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Image Processing Based Automatic Detection of Asphalt 

Pavement Rutting Using a Novel Metaheuristic Optimized 

Machine Learning Approach 
 

Abstract 
This study presents a novel computer vision based approach to automatically identify 

rutting appeared on asphalt pavement of road. The developed model is established base on a 

hybridization of image processing techniques and an advanced machine learning model with 

support of a metaheuristic optimization engine. Gabor filter and discrete cosine transform are 

employed to implement context computation for image data, accordingly generate initially 

extracted features of rutting and non-rutting. Least Squares Support Vector Classification 

(LSSVC) is then used to learn categorization of rutting and non-rutting based on the extracted 

features. The final LSSVC prediction model is constructed via a loop of optimization process 

which is controlled by a novel metaheuristic optimization algorithm, called forensic-based 

investigation (FBI), to attain optimal model’s configuration with ultimate prediction 
accuracy. This study further utilized a dynamic feature selection (FS) method to integrate in 

the searching loop to appropriately remove redundant features that provide inconsistent 

information leading to the compromising of model performance. A dataset of 2000 image 

samples has been collected during field trip of pavement survey in Da Nang city to form and 

verify the newly developed model. The statistical results of 20 run times using k-fold cross 

validation method have demonstrated the hybrid model of FBI-LSSVC-FS to achieve the 

most desired rutting detection performance with classification accuracy rate, precision, recall, 

and F1 score of 98.9%, 0.994, 0.984 and 0.989, respectively. Hence, this paper contributes to 

the core body of knowledge a novel AI-based prediction model to assist transportation 

agencies in the task of periodic asphalt pavement survey. 

 

Keywords: Rutting Detection; Least Squares Support Vector Machine; Forensic-Based 

Investigation; Feature Selection; Image Processing. 

 

1. Research Background and Motivation 
The network of asphalt pavement road is definitely the largest component of 

infrastructure and its essentiality is reflected by the influence on daily activities of people. 

Therefore, the pavement condition strongly affects the safety of vehicle passengers and any 

degradations of road surface can bring about multiple negative influences on vehicle 

passengers as well as economic development of local societies (Gao et al. 2020; 

Hadjidemetriou et al. 2020; Hadjidemetriou et al. 2018; Liu et al. 2017). Many countries 

around the globe are currently focusing on maintaining the acceptable road condition. In fact, 

the funds allocated to rehabilitation activities may significantly surpass those allocated to new 

road construction projects (Radopoulou and Brilakis 2015). 

To cope with an expanding road network and its rapid deteriorating in many road 

sections, a pavement management system is essential since it provides a systematic approach 

for establishing cost-effective and timely maintenance and rehabilitation strategies in the 

whole life cycle of asphalt pavement roads (Yao et al. 2008). Pavement management systems 

generally demand information of the current pavement condition in order to  optimize 

resource utilization for maintenance and rehabilitation (Eduardo et al. 2014). 

The appropriateness of the decision made by a pavement management system strongly 

depends on pavement condition data collected from periodic pavement survey trips. The 

current practice of pavement data collection in many developing countries including Vietnam 
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is performing visual surveys carried out by human inspectors. Although human visual 

surveys can help to attain accurate assessments, this conventional practice is notorious for 

low productivity as well as its strong dependency on the experience and judgment of human 

inspectors (Guan et al. 2015).  

In recent years, scholars and practicing engineers have increasingly investigated 

alternative solutions for performing the tedious works of periodic pavement condition survey. 

With the rapid advancements of computer hardware and digital image processing techniques 

supported by the availability of low-cost digital cameras, automatic pavement assessment has 

been made feasible and become an effective approach for enhancing the productivity of 

periodic surveying tasks (Zakeri et al. 2017). The data collected and processed by the image 

processing based automatic pavement assessment models is particularly useful for 

transportation authorities since these models provide them with current states of pavement in 

a timely manner. Based on the collected information, transportation authorities can formulate 

appropriate plans for repairs and replace activities to optimize their resource allocations. 

Thus, the chance of road networks disruptions due to incapable serviceability is minimized 

(Hadjidemetriou et al. 2018). 

Based on the recognizable advantages of computer vision-based approaches, various 

methods for automatic pavement appraisal have been proposed and evaluated recently. 

Different methods are designed to cope the task of recognizing different pavement defects 

including cracks (Dorafshan 2017; Dorafshan et al. 2018; Eduardo et al. 2014; Hoang and 

Nguyen 2018; Hoang et al. 2018b; Kaddah et al. 2018; Li et al. 2017; Ouma and Hahn 2016; 

Salman et al. 2013; Zhang et al. 2018a), potholes (Akagic et al. 2017; An et al. 2018; Aparna 

et al. 2019; Hoang 2018; Ouma and Hahn 2017; Yousaf et al. 2018), raveling (Hoang 2019a; 

Massahi et al. 2018; Mathavan et al. 2014), deformation (Cheng et al. 2018), roughness 

(Douangphachanh and Oneyama 2014; Georgiou et al. 2018), and patches (Hadjidemetriou et 

al. 2016; Hadjidemetriou et al. 2018; Hoang 2019b; Radopoulou and Brilakis 2015). Based 

on the collected information of pavement distresses, transportation authorities can rate the 

pavement condition and determine appropriate responses to recover deteriorating road 

sections.  

Rutting is also a widely observed type of pavement distresses which critically affects both 

driving safety and comfort. This type of defect typically occurs when permanent depression 

accumulates in a pavement surface over time; rutted areas can be recognized by the wheel 

path imprinted on the road surface (Liley 2018). Severe rutted pavements can lead to traffic 

accidents due to unevenness of road surface and hydroplaning. Especially for Vietnam where 

motorcycle is the dominant form of personal transportation means, switching lanes on rutted 

areas can be detrimental to drivers. Additionally, roughness of rutted pavement may bring out 

additional vehicle maintenance expense. 

While a decent attention has been paid to the task of recognizing cracks, potholes, and 

patches existing on pavement surface, there are much fewer works dedicating in detecting 

rutted areas. The detection of rutting is also an essential element for the decision-making 

process in pavement repair and replacement. Hence, it is a practical need to develop 

intelligent models capable of detecting rutted areas automatically and accurately. Since 

rutting belongs to the category of area-based defects, image processing methods for 

characterizing pavement texture information can be potentially employed. 

Kachouie et al. (2004) proposed a hybrid method of a Gabor filter bank and discrete 

cosine transform to extract features from digital images used for general texture 

segmentation. Eduardo et al. (2014) constructs a road crack detection model relying on visual 

features extracted by Gabor filters; the filtered images are then used as descriptors for 

AdaBoost classifiers. An intelligent model proposed in (Hadjidemetriou et al. 2018) 

employed discrete cosine transform for automated pavement patch detection.  
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Gopalakrishnan et al. (2017) employed deep convolutional neural network and transfer 

learning for computer vision-based pavement distress recognition. Zhang et al. (2018b) relied 

on the concept of transfer learning to detect sealed and unsealed pavement cracks. Jo and 

Jadidi (2019) introduced a crack classification system based on various image filtering 

techniques and Deep Belief Network. Doycheva et al. (2019) combined computer vision 

techniques and deep learning models for real-time pavement distress categorization; the 

authors combined textural features and deep learning to determine the different types of 

pavement defects including cracks, potholes, and patches. 

Based on the reviewed literature, it can be seen that the applications of computer vision 

for automatic pavement rutting detection are rarely reported. Moreover, following an 

increasing trend of combining image process and machine learning in the field of automatic 

pavement survey (Coenen and Golroo 2017; Cubero-Fernandez et al. 2017; Gopalakrishnan 

2018; Hoang et al. 2018a; Zakeri et al. 2017; Zhang et al. 2018a), this study aims at filling the 

gap in the current literature by establishing a hybrid approach of image processing and 

machine learning approaches for pavement rutting detection. Image processing methods 

including the discrete cosine transform and Gabor filter are first employed to compute 

pavement texture. The extracted pavement texture is then used as numerical features and 

analyzed by a hybrid learning approach of Least Squares Support Vector Classification 

(LSSVC) (Suykens et al. 2002) and Forensic-Based Investigation (FBI) metaheuristic (Chou 

and Nguyen 2020).  

The LSSVC machine learning approach is employed for constructing a decision boundary 

which separates rutting samples from non-rutting ones. The role of the FBI algorithm in this 

study is two-fold. First, the FIB is utilized for automatic feature selection which identifies the 

most discriminative features extracted by the discrete cosine transform and Gabor filter. 

Second, this novel metaheuristic algorithm is employed to optimize the LSSVC training 

phase. 

In addition, the integration of image-processing and machine learning approaches for 

rutting detection has been trained and verified by a set of 2000 pavement image samples and 

demonstrated promising predictive results. The rest of the paper is organized as follows: The 

second section reviews the research methodology, followed by the section that describes the 

image samples; the fourth section presents the proposed model for automatic recognition of 

asphalt pavement rutting, followed by the next section which reports the experimental results; 

the last section provides several concluding remarks of this study. 

 

2. Research Methodology 
2.1 Image Processing Techniques 

As mentioned earlier, the surface of asphalt pavement is characterized by a diverse form 

of coarse / fine aggregates, oil/paint stains, traffic marks, and defects such as cracks, 

potholes, patches, etc. Each of these objects can have distinctive features regarding color and 

roughness. Therefore, information of color of a certain image region can be helpful to the 

data classification process. Notably, it is not possible to detect rutting at a pixel level not only 

because of the sheer number of pixels captured from surveying images, but also because of 

the fact that color information of a single pixel is definitely not sufficient for rutting 

recognition. Due to the noisy pavement background and the typical texture of asphalt 

pavement, two pixels having the same color can actually belong to both rutting and non-

rutting pavement areas. To deal with such issue, a large digital image is often separated into a 

number of non-overlapped image samples (e.g. 32x32 pixels). This separation also helps to 

accelerate the computational process. Accordingly, the statistical properties of each small-

sized image sample can be computed.  
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2.1.1 Discrete Cosine Transform (DCT) 

The DCT is usually chosen because of its fast computation (Tsai et al. 2006). Most 

approaches to DCT-based texture classification are based on block DCT transformation. The 

commonly used block size is 16x16. Then we regard image textures as three one-dimensional 

vectors characterized by three directional texture properties: vertical, horizontal and diagonal, 

each of which is located at some specific area of 2-D DCT coefficients. In addition, DC 

coefficient represents the average energy of an image, which is an important index of an 

image. Therefore, our proposed feature vector is formed with four major components: the DC 

coefficient.  

The Discrete Cosine Transform (DCT) can be applied to the entire image or to sub-image 

of various sizes. As described in previous section, most existing work extracts texture 

features using block-DCT coefficients. In this section, we will describe our approach in this 

area focusing on using the DCT coefficients transformed from the entire image to generate 

the global texture feature. The DCT transform for an NxN image represented by pixel values 

f(u,v) for u,v = 0,1,…, N-1 can be defined as (Pun and Zhu 2009; Subudhi and 

Mukhopadhyay 2017): 
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where α(x) = 1/ 2 if x = 0 and 1 if 0x  ; C(u,v) is the DCT coefficient. 

The contribution of this work lies in generating the dominant features of global image 

texture. The DCT method can be used to generate feature from digital images because the DC 

coefficient C(0,0) represents the average energy of the image. Moreover, all the remaining 

coefficients contain frequency information which produces a different pattern of image 

variation. The coefficients of some regions represent some directional information (Hee-Jung 

and Sung-Hwan 1997; Tsai et al. 2006). The extracted DCT coefficients used for texture 

representations are illustrated in Fig. 1. The DC coefficient C(0,0) as well the coefficients 

characterizing vertical texture region, horizontal texture region, and diagonal texture region 

are computed. In total, there are 30 DCT based texture descriptors can be obtained from one 

image sample (Tsai et al. 2006). 

 

 
Fig. 1 The extracted DCT coefficients 

 

2.1.2 Gabor Filter (GF) 

Gabor filtering has optimal joint localization in both spatial and spatial-frequency domains 

and has been used to detect defects in highly regular textured surfaces (Eduardo et al. 2014). 

These filters have been widely applied for various tasks including texture segmentation 

(Kachouie et al. 2004), surface defect detection (Medina et al. 2011), vehicle detection 
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(Zehang et al. 2005), texture classification (Kim and So 2018), etc. In essence, a two-

dimensional Gabor filter is a complex sinusoidal wave modulated by a Gaussian envelope 

(Hammouda 2000). The filter performs a localized and oriented frequency analysis of a two-

dimensional signal. The response of a Gabor filter can be mathematically expressed as 

follows (Jain and Farrokhnia 1991): 
2 2

02 2

1
( , y) exp{ [ ]}cos(2 u x)

2 x y

x y
h x 

 
= − +

      

(2) 

where u0 is the frequency of a sinusoidal plane wave along the x-axis. σx and σy are the space 

constants of the Gaussian envelope along the x and y axes, respectively. Filters with arbitrary 

orientations can be obtained via a rigid rotation of the x-y coordinate system. 

The frequency domain representation of a Gabor filter can be described as followed (Jain 

and Farrokhnia 1991): 
2 22 2

0 0

2 2 2 2

( ) ( )1 1
( , ) (exp{ [ ] } exp{ [ ] })

2 2u v u v

u u u uv v
H u v A

   
− +

= − + + − +
   

(3) 

where 
1

2
u x = , 

1

2
v y = , and 2 x yA  = . 

To implement Gabor filters, it is required to specify their tuning parameters including the 

orientation angles and the radial frequency. As recommended by Jain and Farrokhnia (1991), 

four values of orientations are used: 0o,  45o,  90o, and 135o. For an image with a width of Nw 

pixels and Nw is a power of 2, the following values of radial frequency u0 are used: 

1 2, 2 2, 4 2,..., 2
4

wN
. Accordingly, statistical measurements of the Gabor filter based 

image can be computed and used as features for texture classification (Jo and Jadidi 2019). 

 

2.2 Machine Learning and Metaheuristic Methods 

2.2.1. The Forensic-Based Investigation (FBI) 

The FBI algorithm, first proposed in (Chou and Nguyen 2020), is inspired by the forensic 

investigation process of police officers, specifically the criminal investigation process. As 

soon as a criminal activity is found reported, polices starts an investigation process to catch 

the suspect. The most wanted suspect has the same character as the optimal solution while 

police officers act based on sharing and receiving analyzed information to reach the location 

of the most wanted suspect.  

The investigation area of the investigation process is represented by the boundary of 

search algorithm. The case is closed, meaning that the searching process of algorithm is 

terminated. Fig. 2 present flowchart of the FBI algorithm following the concept of a common 

investigation process. The FBI algorithm is composed of two phases: phase A presents the 

actions of investigation team; and phase B is performed by pursuit team with police agent 

members. 

Step A1: with the trace collection of the current locations and information shared from 

other locations, investigator can have more basis to infer a new investigation location 𝐴𝑖𝑗′  

from the suspected location 𝐴𝑖𝑗. The transit of suspected locations is given by the Eq. (4). 

The trace collected at the newly inferred location is then evaluated and compared with that of 

the old location to determine whether shifting the investigation concentration on the new 

location or retaining the current location. 𝑨𝒊𝒋′ = 𝑨𝒊𝒋 + 𝒓𝒂𝒏𝒅 ∗ (𝑨𝒊𝒋 − 𝑨𝒌𝒋+𝑨𝒉𝒋𝟐 )       (4) 
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where k, h, and i are three different suspected locations: {k, h, i} ϵ {1, 2, …, NP}, j = 1, 2, …, 
D; NP is the number of suspected locations; D is the number of dimensions; and rand is a 

random number in the range [-1, 1]. 

Randomly mobilize 

officers

A2. Conditionally Expand 

the search zone

Report / Record the highest 

possibility location

Wanted suspect found

Open the case

B1. Heading the most 

suspected location

Deadline for

handling case
B2. Extend all search zones

g=0

A1. Shift inspection 

locations

No

Yes

Investigation team

Pursuit team

Suspected 

locations

 
Fig. 2 Flowchart of the FBI algorithm 

Step A2: suspected locations with more traces collected will be further searched which is 

selected depending on the quality of collected locations. Hence, the suspected location with 

the lower probability (𝑷𝒓𝒐(𝑨𝒊𝒋) has more chance to be updated. The chance of further search 

is regarded as a probability value calculated as Eq. (5). It is noted that the directions of 

further investigation are randomly selected in order to increase the diversity of search area. 

The new location in this context is determined as Eq. (6): 𝑷𝒓𝒐(𝑨𝒊𝒋)= 𝟏 − (𝒑𝑨𝒊 − 𝒑𝒎𝒊𝒏)/(𝒑𝒎𝒂𝒙 − 𝒑𝒎𝒊𝒏)     (5) 𝑨𝒊𝒋′ = 𝑨𝑩𝒃𝒆𝒔𝒕 + 𝑨𝒅𝒋 + 𝒓𝒂𝒏𝒅(𝑨𝒌𝒋 − 𝑨𝒉𝒋)     (6) 

where 𝐴𝐵𝑏𝑒𝑠𝑡 is the location with the highest possibility;𝐴𝑖𝑗′  is the new suspected location of 𝐴𝑖𝑗. rand is the random number in the range [-1, 1]; and d, k, h, and i are four different 

suspected locations: {d, k, h, i} ϵ {1, 2, …, NP}. 

Step B1: after all the suspected locations are evaluated and delineated, the pursuit team 

with agent members are deployed to approach instantly. It is worth noting that there is a 

slight difference between the approach position and the center of the delineated area due to 

the effect of the information received from the suspected location with the highest possibility. 

Hence, the newly approached position is determined as Eq. (7) as follows: 𝑩𝒊𝒋′ = 𝒓𝒂𝒏𝒅 ∗ 𝑩𝒊𝒋 + 𝒓𝒂𝒏𝒅 ∗ (𝑩𝑨𝒃𝒆𝒔𝒕 − 𝑩𝒊𝒋)                                   (7) 

where 𝐵𝐴𝑏𝑒𝑠𝑡 is the located of the highest possibility given by the investigation team; rand(s) 

are two random numbers in the range [0, 1]; j = 1, 2, …, D. 
Step B2: the police agents collect trace and send basic assessment to the headquarter at 

every move. The headquarter updates and uses valuable information to evaluate and request 

the police agents to further expand the searching beyond the delineated area if necessary. 

New locations rely on the probability value 𝑝𝐵𝑖 which is compared with a threshold value 𝑝𝐵𝑟 . The new location is calculated as Eq. (8) or Eq. (9) updated if it provides more 

information of suspect. The location with the most valuable trace found is then transferred to 

the investigation team for analysis. 𝑩𝒊′ = 𝑩𝒓 + 𝒓𝒂𝒏𝒅 ∗ (𝑩𝒓 − 𝑩𝒊) + 𝒓𝒂𝒏𝒅(𝑩𝑨𝒃𝒆𝒔𝒕 − 𝑩𝒓)      𝒊𝒇 𝒑𝑩𝒓 > 𝒑𝑩𝒓       (8) 𝑩𝒊′ = 𝑩𝒊 + 𝒓𝒂𝒏𝒅 ∗ (𝑩𝒊 − 𝑩𝒓) + 𝒓𝒂𝒏𝒅(𝑩𝑨𝒃𝒆𝒔𝒕 − 𝑩𝒊)      𝒊𝒇 𝒑𝑩𝒓 ≤ 𝒑𝑩𝒓         (9) 

where ABbest is the updated position of the highest possibility, rand(s) are two random 

numbers in the range [0, 1]; 𝐵𝑟 is a randomly selected police agent; j = 1, 2, …, D. 
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2.2.2 Least Squares Support Vector Classification (LSSVC) 

In order to address the problem of large computational complexity of support vector 

machine, Suykens et al. (2002) proposed to integrate the least square method with an 

assumption that the dataset 𝑆 = {(𝑥𝑖 , 𝑦𝑖)} can be presented by a non-linear function as shown 

in Eq. (10), where (𝑥𝑖 , 𝑦𝑖) is the ith data pattern of the training dataset; 𝑦𝑖  ∈ {−1, 1} is for 

two class labels of interest. Accordingly, a LSSVC model is established by constructing a 

hyperplane to separating differently categorized data. 𝒚(𝒙) = 𝝎𝑻𝝓(𝒙) + 𝒃          (10) 

where 𝑥 ∈ 𝑅𝑛, 𝑦 ∈ 𝑅,  and 𝜙(𝑥): 𝑅𝑛 → 𝑅𝑛ℎ  is the transfer to the high dimensional feature 

space, 𝑏 is the bias term. 

A constrained optimization function R is introduced to guide the separating hyperplane 

which is comprised of a sum of squared fitting error (𝜀𝑖 ) and a ridge regression. Ridge 

regression is multiplied with regulation coefficient (C) to adjust weights of two components 

in the equation as shown in Eq. (11). 

Minimize: 𝑹(𝝎, 𝜺, 𝒃) = 𝟏𝟐 ‖𝝎‖𝟐 + 𝑪∑ 𝜺𝒊𝟐𝒏𝒊=𝟏       

 (11) 

Subjected to: 𝑦𝑖 = 𝜔𝑇𝜙(𝑥𝑖) + 𝑏 + 𝜀𝑖 , 𝑖 = 1, . . . , 𝑛 

The Lagrangian function L is then introduced to handle the unsolvable of R function when 

when 𝜔 is infinite. 𝑳(𝝎, 𝒃, 𝜺, 𝝃) = 𝟏𝟐 ‖𝝎‖𝟐 + 𝑪∑ 𝜺𝒊𝟐𝒏𝒊=𝟏 − ∑ 𝝃𝒊(𝝎𝑻𝝓(𝒙𝒊) + 𝒃 + 𝜺𝒊𝒏𝒊=𝟏 − 𝒚𝒊)   (12) 

where 𝜉𝑘 is Lagrangian multiplier. The conditions for optimality are given by: 

{   
   𝝏𝑳𝝏𝝎 = 𝟎 → 𝝎 = ∑ 𝝃𝒌𝝓(𝒙𝒌)𝒏𝒊=𝟏𝝏𝑳𝝏𝒃 = 𝟎 → ∑ 𝝃𝒌 = 𝟎𝒏𝒊=𝟏𝝏𝑳𝝏𝜺𝒊 = 𝟎 → 𝝃𝒊 = 𝑪𝜺𝒊, 𝒊 = 𝟏, . . . , 𝒏𝝏𝑳𝝏𝝃𝒊 = 𝟎 → 𝝎𝑻𝝓(𝒙𝒌) + 𝒃 + 𝜺𝒊 − 𝒚𝒊 = 𝟎, 𝒊 = 𝟏, . . . , 𝒏

    (13) 

By excluding 𝜀 and , a linear system is returned as Eq. (14): [𝟎 𝒆𝑻𝒆 𝑲 + 𝟏/𝑪] [𝒃𝝃] = [𝟎𝒚]         (14) 

where 𝑦 = 𝑦1, . . . , 𝑦𝑛, 1𝑣 = [1; . . . ; 1];  and 𝜉 = [𝜉1; . . . ; 𝜉𝑛]  and 𝑒 = [1,… ,1]𝑇 . The kernel 

function is as follows: 𝑲(𝒙𝒊,𝒙𝒌) = 𝒌(𝒙𝒊, 𝒙𝒋) =  𝝓(𝒙𝒊)𝑻𝝓(𝒙𝒌)      (15) 

The output value of the resulting LSVC model is formed as Eq. (16), as follows: 𝒚(𝒙) = 𝒔𝒊𝒈𝒏(∑ 𝝃𝒊𝑲(𝒙𝒊, 𝒙𝒌) + 𝒃)𝒏𝒊=𝟏        (16) 𝑲(𝒙𝒊, 𝒙𝒌) = 𝒆𝒙𝒑(− ‖𝒙𝒊−𝒙𝒌‖𝟐𝟐𝜸𝟐 )        

 (17) 

where 𝜉𝑘 are the solution to the linear system; 𝛾 is a parameter of kernel function. 

This study purposely used the radial basis function (RBF) as kernel function as shown in 

Eq. (17) since its efficacy has been endorsed in literature studies. Hence, in addition to 

regularization parameter (C), users are required to properly set value of kernel parameter (γ) 

which controls the smoothness of separating hyperplane, presenting the influencing of the 

support vectors to the data points. to attains the ultimate generalizability of the LSSVC model 

(Wu and Shen 2018). Hence, the current study thus employs FBI search engine to identify the 

optimal values of C and γ. 
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3. The Collection of Pavement Image Samples 
As stated earlier, the employed machine learning model of the LSSVC is a supervised 

machine learning approach. Thus, to establish a pavement rutting detection model, a set of 

2000 pavement images with the ground truth label has been collected. The numbers of image 

samples in the positive class (rutting) and negative class (non-rutting) are both 1000 to 

achieve a balanced classification. Moreover, the digital image samples are collected during 

field trip of pavement survey in Da Nang city (Vietnam). Image samples of the two 

categories of non-rutting (class label = 0) and rutting (class label = 1) has been prepared for 

model training and testing. To facilitate the speed of  the feature extraction phase, the DCT 

computation, and to guarantee the consistency of an image region, the size of image sample 

has been set to be 32x32 pixels. 

The collected image samples are demonstrated in Fig. 3. It is also noted that the ground 

truth class label of each image is determined by human inspectors. Furthermore, to mimic the 

diversity of real-world pavement surface, the negative class of non-rutting consists of 

samples of intact pavement, cracks, stains, raveling, patch, and traffic marks. The positive 

class of rutting includes rutting areas with diversiform texture. The image samples have been 

captured by the Cannon EOS M10 (CMOS 18.0 MP) and Nikon D5100 (CMOS 16.2 MP). 

  

     
(a) 

     
(b) 

Fig. 1 Illustration of the collected pavement images: (a) Non-rutting class and (b) Rutting 

class 

 

4. The Proposed Hybridization of Image Processing, FBI, and LSSVC for 

Automatic Detection of Asphalt Pavement Rutting 
The proposed hybrid framework of image processing, FBI, and LSSVC for detection of 

asphalt pavement rutting, denoted as FBI-LSSVC-FS, consists of three main steps: (i) image 

texture computation, (ii) FBI based model optimization, and (iii) data classification. The 

general structure of the FBI-LSSVC-FS’s model optimization is demonstrated in Fig. 4. The 

first step computes texture information of pavement surface obtained from 2000 image 

samples. The second step processes the texture information; the FBI is used to reduce the 

dimensionality of the original data which facilitates subsequent data classification phase. In 

the final step, the LSSVC optimized by the FBI model is employed to establish a decision 

surface that separates the input space into two domains of rutting and non-rutting. The FBI-

LSSVC-FS model has been developed in MATLAB environment and tested in the HP Z440 

Workstation (Intel (R) Xeon (R) CPU E5-1630 v3 @ 3.7GHz, RAM 16GB). In addition, the 
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Gabor filter and the individual decision tree model are constructed with the help of the 

Accord.NET Framework (Accord 2019). 

 

6.Termination

criteria

3. LSSVC performance

False 
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True 
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X94

X1

X2
.. .

Step 3: Optimal model & prediction report

x x x

xx

x

x

Step2: FBI-LSSVC-FS

Fig. 4 The proposed FBI-LSSVC-FS Model Structure 

 

4.1 Image Feature Extraction 

As mentioned earlier, image samples in this study are processed by the DCT and GF 

techniques to extract numerical features used for rutting detection. Demonstrations of the 

image processing phases are provided in Fig. 5. It is noted that prior to the texture 

computation process, the original image samples have been converted to gray-scale images. 

As suggested by Jain and Farrokhnia (1991), four values of orientations (0o,  45o,  90o, and 

135o) and four values of radial frequency (1 2,2 2,4 2,8 2 ) are used to characterize 

image texture obtained from the employed Gabor filters. Accordingly, statistical 

measurements of the Gabor filters are computed and employed as texture-based features. The 

statistical measurements include the mean, standard deviation, skewness, and entropy which 

are computed as follows. 

The mean of the Gabor filter response is given by: 
1 1

0 0

(i, j)
H W

i j

GaborFilter

GFR

Mean
W H

− −

= ==



       (18) 

where H and W are the width and height of an image sample, respectively. GFR(i,j) denotes 

the Gabor filter response at an pixel (i,j). 
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The standard deviation of the Gabor filter response is computed as follows: 
1 1

2

GaborFilter

0 0

[ (i, j) Mean ]
H W

i j

GaborFilter

GFR

STD
W H

− −

= =

−
=




     (19)  

 

Original image Output of GF Output of DCT

X1 X2 X3 X4 ... X93 X94

2218.39 7.80 9.19 -11.26 ... -36.04 5.82  

Fig. 5 Illustration of the feature extraction process 

 

The equation used to calculate the skewness of the Gabor filter response is given by 

(Joanes and Gill 1998): 
1 1

3

GaborFilter

0 0

1 1
2 3/2

GaborFilter

0 0

1
[ (i, j) Mean ]

1
[ { (i, j) Mean } ]

1

H W

i j

GaborFilter H W

i j

GFR
W H

Skewness

GFR
W H

− −

= =
− −

= =

−


=
−

 −



    
(20) 

 

The entropy of the Gabor filter response is given by:
 1

2

0

log [ ]
NDV

GaborFilter Filter Filter

i

Entropy P P
−

=

= −        (21) 

where PFilter denotes the first-order histogram of the Gabor filter response. NDV = 256 

represents the number of discrete intensity values. 

Since there are 16 Gabor filters and each filter results in four statistical measurements (the 

mean, standard deviation, skewness, and entropy), the number of Gabor filter-based features 

is 64. As explained earlier, the number DCT based texture descriptors is 30. Moreover, the 

used DCT block size is 16x16. Therefore, the total number of texture-based features is 94.  

 

4.2 Model Optimization based on the FBI metaheuristic 

It is noted that all of the features extracted from step I with support of GF and CDT 

techniques are then fed to the step II for establishing the rutting detection model. Since the 

scale values of extracted features are broadly different, they need to be standardized to avoid 

negative impact of features with large values against the others. Hence, this study used the Z-

score equation to normalize all feature values since this type of data transformation is highly 

perceived for classification problems. The Z-score equation is given by: 

o X
ZN

X

X m
X

s

−
=

         
(22)  

where Xo and XZN denotes an original and a normalized data, respectively. mX and sX represent 

the mean and the standard deviation of the original data, respectively. 
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Subsequently, concerned parameters are randomly generated initial values to trigger the 

commencement of the FBI-based searching loop. As FBI simultaneously determines the best 

pair of LSSVC’s hyper-parameter values (γ and C) and set of high influencing predictors 

(features), a total of 96 variables necessities to be taken into account in which variables for 

deciding the present of features to are binary (0 or 1). As seen in Table 1, this study set 

population size of the FBI is as 200. The population size is thus roughly twice as many as 

searching dimensions while iteration of searching loop is set to be 100. Initial boundaries of γ 

and C are set in the ranges 10-6 and 106, respectively. 

Accordingly, the LSSVC obtains various sets of hyper-parameter values to build the 

classification model of rutting / non-rutting. It is noted that the LSSVC only uses the training 

dataset while testing dataset is reserved for testing the prediction power of the FBI-optimized 

model. This study employed a k-fold validation method with k = 5 to avoid the bias of data 

partition for training LSSVC. Therefore, the training dataset is partitioned into 5 exclusively 

mutual subsets. Accordingly, LSSVC is trained repeatedly 5 times for each set of parameter 

values in which 4 folds are merged for use of training model while the remaining fold is 

served for validation. The outcomes of this step are images labeled which are then compared 

with their true class in the confusion matrix step. 

An objective function is formulated by averaging sum of positive predictive values (PPV) 

and negative predictive values (NPV) for evaluating quality of FBI-provided solutions, 

shown in Eq. (23). K = 5, stands for number of folds. PPV and NPV are utilized to express 

the model performance associated with a set of LSSVC hyper-parameters and selected 

features. Further, use of both PPV and NPV prevents the prediction model from being in 

favor of a certain class. PPV and NPV are calculated as Eq. (24) and Eq. (25), respectively. 

 𝒇 = 𝟏 𝟐⁄ ∗∑ (𝑷𝑷𝑽𝒊+𝑵𝑷𝑽𝒊)𝑲𝒊 𝟓          (23) 𝑷𝑷𝑽 = 𝑻𝑷𝑻𝑷+𝑭𝑷          (24) 𝑵𝑷𝑽 = 𝑻𝑵𝑻𝑵+𝑭𝑵          (25) 

 

where: where TP, TN, FP, and FN are the true positive, true negative, false positive, and false 

negative values, respectively. 

The FBI will employ values of the objective function as the basis to adjust solutions in 

accordance with its working procedure. The FBI retains better solutions and abandons poor 

solutions during its searching process. Hence, the values of the objective functions will be 

improved gradually until they reach the most desired values or stopping condition is met. 

Once the searching terminates, the optimized LSSVC is ready for predicting new image data 

of rutting / non-rutting. 

 

Table 1 Initial control parameter settings 

Model Member Tuning parameter Notation Lower bound Upper bound 

LSSVC Model 
Gama γ 10-6 106 

Regularization coefficient C 10-6 106 

FBI search engine 
Iteration number Iter  100 

Population size Pop  100 

94 Extracted Features  FS 0 1 

Noted: Variable for selection / de-selection of features is binary: 0 or 1 
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5. Experimental Result and Comparison 
5.1 Experimental Result Comparison and Discussion 

This paper analyzed the predictive capability of the FBI-LSSVC-FS based on statistical 

results of 20 run times which is large enough to accurately measure the reliability of a 

classification model. In order to avoid the bias in the data partition process, the cross-

validation approach should be used for partitioning dataset (Orenstein et al. 1995). Thus, all 

of the data patterns will be ascertained to involve in both training and testing phase. 

Accordingly, the training and testing sets account for 90% and 10% of the data size, 

respectively. Hence, the analysis is conducted on the average value and standard deviation 

value obtained from 20 run times. Fig. 6 demonstrates the improvement of objective 

function’s value for a certain run time. 

To highlight the prediction capability of the FBI-LSSVC-FS model, its performance has 

been compared to that of FBI-LSSVC (without feature selection), LSSVC, Random forest 

(RF), and General regression neural network (GRNN), and SVC. The FBI-LSSVC and 

LSSVC models are selected to interpret the importance of each technique integrated in the 

proposed road rutting classification model. GRNN, SVC, and RF represents for different 

types of classification framework which also highly perceived by scholars in may real 

application. Hence, inclusion of those techniques for comparing models’ performance is 

essential. All but FBI-LSSVC-FS and FBI-LSSVC models are manually implemented by 

trial-and-error method to possibly tune the good parameter values. 

All soft computing models are performed 20 times with the corresponding training and 

testing datasets as FBI-LSSVC-FS model. The performance of all models is compared on 

variety of evaluation criteria, including: classification accuracy rate (CAR), sensitivity 

(recall), precision or positive predictive value (PPV), negative predictive value (NPV), and 

F1score. The use of many evaluation criteria aims at giving the correct assessment for all 

aspects. Thus, models’ weakness in classifying data samples will be exposed.  Since the PPV 

and NPV have been introduced earlier, the CAR, Recall, and F1 Score measurement metrics 

are computed as follows: 

CAR = 
 

𝑻𝑷+𝑻𝑵𝑻𝑷+𝑻𝑵+𝑭𝑷+𝑭𝑵 × 𝟏𝟎𝟎%
       

(26) 

Recall     = 
 

𝑻𝑷𝑻𝑷+𝑭𝑵
         

(27) 

F1 Score = 
𝟐𝑻𝑷𝟐𝑻𝑷+𝑭𝑷+𝑭𝑵

         
(28) 

where TP is number of truly predicted rutting damages; TN is number of truly predicted non-

rutting damages; FP is number of wrongly predicted rutting damages; and FN is number of 

wrongly predicted non-rutting damages. 
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Fig. 6 Improvement of objective values 

 

 

Table 2 Output of confusion matrix for 20 run times 

Run no. TP TN FP FN 
Features 

used 

Features 

excluded 

Run 1 104 92 3 1 57 37 

Run 2 95 101 0 4 55 39 

Run 3 94 102 1 3 51 43 

Run 4 104 94 0 2 49 45 

Run 5 99 101 0 0 46 48 

Run 6 92 103 1 4 51 43 

Run 7 94 105 0 1 61 33 

Run 8 100 100 0 0 53 41 

Run 9 102 95 1 2 60 34 

Run 10 99 99 2 0 45 49 

Run 11 112 88 0 0 44 50 

Run 12 89 111 0 0 55 39 

Run 13 99 101 0 0 58 36 

Run 14 86 112 1 1 31 63 

Run 15 94 102 0 4 56 38 

Run 16 100 96 2 2 46 48 

Run 17 100 95 0 5 42 52 

Run 18 102 98 0 0 53 41 

Run 19 101 97 1 1 50 44 

Run 20 103 95 1 1 55 39 

Noted: TP = true positive; TN = true negative; FP = false positive; FN = false negative 
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Fig. 7 Features refined for LSSVC model construction 

 

Table 3 Summary of comparative models’ performance 

 

 Model RF GRNN SVC LSSVC FBI-LSSVC FBI-LSSVC-FS 

T
ra

in
in

g
 p

h
as

e 

CAR 99.9%±0.1% 100%±0.0% 96.5%±0.3% 92.0%±0.3% 98.5%±1.0% 99.4%±0.5% 

Prec. 0.999±0.001 1.000±0.000 0.966±0.003 0.909±0.003 0.987±0.013 0.998±0.003 

Recall 0.998±0.002 1.000±0.000 0.965±0.003 0.934±0.003 0.980±0.013 0.989±0.007 

F1_score 0.999±0.001 1.000±0.000 0.965±0.003 0.921±0.002 0.984±0.012 0.994±0.007 

NPV 0.998±0.002 1.000±0.000 0.965±0.003 0.932±0.003 0.980±0.012 0.989±0.005 

T
es

ti
n

g
 p

h
as

e 

CAR 93.0%±1.9% 91.8%±2.1% 92.5%±1.9% 90.6%±2.0% 95.3%±1.3% 98.9%±0.9% 

Prec. 0.932±0.024 0.911±0.027 0.920±0.022 0.894±0.029 0.949±0.017 0.994±0.008 

Recall 0.930±0.035 0.925±0.029 0.930±0.029 0.922±0.027 0.956±0.021 0.984±0.016 

F1_score 0.931±0.024 0.918±0.022 0.925±0.019 0.907±0.018 0.952±0.020 0.989±0.016 

NPV 0.931±0.034 0.924±0.029 0.929±0.029 0.920±0.027 0.955±0.012 0.985±0.009 

Noted: Prec. = Precision 
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Fig. 8 Box-plot of comparative models ‘performance: (a) CAR; (b) Precision; (c) Recall; (d) 

F1 score 

 

Table 3 and Fig. 7 shows the results of all comparative models for identifying rutting 

damage of road on 20 run times. Apparently, all models were well trained with acquiring 

high values of CAR (≥92%), precision (≥ 0.909), recall (≥ 0.934), F1_score (≥0.921), and 

NPV (≥0.932). However, there are remarkable differences in terms of classification 

capability among the AI models in the validation phase. The proposed model, FBI-LSSVC-

FS is highlighted as the supreme model by gaining the greatest values for both mean and 

standard deviation of all performance indexes, particularly CAR (mean = 98.9%; std. =0.9% 

), precision (mean = 0.994; std. = 0.008), recall (mean = 0.984; std. = 0.016), F1_score (mean 

= 0.989; std. = 0.016), and NPV (mean = 0.985; std. = 0.009). These values show that using 

the proposed model, road inspectors can achieve roughly 6.0% accuracy improvement which 

contributes a large portion of budget for allocating money to repair road damage. Noted that 

the attained low values of standard deviation support FBI-LSSVC-FS to have a stable 

performance; thus, the given classification outcomes are reliable. 

As shown in Table 2 and Fig. 6, all of 94 features have been involved in the construction 

of classification models. However, selections for the set of features different for each run 

time which aims at synchronizing information for constructing model since there is a 

variance existing in each training dataset. The results of Table 2 and Table 3 further expose 

that the proposed model’s performance has no bias in predicting any classes. Thus, the 

objective function is formulated correctly. Apparently, statistical results support the 

integration of FS and FBI in LSSVC to be rational for achieving the greatest accuracy of 

classifying rutting / non-rutting. Accordingly, FBI-LSSVC-FS accomplished the prediction 



18 
 

test with 9.3%, 11.1%, 6.7%, 9.0%, and 7.0% improvements compared with conventional 

LSSVC in terms of CAR, precision, recall, F1_score, and NPV, respectively. Undoubtedly, 

the exclusion of redundant features is essential to both reduce computational complexity of 

the inference model and disturbance information that may degrade prediction performance. 

This study further employed a statistical method, named one-tailed t-test to verify the 

significant differences between comparative models’ performance. The test is implemented 

on the CAR values yielded in the testing phase with equal samples as the following 

procedure: 

⚫ 𝐻0 (𝑛𝑢𝑙𝑙 ℎ𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠)   : 𝐶𝐴𝑅𝐹𝐵𝐼−𝐿𝑆𝑆𝑉𝐶−𝐹𝑆 − 𝐶𝐴𝑅𝑜𝑡ℎ𝑒𝑟𝑠 = 0 

• 𝐻1 (𝑟𝑒𝑗𝑒𝑐𝑡 ℎ𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠): 𝐶𝐴𝑅𝐹𝐵𝐼−𝐿𝑆𝑆𝑉𝐶−𝐹𝑆 − 𝐶𝐴𝑅𝑜𝑡ℎ𝑒𝑟𝑠 > 0 
 

Degree of freedom: 𝒗 = (𝒏 − 𝟏)(𝒔𝟏𝟐 + 𝒔𝟐𝟐)𝟐/(𝒔𝟏𝟒 + 𝒔𝟐𝟒)    (29) 

Statistical test: 𝒕 = √𝒏(𝒙̅𝟏 − 𝒙̅𝟐)/√𝒔𝟏𝟐 + 𝒔𝟐𝟐     (30) 

where n is number of run times (n = 20); ν is the degree of freedom; 𝑠12  and 𝑠22  are the 

unbiased estimators of the variances of the two samples; The denominator of t is the standard 

error of the difference between two means 𝑥̄1 and 𝑥̄2.  

Calculated results with a confidence level of 95% (𝛼 = 0.05) are presented in Table 4. 

For all cases, t-statistic > t-critical one-tailed (1.70), indicating FBI-LSSVC-FS significantly 

outperformed other models in increasing CAR values of classifying rutting / non-rutting. The 

conclusion may be reflected visually in Fig. 7. 

Despite of possessing an outstanding inference performance, FBI-LSSVC-FS still gives 

mis-classification rutting / non-rutting of asphalt pavement. Fig. 8 displays several samples 

that FBI-LSSVC-FS incorrectly label images. Non-rutting is categorized into negative class 

as shown in Fig. 8a, b, c and d which caused by the fake trace of soil on the asphalt surface. 

Meanwhile, Fig. 8e, f, g, and h show samples of false positive. Surveyed and analyzed from 

the experiment, the mis-classification may be caused by a soil layer that fills the rutting and 

spread out the surrounding area (see Fig. 8g); thus, features of rutting are degenerated. 

Obtained features of a minor rutting are weak that also causes difficulty for the identification, 

as shown in Fig. 8e and f. Additionally, irregular patterns result in a negative impact on the 

model performance Fig. 8h. Nevertheless, this issue can be resolved by supplementing more 

images of the irregular patterns so that model can experience through the learning phase. 

 

Table 4 Calculation of one-tailed t-test on CAR values 

T-test RF GRNN SVC LSSVC FBI-LSSVC 

df 28 26 27 27 34 

t-statistical 12.71 13.76 13.62 17.26 10.37 

P(T<=t) 1-tail 1.87E-13 9.48E-14 6.52E-14 2.07E-16 2.26E-12 

t-critical 1-tail 1.70 1.71 1.70 1.70 1.69 

CONCLUSION Reject H0 Reject H0 Reject H0 Reject H0 Reject H0 

 
 
 
 
 
 
 
 
 

http://en.wikipedia.org/wiki/Unbiased_estimator
http://en.wikipedia.org/wiki/Variance
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Samples of false negative (a, b, c, d) 
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Samples of false positive (e, f, g, h) 

(e) (f) (g) (h) 

Fig. 9 Samples of misclassification: (a, b, c, d) false negative; (e, f, g, h) false positive 
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6. Conclusion 
Rutting presents a serious degradation of the asphalt pavements which is caused by 

heavy-vehicle wheel loads moving on poor compaction area or un-qualified asphalt layer of 

road. This degradation type thus needs to be early inspected for proceeding repairing task. 

This paper presents a novel hybrid machine learning based inference model to extract 

features of rutting for increasing prediction accuracy of rutting road. Texture of image is first 

analyzed and processed by GF and DCT techniques to generate potential features presenting 

rutting and non-rutting. The extracted features are then served as predictors for LSSVC 

model to build a hyperplane function of classifying images with rutting and non-rutting. This 

study further used FBI to search for optimal classification performance of LSSVC via a loop 

of optimization process which aims at determining set of hyper-parameters (C and γ) and 

simultaneously refining set of highly relevant features to match with the hyperplane function 

of LSSVC. 

The experiments have proven that all hybrid techniques fused in the proposed model have 

important roles in gaining the fascinating prediction accuracy. Statistical results point out that 

the proposed model, named as FBI-LSSVC-FS, achieved the most desirable values of CAR 

(98.9%), precision (0.994), recall (0.984), and F1_score (0.989) which are significantly better 

than that of GRNN, RF, SVC. These obtained values further indicate that FBI and FS 

contributed an improvement of 9.3% and 11.1% in terms of CAR and precision, respectively. 

It is worth noting that none of 94 extracted features are assessed as redundant variables. 

However, roughly half of all features are filtered to include in establishing the LSSVC model 

in each run time due to the variance of information inherent in each of training datasets. The 

variance of information is processed by refining set of features that produces synchronizing 

information to promote the learning capability of LSSVC model. Undoubtedly, use of FBI to 

simultaneously determine values of hyper-parameters (C and γ) and dynamically assigned set 

of features corresponding to each training datasets is critical. 

The analysis confirmed that the performance of prediction model is slightly compromised 

when working on images with strongly shadow texture, irregular patterns, or two gentle 

rutting. It is suggested to conduct the site trip survey at the sunny day and collect more image 

of irregular patterns or gentle rutting so that LSSVC has more chance of learning more 

deeply in the construction model phase. Hence, further steps of the current study include 

utilization of more advanced AI soft computing models and enriching image dataset to 

diminish effect of shadow and irregular pattern. 

In addition to the strong power of prediction highlighted in the experiment and result 

analysis, the FBI-LSSVC-FS is able to work without human intervention because users are 

not required to finetune model’s parameters. Hence, the FBI-LSSVC-FS is highly 

recommended to support transportation agencies in the surveying task. With the frame work 

of FBI-LSSVC-FS is believed to implement efficiently classification tasks for other type of 

road depression, such as cracking and pothole when it is trained with the corresponding 

image datasets. In summary, this paper contributes a novel method to the core body of 

knowledge for handling image classification task that is able to be extended as a commercial 

product. 

 

Supplementary Material 

The image data used in this study can be openly accessed at: 
https://github.com/NhatDucHoang/PavementRuttingData 
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