively.

So the first equation in Equation (30) is transformed into

n
∑

i=1

E[ỹi] = nβ0 + β1

n
∑

i=1

p
∑

k=1

βkE[(x̃ik)]. (31)

According to the Theorem 2.1, the Equation(31) is trans-

formed into

n
∑

i=1

∫ 1

0

Ψ−1
i (α)dα

= nβ0 +

n
∑

i=1

p
∑

k=1

βk

∫ 1

0

Φ−1
ik (α)dα.

(32)

The other equations in Equation (30) are transformed

into

n
∑

i=1

E[x̃ij ỹi]

= β0

n
∑

i=1

E[x̃ij ] +

n
∑

i=1

p
∑

k=1

βkE[x̃ikx̃ij ].

j = 1, 2, · · · , p.

(33)

According to the Theorem 2.1 and Theorem 2.2, the Equa-

tion (33) is transformed into

n
∑

i=1

∫ 1

0

Φ−1
i1 (α)Ψ−1

i (α)dα = β0

n
∑

i=1

∫ 1

0

Φ−1
ij (α)dα

+
n
∑

i=1

p
∑

k=1

βk

∫ 1

0

Φ−1
ik (α)Φ−1

ij (α)dα.

j = 1, 2, · · · , p.

(34)

Equations (32) and (34) contains p + 1 equations. By

solved the above p+1 equations, the estimated values of the

unknown parameters β1, β2, · · · , βp can be obtained. We

can get the fitting equation of the multiple linear regression.

4 Other auxiliary solutions

In the equation deformation method of multiple linear re-

gression model, we can regard Equation (30) as a linear sys-

tem of equations. With the help of the knowledge of lin-

ear algebra [17], we further discuss the equation deforma-

tion method, and proposed the Cramer’s rule and elementary

transformation of matrix for solving the unknown parame-

ters of linear regression equation.

4.1 Cramer’s rule

Equation (30) is equal to

nβ0 + β1

n
∑

i=1

E[x̃i1] + β2

n
∑

i=1

E[x̃i2]

+ · · ·+ βp

n
∑

i=1

E[x̃ip] =

n
∑

i=1

E[ỹi],

β0

n
∑

i=1

E[x̃ij ] + β1

n
∑

i=1

E[x̃i1x̃ij ] + β2

n
∑

i=1

E[x̃i2x̃ij ]

+ · · ·+ βp

n
∑

i=1

E[x̃ipx̃ij ] =

n
∑

i=1

E[x̃i1ỹi],

j = 1, 2, · · · , p.

(35)

We assumed that the coefficient matrix corresponding to

the above equation is A, the determinant of matrix A is
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|A| =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

n
n
∑

i=1

E[x̃i1] · · ·
n
∑

i=1

E[x̃ip]

n
∑

i=1

E[x̃i1]
n
∑

i=1

E[(x̃i1)
2] · · ·

n
∑

i=1

E[x̃i1x̃ip]

n
∑

i=1

E[x̃i2]
n
∑

i=1

E[x̃i1x̃i2] · · ·
n
∑

i=1

E[x̃i2x̃ip]

· · · · · · · · · · · ·
n
∑

i=1

E[x̃ip]
n
∑

i=1

E[x̃i1x̃ip] · · ·
n
∑

i=1

E[(x̃ip)
2]

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (36)

If

|A| ̸= 0, (37)

the linear system of equations has a unique numerical solu-

tion according to cramer’s rule.

Replace the JTH column of determinant |A| with the

constant term on the right side of the linear system of equa-

tions, and the resulting determinant is denoted as |Aj |, i.e

|Aj | =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

· · ·
n
∑

i=1

E[x̃ij−1]
n
∑

i=1

E[ỹi]
n
∑

i=1

E[x̃ij+1] · · ·

· · ·
n
∑

i=1

E[x̃i1x̃ij−1]
n
∑

i=1

E[x̃i1ỹi]
n
∑

i=1

E[x̃i1x̃ij+1] · · ·

· · ·
n
∑

i=1

E[x̃i2x̃ij−1]
n
∑

i=1

E[x̃i2ỹi]
n
∑

i=1

E[x̃i2x̃ij+1] · · ·

· · · · · · · · ·

· · ·
n
∑

i=1

E[x̃ipx̃ij−1]
n
∑

i=1

E[x̃ipỹi]
n
∑

i=1

E[x̃ipx̃ij+1] · · ·

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

(38)

According to Cramer’s rule, a set of numerical solutions

of the linear system of equations are

β0 =
|A1|

|A|
, β1 =

|A2|

|A|
, · · · , βj =

|Aj+1|

|A|
,

· · · , βp =
|Ap+1|

|A|
.

(39)

Solved the Equation of (39), we can get the estimated

values of the unknown parameters β0, β1, · · · , βp. There-

fore, the linear regression equation can also be solved by

cramer’s rule.

4.2 Elementary transformation of matrices

We start with Equation (30), which can be expressed as the

following matrix equation

Aβ = b. (40)

where

β = (β0, β1, β2, · · · , βp)
T , (41)

b = (

n
∑

i=1

E[ỹi],

n
∑

i=1

E[x̃i1ỹi], · · · ,

n
∑

i=1

E[x̃ipỹi])
T , (42)

and

A =



























n
n
∑

i=1

E[x̃i1] · · ·
n
∑

i=1

E[x̃ip]

n
∑

i=1

E[x̃i1]
n
∑

i=1

E[(x̃i1)
2] · · ·

n
∑

i=1

E[x̃i1x̃ip]

n
∑

i=1

E[x̃i2]
n
∑

i=1

E[x̃i1x̃i2] · · ·
n
∑

i=1

E[x̃i2x̃ip]

· · · · · · · · · · · ·
n
∑

i=1

E[x̃ip]
n
∑

i=1

E[x̃i1x̃ip] · · ·
n
∑

i=1

E[(x̃ip)
2]



























. (43)

The augmented matrix of the linear system of equations

is

B = (A, b). (44)

If the rank of the coefficient matrix A is equal to the

rank of the augmented matrix B, then the linear system of

equations has a unique set of numerical solutions. The un-

known parameters β0, β1, β2, · · · , βp can be estimated by

elementary row transformation of the augmented matrix B.

Therefore, the linear regression equation can also be solved

by elementary transformation of matrix.

5 Numerical example

In order to verify the feasibility of the equation deforma-

tion method, we give an example of imprecisely observed

data and compared it with the least square estimation. Fur-

thermore, we numerically analyzed the estimated expected

values and variances of the disturbance terms by using the

methods of References [9] and [24].

Assumed that (β0, β1)= (5, 2), and the one-dimensional

linear regression model is

y = 5 + 2x+ ε. (45)

For the above one-dimensional linear regression model,

we designed two sets of imprecisely observed data (x̃ji,ỹi),

i = 1, 2, · · · , 10, j = 1, 2 as shown in Table 1. The first

set of imprecise data (x̃1i,ỹi), i = 1, 2, · · · 10 is the normal

dataset. The second set of imprecise observations (x̃2i,ỹi),

i = 1, 2, · · · 10 is called a singular dataset, which contains

outliers for i = 3, 5, 8. Now we compare the estimated val-

ues of unknown parameters by the equation deformation method

and the least squares estimate.
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Table 1 Two sets of imprecisely observed data

i ỹi x̃1i x̃2i

1 L(5, 7) L(0,1) L(0,1 )

2 L(7, 9) L(1,2) L(1,2)

3 L(15, 17) L(5,6) L(8,9)

4 L(9, 11) L(2,3) L(2,3)

5 L(25, 27) L(10,11) L(5,6)

6 L(13, 15) L(4,5) L(4,5)

7 L(17, 19) L(6,7) L(6,7)

8 L(19, 21) L(7,8) L(3,4)

9 L(33, 35) L(14,15 ) L(14,15)

10 L(23, 25) L(9,10) L(9,10)

For the first set of imprecise data, the regression equa-

tions obtained by equation deformation method and least

square estimation are consistent with the original equation,

which will not be discussed in detail here. The results ob-

tained from the second set of imprecise data are discussed

in detail as follows

The fitting linear regression equations obtained by the

equation deformation method and least squares estimate are

shown in the Table 2.

Table 2 The linear regression equations

Model Regression equations

equation deformation method y1 = 6.5965 + 1.9304x1

least squares estimate y2 = 7.4839 + 1.7747x2

As can be seen from Table 2, the two fitting equations

are significantly different, and the constant terms are greatly

different, and the fitting effect is greatly different.

The bias between the estimated values of β0 and β1 and

the corresponding values of the original equation is shown

in Table 3. The bias here is the estimated values minus the

original values.

Table 3 The bias of the second set of data

Model β0 β1

equation deformation method 1.5965 − 0.0696

least squares estimate 2.4839 − 0.2253

It can be seen from Table 3 that the equation deformation

method can better deal with the data with singular values,

and the deviation of the corresponding coefficient is small.

According to Equations (11) and (12), the expected value

and variance of the disturbance term are

ê = 0.0002, σ̂2 = 18.1316.

The expected value of the disturbance term is almost

zero, which indicates that the fitting effect is good. The vari-

ance of the disturbance term is large because the data we set

contains three singular values and the degree of dispersion

is large.

Numerical examples show that the equation transforma-

tion method is feasible, easy to understand and simple to

calculate.

6 Conclusion

In this paper, we discussed the uncertain regression model,

and put forward the equation deformation method to solve

the unknown parameters in the linear regression equation.

Then the equation deformation method is extended to multi-

ple linear regression model. We also proposed the Cramer’s

rule and the elementary transformation method of matrix,

both of which can solve the unknown parameters of the lin-

ear regression equation, but required the reader have a basic

knowledge of linear algebra.

Equation deformation method does not require advanced

mathematical knowledge such as calculus, so readers can

better understand and use. In the case of fewer unknown

parameters, the equation deformation method is relatively

simple to solve the unknown parameters. However, when

the number of unknown parameters is large, the calculation

amount of equation deformation method is large.

This paper presents an equation deformation method for

solving unknown parameters in the linear regression equa-

tion. The next work is to try to use Matlab or Python pro-

gramming to solve the numerical solution of unknown pa-

rameters, so as to better solve the linear regression equation

with more complex data and more variables.
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