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Abstract

A numerical approach is suggested for the layer behaviour differential-difference
equations with small and large delays in the differentiated term. Using the non-polynomial
spline, the numerical scheme is derived. The discretization equation is constructed using the
first order derivative continuity at non-polynomial spline internal mesh points. A fitting
parameter is introduced into the scheme with the help of the singular perturbation theory to
minimize the error in the solution. The maximum errors in the solution are tabulated to verify
the competence of the numerical method relative to the other methods in literature. We also
focused on the impact of large delays on the layer behaviour or oscillatory behaviour of
solutions using a special mesh with and without fitting parameter in the proposed scheme.

Graphs show the effect of the fitting parameter on the solution layer.
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Fitting parameter; Difference approximation.
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1. Introduction

Differential- difference equations are problems in which the time evolution of the state
variable can depend on specific past in some arbitrary way, i.e., the rate of physical system
change depends not only on the state of the physical system but also on its history [1]. Such
problems also occur when many practical phenomena are modelled such as thermo-elasticity
[2], hybrid optical system [3], in population dynamics [14], red blood cell system [17], in
models for physiological processes [18], predator-prey models [19], optimal control theory [7]

and in the potential in nerve cells by synaptic inputs in dendrites [26]. Further analysis on



mathematical aspects of the above group of modelling problems and of the singular
perturbations is available from the collection of books to name but a few, Bellman and Cooke
[1], Doolan et al. [4], Driver [5], El'sgol'ts and Norkin [6], Kokotovic et al. [13], Miller et al.
[20] and Smith [25].

The authors in [15, 16] provided asymptotic access for a class of layer behaviour
differential equations. In [15], researchers provided a mathematical model of evaluating the
expected time to produce potential action in nerve cells with random synaptic inputs in
dendrites. The researchers in [16] illustrated the examples with quick oscillations. Kadalbajoo
and his team initiated an extensive numerical work using finite differentiation techniques [9,
10, 11, 12]. Ravikanth and Murali [23] have proposed a fitted method to solve the problems

through tension splines, which only contains a delay in the differentiated term.

2. Declaration of the problem

Consider the equation with a retarded term, i.e., negative shift or delay in a differentiated term
ew'(s) + P(s)w'(s — 8(e)) + Q(s)w(s) =R(s), 0<s <1, (1)

subject to the boundary conditions
w(s) =¢(s), —6<s<0; w1 =y, @)
where 0 < € < 1 is a perturbation parameter, P(s), Q(s), R(s) and ¢(s) are continuous
functions in [0, 1], y is a finite constant and § is the delay parameter. It is recognized that when
6 = 0, Eq. (1) is changes to a singularly perturbed equation exhibit layer behaviour and turning
points depending upon the component of the respective convention and reaction term. The
solution w(s) display layer on the left-end when P(s) is positive or on the right-end when P (s)
is negative all through the interval [0 1]. The solution's layer behaviour is no longer preserved

when §(¢) is in order O(¢), and the solution exhibits oscillatory behaviour.

3. Non-polynomial spline

With mesh length h = % , the domain [0, 1] into N subdomains, so that s; = ih, Vi =0,

1,...,Nwith 0 = 55,1 = sy. Let w(s) be the exact solution and w; be an approximation to w(s)
by the non-polynomial spline ¥;(s) communicating through the (s;, w;) and (s;;1, Wi+1). We
need not only ¥;(s) satisfy the interpolatory conditions at s; and s;, 1, but also to perform the
continuity of the first derivative at the common nodes (s;, w;). The cubic non-polynomial
spline ¥;(s) has the form for each i*"*division (Ref. [8])

Yi(s)=A;+Bi(s—s;)+C;sint(s—s;)+Licost(s—s;), Vi=0,1,2,...,.N—1, (3)



where A;, B;, C; and L; are to be determine and 7 is a free parameter.
The function ¥;(s) of the class C?[0, 1] interpolates w(s;) at mesh points s;, Vi=0,1,...,N,
depending on a parameter 7 and transformed to the usual cubic spline as T — 0.

To deduce the values of the coefficients in Eq. (3) in term of w;, w;,4, M; and M; 4,
define W;(s;) = w;, Wi(Siz1) = Wiy, ¥ (s;) = M;, ¥ (s;41) = M;;;. Using the algebraic

exercise, we get the following expression:

M;
72’

Ai=si+

_ Si+1—Si , Mi41—M; __ Mijcos0-M;, oM .
Bi_ h + 760 ’ Ci_ 25in @ 'Li__T_Z’ Vl—O,l,Z,...,N,

where 68 = th. Hence 4;, B;, C; and L; are depend on 7 and 6.
We obtain the subsequent relationships fori = 1,2, ..., N — 1 by using the continuity
of the first derivative, i.e. ¥;_,(s;) = W;(s;), at (s;, w;).

Wiy1—2WitWi_q

aMiyq + 26M; + aM;_y = ———>——, 4)
-1 1 1 cos @ " . , .
wherea—ﬁ+95in9, B = " g M;=w(s;), j=iix1.

The local truncation error T; fori = 1,2, ..., N — 1, associated with the scheme Eq. (4) is

1-30a

T = h2(1 - 2a = 2B) w® + h* (2F) w® + ¢ (o

) wi® +0(n®).
Thus, for diverse values of @ and £ in the scheme Eq. (4), specifies the different orders:

(i) for any choice of the arbitrary ¢ and f with a + f§ = % , the truncation error is of fourth
order.

.. 1 5 . L
(1) fora = o p = o the truncation error is sixth order.

4. Numerical scheme with small delay

4.1. Left — end boundary layer

If the delay is of the small order of the perturbation parameter i.e., § = o(¢), using
Taylor’s series on the term in Eq. (1) containing the delay parameter, it reduces to

(e = 8P(s)W'(s) + P(s)w (s) + Q(s)w(s) = R(s), ()

subject to w(0) = ¢(0) = ¢y, w(1) =. (6)

Assume that P(s) > M > 0 and (8 — 6P (s)) > 0 throughout the domain [0, 1], where
Mis a positive constant. With this hypothesis, for small values of &, Eq. (5) show layer
behaviour at s = 0.

Let L# be the differential operator for the problem Eq. (5), Eq. (6) which is defined for
any smooth function Q(s) € C@ as

LEQ(s) = (e —6P)QA"(s) + P(s)Q'(s) + Q(s)Q(s).



Case-(i). When Q(s) < —7 < 0, where 7 is positive constant.

Lemma 4.1. Continuous minimum principle: Let ((s) is smooth function satisfying
Ny=0and Qy = 0. Then LEA(s) <0,V i=1,2,...,N — 1 implies that 2(s) >0,V i =
0,1,2,..,N.

Proof: Let s* be such that 2(s*) = 0125121 N(s) and assume that 2(s*) < 0. Clearly

s* ¢ {0,1}, therefore 2'(s*) = 0and "' (s*) = 0.
Furthermore, L2Q(s*) = (e —6P)N"'(s*) + P(s)N'(s*) + Q(s)2(s*) > 0 contradicts the
hypothesis that L£2(s) < 0, Vs € (0,1), therefore our assumption that Q(s*) < 0 is wrong
and thus 2(s) = 0,V s € [0 1].
Lemma 4.2. Under the assumption that P(s) = M >0, Q(s) < —t < 0 where M, T are
positive constants, the solution of Eq. (5) with boundary conditions Eq. (6) exists and satisfies
Iwll < = HIRIl + max(Bo, V)
Proof: Construct the two barrier function 7 defined by
mt(s) = T HIRIl + max(@o,y) £ w(s).
Then, we have m£(0) = t7Y|R|| + max(@,,y) + w(0)
=t YRl + max (@, ¥) + By
>0,
(1) = 7[RI + max(@o,y) £ w(1)
=t IRl + max(@o,¥) £y

>0,

and Lemt(s) = (e = 6P(s)) (2 (s))” + P(s)(n%(s)) + Q(s)mE(s)

= Q)@ M IRIl + max(Bo,v) ) £ LEw(s)

= Q(s)(@HIRIl + max(@o,¥) ) £ R(s).
Since Q(s) < -1 <0, i.e.Q(s)T7! < —1 we get

L (s) = (=IIRIl £ R(s)) + Q(s)max(B,y) <O.

Therefore, using Lemma 4.1, we obtain m£(s) > 0, V s € [0,1], gives required estimate.
Case-(ii). When Q(s) = 7 > 0, where 7 is positive constant.
Lemma 4.3. Continuous maximum principle: Let (s) is smooth function satisfying
0y =0 and Ny = 0. Then £L2A(s) =20, Vi=12,..,N—1 implies that 2(s) >0,Vi=
0,1,2,..,N.
Proof: Let s* be such that 2(s*) = max N(s) and assume that 2(s*) < 0. Clearly s* &

{0,1}, therefore N'(s*) =0 and N2"(s*) <0. Further L:N(s*) = (e—-6P)A"(s*) +



P(s)2'(s*) + Q(s)(s*) < 0 which contradicts the hypothesis that LZQ(s) = 0,V s € (0,1).
Hence, our assumption that 2(s*) < 0 is wrong and thus 2(s) >0,V s € [0 1].
Lemma 4.4. Under the assumption that P(s) = M > 0, Q(s) = 7 > 0 where M, T are positive
constants, the solution of the Eq. (5) with boundary conditions Eq. (6) exists and satisfies

Iwll < z7IRIl + max(Bo, ).
Proof: Let us construct the two barrier function 7% defined by

n*(s) = tHIRIl + max(@o, ) +w(s).

Then, we have m(0) = t7Y|R|| + max(@,,y) + w(0)
=t YRl + max(@o,y) + B
=0

— ’

m*(1) = tYIRIl + max(@,,y) £w(1)
=t YRl + max(@o,¥) ¥
>0,
and LEnt(s) = (e — SP(S))(nJ—r(s))” + P(s)(ni(s))’ + Q(s)mx(s)
= Q)@ IRI + max(Bo, ) ) £ LEw(s)
= Q)@ IRl + max(Bo,v) ) £ R(S).
Since Q(s) > 7> 0, i.e.Q(s)T™! > 1, we get
L (s) = (IRII £ R(S)) + Q(s)max(@o,y) = 0.
Therefore, using Lemma 4.3, we obtain m¥(s) > 0 , Vs € [0,1], which gives required
estimate.
Lemma 4.1 and 4.3 implies that the solution is unique and since the problem under the
consideration is linear, the existence of the solution implied by its uniqueness. Additionally,
Lemma 4.2 and 4.4 gives the boundedness of the solution (Ref. [12]).
Using the singular perturbation concept, the solution of Eq. (5) and Eq. (6) is of the
structure (Ref. [21])

w(s) = wo(s) + ($(0) — wo(0))e &) 4 0(e), ™)
ie. W(ih) = wq(ih) + ($(0) — wo(0))e " E5@)™ 4 0(e). ®)
Let p = %p(o) £ — 8p(0) # 0, then Eq. (8) can be written as

w(ih) = wo(ih) + ($(0) — wp(0))e PP + 0 ()
Hence,  Limw(ih) = wy(0) + ($(0) — wo(0))e =P + 0(e). ©)

At the mesh point s;, the Eq. (5) may be discretized by



(e =8P(s)) M;j = R(s;)) — P(spw;(s) — Q(spw(s)), Vj=i—1,i,i+1. (10)

Now, use the following difference approximations to the first-order derivative of w:

Wiy +4W;—3wWi_q
2h

3Wl+1 —4w; itWi—1
2h

W1+1 Wl 1

w/_, = + 0(h®),wj,, = + 0(h?), w} = + 0(h?).

Substituting the values of M;_;, M; and M; ., along with the above differences in Eq. (10),

we get
(e = 6P(sy)) —aP; BP; 3aP;_
TL Wip1 — 2w + wiq) = ( Zhlﬂ + TL —aQ;—q + 2—;11) Wi—1
ZaP 1 ZaP-_l _3aP 1 ﬁP P‘_1
+< hH —2pQ; - hl >Wi + <—2hl+ e —aQi4q + Zlh )W1+1
+ (aRi+1 + ZﬁRl + aRl-_l), Vi= 1,2,. ., N — 1.
(11)
Introducing a fitting parameter o (p) in Eq. (11), we have
o(p)(e — 6P(sp)) —aP;,q ,BP 3aP;_,
h2 l Wiy — 2wy +wi_q) = (Z—hH — Qi 2—};) i-1
26¥P 1 20(P-_1 _BaP 1 ﬁP 0{P-_1
# (SR 20 T ek (g a5 s
+ (R, + 28R, +aR;_y), Y i=12,...,N—1.
(12)

Using the procedure given in [4], we get

Lim? (w(ih + h) = 2w(ih) +w(ih—h) ) = @m(w(ih —h) —w(h+h).  (13)

Using Eq. (9) into Eq. (13), we get the fitting parameter for the layer behaviour at the left-end

point of the domain as:

o = p(a + B)P(0) coth (Z22), (14)

where p = 3P 0)"

Exercising on Eq. (12), we get the following tridiagonal system
Ei_lwi_l + Fi Wi + Gi+1Wi+1 = Hi ) Vi= 1,2, . .,N - 1, (15)

where E;_; = —o(e — 6P;) + —2 3hap‘ L4 php, — L _gp2 g,

FL' = 20'(8 - 5Pl) - 2ahPl-_1 + 2ahPi+1 - Zﬁhz Qi'



a hpl 1 3a’hPl+1

Gl+1 = _0(5 - 5P) +— .Bhpi - — ah? Ql+1:
H; = -h*[aR;_; + 2B R; + aR;;1],
P(s;)) =P;,Q(s;) =Q;, R(sp)) =R;,Vi=12,..,N—1.

The system Eq. (15) is resolved by applying the Thomas tridiagonal algorithm.

4.2. Right — end boundary layer

With the assumption P(s) < M < 0 and (e — 6P (S)) > 0 all over the domain [0, 1],

where M is negative constant, for small values of &, boundary layer for Eq. (5) exists at s = 1.

From the singular perturbation theory, the solution of Eq. (5) and Eq. (6) is of the form
(2D Y-y
w(s) = wo(si) + (9(0) —wo(1))e ‘=P " 4 0(e), (16)
ie., w(ih) = wy(ih) + (¢p(0) —wy(1))e (=5 5P(1))(1 ™y 0(e), (17)
w(ih) = wo(ih) + (§(0) ~ wo(1))e " E70 ) 1 0 (),

where p = e—06P(1) # 0.

h
e-86P(1)’
i Limw(ih) = wy(0) + ($(0) — wo(1)e " OEmrm ) 4 o). (18)

Now, in the non-polynomial spline finite difference method Eq. (12), insert a fitting
parameter o(p) and apply the same procedure as in left boundary layer case, we get the fitting

parameter

o = p(a+ B)P(0) coth (@). (19)

In this case also, we have the tridiagonal system Eq. (15) where o is given by Eq. (19).

5. Convergence analysis

To examine the convergence for the scheme for the left-end layer, consider the matrix

form of Eq. (15) including the specified boundary conditions [22]

(D+P)W+Q+T(h) =0, (20)
where
2(e = 6P))oc —(e—6P))o 0 0 0
—(e—=6P)o 2(e—6P))c —(e—6P))o 0
5= 0 y y 0

0 . . .. —(e=6Py_y)o 2(e—6Py_q)o



yi t; 0 0 ... 0
X, Y, tp, 0 ... 0
A 0 x (2 0
P=lyyptl=| " 72 % B o T
0 0 xy-1 Yn-1
where
t; = 2= — BhP — M qh?Qy,,, ¥ i = 1,2,...,N — 1,and

Q = [vi + (—=(e = 6P + x1)P0, V2, V3, .-, V=2, Vo1 + (—(€ = 8Py_1)0 + ty_1)y]",
where v; = h? [aR;_y + 2B R; + aR;;,] i=12,....N—1 , T(h) = 0(h*) and
W= [W,W,,..,Wy_{I", T(h) = [T, T,...,Tv-1]%, 0 =[0,0,...,0]7 are associated
vectors of Eq. (20).
Letw = [wy,wy,...,wy_;]T = W which satisfies the equation
(D+P)w+Q=0. (21)
Let ¢, =w; =W, Vi =1,2....,N — 1 be the discretization error so that
E =eey...,en_1]T =w—W. Subtracting Eq. (20) from Eq. (21), we get the error
equation
(D+P)E =T(h). (22)
Let |P(s)| <€, and |Q(s)| < C, where C;,C, are positive constants. If {; i be the
(i, j)**element of the matrix (D + P), then
|¢ii41| < (e =8P) + h(a + B)C, + h?al,, Vi=12,....N -2,
i1 < (e = 6P) + h(a+ B)C, + h?aly, Vi=23,...,N — 1.
Thus, for small values of h, we have
|Ciis1]| < (e=6P), Vi=12,.....N =2,
|¢iica| < (e=6P), Vi=23,....N—1. (23)
Hence (D + P) is irreducible [27].

Let the sum of i" row elements of the matrix (D + P )be S;, then we have
l

3ahPi_q

S; = (¢ = 8P)o — — BhP; + T — 2(2BQ; + aQuya) s (= 1,

Si = hZ (aQi-l +23Ql +aQi+1)' Vi= 2;3;'-'-:N_29

lthi_l
2

3ahpi+1

Si =(e—96P)o — ,BhPi+T—h2(2ﬂQi+aQi_1), i=N-1.

Let G = min |P(s)| and (7 = max|P(s)l, Co» = min |Q(s)| and C; = max]Q(s)|-



Since 0 < e« 1 and € x O(h), it is verified that for sufficiently small h, (75 +33) is

monotone [27, 28]. Hence (75 + 73)_1 exists and (75 + .73)_1 > 0. Thus from Eq. (22), we
have
IEN< @ +2)7| 1. (24)
Let (D + 33):; be the (i, k)" element of (D + 33)_1 and define
~  an—1 e a1
||(D +P) ” = max YR-HD + SD)l,,k and ||T(h)| = 1Smisc}vaill.‘]"(h)|. (252)

Since (D +P) " >0 and V=D +P) s, =1, vi=12,...,N—1.
i,k k=1 i,k

Hence,
=~ ~\—1 1 1 .
(D+2),, <5<wmg =1L (25b)
=~ ~\—1 < 1 1 . o)
(D+?)i,k_§_i<h262' i=N-1. (25¢)
Furthermore,
C1rm . an—1 1 1 .
YR-i(D +3>)l,,k S e Vi=12.. N -1 (25d)
2<iSN-2

By the help of Egs. (25a) - (25d) and using Eq. (24) we get
IEN < 0(h?). (26)

Hence, the proposed scheme has second-order convergence.

6. Numerical examples

To illustrate the comparative efficiency of the proposed scheme, it is implemented on
numerical experiments with a layer at left-end and right-end for the small § values. The
maximum absolute errors in the examples considered were measured using the theory of double

mesh EN = max |WlN — w2l | and tabulated in Tables 1 - 5 for the examples considered.
sis

Computed errors are compared to the results given in [12, 23, 24]. It was observed that our
method yields precise results than the method suggested in [12, 23, 24].

Example 6.1. ew'(s) +w' (s —8) —w(s) =0 withw(s) =1, —6§<s<0;w(1) =1.
Example 6.2. ew'(s) + (1+s)w'(s—8) —eSw(t) =1; w(s) =0, —§ < s < 0;

w(l) =1.

Example 6.3. sw'(s)—w (s —8)—w(s)=0; w(s)=1,-8§ <s<0;w(l) = —1.
Example 6.4. sw'(s) —eSw'(s = 8) —sw(s) =0, w(s) =1,—-8 <s < 0; w(l) = 1.



Example 6.5. Consider the following singularly perturbed nonlinear delay differential equation

ew''(s) + wis)w'(s — §) — w(s) =0,

under the interval and boundary conditions w(s) = 1, =6 <s< 0, w(l) = 1.

Table 1. The maximum absolute errors in Example 6.1 with € = 0.1

0=03x¢g 0=0.6x¢ 0=09x¢
N Our method | Results in | Our method | Results in | Our method | Results in
[12] [12] [12]
64 9.30e-04 3.42e-03 | 1.40e-03 3.43e-03 1.40e-03 3.43e-03
128 | 2.66¢-04 1.66e-03 | 5.97¢-04 1.66¢-03 7.13e-04 1.66¢-03
256 | 6.93¢-05 8.11e-04 | 1.94¢-04 8.15¢-04 3.58¢e-04 8.12¢-04
512 | 1.75e-05 4.03e-04 | 5.27e-05 4.02¢-04 1.79¢-04 4.03e-04

Table 2. The maximum absolute errors in Example 6.2 with € = 0.1

0=0.1x¢e 0=04x%x¢
N Our method | Results in | Our method | Results in
[12] [12]
64 4.18e-04 8.10e-03 | 5.19¢-04 1.00e-02
128 1.74e-04 5.11e-03 | 2.58e-04 5.07e-03
256 1.21e-04 2.55e-03 | 2.21e-04 2.57e-03
512 1.15e-04 1.29e-03 | 2.33e-04 1.26e-03

Table 3. The maximum absolute errors in Example 6.3 with ¢ = 0.01

N =102 N =103 N = 10*
) Our Results in Our Results in Our Results in
method [24] method [24] method [24]
0.000 | 2.00e-03 1.81e-01 2.03e-04 | 2.42¢-02 | 4.90e-06 2.51e-03
0.007 | 2.00e-03 1.20e-01 1.55¢-04 | 1.45¢-02 | 1.63¢-06 1.48¢-03
0.015 | 2.00e-03 8.66¢e-02 8.48e-05 | 9.96e-03 | 7.52¢-07 1.01e-03
0.025 | 2.00e-03 6.46¢-02 3.86e-05 | 7.17e-03 | 3.82¢-07 7.20e-04
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Table 4. The maximum absolute errors in Example 6.4 with ¢ = 0.1

N =102 N =103 N = 10*
6 | Our method | Results in | Our method | Results in Our Results in
[24] [24] method [24]
0.01 | 5.27e-04 5.75e-03 5.73e-06 | 5.08¢-04 | 5.74e-08 5.02e-05
0.03 | 2.65¢e-04 3.93¢-03 2.73¢-06 | 3.61e-04 | 2.74e-08 3.58e-05
0.06 | 1.23e-04 2.70e-03 1.24e¢-06 | 2.55¢-04 | 1.24e-08 2.53¢-05
0.08 | 8.19¢-05 2.24e-03 8.23e-07 | 2.14e-04 | 8.22e-09 2.13e-05
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Table 5. Maximum errors in Example 6.5 for § = 0.8¢ and different values of € and N

e/N 64 128 256 512 1024 2048

Our method

1071 1.1651e-03 3.2884e-04 8.7186e-05 2.2435e-05 5.6893e-06 1.4325e-06
1072 3.3515e-03 1.0682e-03 2.9959e-04 7.9176e-05 2.0341e-05 5.1542e-06
1073 3.8819e-03 1.2730e-03 3.6165e-04 9.6155e-05 2.4775e-05 6.2866e-06
10™* 3.9415e-03 1.2967e-03 3.6893e-04 9.8159e-05 2.5299e-05 6.4208e-06
107> 3.9476e-03 1.2991e-03 3.6967e-04 9.8363e-05 2.5352e-05  6.4344e-06
107 3.9482e-03 1.2994e-03 3.6974e-04 9.8383e-05 2.5358e-05 6.4358e-06
1077 3.9482e-03 1.2994e-03 3.6975e-04 9.8385e-05 2.5358e-05 6.4359¢-06
1078 3.9482e-03 1.2994e-03 3.6975e-04 9.8385e-05 2.5358e-05  6.4359¢-06
Results in [23]

1071 6.036E-02 1.973E-02 5.134E-03 1.276E-03  3.185E-04 7.963E-05
1072 5.894E-02 1.902E-02 5.945E-03 1.812E-03  5.279E-04 1.444E-04
1073 5.891E-02 1.895E-02 5.906E-03 1.791E-03  5.164E-04 1.382E-04
10™* 5.893E-02 1.902E-02 5.921E-03 1.789E-03  5.153E-04 1.376E-04
107> 5.892E-02 1.901E-02 5.943E-03 1.806E-03  5.172E-04 1.376E-04
107 5.899E-02 1.901E-02 5.938E-03 1.806E-03  5.250E-04 1.409E-04
1077 5.973E-02 1.902E-02 5.938E-03 1.805E-03  5.237E-04 1.420E-04
1078 6.713E-02 1.915E-02 5.940E-03 1.805E-03  5.234E-04 1.416E-04

7. Numerical scheme without fitting factor for big delay

If the delay § = o(¢), the layer behaviour of the solution is preserved in both the cases i.e.
Taylor's series for the term holding the shift parameter and the special mesh-type developed in
[11]. If the delay parameter §(¢) is of order O(¢e), the layer behaviour of the solution is no

longer preserved and oscillatory behaviour is shown in the solution.



For this reason, with the help of a special type mesh developed in [11], we are building a

numerical scheme consisting of a non-polynomial spline method i.e. the term shift parameter
o . . N 5
is lying on the mesh point after discretization and selects the mesh as h = — where m = kl, [

is the mantissa of & and k is a positive integer.
Using this mesh, Eq. (1) and (2) leads to
ew; = 1(5;) = P(S)Wi_m — Q(s)W;, (27)
with w;=¢;,Vi=-m-m+1,...,0 and wy =7. (28)
Now use the Eq. (4) from the non-polynomial spline together with the following finite
difference approximations of the first-order derivatives,

' —Wit1+4W;—3Wi_1

wl_, = _ 3Wip—4witwig
2h

+0(h?), wiy, = =L+ 0(RY), wi = =L+ 0(h?),

we get

£
ﬁ(Wiﬂ —2w; + wi_y)

_ (—aPHl N @ N 30(Pi_1) ' (2aPi+1 B ZaPi_1> _
2h h 2h tmm-1 h h t-m

+<%_@+—api_l)w- —aQ_1W;_1 — 2BQiw; — aQ; 1 w;
2h h 2h i-m+1 i-1%i-1 ivi i+1Wit1

+ (leRi+1 + ZIBRL + aRi_l).
(29)

Exercising on Eq. (29), the difference scheme becomes
Ei1Wi—y + Fw; + G Wigy + UiWi_gmiq + Viwio + Wiwi_p_y = Hy, (30)
vVi=1,2,..,N—1.Here

aPi_l ZBPI. 3aPi+1

2
By =5+ Qi Fy = =35+ 2BQu Gia =35+ Qi Uy = ==+ 4+ =0,
2aP;,_y 2aPiy; -~ 3aP;_y 20P; aPiyq
v, = hl _ hl W, = — 2}; . Zhl+ Zlh JH; = aR;_; + 2BR; + aR; 4.

By using the boundary conditions Eq. (28), the scheme Eq. (30) can be written as

Ei_qWi_1 + Fiw; + GipaWipq = Hi = UiWi_pmiq = ViWiogy — Wiwi_pp_, V1 < i< m —1,
Ei_1Wi—q + Fw; + Gy iWigy + UiWimiq = Hy = Viwi_ — Wiw;_py_y for i =m,
Ei_iWi_q + Fw; + Gy W1 + UiWi_pi1 + Viwi_p = Hi — Wiw;_p_q fori=m+1,
Ei_ Wiy + Fw; + Gy qWipq + UiWiippr + Viwie + Wiwj_ppy = H; , YV m+2 < i< N —-1.

€2y

12
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The system of Eq. (31) is solved using partial pivoting in the Gauss elimination method.
Using the expansion of Taylor’s series about w;_,, on Eq. (30) and with Eq. (27), we get the

local truncation error to the scheme as
Ti(h) = e[1 = 2(a + BI?w” (&)
+H{S - 12alw® @) + [ [-2a + BlpiEOw P G |} 1t + 0(h%). Vs < & < s
It is very clear that T;(h) = O(h*) for any arbitrary choice of @ and f whose sum is

1 .
equal to 7 Thus, the above scheme is a second-order convergence.

8. Numerical scheme with a fitting parameter for big delay

The behaviour of the layer can modify its character and even get damaged if the delay is greater
than that of a perturbation parameter, or oscillating behaviour can occur even in the case of a
given type mesh [11]. In this respect, we have tried to introduce a fitting parameter into the
non-polynomial spline scheme, which was defined in the previous section, with the special type
mesh. The fitting parameter is determined by the theory of singular perturbations. Now,

inserting a fitting parameter o(p) in Eq. (29), we get

a(p)e

T Wip1 —2w; + wy_q)

_(—aPi1 | BP; 3“Pi—1>
_( oh T T on t-m-1

2aPiy,  2aP; 4 —3aPi; PP aPi
+< n h )Wi"" ( oh k' 2 )Wi‘m“
—aQi_Wwi_1 — 2pQ;w; — aQi41Wiy1 + (@R + 2BR; + aR;_,),
(32)

vi=12,..,N—1.
Multiplying Eq. (32) by h and taking the limit as h — 0, we get
m%(w(ih + h) = 2w(ih) + w(ih — b))
= (a+ ﬁ)p(O)%i_r)rg(W(ih — mh — h) —w(ih — mh + h)).
(33)
Using Eq. (9) into Eq. (33) and exercising, we get
o = p(a + B)P(0)eP@™r coth (@), (34)

is the fitting parameter for the layer at left-end.
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Using the procedure as in right-end layer on Eq. (32) and exercising, we get
o = p(a+ BIP(0)e PO™ coth (“22), (35)

is the fitting parameter for the layer at right-end. Hence, the difference scheme for Eq. (32) is

Ei_lwi_l + FiWi + Gi+1Wi+1 + UiWi—m+1 + ViWi—m + W/iwi—m—l = Hi,Vi = 1,2,. . .,N — 1. (36)

__o¢ __ 20¢ _ €0 __ aPi_q , 2BP;
Here, Eiy = 75+ aQicy, Fi = =25 +2BQs Gt = 5+ aQisy, Uy = =2 + 220 4
h h h 2h 2h
3aPi+1 V 2aPi_1 ZaPi+1 e 3aPi_1 ZBPL aPi+1 G
— V= — - , = — — = aR:_ 2BR: aR: ...
2n 2L h h ) i 2h 2h + 2n i—-1 + .B i + i+1

Utilizing the boundary conditions Eq. (28), the scheme Eq. (36) can be written as

EioqWi—q + Fiw; 4 GioaWisq = Hi — UiWi_imiq — ViWiogy — Wiwi_pp_, V1 < i<m —1,
Ei_1Wi_q + FW; + Gy iWigy + UiWimiq = Hy = Viwi_ — Ww;_p_y for i =m,
EioyWi_1 + Fiw; + GipqWigq + UiWiipyq +Viwi_p = Hy = Wiw;_py  fori=m+1,
Ei_iWi_q + Fiw; + Gy qWipq + UiWi_ iy + Viwjey + Wiwi_pyy = H; ,Vm+2<i <N —1.
(37)

The system Eq. (37) is solved by partial pivoting in the Gauss elimination method.

9. Numerical illustrations

To demonstrate the method competence, three problems are discussed. Using the principle of

double mesh EN = max|w” — w2V¥|, with and without fitting parameter, the maximum errors
i 20 gp

0<isN

for the examples are calculated. The fitting parameter introduced in the scheme Eq. (32) is to
handle the layer behaviour, when the shift is larger than the perturbation. The computed
solutions of the problem are illustrated through the graphs, with and without fitting parameter
for different values of and of §. Tables 6-11 display for the maximum absolute errors for the
examples. The results in [11] are compared to the computed errors. It was found that the

method proposed provides solutions that are more accurate than the approach suggested in [11].

Example 9.1. ew'(s) + w'(s — §) + w(s) = 0 with w(s) =1,V-§ <s <0,w(1) = 1.
Example 9.2. w'(s) + 0.25w'(s — 8) —w(s) = Owithw(s) =1,V-6 <s < 0,w(1) = 0.
Example 9.3. ew'(s) —w'(s —=8) + w(s) = 0 withw(s) =1,V-§ <s <0, w(l) = —1.



Table 6. The maximum errors in Example 9.1 for ¢ =0.1

N 5=0.03 5=0.05 5=0.08
Results without fitting parameter
100 7.3234¢-004 9.8171e-004 1.5000e-003
200 1.8325¢-004 2.4596e-004 3.6947e-004
300 8.1441e-005 1.0930e-004 1.6414e-004
400 4.5805e-005 6.1488e-005 9.2331e-005
500 2.9318e-005 3.9352¢-005 5.9087e-005
Results with fitting parameter
100 3.9018e-004 5.3208e-004 6.7428e-004
200 9.7620e-005 1.3311e-004 1.6872e-004
300 4.3393e-005 5.9170e-005 7.5003e-005
400 2.4410e-005 3.3285e-005 4.2190e-005
500 1.5623e-005 2.1303e-005 2.7002e-005
Results in [11]
100 2.0790e-003 5.3420e-003 38340e-002
200 1.1020e-003 3.2160e-003 2.1830e-002
300 7.4900e-004 2.2860e-003 1.5200e-002
400 5.6800e-004 1.7700e-003 1.1650e-002
500 4.5700e-004 1.4440e-003 9.4430e-003
Table 7. The maximum errors in Example 9.1 fore =0.01
N o=lxe¢ o0=2x¢ 0=3x¢ o=4xe¢

500 | 2.6000e-003 | 2.3000e-003 | 2.1000e-003 8.7507e-004

1000 | 6.4510e-004 | 5.6801e-004 | 5.2548e-004 | 2.1969¢-004

1500 | 2.8690e-004 | 2.5258e-004 | 2.3366e-004 | 9.7715e-005

2000 | 1.6144e-004 | 1.4210e-004 | 1.3146e-004 | 5.4979e-005

2500 | 1.0333e-004 | 9.0955e-005 | 8.4139¢-005 | 3.5191e-005

3000 | 7.1763e-005 | 6.3166e-005 | 5.8432e-005 | 2.4440e-005
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Table 8. The maximum errors in Example 9.2 for 6 =0.03

e N =100 N =200 N =400
Results without fitting parameter
2! 7.2602¢-007 1.8150e-007 4.5374e-008
27 2.9528e-006 7.3816e-007 1.8454¢-007
27 1.1415e-005 2.8533e-006 7.1329¢-007
2 4.3543e-005 1.0882¢-005 2.7204¢-006
27 1.8681e-004 4.6707e-005 1.1676e-005
2° 1.0000e-003 2.5198e-004 6.3032¢-005
27 6.5000e-003 1.7000e-003 4.1298e-004
Results with fitting parameter

- 5.0506e-007 1.2627e-007 4.5374e-008
27 1.6053e-006 4.0133e-007 1.8454¢-007

B 4.2599¢-006 1.0650e-006 7.1329¢-007
2 2.3539¢-005 5.8863e-006 2.7204e-006
27 1.3675e-004 3.4211e-005 1.1676e-005
27° 7.3094e-004 1.8316e-004 6.3032¢-005
27 3.3000e-003 8.2563e-004 4.1298e-004

Results in [11]

- 2.0800e-004 1.0400e-004 5.2000e-005
27 6.1200e-004 3.0700e-004 1.5400e-004
27 1.6340e-003 8.2600e-004 4.1500e-004
2 4.2470e-003 2.1770e-003 1.1020e-003
27 1.1675e-002 6.1590e-003 3.1660e-003
27° 3.3680e-002 1.8811e-002 9.9520e-003
27 9.7727e-002 5.9836e-002 3.3166e-002

Table 9. The maximum errors in Example 9.2 for £ =0.01
N o=1xe¢ o0=2x¢& 0=3x¢& o=4x¢g
500 | 5.4605e-005 | 7.4563e-005 | 7.9524e-005 | 7.7839e-005
1000 | 1.3655e-005 | 1.8645e-005 | 1.9885e-005 1.9464e-005
1500 | 6.0690e-006 | 8.2870e-006 | 8.8382e-006 | 8.6510e-006
2000 | 3.4138e-006 | 4.6615¢-006 | 4.9716e-006 | 4.8662e-006
2500 | 2.1849¢-006 | 2.9834e-006 | 3.1818e-006 | 3.1144e-006
3000 | 1.5173e-006 | 2.0718e-006 | 2.2096e-006 | 2.1628e-006
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Table 10. The maximum error in Example 9.3 for ¢ = 0.1

N 5=0.03 5 =0.05 5=0.08
Results without fitting parameter
100 4.7497e-004 3.4420e-004 2.3347e-004
200 1.1871e-004 8.6029e-005 5.8379e-005
300 5.2762e-005 3.8234e-005 2.5945e-005
400 2.9678e-005 2.1506e-005 1.4594¢-005
500 1.8993e-005 1.3764¢-005 9.3403e-006
Results with fitting parameter
100 5.3643e-004 5.9925e-004 5.3581e-004
200 1.3414¢-004 1.4988¢-004 1.3405e-004
300 5.9625¢-005 6.6620e-005 5.9586¢-005
400 3.3540e-005 3.7475e-005 3.3518e-005
500 2.1465e-005 2.3985e-005 2.1452e-005
Results in [11]
100 7.6000e-004 1.1050e-003 1.4140e-003
200 3.8000e-004 5.5200e-004 7.0700e-004
300 2.5300e-004 3.6800e-004 4.7200e-004
400 1.9000e-004 2.7600e-004 3.5400e-004
500 1.5200e-004 2.2100e-004 2.8300e-004
Table 11. The maximum error in Example 9.3 for £ =0.01
N o=1xeg o=2x¢g 0=3xg o=4xeg

500 7.1033e-004 | 3.4103e-004 | 2.0886e-004 1.7059e-004

1000 1.7750e-004 | 8.5246e-005 | 5.2237e-005 | 4.2912e-005

1500 | 7.8884e-005 | 3.7886e-005 | 2.3216e-005 1.9094¢e-005

2000 | 4.4371e-005 | 2.1311e-005 1.3059¢-005 1.0745e-005

2500 | 2.8397e-005 1.3639e-005 | 8.3579e-006 | 6.8781e-006

3000 1.9720e-005 | 9.4714e-006 | 5.8040e-006 | 4.7770e-006
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10. Conclusions

Numerical treatment of second-order linear convention-diffusion equations with a small delay
in the convention term having layer behaviour is considered. A finite difference scheme is
constructed using the non-polynomial spline and its first-order derivative continuity condition
at the common node. If the delay § = o(¢), the term containing the delay is expanded in
Taylor’s series and a fitted difference scheme is constructed for a layer at the left-end and right-
end. The method is analyzed for convergence. For the Examples 6.1-6.5, Tables 1-5 shows the
maximum absolute errors in the solutions. Comparing the computed errors with the results
suggested in [12, 23, 24], it was found that the proposed method yielded accurate results
relative to the approaches suggested in [12, 23, 24].

When the delay parameter & () is of order O(€), the behaviour of the layer can alter its
nature and even be demolished or the solution displays oscillatory behaviour. In this case, a
special mesh is applied so that, the term having delay parameter lies on the mesh points after
the discretization and then the non-polynomial method is applied. Tables 6-11 of the numerical
examples show the maximum absolute errors. Figures 1 - 8§ demonstrate the solutions of the
examples for different values of the delay parameter. From Figure 1, Figure 3, Figure 5 it is
noticed that, when the value of delay is greater than the perturbation, the solution involves
oscillations. Further, if we increase the & further, the oscillations which are restricted in the
layer region are extend over whole domain and even move from one side to another.

To deal with these oscillations in solutions, we tried a new scheme with the use of the
special type mesh introduced in [11] by adding a fitting parameter in the non-polynomial spline
method. Examples 9.1-9.3 are considered, and the maximum absolute error was determined

using the principle of double mesh EVN = max |w¥ —wZ¥|. InFigures 2, 4, 6 of the computed
<i<

solution, we showed the graphs with the fitting parameter for different values of § =0(¢) and
compared to the graphs without fitting factor. It is noticed that oscillations are regulated in
solutions and layer behaviour is preserved, while the layer behaviour of the solution is
preserved in the case of the layer at right-end (Figure 7 and 8), although the delay is of O(¢).
For the Examples 9.1-9.3, the maximum absolute errors with § =0 (¢), are tabulated in Tables
7,9, 11. It is observed from the tabulated results that the maximum absolute errors are also
decreasing as the mesh size 4 decreases.

Based on the graphs of the solutions in Fig 1-8, it has also been concluded that the
method proposed with a fitting parameter had a great advantage in regulating the oscillation in
the solutions of the linear singularly perturbed differential delay equations.

18
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Figure 1. Numerical solution in Example 9.1 for ¢ = 0.01 and § = 1.5¢ without fitting

parameter.

Figure 2. Numerical solution in Example 9.1 for € = 0.01 and § = 1.5¢ with fitting

parameter.
x 10
1.5 T T T T T T T T T
1
0.5~
=
o] —
-0.5 — —
o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 3. Numerical solution in Example 9.1 for € = 0.01 and § = 2.5¢ without fitting
parameter.



20
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Figure 4. Numerical solution in Example 9.1 for ¢ = 0.01 and § = 2.5¢ with fitting

parameter.
1.5 T T T T T T T
-+ 3=0.5¢
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o 0o.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 5. Numerical solution in Example 9.2 for € = 0.01 with different values of § without
fitting parameter

15 T T T T T T T T T

0.2 r r r r r r r r r
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 6. Numerical solution in Example 9.2 for ¢ = 0.01 with different values of
with fitting parameter
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Figure 7. Numerical solution in Example 9.3 for ¢ = 0.01 with different values of §
without fitting parameter
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Figure 8. Numerical solution in Example 9.3 for ¢ = 0.01 with different values of §
with fitting parameter
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