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Abstract
Soil cation exchange capacity (CEC) strongly influences the chemical, physical, and biological properties of soil. As the

direct measurement of the CEC is difficult, costly, and time-consuming, the indirect estimation of CEC from chemical and

physical parameters has been considered as an alternative method by researchers. Accordingly, in this study, a new hybrid

model using a support vector machine (SVM), coupling with particle swarm optimization (PSO), and integrated invasive

weed optimization (IWO) algorithm is developed for estimating the soil CEC. The physical and chemical data (i.e., clay,

organic matter (OM), and pH) from two field sites of Taybad and Semnan in Iran were used for validating the new

proposed approach. The ability of the proposed model (SVM-PSOIWO) was compared with the individual model (SVM)

and the hybrid model (SVM-PSO). The results of the SVM-PSOIWO model were also compared with those of existing

studies. Different performance evaluation criteria such as RMSE, R2, MAE, RRMSE, and MAPE, Box plots, and scatter

diagrams were used to test the ability of the proposed models for estimation of the CEC values. The results showed that the

SVM-PSOIWO model with the RMSE (R2) of 0.229 Cmol ? kg-1 (0.924) was better than those of the SVM and SVM-

PSO models with the RMSE (R2) of 0.335 Cmol ? kg-1 (0.843) and 0.279 Cmol ? kg-1 (0.888), respectively. Fur-

thermore, the ability of the SVM-PSOIWO model compared with existing studies, which used the genetic expression

programming, artificial neural network, and multivariate adaptive regression splines models. The results indicated that the

SVM-PSOIWO model estimates the CEC more accurately than existing studies.

Keywords Soil cation exchange capacity � Soil physics � Support vector machine � Particle swarm optimization �
Invasive weed optimization algorithm

1 Introduction

The soil cation exchange capacity (CEC) is the total

number of exchangeable cations that held in the soil by

electrostatic forces at a specified pH in the unit weight

(Amini et al. 2005; Velde and Bauer 2014). It is commonly

referred to the number of negative charges in soil. CEC is

one of the important chemical properties of soil, which

shows the ability of soil to maintain positively charged

ions, and also it is a good index to indicate the quality,

fertility, and efficiency of soil (Arias et al. 2005; Khaledian

et al. 2017). Even though it is possible to measure the CEC

directly, the acquisition process is difficult and expensive,

especially in Iran due to more significant amounts of lime

and gypsums (Amini et al. 2005; Carpena et al. 1972;

McBratney et al. 2002). Hence, several methods have been

developed to estimate the CEC from soil properties, which

can be easily measured. In general, there are two main

groups of literature for estimating the CEC. The first group

of studies focuses on developing regression-based empiri-

cal models called pedotransfer functions (PTFs). This set of

methods tried to establish empirical relation between the

CEC and physical and chemical properties of soil, such as

soil pH, soil texture, and organic matter, which can be

easily measured (Bell and Van Keulen 1995; Drake and

Motto 1982; Fooladmand 2008; Ghorbani et al. 2015;
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Krogh et al. 2000; Manrique et al. 1991). In recent years,

the second group of studies involving CEC estimates is

related to machine learning methods such as support vector

machines (SVM), artificial neural networks (ANN), adap-

tive neuro-fuzzy inference system (ANFIS), genetic

expression programming (GEP), and others. In recent

years, several studies, such as Emamgholizadeh (2012);

Parhizkar et al., (2015); Emamgholizadeh et al., (2017);

Parsaie et al., (2018a, b); Maroufpoor et al., (2018);

Emamgholizadeh et al. (2018); Emamgholizadeh, and

Karimi (2019); Bazoobandi et al., (2019); Parsaie et al.,

(2018a,b), have reported successful applications of these

intelligent models to estimate parameters in soil science,

water engineering, and civil engineering, for modeling soil

CEC in a nonlinear framework and create relationships

between inputs (physicochemical properties of soil data)

and output (CEC) (da Silva et al. 2018; Emamgolizadeh

et al. 2015; Ghorbani et al. 2015; Jafarzadeh et al. 2016;

Kashi et al. 2014; Keshavarzi and Sarmadian 2010;

Keshavarzi et al. 2017; Liao et al. 2014). One of the ben-

efits of using artificial intelligence models over pedo-

transfer functions (PTFs)-based models lies in not

depending on specific functions with unusual patterns but

just in the training process. Furthermore, the accuracy of

these models to retrieve the CEC was better than regres-

sion-based PTFs models particularly, when the relationship

between input and output data is unknown, and also there is

a nonlinear and complex relationship between them

(Emamgolizadeh et al. 2015).

Although most of the previous studies indicate the

superiority of the data-driven models in comparison with

the regression-based PTFs models, it is possible to reduce

the learning error and increase the performance of these

models by coupling them with meta-heuristic optimization

algorithms such as particle swarm optimization (PSO),

invasive weed optimization (IWO), genetic algorithm

(GA), and cultural algorithm (CA). The literature of past

studies indicates that the integrated forecasting methods

outperform the individual predictions (Da and Xiurun

2005; Mohammadi and Mehdizadeh 2020; Holland 1975;

Kennedy and Eberhart 1995; Mehrabian and Lucas 2006;

Meshram et al. 2019; Ndiritu and Daniell 2001; Reynolds

1994; Tien Bui et al. 2018; Mohammadi et al. 2020a).

Therefore, in the current study, two meta-heuristic opti-

mization algorithms, namely the PSO, and the IWO were

used to predict CEC. The IWO is a nature-inspired meta-

heuristic optimization technique, which proposed by

Mehrabian and Lucas (Mehrabian and Lucas 2006),

inspired by the dynamic growth of the weed’s colony and

can be used for continuous function optimization. Also, the

PSO algorithm was introduced by Kennedy and Eberhart

(1995). This technique is a population-based search

algorithm inspired on the social behavior of birds within a

flock.

In recent years, the PSO and IWO algorithms are suc-

cessfully used for improving the prediction ability in soil

science. For example, Moazenzadeh and Mohammadi

(2019) utilized a hybrid of bio-inspired meta-heuristic

optimization algorithms and SVM model to assess the soil

temperature. Their findings indicated that the proposed

hybrid algorithm was a powerful computational tool for

estimating soil temperature compared to the SVM model.

Xue et al. (2014) applied hybrid SVM-PSO to predict slope

stability of soil, and they stated that using the PSO algo-

rithm enhanced the forecasting accuracy of the SVM

model, and the PSO-SVM can be used as a powerful model

to estimate the slope stability. Rui et al. (2019) used the

PSO-SVM for estimation of the total organic carbon (TOC)

content from DT (acoustic log), DEN (bulk density), GR

(natural gamma-ray), SP (natural potential), and some

array resistivity logged similar M2R1 to M2RX. They

found that this model can be used as an efficient and reli-

able method to estimate TOC content. Also, other

researchers such as Tang et al. (2019), Wang et al. (2013)

Du et al. (2017) used the PSO-SVM in their studies.

Moazenzadeh et al. (2018) applied hybrid support vector

machines (SVM) with meta-heuristic optimization algo-

rithms to estimate evaporation values. The results showed

that the hybrid model produced a better-estimated result

compared to the SVM model alone. In another study,

Ghorbani et al. (2017) estimated the field capacity and

wilting point of the soil combining the SVM and firefly

algorithm models, and they had shown that the hybrid

model performs well compared to the SVM method alone.

Additionally, Mohammadi et al. (2020b) used a hybrid of

grey wolf optimizer and SVR method for modeling lake

water level, and they stated that the hybrid model outper-

forms compared to the SVR model.

Several studies have recently used a hybrid invasive

weed optimization algorithm (IWO) and support vector

machines (SVM) to find complex relations between inputs

and outputs in numerous engineering problems. For

example, Huang et al. (2013) applied the invasive weed

optimization algorithm (IWO) for optimization of the

parameters of support vector machines (SVM). Goli et al.

(2018) compared the ability of the invasive weed opti-

mization (IWO) algorithm with three meta-heuristic algo-

rithms, including particle swarm optimization (PSO),

genetic algorithm (GA), and cultural algorithm (CA), to

improve the artificial intelligence models, namely support

vector regression (SVR), multilayer perceptron (MLP), and

adaptive-neural-based fuzzy inference system (ANFIS) to

predict the demand of dairy products (DDP). Their results

showed that using the hybrid IWO and ANFIS model

produced better estimation compared to the other hybrid
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models. These studies confess that when meta-heuristic

optimization algorithms are used to learn the target func-

tion in the intelligence models such as SVM, the new

hybrid model can be better learned and therefore perform

better than the SVM model alone. Due to the aforemen-

tioned advantages of the hybrid models, in the current

study, the SVM model was coupled with IWOA and PSO

methods for estimating the CEC.

There is no work to date, of which we are aware, that

has no other study has used SVM-PSOIWO to estimate

CEC. The advantage of the proposed new hybrid model

(SVM-PSOIWO) is (1) optimization of the objective

function to estimate the CEC simultaneously with two

methods of meta-heuristic optimization algorithms (IWOA

and PSO), (2) local and global search to find the optimal

solutions near the definitive answers, so the new proposed

model will never drop in the local optimal because all the

possible answers at the same time are analyzed, (3) the new

proposed model is not sensitive to outlier data and also to

the existence of noise in data, and it can consider the

extreme values, (4) the optimization of the target function

simultaneously by two meta-heuristic optimization algo-

rithms makes it possible to minimize the response of the

target function of the SVM model to the extent possible; as

a result, the objective function is optimized, and finally, the

CEC values are estimated with the highest accuracy and the

least error.

The main goal of this study is to examine the ability of

the SVM-PSOIWO method to estimate CEC. As a second

perspective, a comparison was done between the proposed

method and existing methods.

2 Materials and methods

2.1 Case study and data description

The soil physical and chemical data obtained from two

field sites, namely Taybad (latitude, 34.6983� N to

34.7000� N; longitude, 60.7667� E to 60.7817� E) and

Semnan (latitude, 35.5667� N to 35.5816� N and longitude,

53.4667� E to 53.4817� E), were used in this study

(Emamgolizadeh et al. 2015). The area of each site was

approximately 400 hectares. Two hundred and fifty soil

samples were taken from each site from the top 30 cm of

the soil profile. Soil samples randomly and with appropri-

ate distribution were taken from 500 locations in two study

sites. The distance between soil sampling points was

between 100 and 400 m.

Cation exchange capacity (CEC) determined by Bow-

er’s method (Sparks et al. 1996). Also, soil texture, OM

percentage, and pH were measured by hydrometer tech-

nique (Gee and Bauder 1986), the Walkley–Black

approach (Walkley and Black 1934; Nelson and Sommers,

1982), and pH-meter, respectively. According to the USDA

soil classification criteria, the study area has two types of

Entisols and Aridisols (USDA, soil taxonomy 2010).

Table 1 indicates a summary of the statistical characteris-

tics of the data. To examine the ability of models to predict

the CEC, the whole data sets consisted of 500 experimental

data points of organic matter (OM), pH, clay, and soil

cation exchange capacity (CEC) split into two categories of

training and testing based on simple random sampling

approach. Overall, 80% of data (N = 400 data points)

considered for training, and 20% of the remaining data

(M = 100 data points) for testing (see Fig. 1).

The previous results showed that CEC depends on many

factors such as soil texture, organic matter, soil humus

content, and soil pH. Among these parameters, OM, clay,

and pH are more important than other parameters (Bell and

Van Keulen 1995; Brady and Weil 2016; Emamgolizadeh

et al. 2015; Fooladmand 2008). Bell and Van Keulen

(1995), and Krogh et al. (2000) showed that there is a

positive correlation between CEC and soil pH. As the soil

pH is increasing, the amount of hydrogen held by organic

colloids and silicate clays (kaolinite) is ionized, and

replaced; therefore, the number of negative charges on the

colloids increases and as a result the CEC value increases

(Pratt 1961; Sparks 2012). Soil organic matter (OM) is

another important parameter of soil that has a significant

contribution to the CEC of the soil due to its high surface

area and high electrical charge (negative charges). Studies

showed that near the soil surface where the organic matter

content is higher, the CEC content increases and, con-

versely, at lower soil depths, it decreases (Oorts et al. 2003;

Parfitt et al. 1995; Sparks 2003). Similar to the OM, and

pH, there are several reports on the impact of clay content

on the CEC of soils. Clay can absorb and retain cations due

to a large number of negative charges on their surface,

thereby increasing the amount of the CEC (Amini et al.

2005; Emamgolizadeh et al. 2015; Seybold et al. 2005).

A correlation analysis was done to survey the relation-

ship between soil CEC and clay, OM, and pH (see Fig. 2).

For this purpose, the Pearson product-moment correlation

performed to find the strength of the linear relationship

between variables. Figure 2 shows that there is a high

correlation between CEC and OM with R = 0.83. Also, the

correlation between CEC and clay and pH is 0.76 and 0.54,

respectively.

2.2 Support vector machine (SVM)

The SVM method is a supervised learning, and for the first

time it was introduced by Vladimir Vapnik in 1995. The

support vector machine is an efficient learning system

based on bounded optimization theory that utilizes the
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principle of structural error minimization induction and

results in an optimal solution (Tang et al. 2019). To cate-

gorize vectors that are not linearly separable, a kernel

function such as degreed polynomial, radial basis, or

hyperbolic tangent is used to map the observed multidi-

mensional vectors to a space with higher dimensions.

Recently, some researchers suggested radial basic func-

tions (RBF) as a powerful tool for considering as a kernel

function in soil and water studies (Moazenzadeh et al.

2018; Mohammadi et al. 2021), and the RBF kernel

function parameters were optimized through the trial and

Table 1 Statistical

characteristics of data

(Emamgholizadeh et al. 2015)

Statistical parameters CEC (Cmol? kg-1) Clay (%) OM (%) pH

Mean 9.31 17.27 2.18 9.27

Minimum 7.89 10.00 1.20 7.77

Maximum 11.88 27.00 3.72 11.87

Standard Error 0.04 0.20 0.03 0.04

Median 9.23 16.00 2.10 7.90

Mode 9.68 20.00 1.50 7.90

Standard deviation 0.87 4.53 0.56 0.36

Sample variance 0.76 20.52 0.32 0.12

Kurtosis - 1.01 - 1.20 - 0.89 0.32

Skewness 0.21 0.21 0.31 -0.39
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error method. Figure 3 shows a schematic structure of the

SVM model.

2.3 Particle swarm optimization (PSO)

The PSO meta-heuristic algorithm was first proposed by

Kennedy and Eberhart (1995) for optimization of the

complicated process. The PSO algorithm is inspired by the

collective performance of animal groups such as birds and

fishes (Assareh et al. 2010). In this algorithm, a bunch of

creatures, which are called particles, spread in the search

area. Every single particle approximates its situation rela-

tive to the target position. They adjust their position and the

velocity based on the current situation and the best position

they were already in, and the situation of the best particles

in the bunch:

Vid
t ¼ wVid

t�1 þ C1r1 Pid
t � xid

tð Þ þ C2r2 Pgd
t � xgd

t
� �

; d
¼ 1; 2; . . .D

ð1Þ

where xtid indicates the location of the particle id = 1,…,D

in iteration t, Vt
id is velocity of particle id = 1,…,D in

iteration t, Pt
id is the best location of the particle id =

1,…,D in iteration t, Pt
gd is the global best position of the

article gd = 1,…,D in iteration t, w expresses the inertia

weight, C1expresses the cognition learning factor, C2

expresses the social learning factor, and r1 and r2 denote the

random values in [0,1].

The basic steps for implementing the algorithm are as

follows: step (1) generating the initial swarm and assessing

it, step (2) evaluation of the fitness of every single particle

within the bunch, step (3) update velocity of every single

particle according to Eq. 1 and update the position by

xtþ1
id ¼ xtid þ vtid, step (4) each particle moves to the next

position based on the xtþ1
id ¼ xtid þ vtid, step (5) the algo-

rithm will stop when the termination criterion is satisfied or

returned to the step 2.

2.4 Invasive weed optimization (IWO)

The invasive weed optimization (IWO) was introduced by

Mehrabian and Lucas (2006). It is an intelligent and evo-

lutionary algorithm for solving optimization problems. In

this algorithm, the meta-heuristic procedure is inspired by

the dynamic growth performance of the weeds colony in

nature (Safari et al. 2020). Also, this iterating algorithm is

useful for continuous functions works in five steps consist

of initialization, reproduction, spatial dispersal, competi-

tive exclusion, and termination condition (Fig. 4).

Each step in the IWO algorithm is summarized below:

Step 1- Initialization: In the first stage, the initial

population of weeds, X = {x1, x2, …, xPS0}, is generated in

the search space, PSO is the size of the initial population of

weeds. Each weed, xi = (xi1, xi2, …, xin) is an n-dimen-

sional real-valued vector, and each dimension xik of xi
generated as follows:

xik ¼ lbk þ r� upk � lbkð Þ; i ¼ 1; 2; :::;PS0; k ¼ 1; 2; :::; n

ð2Þ

where r is a uniform random number between 0 and 1. lbk
and upk denote the lower and upper bounds for the k

dimension, respectively.

Step 2- Reproduction: Each weed produces seeds based

on its fitness. In fact, the number of seeds (Si) produced by

a weed (xi) is determined by the fitness of the plant (Eq. 3).

A weed that has higher fitness has a greater chance of

reproduction.

Fig. 3 Schematic structure of

the SVM model
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si ¼ floor smin þ
smax � smin
f max � f min

� f xið Þ � f minð Þ
� �

ð3Þ

where Si is the number of seeds generated by weed xi, f(xi)

stands for the fitness of xi, so fmin ¼ min
f xið Þ
xi 2 X

and

fmax ¼ max
f xið Þ
xi 2 X

. Floor is a function which rounds the

element to the nearest integer towards minus infinity. smin

and smax define the number of seeds generated by the worst

and the best weeds in the population, respectively. The

generated seeds in this step have a normal distribution with

a mean equal to zero but the variance is different.

Step 3- Spatial Dispersal: In this step, the randomness

and adaptation are done in the IWO algorithm. In order to

group fitter plants and eliminate inappropriate ones, the

nonlinearity at each iteration must be decreased. To

achieve this, in each generation over time, the standard

deviation (r) of the normal distribution is reduced from

specific initial value (r0) to final value (rf) according to

Eq. 4:

riter ¼
itermax � iterð Þa

itermaxð Þa � r0 � rf
� �

þ rf ð4Þ

riter represents the standard deviation at the current itera-

tion; iter, and itermax define the maximum number of

iterations, and a, which is generally set to 3, is a nonlinear

modulation index.

Step 4- Competitive Exclusion: In this step, all the

weeds in the initialization step and the seeds produced in

the reproduction step joint together to form the next gen-

eration population. Because the number of weeds does not

exceed a given maximum allowable population in a colony,

PSmax, the mechanism of the competitive elimination is

used to the members of the population, and weeds with

lower fitness will be eliminated.

Step 5- Termination Condition: In this step, steps 2 to

4 are repeated until a given termination condition has

occurred. Termination condition could be the maximum

number of iteration or the maximum elapsed CPU time.

2.5 Hybrid models (SVM-PSO and SVM-PSOIWO)

SVM model does not require complicated calculations, but

it needs to adjust network weights and coordinate neurons

when performing local convergence and optimization in

the network. One of the novelties of this study is to apply

Fig. 4 Sketch procedure of the

basic IWO algorithm
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the new hybrid SVM-PSOIWO method in comparison with

basic SVM and SVM-PSO to obtain a rapid and efficient

method for predicting the CEC in the study area. For

optimizing the train performance, the PSO algorithm was

then integrated with the ordinary SVM model to construct a

single-phase SVM-PSO model. And the PSO aimed to

determine the optimized values of the ordinary SVM model

parameters (i.e., weights and biases) at the model’s training

section. Then, two-phase hybrid model (SVM-PSOIWO)

was also constructed to further improve the SVM-PSO

model for acquiring the best synaptic weights and biases

within the two-phase hybrid model’s hidden layers. SVM-

PSOIWO stops when a mathematical fit between support

vector machine weights and the IWO is created, or the

maximum number of iterations occurs. It is an estimator

hybrid procedure that utilizes both support vector machine

capabilities and optimization algorithm capabilities. Some

research has shown that such a hybrid technique can pre-

dict more successful results (Ghorbani et al. 2017;

Moazenzadeh and Mohammadi 2019; Mohammadi and

Mehdizadeh 2020). The flowchart of the SVM-PSOIWO is

shown in Fig. 5.

2.6 Model performance criteria

The estimated soil CEC values were compared with

observed values using five different performance evalua-

tion criteria: The root mean square error (RMSE), the

coefficient of determination (R2), the mean absolute error

(MAE), the relative root mean square error (RRMSE), and

mean absolute percentage error (MAPE). Table 2 shows

mathematical expressions of these performance evaluation

criteria,

where Oi is the observed CEC values, Pi is the predicted

CEC values, n is the number of CEC data, and the bar

denotes the mean of the variable.

Table 2 Mathematical expressions of statistical metrics

Evaluation criteria Equation

RMSE

RMSE ¼
Xn

1
Oi � Pið Þ2

h i.
n

n o1=2

R2

R2 ¼ 1
n �

P
Oi�Oð Þ Pi�Pð Þ
roð Þ rpð Þ

� �2

MAE MAE ¼ 1
n

Pn
1 Oi � Pij j

RRMSE

RRMSE ¼
Pn

1 Oi � Pið Þ2
h i.

n
n o1=2

1=n
Pn

1 Pi

� 100

MAPE
MAPE ¼ 1

n

Pn

i¼1

Pi�Oi

Oi

���
���� 100

Fig. 5 The schematic diagram includes input and output along with details of the SVM-PSOIWO hybrid method
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3 Results and discussion

3.1 CEC estimates from the SVM, SVM-PSO,
and SVM-PSOIWO models

In this study, the SVM, SVM-PSO, and SVM-PSOIWO

methods were employed to predict the soil CEC value. For

this purpose, 80% of the data (400 data points) was used for

training predictor models. In addition, 20% of the data was

employed in the testing stage. The proper selection of

inputs data for models, i.e., SVM, SVM-PSO, and SVM-

PSOIWO, has an important role in the accurate estimation

of the CEC. For this purpose, based on the Pearson cor-

relation analysis three variables, namely OM, clay, and pH,

were selected among different measured physical and

chemical parameters as input data to the models. Three

scenarios for the input configurations were defined (see

Table 3). These scenarios were selected based on the

highest correlation of input parameters with the CEC

parameter. The first scenario includes OM which has the

highest correlation with the CEC, and in the second sce-

nario the clay parameter, which after OM has the highest

correlation with the CEC, added into the first scenario, and

finally, the third scenario includes OM, clay, and pH.

After designing the different scenarios highlighted in

Table 3, the input configurations were introduced to the

mentioned models for implementation of them. Tables 4

and 5 show the RMSE, MAE, MAPE, RRMSE, and R2 of

CEC estimates from the SVM, SVM-PSO, and SVM-

PSOIWO methods for training and testing stages, respec-

tively. As can be seen in Tables 4 and 5, indicated with the

first input configuration (i.e., OM), the RMSE (R2), of CEC

estimates from SVM, SVM-PSO and SVM-PSOIWO are

0.419 Cmol ? kg-1 (0.772), 0.334 Cmol ? kg-1 (0.846),

and 0.298 Cmol ? kg-1 (0.888), respectively, for training,

and 0.429 Cmol ? kg-1 (0.740), 0.367 Cmol ? kg-1

(0.807), and 0.316 Cmol ? kg-1 (0.857), for testing.

For the second input configuration, by adding the clay to

the second input configuration (i.e., OM, and clay), the

accuracy of CEC estimates increased. The RMSE varies

from a minimum of 0.243 Cmol ? kg-1 to a maximum of

0.408 Cmol ? kg-1 for training and testing stages. Com-

paring the results of the first and second input configura-

tions indicates that the average RMSE of CEC estimates

decreased by 15.17% and 8.82% for training and testing

stages, respectively. Finally, for the third input configura-

tion (i.e., OM, clay, and pH), using these configurations of

input data, the average RMSE decreased by 31.95% and

19.78% compared to the first and second input configura-

tions for training and by 24.19% and17.76% for testing

stages, respectively.

Compared to the SVM model, using the SVM-PSO

model to estimate the CEC value the accuracy of the model

increased, and the average RMSE, MAE, MAPE, and

RRMSE decreased by 16.72%, 20.59%, 20.67%, and

16.60% in the testing stage. Similarly, a comparison of the

performance of the SVM, SVM-PSO, and SVM-PSOIWO

models implied that the SVM-PSOIWO estimation was

much more accurate than both SVM and SVM-PSO

methods. Also, the findings in Tables 4 and 5 illustrate that

the RMSE of SVM-PSOIWO decreased by approximately

35.81% and 19.49% compared to the SVM and SVM-PSO

models for training and by 31.64% and 17.92% for testing,

respectively. Overall, the results of this study imply that the

SVM-PSOIWO model has been able to estimate the CEC

values with low error and it suggests the success of the

support vector machine (SVM) coupling with particle

swarm optimization (PSO) and integrated invasive weed

optimization algorithm.

In order to indicate the performance of the SVM, SVM-

PSO, and SVM-PSOIWO models, the scatter plot and

residual (error plot) of observed and predicted CEC values

from the best input configuration (i.e., OM, clay, and pH),

are drawn in Fig. 6 for testing phase. Based on this figure,

the agreement between the measured and predicted CEC

was very good for the SVM-PSOIWO model in training

stage (R2 = 0.953, RMSE = 0.190 Cmol ? kg-1, MAE =

0.132 Cmol ? kg-1), and in testing stage (R2 = 0.924,

RMSE = 0.229 Cmol ? kg-1, MAE = 0.152

Cmol ? kg-1).

Mentioning the optimized parameters of the used mod-

els in the hydrological modeling process is very important

because it can help researchers measure their new models

with optimized parameters (Mohammadi 2019). Concern-

ing this issue, Table 6 lists the optimized parameters and

structure of the models used in this study.

Also, in order to compare the SVM, SVM-PSO, and

SVM-PSOIWO models to predict the CEC value, the box

plot was used. Figure 7 shows the results of models for

three scenarios and three models versus the measured data

in the testing stage. In the box plot, the statistical charac-

teristics of the measured and predicted soil CEC values are

compared. In this figure, the green color represents 25% of

the data (first quartile), which is less than the average of the

data, and the orange color represents 75% of the data

(quartile third). As can be seen, among all used models and

scenarios, the SVM-PSOIWOS3 model has the most sim-

ilar statistical characteristics to the observed values, which

Table 3 The scenarios of the input combinations of models

No Inputs Models

1 OM SVM1 SVM-PSO1 SVM-PSOIWO1

2 OM, Clay SVM2 SVM-PSO2 SVM-PSOIWO2

3 OM, Clay, pH SVM3 SVM-PSO3 SVM-PSOIWO3
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means that the third scenario (i.e., OM, Clay, and pH) are

more adequate inputs for modeling CEC. On the other

hand, this suggests that the new proposed model, which

was first used in this study to predict the CEC, is a suc-

cessful model and can estimate the CEC values with the

least error compared to previous popular models.

In Fig. 8, the comparison between methods (SVM,

SVM-PSO, and SVM-PSOIWO) was investigated accord-

ing to the RRMSE index in the training and testing stages.

As expected, in all scenarios and for all used methods, the

accuracy of methods in the training stage was better than in

the testing stage. Also, based on this index, the use of the

third combination of data (i.e., OM, clay, and pH) is the

best and most effective combination of input data to esti-

mate the CEC. As shown in Fig. (8), the new model, the

SVM-PSOIWO, has been able to reduce the value of the

RRMSE index by almost half as compared to the SVM

model, which represents a good and positive feature of the

newly proposed method. In both the training and testing

stages, the results of the new SVM-PSOIWO model are

much more satisfactory than SVM and SVM-PSO methods,

so that the SVM-PSOIWO model could significantly

reduce the error rate in the CEC estimate.

3.2 Comparing SVM-PSOIWO with previous
studies

As shown in Sect. 3.1, the comparison results of CEC

estimates for the three methods and SVM-PSOIWO

revealed that the best results were achieved when the

SVM-PSOIWO model was used with the third combination

of data (i.e. OM, clay, and pH). This finding is consistent

throughout the study of Emamgholizadeh et al. (2015). To

further evaluate the capability of the SVM-PSOIWO

method in estimating the CEC parameter, the result of the

SVM-PSOIWO model was compared with those of previ-

ous studies that used the ANN, GEP, MARS, and MLR

models to estimate CEC. The statistical indices of all

models in the testing stage are given in Table 7. As shown,

compared to other models, the CEC estimates from the

SVM-PSOIWO model with R2 and RMSE 0.229

Cmol ? kg-1, and 0.924 provide accurate results and

reduce the RMSE by 9.1%, 28.0%, 38.1%, and 43.9%

Table 4 Result of models

related to the training phase
Models name Training phase

RMSE (Cmol ? kg-1) MAE (Cmol ? kg-1) MAPE (%) R2 RRMSE (%)

SVM1 0.419 0.309 3.44 0.772 4.53

SVM2 0.359 0.257 2.855 0.832 3.889

SVM3 0.296 0.202 2.271 0.885 3.209

SVM-PSO1 0.344 0.26 2.881 0.846 3.724

SVM-PSO2 0.298 0.215 2.409 0.888 3.225

SVM-PSO3 0.236 0.151 1.703 0.927 2.553

SVM-PSOIWO1 0.298 0.215 2.409 0.888 3.225

SVM-PSOIWO2 0.243 0.167 1.871 0.923 2.626

SVM-PSOIWO3 0.190 0.132 1.478 0.953 2.058

Table 5 Result of models

related to the testing phase
Models name Testing phase

RMSE (Cmol ? kg-1) MAE (Cmol ? kg-1) MAPE (%) R2 RRMSE (%)

SVM1 0.429 0.311 3.481 0.74 4.632

SVM2 0.408 0.291 3.243 0.765 4.407

SVM3 0.335 0.238 2.67 0.843 3.614

SVM-PSO1 0.367 0.272 2.993 0.807 3.964

SVM-PSO2 0.334 0.242 2.72 0.857 3.605

SVM-PSO3 0.279 0.189 2.118 0.888 3.014

SVM-PSOIWO1 0.316 0.218 2.447 0.857 3.409

SVM-PSOIWO2 0.283 0.203 2.277 0.886 3.058

SVM-PSOIWO3 0.229 0.152 1.722 0.924 2.479
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compared to ANN, GEP, MARS, and MLR, respectively.

Overall, the estimating performance of the SVM model

improves when the coupling of this model with particle

swarm optimization (PSO) and integrated invasive weed

optimization algorithm is used instead of using the con-

ventional SVM model. Also, the results of this study

suggest that SVM-PSOIWO is a viable alternative proce-

dure for the commonly used models such as ANN, GEP,

MARS, and MLR models to retrieve CEC.
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Fig. 6 Scatter plot and residual

(error plot) of measurement and

predict of CEC by SVM3,

SVM-PSO3, and SVM-

PSOIWO3 models for the

testing phase

Table 6 Parameters setting for models used

SVM structure Particle swarm optimization Invasive weed optimization

Kernel function RBF kernel Maximum number of iterations 500 Maximum number of iterations 500

Bias 0.435 Swarm size 15 Number of an initial population 15

C 1.33–1.85 c1, c2 0.05, 0.05 Maximum number of plant population 25

E 0.19–0.40 r1, r2 0.45, 0.55 Minimum number of seeds 1

C 0.42–0.77 w 0.6 Maximum number of seeds 15
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4 Conclusion

Soil cation exchange capacity (CEC) is an important

parameter in agriculture and soil science. In this research,

the SVM-PSOIWO is proposed as a new method for esti-

mating CEC. Accordingly, the physical and chemical data

(i.e., clay, OM, and pH) from two field sites of Taybad and

Semnan in Iran were used to estimate CEC. For this pur-

pose, three configurations of input data (i.e., clay, OM, and

pH) were used to train and test models. It was found that

the performance of the three used methods of SVM, SVM-

PSO, and SVM-PSOIWO is promising for estimating the

CEC as a function of physical and chemical data as input

parameters. However, the SVM-PSOIWO performed better

than the individual model (SVM) and the hybrid model

(SVM-PSO). Moreover, the experiments demonstrated that

combinations of clay, OM, and pH are the most effective

input parameters for an accurate estimation of the CEC

values instead of one and two input combinations of data.

In another word, the performance of the models to retrieve

the CEC was greatly improved by increasing the number of

inputs data. Since the measurements of Clay, OM, and pH

are easy and have low cost, therefore, the proposed new

hybrid model can be employed to estimate CEC with
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RRMSE index

Table 7 Comparing the

performance of different studies
Models MAE (Cmol ? kg-1) RMSE (Cmol ? kg-1) R2

The present study (SVM3) 0.238 0.335 0.843

The present study (SVM-PSO3) 0.189 0.279 0.888

The present study (SVM-PSOIWO3) 0.152 0.229 0.924

ANN (Emamgholizadeh et al. 2015) 0.162 0.252 0.892

MARS (Emamgholizadeh et al. 2015) 0.216 0.318 0.864

GEP (Emamgholizadeh et al. 2015) 0.277 0.37 0.807

MLR (Emamgholizadeh et al. 2015) 0.303 0.408 0.768
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acceptable accuracy. The estimated CEC from the SVM,

SVM-PSO, and SVM-PSOIWO was also compared with

those of existing studies such as ANN, GEP, MARS, and

MLR. It was found that the SVM-PSOIWO models esti-

mate the CEC more accurately than those studies. In gen-

eral, the results of this study showed that the improvement

in SVM-PSO provided by the IWO algorithm could be

used as a predictive tool along with high-performance

optimization to estimate the CEC parameter and other soil

and water parameters. The high precision of the proposed

method (PSOIWO) can be related to its capability to find

the best outcome in the search space, so that this hybrid

algorithm simultaneously searches the optimal answer in

the local and global search space. Another advantage of

this algorithm is that when it finds the optimal solution, all

of the other optimal answers analyzed in the neighborhood

of the optimal solution, which prevents being trapped in a

local optimum. Although the result of the SVM-PSOIWO

model demonstrates improvements in the prediction of

CEC compared to other artificial intelligence (AI) models,

however, same to other AI models, the shortcoming of the

proposed model is that it acts like a black box and it must

be considered by researchers in their studies.
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