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Abstract In this article, we propose 3-valued seman-
tics of the logics compatible with Stone and dual Stone

algebras. We show that these logics can be considered
as 3-valued by establishing soundness and completeness
results. We also establish rough set semantics of these

logics where the third value can be interpreted as not

certain but possible.
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1 Introduction

In 1940, Moisil introduced 3-valued  Lukasiewicz alge-

bras as the algebraic models of 3-valued  Lukasiewicz

logic.

Definition 1 ([1]) An abstract algebra (A,∨,∧,∼,▽, 0, 1)

is a 3-valued  Lukasiewicz algebra if for any x, y ∈ A:

1. (A,∨,∧,∼, 0, 1) is a De Morgan algebra, i.e.,

(a) ∼∼ x = x,

(b) ∼ (x ∨ y) =∼ x∧ ∼ y.

2. ∼ x ∨ ▽x = 1,

3. x∧ ∼ x =∼ x ∧ ▽x,
4. ▽(x ∧ y) = ▽x ∧ ▽y.

It is well-known that the various algebras appear as

reduct algebras [1] of the 3-valued  Lukasiewicz algebras.

So, it is natural to ask the question.

– Can we provide 3-valued (n-valued) logics compat-

ible with reduct algebras of 3-valued  Lukasiewicz

algebras?
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In [2], Kumar and Banerjee answered this question af-

firmatively in the case of Kleene algebras. They intro-

duced a logic LK for Kleene algebras, which is sound

and complete with respect to a 3-valued consequence

relation. In this paper, we show that the logic of Stone

(dual Stone) algebras are sound and complete with re-

spect to a 3-valued semantics defined via a 3-valued

consequence relation.

In other aspects of this paper, we make explicit con-
nections between logic of Stone (dual Stone) algebras

and rough sets. Rough set theory, introduced by Pawlak

[3,4] as a tool to deal with uncertainty in an information

system. This deals with a domain U and an equivalence

relation R on U . In Pawlakian rough sets theory, the
equivalence relation R is interpreted as the indiscerni-

bility relation on the domain U . xRy if and only if x
is indiscernible to y with respect to attributes present

in the information system. The pair (U,R) is called a

(Pawlak) approximation space. For any A ⊆ U , one de-

fines the lower and upper approximations of A in the

approximation space (U,R), denoted LA and UA re-
spectively, as follows. For x ∈ U , let [x] denote the

equivalence class of x modulo R,
LA :=

⋃

{[x] : [x] ⊆ A},

UA :=
⋃

{[x] : [x] ∩A 6= ∅}. (*)

Definition 2 Let (U,R) be an approximation space.

For each A ⊆ U , the ordered pair (LA,UA) is called a

rough set in (U,R).

Notation 1 RS denotes the collection of all rough sets
for an approximation space (U,R).

Notation 2 Let U be a set. Then

– P(U) denote the power set of U .

– for any A ⊆ U , Ac denote the set theoretic comple-

ment of A in U .
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In rough set theory, the definition (∗) has been in-

terpreted in the following manner.

1. x certainly belongs to A, if x ∈ LA, i.e. all objects
which are indiscernible to x are in A.

2. x certainly does not belong to A, if x /∈ UA, i.e. all

objects which are indiscernible to x are not in A.

3. Membership of x in A is not certain, but possible,
if x ∈ UA \ LA. This is the case when some ob-

jects indiscernible to x are in A, while some others,
also indiscernible to x, are in Ac. In rough set ter-

minology, sets of the form UA \ LA are referred as

boundary of A.

These interpretations have led too much work in

the study of connections between 3-valued algebras or

logics and rough sets, see for instance [5–10,2,11,12].

Its worth mention here some recent works.

– In [2], Kumar and Banerjee represented a given Kl-

-eene algebra in terms of Kleene algebra formed
by rough sets for some appropriate approximation
space. This imparted the 3-valued and rough set se-

mantics of the logic LK (of Kleene algebras). The

interpretations 1, 2 and 3 have been explicitly cap-

tured in [13].
– In [11], Panicker and Banerjee adopted yet other

definition of rough sets (first discussed by Pagliani
[7]) to explore the C-algebraic structures of rough
sets. As in [7], for an approximation space (U,R)

and A ⊆ U , the pair (LA, (UA)c) is called a rough

set. The collection of all the rough sets for an ap-
proximation space (U,R) forms a C-algebras. Fur-

ther they have proved that a C-algebra is embed-
dable into C-algebra formed by rough sets for some
appropriate approximation space. It is worth men-
tion here that the C-algebras are the algebraic coun-

terpart of McCarthy’s three-valued logic (cf. [11])

and unlike our case where the set of truth values of

proposed logic LS is a Stone algebra, a C-algebra

may not form even a semi-lattice.

In the last part of this article, we capture interpreta-

tions 1, 2 and 3 via logics compatible with Stone and

dual Stone algebras.

The rest of this paper is organized as follows. In
Section 2, we present some basic results of Stone alge-

bras that will be used in the sequel. In Section 3, we
extend the distributive lattice logic [14] to obtain the
logic LS (LDS) of Stone (dual Stone) algebras. We fur-

ther propose a 3-valued consequence relation �
S
1 (�DS

0 )

and show that the logic LS (LDS) is sound and com-

plete with respect to the �
S
1 (�DS

0 ). In Section 4, we

provide the rough set semantics of the logic LS (LDS)

and capture the the interpretations 1, 2 and 3.

2 Stone algebras: Some known facts

Stone algebras (lattices) were introduced by Gratzer
and Schmidt [15], and have been extensively studied in
literature ([16–19], cf. [20]).

Definition 3 [15] An algebra S := (S,∨,∧,∼, 0, 1) is

a Stone algebra if

1. (S,∨,∧,∼, 0, 1) is a bounded distributive pseudo com-

plemented lattice, i.e. ∀a ∈ S, ∼ a = max{c ∈ S :

a ∧ c = 0} exists.
2. ∼ a∨ ∼∼ a = 1, for all a ∈ S.

The dual notion of a given Stone algebra is known as

dual Stone algebra. To make this article self-contained,

we explicitly define the dual Stone algebra.

Definition 4 An algebra DS := (DS,∨,∧,¬, 0, 1) is a
dual Stone algebra if

1. (DS,∨,∧,¬, 0, 1) is a bounded distributive dual pseudo

complemented lattice, i.e. ∀a ∈ DS, ¬a = min{c ∈
DS : a ∨ c = 1} exists.

2. ¬a∧¬¬a = 0, for all a ∈ DS (dual Stone property).

Let B = (B,∨,∧, 0, 1) be a Boolean algebra. Con-

sider the set B[2] := {(a, b) : a ≤ b, a, b ∈ B}. It is well

known that B[2] = (B[2],∨,∧, (0, 0), (1, 1)) is a bounded
distributive lattice, where ∨ and ∧ are componentwise

join and meet inherited from B.
Moreover, we have the following results.

Proposition 1 [1,21] Let B = (B,∨,∧,c , 0, 1) be a
Boolean algebra.

1. B[2]
∼ := (B[2],∨,∧,∼, (0, 0), (1, 1)) is a Stone alge-

bra, where, for (a, b) ∈ B[2], ∼ (a, b) := (bc, bc).

2. B
[2]
¬ := (B[2],∨,∧,¬, (0, 0), (1, 1)) is a dual Stone

algebra, where, for (a, b) ∈ B[2], ¬(a, b) := (ac, ac).

Let 2 = ({0, 1},∨,∧,∼, 0, 1) be the 2-element Boolean

algebra and 3 = ({0, a, 1},∨,∧, 0, 1) be the 3-element

lattice with 0 ≤ a ≤ 1. Let 3∼ denote the Stone algebra

(3,∼) with ∼ 0 = 1 =∼ a, ∼ 1 = 0 and 3¬ denote the
dual Stone algebra (3,¬) with ¬0 = 1, ¬1 = 0 = ¬a.

Theorem 1 [22,21]

1. A Stone algebra S = (S,∨,∧,∼, 0, 1) is embedded
into 2

I × 3
J
∼, for some index sets I and J .

2. A dual Stone algebra DS = (DS,∨,∧,¬, 0, 1) is em-

bedded into 2
I × 3

J
¬, for some index sets I and J .

Now, as 2 is embedded into algebras 3∼ and 3¬, hence

the above theorem can be restated in terms of 3∼ and
3¬. So, in particular if B is a Boolean algebra, then the

Stone algebra B[2]
∼ and dual Stone algebra B

[2]
¬ can be

embedded into 3I
∼ and 3J

¬ respectively, for appropriate

index sets I and J .
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Definition 5 [23] Let L := (L,∨,∧, 0, 1) be a complete

lattice.

(i) An element a ∈ L is said to be completely join

irreducible, if a =
∨

S implies that a ∈ S, for every

subset S of L.

Notation 3 Let JL denote the set of all completely

join irreducible elements of L, and J(x) := {a ∈
JL : a ≤ x}, for any x ∈ L.

(ii) A set S is said to be join dense in L, provided

for every element a ∈ L, there is a subset S′ of S

such that a =
∨

S′.

The illustration of importance of completely join irre-

ducible elements can be seen by a result of Birkhoff.

Lemma 1 [24] Let L and K be two completely dis-
tributive lattices. Further, let JL and JK be join dense

in L and K, respectively. Let φ : JL → JK be an order

isomorphism. Then the extension map

Φ : L → K given by Φ(x) :=
∨

(φ(J(x))) (where J(x) :=
{a ∈ JL : a ≤ x}), x ∈ L, is a lattice isomorphism.

In [2] we characterized the completely join irreducible

elements of lattices 3I and B[2], where B is a complete

atomic Boolean algebra.

Let i, k ∈ I. Denote by fx
i , x ∈ {a, 1}, the following

element in 3I .

fx
i (k) :=

{

x if k = i

0 otherwise

Proposition 2 [2]

1. The set of completely join irreducible elements of 3I

is given by:

J3I = {fa
i , f

1
i : i ∈ I}.

Moreover, J3I is join dense in 3I .
2. Let B be a complete atomic Boolean algebra. The

set of completely join irreducible elements of B[2] is
given by

JB[2] = {(0, a), (a, a) : a ∈ JB}.

Moreover, JB[2] is join dense in B[2].

Figure 1 shows the Hasse diagrams of J3I and JB[2] .

fa
i

f1
i

fa
j

f1
j

fa
k

f1
k

(0, ai)

(ai, ai)

(0, aj)

(aj , aj)

(0, ak)

(ak, ak)

Fig. 1: Hasse diagram of J3I

We also established the following isomorphisms.

Theorem 2 [2]

1. The sets of completely join irreducible elements of

3I and (2I)[2] are order isomorphic.

2. The algebras 3I and (2I)[2] are lattice isomorphic.

Now, we know that the pseudo and dual pseudo nega-

tions (if exist) are defined via the order of the given

partially ordered sets. Moreover, Stone and dual Stone

algebras are equational algebras. Hence, using Lemma

1 and Theorem 2, we can re-write the Theorem 1 as

Theorem 3 1. The Stone algebras 3I
∼ and (2I)[2]∼ are

isomorphic.
2. The dual Stone algebras 3I

¬ and (2I)
[2]
¬ are isomor-

phic.
3. Let S be a Stone algebra. Then there is an (index)

set I such that S can be embedded into Stone algebra

(2I)[2]∼ .

4. Let DS be a dual Stone algebra. Then there is an

(index) set I such that DS can be embedded into

dual Stone algebra (2I)
[2]
¬ .

3 3-valued semantics of logics for Stone and

dual Stone algebras

In this section we focus on the study of the logics cor-

responding to the classes of Stone and dual Stone al-

gebras and the structures B[2]
∼ and B

[2]
¬ . Our approach

to the study is motivated by Dunn’s 4-valued semantics

of the De Morgan consequence system [25]: �0,1 (or �0

or �1), wherein valuations are defined in the 4-element

De Morgan algebra. The 4-valued semantics arises from

the fact that each element of a De Morgan algebra can

be looked upon as a pair of sets.

In a similar way, we exploit Theorem 3 to provide a

3-valued semantics of the logic for Stone algebras. How-

ever, by an easy consequence of Stone’s representation

theorem and Theorem 3, we have:

Theorem 4 1. Let S = (S,∨,∧,∼, 0, 1) be a Stone
algebra. Then there is a set U such that S can be

embedded into Stone algebra formed by (P(U))[2]∼ .

2. Let DS = (DS,∨,∧,¬, 0, 1) be a dual Stone algebra.

Then there is a set U such that DS can be embedded

into dual Stone algebra formed by (P(U))
[2]
¬ .

3.1 Bounded Distributive Lattice Logic with Negation

Bounded distributive lattices are algebraic models of
the bounded distributive lattice logic (BDLL), an ex-

tension of distributive lattice logic introduced by Dunn
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[14]. The study of logics in this section is based on

BDLL. Let us present the logic. The language consists
of

– the set P of propositional variables, whose elements

are denoted by p, q, r, . . ..

– propositional constants ⊤ and ⊥,
– logical connectives ∨ and ∧.

The set F of well-formed formulas of the logic is then

given by the scheme:
α:= p |⊤|⊥| α ∨ β | α ∧ β ,

where p is a propositional variable.

Definition 6 [25] The bounded distributive lattice logic

(BDLL) is a binary consequence system ⊢⊆ F×F with

the following postulates and rules:

1. α ⊢ α (Reflexivity),

2. α ⊢ β, β ⊢ γ/α ⊢ γ (Transitivity),

3. α ∧ β ⊢ α, α ∧ β ⊢ β (Conjunction Elimina-

tion),

4. α ⊢ β, α ⊢ γ/α ⊢ β ∧ γ (Conjunction Intro-
duction),

5. α ⊢ α ∨ β, β ⊢ α ∨ β (Disjunction Introduc-

tion),

6. α ⊢ γ, β ⊢ γ/α ∨ β ⊢ γ (Disjunction Elimi-

nation),
7. α∧(β∨γ) ⊢ (α∧β)∨(α∧γ) (Distributivity),

8. α ⊢ ⊤ (Top).

9. ⊥ ⊢ α (Bottom).

The postulates and rules from 1 to 7 precisely define the

distributive lattice logic. The term α ⊢ β in the above

representation of logic is called a consequent. Intuitively,

α ⊢ β reflects that β is a consequence of α.

Let us add a unary connective − to the language of

BDLL. Let F− be the set of formulas defined using the

following rule:

α:= p |⊤|⊥| α ∨ β | α ∧ β | − α,

By an extension L of BDLL, we mean a binary con-
sequence system ⊢⊆ F− × F− which contains all the

postulates and rules of the logic BDLL. By α ⊢L β, we

shall mean that the consequent α ⊢ β is derivable in

the logical system L (where the notion of derivability

is defined in the classical manner).

In this paper, the various semantics of a logic L are
defined using valuations.

Definition 7 Let A = (A,∨,∧,−, 0, 1) be a lattice-

based algebra, where − is a unary operation on A. A

map v : F− → A is called a valuation on A if ∀α, β ∈
F−

1. v(α ∧ β) = v(α) ∧ v(β),

2. v(α ∨ β) = v(α) ∨ v(β),

3. v(−α) = −v(α),
4. v(⊥) = 0, v(⊤) = 1.

The notion of local (global) validity is defined in the

following manner:

Definition 8 Let (A,∨,∧,−, 0, 1) be a lattice-based

algebra.

– A consequent α ⊢ β is valid in A under the valuation
v, if v(α) ≤ v(β). If the consequent is valid under

all valuations on A, then it is valid in A, and denote

it as α �A β.

Let A be a class of algebras of the type (A,∨,∧,−, 0, 1).

– If the consequent α ⊢ β is valid in each algebra of
A, then we say α ⊢ β is valid in A, and denote it as

α �A β.

3.2 The logics LS , LDS and their 3-valued Semantics

Let U be a set and A ⊆ U . Then for any x ∈ U , ei-

ther x ∈ A or x ∈ Ac. This distinguished property

of ’∈’ leads to the True-False semantics of classical

propositional logic. Now, if v is a valuation from clas-

sical propositional sentences to P(U), then v deter-
mines a family of 2-valued valuations {vx : x ∈ U}
on classical propositional sentences, where vx(γ) = 1 if

x ∈ v(γ) and vx(γ) = 0 if x /∈ v(γ). Utilizing this fact

along with Stone’s representation theorem, one estab-

lishes the equivalency between True-False semantics,

set theoretic semantics and algebraic semantics of clas-

sical propositional logic.
In this section, we follow the same approach to es-

tablish the completeness results for LS and LDS (de-

fined below).

Definition 9 Let ∼ be a unary connective added to

the language of BDLL. Then, for α, β ∈ F∼, LS de-

notes the logic BDLL along with following rules and

postulates.

1. α ⊢ β/ ∼ β ⊢∼ α(Contraposition)

2. ∼ α∧ ∼ β ⊢∼ (α ∨ β) (∨-linearity).

3. ⊤ ⊢∼ ⊥ (Nor).
4. α ∧ β ⊢ γ/α∧ ∼ γ ⊢∼ β,

5. α∧ ∼ α ⊢ ⊥,

6. ⊤ ⊢∼ α∨ ∼∼ α,

Definition 10 Let ¬ be a unary connective added to

the language of BDLL. Then, for α, β ∈ F¬, LDS de-

notes the logic BDLL along with following rules and

postulates.

1. α ⊢ β/¬β ⊢ ¬α (Contraposition)
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2. ¬(α ∧ β) ⊢ ¬α ∨ ¬β (∧-linearity).

3. ¬⊤ ⊢ ⊥
4. γ ⊢ α ∨ β/¬β ⊢ α ∨ ¬γ.

5. ⊤ ⊢ α ∨ ¬α.

6. ¬α ∧ ¬¬α ⊢ ⊥.

Now, we introduce the following classes of algebras.

AS := class of all Stone algebras, ADS := class of all

dual Stone algebras, SB[2]: = class of all B[2]
∼ , DSB[2]:=

class of all B
[2]
¬ , S(P(U)[2]: class of all Stone algebras

formed by the collection P(U)[2] for all sets U ,

DS(P(U)[2]:= class of all dual Stone algebras formed

by the collection P(U)[2] for all sets U .
Now, utilizing Theorem 3 and Theorem 4, in the

classical manner we get the results.

Theorem 5 1. For α, β ∈ F∼, α ⊢LS
β if and only

if α �AS
β if and only if α �SB[2] β if and only if

α �S(P(U))[2] β.

2. For α, β ∈ F¬, α ⊢LDS
β if and only if α �ADS

β if

and only if α �DSB[2] β if and only if α �DS(P(U))[2]

β.

Now, let us define the following semantic consequence

relations.

Definition 11 1. Let α, β ∈ F∼.

(i) α �
S
1 β if and only if, for all valuations v in 3∼

if v(α) = 1 then v(β) = 1 (Truth preservation).

(ii) α �
S
0 β if and only if, for all valuations v in 3∼

if v(β) = 0 then v(α) = 0 (Falsity preservation).
(iii) α �

S
1,0 β if and only if, α �

S
1 β and α �

S
0 β.

2. Let α, β ∈ F¬.

(i) α �
DS
1 β if and only if, for all valuations v in 3¬

if v(α) = 1 then v(β) = 1 (Truth preservation).

(ii) α �
DS
0 β if and only if, for all valuations v in

3¬ if v(β) = 0 then v(α) = 0 (Falsity preserva-

tion).

(iii) α �
DS
1,0 β if and only if, α �

DS
1 β and α �

DS
0 β.

Proposition 3 [1] Let S = (S,∨,∧,∼, 0, 1) and DS =

(DS,∨,∧,¬, 0, 1) be Stone and dual Stone algebra, re-

spectively. Then for a, b ∈ S and x, y ∈ DS

(i) ∼∼ (a∨ b) =∼∼ a∨ ∼∼ b and ∼∼ (a∧ b) =∼∼
a∧ ∼∼ b.

(ii) ¬¬(x ∧ y) = ¬¬x ∧ ¬¬y and ¬¬(x ∨ y) =

¬¬x∨ ∼∼ y.

Lemma 2 1. For α, β ∈ F∼, if α �
S
1 β then α �

S
0 β.

2. For α, β ∈ F¬, if α �
DS
0 β then α �

DS
1 β.

Proof 1. Let α �
S
1 β, and v be a valuation in 3∼ such

that v(β) = 0. As α �
S
1 β, so v(α) 6= 1. If v(α) = 0,

then our work is done. So, assume that v(α) = a.

Define a map v∗ : F∼ → 3∼ as:

v∗(γ) =∼∼ v(γ).

Let us show that v∗ is indeed a valuation in 3∼.

For this, we have to show that v∗(γ ∧ δ) = v∗(γ) ∧
v∗(δ), v∗(γ ∨ δ) = v∗(γ) ∨ v∗(δ), v∗(∼ γ) =∼ v∗(γ),

v∗(⊥) = 0 and v∗(⊤) = 1, but this follows immedi-

ately from Proposition 3.

Hence, v∗ is a valuation and v∗(α) = 1 and v∗(β) =

0 but this contradicts to the fact that α �
S
1 β. So,

α �
S
1 β implies α �

S
0 β.

2. Now, let α �
DS
0 β, and v be a valuation in 3¬ such

that v(α) = 1. As α �
DS
0 β, so v(β) 6= 0. If v(β) = 1,

then our work is done. So, assume that v(β) = a.

In a similar fashion as in the previous case, define a

map v∗ : F¬ → 3¬ as:
v∗(γ) = ¬¬v(γ).

Similar to the previous case, using Proposition 3, we

can easily establish that v∗ is indeed a valuation in

3¬. This arises a contradiction to α �
DS
0 β.

⊓⊔

Note that converse of the above statements are not

true, for example ∼∼ α �
S
0 α but ∼∼ α 2

S
1 α and

β 2
DS
0 ¬¬β but β �

DS
1 ¬¬β. This is contrary to the

Dunn’s ”De Morgan consequence relations �0, �1 and

�0,1” where all these three turn out be equivalent.

Theorem 6 1. α �SP(U))[2] β if and only if α �
S
1 β,

for any α, β ∈ F∼.
2. α �DSP(U)[2] β if and only if α �

DS
0 β, for any

α, β ∈ F¬.

Proof 1. Let α �SP(U))[2] β, and v : F∼ → 3 be a

valuation. By Theorem 4, 3∼ is embedded to a Stone
algebra of P(U)[2] for some set U . If this embedding

is denoted by φ, φ◦v is a valuation in P(U)[2]. Then

(φ ◦ v)(α) ≤ (φ ◦ v)(β) implies v(α) ≤ v(β). Thus if

v(α) = 1, we have v(β) = 1.

Now, let α �
S
1 β. Let U be a set, and P(U)[2] be the

corresponding Stone algebra. Let v be a valuation

on P(U)[2] – we need to show v(α) ≤ v(β). For any
γ ∈ F∼ with v(γ) := (A,B), A,B ⊆ U, and for each

x ∈ U , define a map vx : F∼ → 3∼ as

vx(γ) :=







1 if x ∈ A
a if x ∈ B \A
0 if x /∈ B.

Consider any γ, δ ∈ F∼, with v(γ) := (A,B) and

v(δ) := (C,D), A,B,C,D ⊆ U . It is easy to show

that (for a complete proof, we refer to [2]), vx(γ ∧
δ) = vx(γ)∧ vx(δ), vx(γ ∨ δ) = vx(γ)∨ vx(δ). Let us

show the following: vx(∼ γ) =∼ vx(γ).

Note that v(∼ γ) = (Bc, Bc).

Case 1 vx(γ) = 1: Then x ∈ A, i.e. x /∈ Ac and so

x /∈ Bc. Hence, vx(∼ γ) = 0 =∼ vx(γ).

Case 2 vx(γ) = a: x /∈ A but x ∈ B, so x /∈ Bc.

Hence, vx(∼ γ) = 0 =∼ vx(γ).
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Case 3 vx(γ) = 0: x /∈ B, i.e. x ∈ Bc. So vx(∼ γ) =

1 =∼ vx(γ).
Hence, vx is a valuation in 3∼. Now let us show that

v(α) ≤ v(β). Let v(α) := (A′, B′), v(β) := (C ′, D′),

and x ∈ A′. Then vx(α) = 1, and as α �
S
1 β, by

definition, vx(β) = 1. This implies x ∈ C ′, whence
A′ ⊆ C ′.

On the other hand, if x /∈ D′, vx(β) = 0. Then using

Lemma 2, we have vx(α) = 0, so that x /∈ B′, giving

B′ ⊆ D′.

2. We prove second part only. For this let α �
DS
0 β. Let

U be a set, and P(U)[2] be the corresponding dual
Stone algebra. Let v be a valuation on P(U)[2], we

show that v(α) ≤ v(β). Very similar to the previous

case, for any γ ∈ F¬ with v(γ) := (A,B), A,B ⊆ U,

and for each x ∈ U , define a map vx : F¬ → 3¬ as

vx(γ) :=







1 if x ∈ A

a if x ∈ B \A
0 if x /∈ B.

Consider any γ, δ ∈ F¬, with v(γ) := (A,B) and

v(δ) := (C,D), A,B,C,D ⊆ U . Let us show the

following: vx(¬γ) = ¬vx(γ).

Note that v(¬γ) = (Ac, Ac).
Case 1 vx(γ) = 1: Then x ∈ A, i.e. x /∈ Ac. Hence,

vx(¬γ) = 0 = ¬vx(γ).

Case 2 vx(γ) = a: x /∈ A but x ∈ B, so x ∈ Ac.
Hence, vx(¬γ) = 0 = ¬vx(γ).

Case 3 vx(γ) = 0: x /∈ B, and so x /∈ A, i.e. x ∈ Ac.
So vx(¬γ) = 1 = ¬vx(γ).

Hence, vx is a valuation in 3¬. To complete the proof

let us show that v(α) ≤ v(β). Let v(α) := (A′, B′),

v(β) := (C ′, D′), and x ∈ A′. Then vx(α) = 1, and

as α �
DS
1 β, by Lemma 2, vx(β) = 1. This implies

x ∈ C ′, whence A′ ⊆ C ′.

On the other hand, if x /∈ D′, vx(β) = 0. Then by
our assumption α �

DS
0 β, we have vx(α) = 0, so

that x /∈ B′, giving B′ ⊆ D′.

⊓⊔
Finally, we have the following 3-valued semantics of

the logics LS and LDS .

Theorem 7 (3-valued semantics) For α, β ∈ F∼ and

α′, β′ ∈ F¬

1. α ⊢LS
β if and only if α �

S
1 β.

2. α′ ⊢LDS
β′ if and only if α′

�
DS
0 β′.

4 Rough set models for 3-valued logics

For an approximation space (U,R), RS ⊆ P(U)×P(U).

So RS has a natural ordering ′ ≤′ (inherited from

P(U) × P(U)).

In [26], J. Pomyka la and J.A. Pomyka la showed that

(RS,≤) is a Stone algebra. In [27], M. Gehrke and E.

Walker characterized the lattice structure of rough sets.

They showed that (RS,≤) ∼= 2I × 3J for some appro-

priate index sets I and J . In [28], S.D. Comer proved
that for any index sets I and J , there is an approxi-

mation space (U,R) such that the lattices 2I × 3J and

RS are isomorphic. Hence, any Stone (dual Stone) al-

gebra is embeddable into Stone (dual Stone) algebra

formed by rough sets. Alternatively, we can also prove

this assertion by using Theorem 4.
An easy consequence we get the following rough set

semantic for the logic LS (LDS).

Theorem 8 1. Let ASRS denote the class of all Stone

algebras formed by RS. Then we have for α, β ∈
F∼: α ⊢LS

β if and only if α �ASRS
β.

2. Let ADSRS denote the class of all dual Stone alge-

bras formed by RS. Then we have for α, β ∈ F¬:
α ⊢LDS

β if and only if α �ADSRS
β.

In [13], the interpretations 1, 2 and 3 have been cap-

tured through the logic compatible with Kleene alge-

bras. Now, we follow the same approach to capture the

interpretations 1, 2 and 3 through the logics LS and

LDS . Let us define the following semantic consequence

relations.

Definition 12 1. Let α be a formula in F∼ and v be

a valuation in RS∼ for some approximation space

(U,R) such that v(α) := (LA,UA), A ⊆ U . Then for

x ∈ U ,

v, x �
RS∼

1 α if and only if x ∈ LA.

v, x �
RS∼

0 α if and only if x /∈ UA.
v, x �

RS∼

u α if and only if x /∈ LA, x ∈ UA.

2. Let α be a formula in F¬ and v be a valuation in
RS¬ for some approximation space (U,R) such that

v(α) := (LA,UA), A ⊆ U . Then for x ∈ U ,

v, x �
RS¬

1 α if and only if x ∈ LA.

v, x �
RS¬

0 α if and only if x /∈ UA.

v, x �
RS¬

u α if and only if x /∈ LA, x ∈ UA.

The relation v, x �
RS∼

1 α can be interpreted as α is
certainly true at x under the valuation v in approx-

imation space (U,R), hence captures the interpreta-

tion 1. v, x �
RS∼

0 α captures the interpretation 2 and

can be interpreted as α is certainly false at x under

the valuation v in approximation space (U,R). Finally,

v, x �
RS∼

u α captures the interpretation 3.

Now, let us define the notions of validity.

Definition 13 Let α, β ∈ F∼ and γ, δ ∈ F¬,

1. α �
RS∼

1 β if and only if v, x �
RS∼

1 α implies

v, x �
RS∼

1 β, for all valuations v in RS∼ and x ∈ U .

α �
RS∼

0 β if and only if v, x �
RS∼

0 β implies

v, x �
RS∼

0 α, for all valuations v in RS∼ and x ∈ U .

α �
RS∼

1,0 β if and only if α �
RS∼

1 β and α �
RS∼

0 β.
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2. γ �
RS¬

1 δ if and only if v′, y �
RS¬

1 γ implies

v′, y �
RS¬

1 δ, for all valuations v′ in RS¬ and y ∈
U ′.

γ �
RS¬

0 δ if and only if v′, y �
RS¬

0 δ implies

v′, y �
RS¬

0 γ, for all valuations v′ in RS¬ and y ∈
U ′.
γ �

RS¬

1,0 δ if and only if γ �
RS¬

1 δ and γ �
RS¬

0 δ.

Now we link the syntax and semantics through follow-

ing Definition and Theorem.

Definition 14 1. Let α, β ∈ F∼ and α ⊢ β be a con-

sequent.

– α ⊢ β is valid in an approximation space (U,R),

if and only if α �
RS∼

1 β.

– α ⊢ β is valid in a class F of approximation

spaces if and only if α ⊢ β is valid in all ap-

proximation spaces (U,R) ∈ F.
2. Let α, β ∈ F¬ and α ⊢ β be a consequent.

– α ⊢ β is valid in an approximation space (U,R),

if and only if α �
RS¬

0 β.

– α ⊢ β is valid in a class F of approximation

spaces if and only if α ⊢ β is valid in all ap-

proximation spaces (U,R) ∈ F.

Theorem 9 Let α, β ∈ F∼ and γ, δ ∈ F¬. Then

1. α �ASRS
β if and only if α ⊢ β is valid in the class

of all approximation spaces.

2. γ �ADSRS
δ if and only if γ ⊢ δ is valid in the class

of all approximation spaces.

Proof 1. Let α �ASRS
β. Let (U,R) be an approxi-

mation space, and v be a valuation in RS∼ with

v(α) := (LA,UA) and v(β) := (LB,UB), A,B ⊆ U .
By the assumption, LA ⊆ LB and UA ⊆ UB. Now,

let us show that α �
RS∼

1 β. So, let x ∈ U and
v, x �

RS∼

1 α, i.e., x ∈ LA. But we have LA ⊆ LB,

hence v, x �
RS∼

1 β.

Now, suppose α ⊢ β is valid in the class of all ap-

proximation spaces. We want to show that α �ASRS

β. Let v be a valuation in RS∼ as taken above. We
have to show that LA ⊆ LB and UA ⊆ UB. Let

x ∈ LA, i.e., v, x �
RS∼

1 α. Hence, by our assump-

tion, v, x �
RS
1 β, i.e., x ∈ LB. So LA ⊆ LB. Now,

let y /∈ UB, using Lemma 2, we have v, y �
RS∼

0 β.

By our assumption, v, y �
RS∼

0 α, i.e., y /∈ UA.

2. The proof of this part is very similar to that of part
1 which uses lemma 2.

⊓⊔

5 Conclusions

This paper presents a relationship between Stone alge-

bras, rough sets and 3-valued logics. We have drawn

a line parallel to the line of Boolean algebra - 2-valued

Boolean algebra - Stone’s representation theorem - clas-

sical propositional logic. We have shown that the logic

LS (LDS) is truly a 3-valued logic via a 3-valued se-

mantics. Further this 3-valued semantics of the logic

LS can be interpreted in rough set theory, where the

third value can be treated as not certain but possible.
In [29], Kumar and Banerjee analyzed the Stone and

dual Stone negations in perp frames [25,30,31], where

negations are viewed as modal operators. We intro-

duced Stone and dual Stone frames and showed that

the logics LS and LDS are sound and complete respec-

tively in these classes of frames. Thus, the perp seman-
tics of the logics LS and LDS are established. Hence,

in view of Theorems 5, 6, 7, 8 and 9 we can conclude
that algebraic, 3-valued, rough set and perp semantics
of the logic LS (LDS) are all equivalent.

In future, we would like to discuss the following.

1. In Düntsch and Or lowska [32], discrete duality for
Stone algebras have been obtained. So naturally it

would be interesting to investigate the relationship
between the frame defined there, the logic LS , 3 −
valued consequence relation �

S
1 and the Stone frames

defined in [29].

2. There has been a lot of study on Topological Boolean

algebras (TBAs). Similarly, can we define Topolog-
ical Stone algebras? Can we obtain representation

results of these Topological Stone algebras in terms
of B[2] and RS?

3. Hilbert style axiomatization of the logic of Stone

algebras.

4. In [33], Zhou and Zhao studied the Stone-like rep-

resentation theorems of 3-valued  Lukasiewicz alge-
bras. Naturally, it would be interesting to investi-

gate the Stone-like representation theorems for the
class of Stone algebras determined by rough sets.

5. Applications of the logic LS in approximate reason-

ing.
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