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Abstract The quality of the defect datasets is a critical issue in the domain of soft-

ware defect prediction (SDP). These datasets are obtained through the mining of

software repositories. Resent studies claims over the quality of the defect dataset.

It is because of inconsistency between bug/clean fix keyword in fault reports and

the corresponding link in the change management logs. Class Imbalance (CI) prob-

lem is also a big challenging issue in SDP models. The defect prediction method

trained using noisy and imbalanced data leads to inconsistent and unsatisfactory re-

sults. Combined analysis over noisy instances and CI problem needs to be required.

To the best of our knowledge, there are insufficient studies that have been done over

such aspects. In this paper, we deal with the impact of noise and CI problem on five

baseline SDP models; we manually added the various noise level (0 to 80%) and

identified its impact on the performance of those SDP models. Moreover, we further

provide guidelines for the possible range of tolerable noise for baseline models. We

have also suggested the SDP model, which has the highest noise tolerable ability and

outperforms over other classical methods. The True Positive Rate (TPR) and False

Positive Rate (FPR) values of the baseline models reduce between 20% to 30% after

adding 10% to 40% noisy instances. Similarly, the ROC (Receiver Operating Charac-

teristics) values of SDP models reduces to 40% to 50%. The suggested model leads

to avoid noise between 40% to 60% as compared to other traditional models.
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1 Introduction

Software defect prediction (SDP) [1, 2, 3, 4, 5] attempts to identify most likely fault-

prone modules in the software project by utilizing software metrics [6, 7, 8]. It is al-

ways advisable to carefully and meaningfully execute testing of fault-prone modules

rather than treating all the modules in a similar manner. SDP models make use of bug

reports for representatives in old software that indicate faulty and non-faulty mod-

ules. Module’s metric information of a software system [9] is used for the training of

defect prediction models. SDP models may make use of change-log of software con-

figuration management documentation, as the change-log indeed reports the modules

that experience change upon correction when faults being detected. SDP models that

use well-known traditional classifiers as a classification technique to predict buggy

or clean modules we called them classical SDP or traditional SDP models. All the

classifiers that we have used for experimental purposes are classical SDP models.

These SDP models and their variants are widely applied in the SDP domain, so they

are also baseline methods in defect prediction. We have used five baseline methods

for the experimental purpose discussed in section 4.3.2.

The links between logs and bug reports may be inconsistent because of few reasons

[10] and may also cause mislabeled data. Therefore, quite likely that an SDP model

may be working with noisy data and leads to erroneous results. When the cardinality

of one of the classes is much smaller than the other class, the dataset is said to be im-

balanced data. [11] reported an analysis over combined study on both noise and class

imbalance (CI) problems in software quality. They have conducted experiments over

eleven classification techniques and seven sampling methods over public datasets.

They concluded that few classifier combined with sampling methods that are most

confronted over the noisy and imbalanced dataset. To the best of our knowledge, the

combine interaction between CI and noisy instances still has limited research. Limi-

tations of isolated studies evaluation between CI and noisy instances are presented as

follows:

(a) It won’t be easy to find the concurrent impact of both challenges over defect pre-

diction models; both these problems degrade the performance of SDP techniques.

(b) Dealing with noisy instances only helps in suggesting the percentage of noisy

instances a model can tolerate. In contrast, studies about the CI problem only

helps in recommending the rate of imbalance in the dataset that a predictive model

can digest.

(c) The common approach that can conquer both the challenges together cannot pro-

posed.

(d) The trade-off ratio between the percentage of noisy instances and the CI rate can

not be explored.

After our empirical study, we have listed of few compelling motivational queries

about the requirement of combined analysis between noise and CI problem in soft-

ware defect prediction are shown below.

(i) Many of the software practitioners and researchers claimed over the quality of

defect prediction datasets, Shepperd et al. [12] claimed many instances were noisy

in NASA data repository. Joint analysis of CI problem and noise can help to study
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the relative impact between classifier and sampling methods over noisy instances;

as limited studies were reported over the interaction of sampling and classifiers

over noisy data.

(ii) How classifiers interact with sampling methods? Do certain sampling methods

outperform when simultaneously used with specific classification algorithms over

noisy datasets?

(iii) A combined study of sampling methods & classifiers and their performance anal-

ysis over various SDP models are still unexplored at different noise levels.

Researcher either suggested an SDP that dealt with CI problem or noisy instance but

not both, but we proposed an SDP model that address both issues. Apart from this,

we analyzed the tolerable noise capability of existing SDP models, i.e., after adding

noise, the performance of the SDP model remains unchanged. For the meaningful

treatment of the study approach, we framed five research query (RQ) based on evalu-

ation metrics that may guide the attempt to proposition of a model. These RQ justify

the observations of our empirical study.

List of research queries (RQs) are follows.

RQ-1: What are the effects of noise on True positive rate (TPR) and False positive

rate (FPR) over classical SDP models?

RQ-2: To what extent the suggested model is resistant over the various level of noise

compared to the other classical SDP models?

RQ-3: What is the range of tolerable noise in baseline defect prediction models?

RQ-4: How does the class imbalance problem affect the performance of various SDP

models over different noise levels?

RQ-5: Compare the performance of proposed approach with other classical SDP

models without applying sampling method.

All six RQs can explore the circumstances under which classical SDP models works

over noisy data. Noise tolerant ability in defect prediction still has a scope of research.

We have conducted similar experiments for noise handling like [13] done in their ar-

ticle; apart from this, we also dealt with CI issues. [14] also explore the challenges of

mislabeled data, which leads to inconsistent results. [15] suggested an approach JIT-

SDP that makes defect predictions at the software change level, and they presume

that the characteristics of the problem remain constant over time. The article makes

the following contributions.

(i) Combined empirical studies between noise and CI problem. The article also eval-

uates the impact of these two problems in the performances of baseline methods.

(ii) The article also analyzed the various tolerance level of noise and CI problems

over baselines methods.

(iii) Suggested SDP model that can tolerate maximum noise degree and circumvent

class imbalance issues. The suggested approach is mainly a change in a buggy

prediction model. These two are the most prominent challenges in any SDP tech-

nique. We have tested the significance level of the suggested approach using TPR,

FPR, F-measure, Precision, and ROC compared with other traditional SDP mod-

els.

(iv) We conducted 864 experiments over 3 public datasets using 5 classifiers and 1

sampling method. We also dispense a few guidelines for noise tolerance level
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and CI issue in baseline SDP models. Those guidelines will assist in better SDP

models in the future.

In the next section 2, we have discussed the related work, followed by the background

details in section 3; then after we illustrate the experimental procedure, & suggested

approach in section 4. In last sections, we have analyzed and discuss results of our

experiments in section 5. Afterward, we talk about threats & validity in section 6. In

the final section 7, we present conclusions drawn from the article.

2 Related work

A given software module consists of source code and other software metrics, SDP

classifies the module either clean or buggy. SDP classifies a module as either clean

or buggy, whereas a given software module consists of software features, e.g., source

code metrics; few existing SDP methods are SVM [16, 17], Naive Bayes [18, 19],

Random forest [20, 21], AdaBoost [22, 23], J48 [24, 25], etc. Recently a few other

ensemble learning [23, 26, 27] and deep learning-based [28, 29, 30] defect prediction

architecture have been reported. [31] suggested an interesting approach using dimen-

sion reduction of different software metrics, they have suggested an approach using

tangent based SVM. There are several unsupervised and semisupervised machine

learning methods that are also applied in the SDP domain. Abaei et al. [32] proposed

a semi-supervised based approach using hybrid self-organizing map (HySOM), the

model has the ability to predict defect-prone module in an unsupervised manner.

They performed experiments using NASA dataset and found improvement over ex-

isting methods. [33] performed a comparative analysis between performances of var-

ious semi-supervised methods. A semi-supervised method is proposed by Lu et al.

[34]; they found the proposed model significantly better over the random forest. Met-

ric driven software quality prediction model was proposed by Catal et al. [35]; their

method can be used when defects are absent; it does not require information about a

number of clusters before the clustering phase. They found the proposed model sig-

nificantly outperforms existing methods. [36] proposed an SDP model called ACo-

Fores, which addresses the problem of inadequate availability of historical dataset.

They used the PROMISE dataset for experiments and found optimal results com-

pared to other state-of-the-art methods. Similar work has been performed by [37];

they investigated Expectation-Maximization (EM) algorithm for software quality pre-

diction. They used NASA dataset and found EM-based prediction model improves

generalization performance. SDP techniques are suffering from two main challenges;

thus, we have categories related work into that fashion. The quality of the data in first

categories, and second about the class imbalance issue.

2.1 Quality of defect dataset

In few studies [5, 38], researchers had claimed the existence of some errors in large

datasets, like field error, the rate of field error is nearly around 5% [39, 40]. [41] tried

to handle noisy data and also tried to overcome from an over-fitting [42] problem.
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[12] also raised the question on the quality of data of NASA repository, but still, a

few powerful machine learning-based defect prediction models are available such as

[19, 43, 44, 45]. There are two different types of noises in a defect dataset, and both

of these noises [46] affect the performance over machine learning algorithms, first

is class noise and second is feature noise. However, we have only considered class

noise in this article. Class noise is an interchange of the class label from clean to

buggy or buggy to clean or both, due to any consequences. This problem leads to

inconsistent results. [47] concluded that few defects are not found in commit logs of

a dataset, and hence, they are also not visible in automated linking tools. [48] found

that more accomplished developers are more likely to direct links between issues

report to code change. [49] investigated the influence of SDP models by inducing

artificially generated defect dataset. Catal et al. [50] conducted a study over class

and noise detection; they proposed a detection algorithm based on software feature

threshold values. Riazz et al. [51] proposed a two-stage data preprocessing methods

that incorporates the feature selection and noise filter execution; they employed K-

nearest neighbor and ensemble learning in their proposed approach. Alan et al. [52]

proposed an outlier detection approach using metrics threshold and class label; they

employed NASA datasets to identify class outliers; they found the proposed model

outperforms over baseline methods.

2.2 Class imbalance problem

The class imbalance issue may produce biased result towards the negative instance

[53]. A comprehensive study about the class imbalance in SDP is recently done by

Song et al. [54]. Few studies [55, 56] compared results produces from imbalance

and balance class labels, but there are few researchers who proposed some solutions

that have increased some accuracy of SDP models. Researchers [57, 58, 59] have

proposed random subsampling [60], SMOTE [61], class balancer [62], and spread

subsampling [63] techniques, which help to avoid class imbalance issue and provide

unbiased results. Joon et al. [64] performed a combined study over class imbalance,

feature selection, and simple noise removal strategy over public datasets; they used

precision, recall, f-score, roc, and accuracy as performance measures.

3 Background

The general framework of a software defect prediction model is shown in Fig. 1.

Software repository consist two segments [65]; version control system (VCS), and

issue tracking system (ITS) as shown in Fig. 1. Most of the time software practition-

ers use both of them because version control systems (source code repository system)

are unable to store bugs. As figure reports the instance are generated from software

repository. These instance are made up of software metrics, the data cleaning and

other preprocessing are required to build the training set. Then training set are fed

into the trained/untrained model that can classify buggy or clean module. We will

provide detailed discussion about preprocessing and trained model in the later sec-

tions. Before designing any prediction model, we need to create the prediction target,
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i.e., class label. Software modules consist of software entities such as file [66], com-

ponent [67] or change [68], SDP model is intended to predict software module as ei-

ther buggy/defective or clean/non-defective. There are two types of defect prediction

Fig. 1: General framework of software defect prediction model.

models, buggy file prediction and change buggy prediction. The detail description are

given below.

3.1 Buggy files prediction

Identification of the buggy files in advance helps the development team leader to

properly and optimally allocated resources, and it leads to minimizing the testing ef-

fort. As we know, some of the internal properties of a software system, such as soft-

ware metrics, and have associates with the external property such a fault-proneness

of a module. This kind of SDP model mainly identifies software features that are ex-

pressed in a defect dataset. This classification model learns from historical data and

predicts the fault-prone modules in a test data. A lot of software features are respon-

sible for this kind of SDP models such as resource metrics [69], process metrics [70]

and cyclomatic complexity metrics [71].

3.2 Change buggy prediction

When some new changes are introduced in a software modules, the change buggy

prediction predicts whether the changed software module are buggy or not, and it

learns from change classification (CC). Let us say a module consist n files and sup-

pose a new file is added to it, so there are total n+1 files are present in the module.

Now, this n+1 files to the module may cause the software faulty. It mainly involves

two source code revisions, an old revision, and a new revision. This change in several

files is related to metadata, which includes author, change-log, date of commit, etc.

After mining the change history; it can derive the co-change count, which indicates,

for how many files changes, the system will remain clean or buggy. [72] illustrated

this process in their article.
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To build any of the two types of SDP models as defined above, requires class labels

(buggy/clean) and various features. Model fitting using mislabeled data may cause

incorrect results. In this direction, we proposed a change buggy prediction model by

using public data. In the next section, we will discuss its experimental details, perfor-

mance measure, and build a useful SDP model which can tolerate noisy instance up

to some extents.

4 Experimental procedure and suggested approach

In this section, we will illustrate the experimental details, dataset description, noise

addition phenomenon, performance metrics, preprocessing, classification techniques,

and the suggested approach.

4.1 Experimental setup

This section will discuss every aspect required in experiments. We have performed

864 experiments over three public datasets that are Scarab, Columba, and Eclipse.

We have implemented our experiment on 8 GB RAM, 1TB of the hard drive over

windows 10 operating system. Python libraries that have been applied for experi-

ments are Numpy Scipy, Scikit-learn, Keras, Pandas, and Matplotlib. Validation of

all 864 experiments is conducted over WEKA (Waikato Environment for Knowledge

Analysis) tool [73] to reverify experimental results.

Table 1: Description of all three datasets.

Dataset No. of defective

instance

No. of non defective

instance

% of defective

instance

No. of features Duration(mm/yyy)

Eclipse 67 592 10.09 16192 10/2001 to 11/2001

Scarab 366 724 50.6 5710 06/2001 to 08/2001

Columba 530 1270 29.4 17411 05/2003 to 09/2003

4.1.1 Dataset description

The three public datasets are Columba, Scarab, and Eclipse that we have used in

our experiments for the buggy change prediction model, as detailed shown in Table

1. These are classical datasets and have substantial training instances, as shown in

Table 1, compared with other open-source datasets, which lead to satisfactory results.

Although [13] uses these datasets in their experiments, they also conducted similar

experiments by adding noise manually into the datasets, so we are extending their

experiments.
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4.1.2 Noise added in dataset

We assumed datasets that we are using are pure, i.e., there are no noisy instances.

Kim et al. [13] also considered similar assumptions over these three datasets. So

we injected some percentage of noisy labels into it and then exercised its training

using various SDP models. Now, with the interchange of the class label from buggy

to clean and clean to buggy that introduced class noise in the defect dataset. Then

we evaluated the performance of various SDP models over different noise levels. To

analyze the performance of various classical SDP models, we have added noise in the

defect data from 0% to 80%. 0% means no noise added, whereas 10% means, 10%

of the total instance has been selected and interchange of the target label.

4.2 Performance measure

To evaluate the performance of five SDP models, we used five performance metrics;

those are True Positive Rate (TPR), False Positive Rate (FPR), Precision, F-measure,

and area under ROC (receiver operating characteristic) curve. The brief details of

these evaluation metrics are given below.

Actual

value

Prediction outcome

p n Total

p′ True

Positive

False

Negative
P′

n′ False

Positive

True

Negative
N′

Total P N

(a) True Positive Rate (TPR): It is the proportion of actual positive instances that

are correctly classified; It is also known as Recall. More the TPR better will be

the model.

TPR =
TP

TP + FN

(b) False Positive Rate (FPR): It is the ratio between the number of negative in-

stances wrongly classified as a positive instance (false positives) to the total num-

ber of actual negative instances (regardless of classification). Low the FPR more

effective the model is and vice-versa.

FPR =
FP

FP + TN
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(c) Precision: It is the ratio of relevant instances out of total instances. The relevant

instances are those instances that are required for the classification.

Precision =
FP

FP + TN

(d) F-measure: It is the harmonic mean of precision and recall (TPR). Its value lies

between 0 to 1, 0 implies the worst result and 1 implies the best result. It is also

known as f-score and F1 score.

F −measure = 2 ∗
Precision ∗Recall

Precision+Recall

(e) Receiver Operating Characteristics (ROC) curve: It is an area under the curve

of TPR and FPR. Its value lies between 0 and 1. The value 0 shows that there is no

correct classification, 0.5 shows random classification and 1 for 100% correctly

classified instances. It is mainly for diagnostic ability of a binary classifier [74,

75, 50].

4.3 SDP models for experiments

We added noise levels from 0% to 80% and then trained various models. We analyze

the performance of defect prediction models over different noise levels. The other

major challenge in any defect datasets is a skewed distribution of a particular class

causes class imbalance problem. To deal with such a problem, few researchers applied

sampling methods that establish the balance between positive and negative classes.

In the next sections, we explain the preprocessing methods and then various baseline

models.

4.3.1 Preprocessing Techniques

In the preprocessing stage, after data cleaning, the feature selection and sampling

methods are the major steps. The steps involved in preprocessing are shown below.

1. Sampling technique: Table 1 reports the datasets have skewed distribution and

suffer from class imbalance challenge. To avoid CI problem we have applied

random undersampling methods [76]. We have also tried other sampling meth-

ods, e.g., class balancer [77], synthetic minority oversampling technique [61],

and spread subsample technique [78], but achieved optimal results over the ran-

dom sampling technique. We considered the algorithm from [79], which deletes

random samples of the majority class label (SetLabels). The full description of

the algorithm is given in [79]. The main objective of this algorithm to achieve

uniform distribution of buggy and non-buggy class labels.

2. Feature selection: As Table 1 reports, each dataset has a massive number of fea-

tures. So we need to select relevant features for better analysis. We have used

Information gain [80] as a feature selection method and Ranker method as search

technique [81, 82] for feature ranking. It is mainly entropy based method; it is de-

fined as a amount of information provided by the selected item for categorization.
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It is calculated by how much an item’s information is important for classification,

in order to compute the importance of lexical items for the classification problem.

The ranker method uses conjunction with attribute evaluator (Entropy, Gain ratio,

etc.). It has three parameters, P, T, and N. The P (start state) specify the starting

set of the attribute, specified attribute are ignored during ranking. T (threshold),

the threshold is specified by which features are ignored. N (Number of selection);

it specified the number of attributes selected.

4.3.2 Classification techniques

We have used five different classification techniques while applying the same pre-

processing methods (discussed in section 4.3.1). These classifiers build five different

SDP models. The list of classification techniques is shown below.

(i) Naive Bayes (NB): It is a probabilistic classifier [83, 84], which is derived from

Bayes theorem. It is a family of algorithm which shares a mutual principle. Ev-

ery pair of features is classified as independent of each other. The underlying

assumptions are features makes an equal and independent contribution to the out-

comes [85]. We have used batch size = 100, set “doNotcheckCapabilities” and

“kernelEstimator” as “False”.

(ii) Least Square Support Vector Machine (LSVM): It is a supervised learning

algorithm [86]. It can be used for both classification and regression problems.

It is a binary classifier which creates n-dimensional hyperplane to classify the

instances [16]. We have used radial basis function kernel in our experiments. We

used batch size = 100, catch size = 40, cost = 1, degree = 3, loss = 0.1, nu = 0.5,

and seed = 1.

(iii) J48: It is variation [87] of the C4.5 algorithm; it is a decision tree based classifi-

cation algorithm which used to create Univariate Decision Trees (UDT) [43]. The

leaf node will decide the instance belongs to which category; it mainly calculate

the information gain of each attribute, and select the attribute with max info gain.

We have used batch size = 100, we set “binarySplits” as “False”, “collapseTree”

as “True”, no. of folds = 3, seed = 1, “unprunned” = “False”, and “useLaplase” =

“False”.

(iv) AdaBoost: It is short of Adaptive Boosting [44, 22], which is mainly an ensemble

learning technique. It combines different weak learners into one model and com-

bines the results of each weak learner. That makes the classifier more powerful.

As it is an ensemble learning technique; it overcomes the over-fitting problem.

We have utilized weak classifier as “Decision stump”, “weightThresold” = 100,

seed = 1, and “doNotcheckCapabilities” as “False”.

(v) Random Forest (RF): We have applied RF as a classifier in our proposed model.

It is also an ensemble learning technique [88]. Algorithm 1 shows the pseudo code

of RF learning algorithm. We considered this algorithm from [88], complete dis-

cussion about RF can be found in [88]. There is a function in RF algorithm called

“RandomizedTreeLearn” which mainly returns the learned tree. It is a decision

tree based learning algorithm; it is one of the most robust SDP model [89, 90].

We have used batch size = 100, “breakTiesRandomly” as “False”, “ComputerAt-

tributeImportance” as “False”, “no. of slots” = 1, and seed = 1.
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Algorithm 1: Pseudo code of Random forest.

Initial condition: Training set T = (x1, y1), (x2, y2), ...., (xn, yn), let number of features be F and

number of tree be B.

function RandomForest(T, F)

h← ∅ for i = 1 to B do

Ti← Boot starp sample from T;

hi← RandomizedTreeLearn(Si, F);

h = h ∪ hi
end

return h;

function RandomizedTreeLearn(T,F);

at every node

f← is small subset of F;

Split of best best feature in f;

return Learned Tree

end function

Before applying the learning technique, we split the dataset into a training set and

testing set. Where 70% for the training data and 30% for testing data, we have also

performed other split ratios but got optimal results on a 70%-30% ratio. Then we

have used ten-fold cross-validation [91] on training set in each classifier. It avoids the

possibility of an over-fitting problem [92] in the classification model.

4.4 Suggested approach

We have given the sequence of procedures regarding experiments in Algo. 2. The

Underlying architecture of the suggested approach is shown in Fig. 2; it reflects each

phase of the suggested model. Noise is added using the mislabeling of the class label,

as shown in Fig. 2. We have injected various noise level in a dataset, we have tested

the endure noise level in change buggy prediction model. We have applied informa-

tion gain as an attribute selection method and ranking method as a search method to

rank the attribute and select the most relevant attribute (see section 4.3.1).

We have utilized random undersampling as a sampling technique to address the class

imbalance problem. We have also tried a few other (SMOTE, Class Balancer, Spread

Sub-Sampling, etc.) well know sampling techniques, but the best results came from

random undersampling technique.

After preprocessing, we have split the dataset into training set and testing set, 70%

for training, and 30% for testing (see Fig. 2). After that, we have applied the ten-

fold cross-validation technique on training data. Cross-validation [91] also avoids the

over-fitting [92] and makes the better prediction model. To avoid random bias each

experiment has been performed ten times and taken the mean value of each perfor-

mance measure. The basic architectural view of the suggested approach shown in Fig

2. Random Forest is applied as a classifier, as shown in Fig 2. We have performed

similar prepossessing step for the pure set, i.e., 0% noise and compared the perfor-

mance P1 and P2, as shown in the algorithm 2, here P1 performance at 10% to 80%

noise level and P2 at 0% noise level.

In the next section, we will discuss the performance of various SDP models after
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Algorithm 2: Experimental procedure.

p← 20 /* No. of times each experiment performes */

q← 10 /* No. of fold in cross validation of dataset */

di← d1, d2, & d3 /* No. of datasets used for experiment */

cj ← c1, c2, c3, c4, & c5 /* No. of classifier used for experiment */

foreach p times experiment do

// dataset selection

foreach data di do
SelData← Select n instance from each data di

for instance i do
buggy← non-buggy & non-buugy← buggy

end

/* changing class label */

// Preprocessing

foreach instance i do
apply f1 & f2

end

f1← Random sampling /* Sampling technique used for

experiments */

f2← Info gain /* Feature selection */

foreach q fold do
TestData← SelData[fold]

TrainData← di - TestData
end

// classifier selection

foreach classifier cj do

TrainData← attribute(TrainData) /* attribute selection */

Classifier = cj (TrainData) /* classifier operate on training

data */

end

Performance P1← cj [TestData] /* PRC, MCC, ROC and F-measure

*/
end

// classifier applied withot adding noise

foreach di do
SelData← Select m instance of every data di
foreach instance i do

apply f1 & f2
end

/* preprocessing */

// classifier applied

foreach cj do

foreach data di do
SelData← n instance from data di

end

foreach classifier cj do
TrainData← attribute(TrainData)

Classifier = cj (TrainData)

end

Performance P2← cj [TestData] /* TPR, FPR, Presision,

F-measure, & ROC */

end

end

end

Compare P1 and P2 /* compare performance of models with and without

adding noise */
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Fig. 2: Underlying architecture of Random forest (suggested) based SDP model.

adding different noise levels from 0% to 80%. Besides, we also test the tolerable

noise in the suggested architecture without applying the sampling technique for all

five baseline methods.
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Table 2: True positive rate values of all datasets at different noise levels of various

defect prediction models.

0% 10% 20% 30% 40% 50% 60% 70% 80%

NB 0.677/0.635 0.613/0.589 0.669/0.608 0.656/0.696 0.660/0.623 0.666/0.631 0.672/0.588 0.649/0.594 0.653/0.618

SVM 0.744/0.706 0.688/0.661 0.677/0.626 0.675/0.614 0.669/0.619 0.640/0.571 0.635/0.582 0.6780.611 0.536/0.639

Columba J48 0.851/0.711 0.847/0.661 0.827/0.699 0.805/0.636 0.824/0.653 0.821/0.626 0.835/0.659 0.823/0.667 0.8300.698

RF 0.893/0.748 0.876/0.712 0.874/0.699 0.851/0.696 0.874/0.680 0.848/0.695 0.855/0.682 0.872/0.698 0.877/0.719

AdaBoost 0.731/0.724 0.691/0.685 0.646/0.643 0.608/0.606 0.659/0.641 0.626/0.595 0.591/0.604 0.643/0.623 0.646/0.671

NB 0.854/0.970 0.815/0.804 0.709/0.636 0.693/0.584 0.612/0.563 0.636/0.520 0.619/0.508 0.649/0.520 0.619/0.508

SVM 0.910/0.940 0.860/0.838 0.795/0.760 0.742/0.674 0.669/0.586 0.618/0.486 0.643/0.534 0.678/0.549 0.643/0.534

Eclipse J48 0.930/0.955 0.910/0.857 0.889/0.798 0.874/0.716 0.843/0.671 0.813/0.662 0.821/0.680 0.859/0.730 0.829/0.682

RF 0.975/0.940 0.944/0.856 0.923/0.710 0.873/0.675 0.863/0.675 0.847/0.624 0.844/0.616 0.871/0.653 0.844/0.616

AdaBoost 0.9/0.955 0.874/0.860 0.789/0.766 0.662/0.669 0.584/0.566 0.510/0.496 0.489/0.680 0.612/0.590 0.489/0.498

NB 0.725/0.715 0.732/0.704 0.710/0.682 0.724/0.700 0.688/0.693 0.659/0.623 0.616/0.541 0.7/0.608 0.641/0.606

SVM 0.779/0.724 0.852/0.721 0.833/0.692 0.8/0.688 0.757/0.678 0.772/0.675 0.747/0.590 0.714/0.630 0.762/0.666

Scarab J48 0.867/0.724 0.855/0.740 0.841/0.689 0.858/0.711 0.852/0.674 0.841/0.713 0.826/0.638 0.831/0.706 0.862/0.670

RF 0.890/0.783 0.890/0.768 0.883/0.747 0.895/0.767 0.885/0.743 0.885/0.727 0.870/0.681 0.878/0.699 0.883/0.695

AdaBoost 0.783/0.756 0.728/0.713 0.715/0.707 0.779/0.710 0.680/0.700 0.691/0.682 0.653/0.619 0.689/0.646 0.660/0.651

5 Results and analysis

We have experimented with, and without noisy instances in datasets, the noise has

been added from 10% to 80% in all three datasets. We have also conducted exper-

iments with and without applying the sampling method at various noise levels and

evaluating the performances. In this section, we will address all five research queries

(see section 1), and also justify the conclusion corresponding to experimental results.

Justifications of every RQs are shown below.

5.1 What are the effects of noise on True positive rate (TPR) and False positive rate

(FPR) over classical SDP models?

Table 2 & Fig. 3 represents the TPR of all baseline models over the various noise

levels, whereas the Table 3 & Fig. 4 reports the FPR of various SDP models over

different noise levels. On Eclipse data, the RF-based model exceeds its performance

over other defect prediction models. On pure data, the TPR value is 0.975, whereas

the lowest TPR value produced by the proposed model is 0.844 at 60% and 80%. The

worst performance processed by NB-based model over pure Eclipse data is 0.854.

The AdaBoost was the most variant model when the noise level increased from 0%

to 80%, and its TPR values started decreasing from 0.9 to 0.489.
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Table 3: False positive rate (FPR) values of all datasets at different noise levels of

various defect prediction models.

0% 10% 20% 30% 40% 50% 60% 70% 80%

NB 0.355/0.355 0.345/0.371 0.347/0.395 0.353/0.367 0.377/0.408 0.355/0.384 0.317/0.389 0.318/0.365 0.347/0.363

SVM 0.583/0.656 0.611/0.646 0.477/0.587 0.416/0.498 0.429/0.498 0.384/0.461 0.383/444 0.443/0.548 0.536/0.605

Columba J48 0.216/0.428 0.207/0.418 0.192/0.411 0.212/0.387 0.187/0.390 0.180/0.349 0.168/0.345 0.189/0.378 0.193/0.373

RF 0.209/0.500 0.206/0.472 0.170/0.411 0.180/0.367 0.150/0.381 0.157/0.317 0.146/0.322 0.154/0.378 0.185/0.418

AdaBoost 0.488/0.537 0.487/0.538 0.549/0.479 0.436/0.494 0.466/0.482 0.412/0.444 0.402/0.439 0.412/0.489 0.554/0.547

NB 0.228/0.470 0.232/0.287 0.231/0.295 0.220/0.343 0.284/0.278 0.233/0.306 0.257/0.323 0.245/0.311 0.257/0.323

SVM 0.778/0.840 0.683/0.773 0.598/0.689 0.452/0.582 0.395/0.497 0.312/0.442 0.294/0.348 0.297/0.414 0.294/0.384

Eclipse J48 0.458/0.471 0.282/0.480 0.228/0.400 0.164/0.285 0.143/0.248 0.144/0.257 0.133/0.238 0.111/0.227 0.133/0.238

RF 0.225/0.321 0.261/0.596 0.191/0.422 0.186/0.318 0.137/0.318 0.119/0.296 0.126/0.298 0.106/0.304 0.126/0.298

AdaBoost 0.792/0.471 0.5/0.550 0.524/0.617 0.636/0.482 0.464/0.527 0.404/0.405 0.403/0.238 0.417/0.433 0.403/0.401

NB 0.273/0.282 0.272/0.30 0.315/0.347 0.296/0.347 0.346/0.339 0.352/0.395 0.3920.451 0.307/0.388 0.354/0.389

SVM 0.221/0.277 0.150/0.280 0.176/0.395 0.208/0.336 0.256/0.357 0.3/0.443 0.29/0.4962 0.294/0.379 0.238/0.337

Scarab J48 0.132/0.227 0.145/0.260 0.164/0.315 0.151/0.302 0.153/0.333 0.188/0.326 0.185/0.389 0.168/0.295 0.138/0.330

RF 0.111/0.217 0.111/0.233 0.124/0.269 0.109/0.255 0.121/0.287 0.147/0.325 0.140/0.381 0.123/0.306 0.118/0.308

AdaBoost 0.217/0.245 0.272/0.288 0.309/0.319 0.245/0.337 0.362/0.359 0.470/0.463 0.433/0.501 0.326/0.345 0.342/0.353

As we can see in the Table 2 & Fig. 3 the TPR of all baseline models over the various

noise levels. Whereas the Table 3 & Fig. 4 reports the FPR of various SDP models

over different noise levels. On Eclipse data, the RF-based model exceeds its perfor-

mance over other defect prediction models. On pure data, the TPR value is 0.975,

whereas the lowest TPR value produced by the proposed model is 0.844 at 60% and

80%. The worst performance processed by NB-based model over pure Eclipse data

is 0.854. The AdaBoost was the most variant model when the noise level increased

from 0% to 80%, and its TPR values started decreasing from 0.9 to 0.489.

FPR value of all five defect prediction models is shown in Table 3. The lowermost

FPR value for pure Columba data (see Fig. 4(b)) is 0.209, and it produced by the RF-

based model. SVM-based technique has the highest FPR value for pure data, which

is 0.583. The FPR value of NB-based model increases up to 0.377 at 40% noise, then

started decreasing. Similarly, for the J48 defect prediction model; it starts increasing

to 0.212 at 30% noise level then started dropping. The suggested model is most re-

sistant, as FPR values decrease when noise level increases. AdaBoost has the worst

resistance because it starts decreasing up to 10% noise then increasing.

SDP models for the Scarab dataset are more robust, as shown in Table 3. The RF-

based defect prediction model has lowest FPR value (see Fig 4(c)), i.e., 0.11 at 0%

noise. The worst performance processed by NB-based technique at the same noise

degree with 0.273 FPR value. The suggested model is most tolerable as its value is
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(a) True positive rate of Eclipse dataset (b) True positive rate of Columba dataset

(c) True positive rate of Scarab dataset

Fig. 3: True positive rate all three datasets.

close to 0.11 to 40% noise. Even the J48-based model also has high noise tolerant

ability with 0.153 FPR value at a 40% noise degree, which is close to 0.132 at 0%.

5.2 To what extent the suggested model is resistant over the various level of noise

compared to the other classical SDP models?

TPR, FPR, and Precision values of the defect prediction model are directly co-related

with noise resistance. Fig 3(b) reports RF-based SDP models have least deviated, i.e.,

the TPR value at 0% noise is 0.893, and 80% is 0.877, which are close to each other.

Even for the other models, TPR values fluctuated. We can see in Fig. 3(a) that RF-

based model has TPR range from 0.975 (0% noise) to 0.844 (80% noise). Although

till 20% of noise level; its value is 0.923, which is close to 0.975. The proposed model

over Scarab data has the highest tolerable capability, as shown in Fig. 3(c) and Table

2, at 0% and 70% the TPR value is 0.890, and 0.878 respectively, approximate equal

value. Whereas no other methods have that much ability to tolerate this amount of

noise, and they showed inconsistent results. The FPR and precision are productive

metrics to measure the efficiency of SDP models. Table 3 reports that the RF-based

defect prediction model has the least FPR value over all three datasets. FPR values for

pure Eclipse, Columba, and Scarab datasets are 0.225, 0.209, and 0.111, respectively.
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(a) False positive rate of Eclipse dataset. (b) False positive rate of Columba dataset.

(c) False positive rate of Scarab dataset.

Fig. 4: False positive rate all three datasets.

Even the deviation curve of FPR values at various noise levels is shown in Fig. 4.

The FPR value for Columba data at 30% noise is 0.180, which is close to 0.209 at

0% noise; it implies model can tolerate noise up to 30%, as shown in Fig. 4(b). The

FPR value of Eclipse and Scarab data processed by the proposed model at 0% noise

is 0.458 and 0.111, respectively, as shown in Table 3. The FPR curve deviation for

Eclipse data produced by the RF-based model has lest deviation, as shown in Fig.

4(a). Whereas the FPR curve deviation of Scarab data is shown in Fig. 4(c), we can

see that the RF-based model has the least deviation, whereas NB-based model has the

most deviated curve. FPR values for Scarab data produced by the proposed model at

0%, and 40% are 0.11, and 0.121 respectively, which is close to each other; it implies

tolerable deviation till 40% noise.

The precision values of classical SDP models over various noise levels for all three

datasets are shown in Table 5. We can see in Fig. 5(b), the precision of RF-based

model at 0%, and 40% noise is 0.894, and 0.875, respectively. These two values are

close to each other, which implies the model tolerates noise up to 40%. Whereas

precision values pure Eclipse and Scarab data produced by the suggested model is

0.970 and 0.890, respectively. The precision value of Eclipse at 20% noise processed

by the RF-based model is 0.923, which is close to 0.970 at 0%; it indicates, the model

remained unchanged until 20% noise. The precision value of Scarab data at 80%
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Table 4: F-measure values of all datasets at different noise levels of various defect

prediction models.

0% 10% 20% 30% 40% 50% 60% 70% 80%

NB 0.688/0.651 0.624/0.6 0.672/0.614 0.657/0.684 0.657/0.621 0.657/0.626 0.671/0.578 0.652/0.596 0.660/0.626

SVM 0.682/0.623 0.6/0.554 0.620/0.527 0.649/0.568 0.636/0.565 0.627/0.544 0.628/0.565 0.644/0.540 0.620/0.553

Columba J48 0.851/0.707 0.846/0.661 0.827/0.681 0.805/0.636 0.824/0.628 0.821/0.653 0.835/0.659 0.823/0.664 0.830/0.691

RF 0.889/0.718 0.871/0.684 0.872/0.681 0.849/0.684 0.873/0.669 0.847/0.692 0.855/0.682 0.871/0.686 0.874/0.699

AdaBoost 0.709/0.696 0.666/0.640 0.57/0.618 0.603/0.570 0.600/0.583 0.591/0.556 0.591/0.558 0.638/0.593 0.599/0.609

NB 0.974/0.965 0.832/0.821 0.730/0.666 0.707/0.60 0.619/0.579 0.642/0.530 0.621/0.512 0.652/0.530 0.621/0.512

SVM 0.879/0.752 0.825/0.789 0.746/0.684 0.697/0.587 0.634/0.509 0.613/0.434 0.635/0.509 0.668/0.512 0.635/0.509

Eclipse J48 0.924/0.952 0.909/0.850 0.886/0.786 0.872/0.713 0.841/0.678 0.813/0.658 0.821/0.678 0.858/0.726 0.821/0.678

RF 0.968/0.921 0.940/0.843 0.919/0.680 0.869/0.658 0.861/0.658 0.840/0.614 0.844/0.606 0.870/0.637 0.844/0.606

AdaBoost 0.870/0.952 0.862/0.845 0.799/0.745 0.666/0.593 0.492/0.522 0.428/0.422 0.370/0.678 0.611/0.588 0.370/0.397

NB 0.723/0.711 0.727/0.698 0.704/0.690 0.721/0.673 0.682/0.688 0.663/0.627 0.618/0.554 0.697/0.607 0.634/0.599

SVM 0.779/0.724 0.852/0.721 0.832/0.692 0.8/0.684 0.756/0.672 0.765/0.653 0.742/0.554 0.711/0.624 0.762/0.664

Scarab J48 0.867/0.724 0.855/0.740 0.841/0.689 0.857/0.710 0.852/0.675 0.840/0.712 0.826/0.636 0.832/0.706 0.862/0.670

RF 0.889/0.783 0.889/0.768 0.882/0.745 0.895/0.761 0.885/0.739 0.884/0.720 0.870/0.675 0.878/0.698 0.883/0.693

AdaBoost 0.783/0.755 0.728/0.713 0.709/700 0.776/0.696 0.670/0.681 0.646/0.646 0.621/0.548 0.677/0.656 0.658/0.646

noise is 0.883, which is approximately equal to 0.890. Precision values deviation

for Eclipse and Scarab dataset can be better viewed in curves Fig.5(a) and Fig.5(c),

respectively. The J48-based model also has high noise tolerant rate for Scarab data,

the precision value is 0.854 at 50% noise level, which is close to 0.870 to 0% noise.

5.3 What is the range of tolerable noise in baseline defect prediction models?

After performing experiments, we can conclude that for all five SDP models, the

range of tolerable noise is different. Figures from Fig.3 to Fig.7 shows the TPR, FPR,

Precision, F-score, and ROC respectively of various defect prediction models under

different noise condition. We have analyzed each classifier. The tolerable noise range

in NB-based model is from 20% to 30% because TPR values (see Table 2 & Fig.3)

and FPR (Table 3 & Fig.4) values remains the unchanged at 30% noise level; it indi-

cates model is stable and tolerable up to 30% noise. Even precision (Fig.5) and ROC

(Fig.7) of NB-based SDP for every dataset are fallen after adding noise more than

30%. F-measure (Fig.6) and TPR (Fig.3) values continuously fall down, but up to

30% of noise level, TPR, and f-score values are approximately equal, indicates per-

formance breakdown point at 30% noise. FPR values (Fig.4) are increased when the

noise level rises. Still, from 0 to 30%, FPR values are close to each other; it indicates

the models are uniformly performed up to 30% noise, but after that model becomes
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(a) Precision of Eclipse dataset. (b) Precision of Columba dataset.

(c) Precision of Scarab dataset.

Fig. 5: Precision of all three datasets.

misclassifying the actual class; which leads to degrade in the performance.

SVM is also an effective SDP model, Fig.5, and Fig.7 shows the precision, and ROC

values respectively. We can easily see the effectiveness of SVM over every datasets

and deviation of SVM over different noise conditions. We can see that precision is

fallen over Eclipse and Columba datasets after adding different noise level, but for the

Scarab data, the precision first gradually increases than started decreasing. Whereas

ROC rises in the early phase for both Eclipse and Scarab datasets. ROC values pro-

duced by the SVM defect prediction model over Eclipse dataset increase up to 70%

noise and then started decreasing indicates SVM-based model is highly noise tolera-

ble over Eclipse data. For the Scarab data, the SVM-based model degrades its ROC

values after a 10% noise level, as shown in Fig.7. It stipulates the SVM model is not

stable over the Scarab dataset. Whereas for Columba data, the 20% noise is signifi-

cant, which means there are no hard changes in ROC values. SVM-based method is

efficient to tolerate noise up to 40% for Eclipse data. The TPR values are continu-

ous, falling down for all 3 datasets, as shown in Fig. 3, whereas f-score values are

changing stochastically for Columba and Scarab datasets, and started reducing at ev-

ery noise level for Eclipse data as reported in Fig. 6. FPR values (Fig.4) for Eclipse

and Columba datasets, gradually decreases when noise increases, but for Scarab data;

it increases till 70% then there is a sudden decrease. It indicates the SVM is stable
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Table 5: Precision values of all datasets at different noise levels of various defect

prediction models.

0% 10% 20% 30% 40% 50% 60% 70% 80%

NB 0.713/0.698 0.676/0.654 0.679/0.629 0.661/0.693 0.656/0.620 0.674/0.631 0.684/0.615 0.684/0.638 0.680/0.658

SVM 0.752/0.654 0.698/0.590 0.695/0.596 0.680/0.602 0.681/0.616 0.648/0.572 0.635/0.581 0.683/0.585 0.679/0.584

Columba J48 0.850/0.705 0.846/0.662 0.828/0.693 0.804/0.636 0.824/0.675 0.821/0.629 0.835/0.659 0.824/0.663 0.831/0.690

RF 0.894/0.730 0.877/0.696 0.875/0.693 0.853/0.693 0.875/0.677 0.848/0.695 0.855/0.682 0.872/0.693 0.879/0.710

AdaBoost 0.709/0.696 0.670/0.659 0.642/0.625 0.602/0.590 0.706/0.665 0.656/0.614 0.598/0.636 0.636/0.605 0.627/0.658

NB 0.911/0.971 0.868/0.854 0.782/0.732 0.735/0.627 0.632/0.608 0.656/0.547 0.641/0.531 0.661/0.550 0.641/0.531

SVM 0.910/0.852 0.843/0.784 0.790/0.686 0.741/0.583 0.685/0.511 0.629/438 0.660/0.487 0.692/0.493 0.660/0.487

Eclipse J48 0.923/0.951 0.901/0.846 0.886/0.781 0.872/0.711 0.842/0.675 0.813/0.658 0.821/0.679 0.859/0.728 0.821/0.679

RF 0.970/0.95 0.943/0.846 0.923/0.680 0.872/0.659 0.864/0.659 0.849/0.612 0.845/0.603 0.871/0.641 0.845/0.603

AdaBoost 0.870/0.951 0.860/0.852 0.811/0.745 0.672/0.590 0.489/496 0.487/0.478 0.700/0.679 0.611/0.588 0.700/0.654

NB 0.733/0.719 0.746/0.687 0.714/0.687 0.723/0.705 0.686/0.692 0.672/0.635 0.621/0.557 0.704/0.612 0.656/0.618

SVM 0.779/0.724 0.856/0.721 0.833/0.691 0.799/0.686 0.756/0.676 0.770/0.664 0.747/0.573 0.719/0.633 0.762/0.668

Scarab J48 0.870/0.724 0.855/0.740 0.841/0.690 0.858/0.710 0.852/0.676 0.854/0.712 0.826/0.635 0.832/0.706 0.862/0.670

RF 0.890/0.783 0.890/0.768 0.883/0.748 0.895/0.767 0.885/0.744 0.885/0.721 0.870/0.677 0.879/0.700 0.883/0.698

AdaBoost 0.783/0.756 0.728/0.713 0.720/0.712 0.781/0.723 0.679/0.716 0.704/0.680 0.661/0.640 0.713/0.656 0.663/0.656

and more tolerable over Scarab data.

The J48 algorithm uniformly performs when the noise level is between 30% to 40%,

because TPR, F-score, ROC, and precision values are approximately equal for all the

three datasets. The FPR is suddenly started decreasing when noise is more added in

the Eclipse data, as we can see in Figure 4(c); it indicates that J48-based model is

inefficient to tolerate noise in Eclipse data after 30% noise. Whereas FPR values in-

crease when the noise level increases, which makes results unpredictable.

AdaBoost-based SDP model is performing least effective over each data when noise

increases as shown in Fig.6 & Fig.7. When the noise level is increased to 10%, the

TPR and precision started decreasing for all three datasets. Even FPR values decrease

for the Eclipse data as shown in Fig. 4. Although in Columba, and Scarab datasets,

FPR values increase when the noise level increases; it implies the Adaboost is ineffi-

cient to tolerate noise over these datasets; so Adaboost can tolerate maximum noise

up to 30%.

In our suggested approach, i.e., RF-based SDP model, the ROC, and precision were

almost unchanged till 60% to 70% as shown in Fig.7 & Fig.5. f-score and TPR val-

ues started decreasing as the noise level increases, but from 40% to 60% of noise, the

TPR and f-score are unaffected. The FPR in Fig. 4(a) started decreases when noise

increases, whereas in Fig.4(c) & Fig. 4(b) the FPR increases as per noise increases.

For all three datasets, the noise tolerates capacity by the proposed approach is 30%

to 40%.
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Table 6: ROC values of all datasets at different noise levels of various defect predic-

tion models.

0% 10% 20% 30% 40% 50% 60% 70% 80%

NB 0.717/0.687 0.694/0.640 0.699/0.655 0.706/0.696 0.683/0.652 0.710/0.660 0.721/0.647 0.719/0.649 0.692/0.652

SVM 0.58/0.525 0.544/0.507 0.589/0.520 0.629/0.558 0.620/0.560 0.628/0.555 0.626/0.569 0.617/0.532 0.573/0.517

Columba J48 0.843/0.650 0.845/0.648 0.830/0.748 0.811/0.632 0.847/0.630 0.828/0.653 0.847/0.669 0.840/0.664 0.833/0.661

RF 0.951/0.793 0.941/0.756 0.949/0.748 0.937/0.745 0.948/0.7 37 0.940/0.760 0.950/0.750 0.946//0.748 0.951/0.769

AdaBoost 0.748/0.714 0.704/0.687 0.636/0.651 0.63/0.660 0.658/0.649 0.656/0.617 0.623/0.635 0.682/0.657 0.649/0.663

NB 0.851/0.748 0.818/0.765 0.789/0.696 0.771/0.663 0.711/0.658 0.741/0.637 0.729/0.648 0.751/0.642 0.729/0.648

SVM 0.566/0.50 0.589/0.532 0.598/0.535 0.645/0.546 0.637/0.544 0.653/0.522 0.674/0.575 0.691/0.568 0.674/0.575

Eclipse J48 0.793/0.742 0.848/0.650 0.858/0.70 0.854/0.712 0.859/0.748 0.859/0.753 0.876/0.749 0.895/0.767 0.876/0.746

RF 0.967/0.964 0.951/0.846 0.951/0.783 0.953/0.789 0.944/0.789 0.931/0.743 0.937/0.739 0.944/0.670 0.937/0.739

AdaBoost 0.831/0.742 0.801/0.0.806 0.732/0.685 0.570/0.648 0.638/0.648 0.547/0.546 0.549/0.749 0.581/0.461 0.549/0.558

NB 0.7920/0.772 0.785/0.750 0.744/0.717 0.780/0.733 0.726/.697 0.709/0.665 0.647/0.589 0.724/0.669 0.733/0.671

SVM 0.779/0.724 0.851/0.721 0.828/0.683 0.796/0.676 0.750/0.661 0.736/0.616 0.728/0.546 0.710/0.625 0.762/0.665

Scarab J48 0.889/0.724 0.874/0.744 0.862/0.712 0.858/0.685 0.853/0.677 0.839/0.682 0.859/0.649 0.865/0.703 0.875/0.668

RF 0.960/0.869 0.963/0.840 0.950/0.830 0.968/0.839 0.956/0.814 0.959/0.792 0.946/0.636 0.957/0787 0.961/0.783

AdaBoost 0.865/0.830 0.802/0.793 0.794/0.771 0.837/0.772 0.750/0.730 0.694/0.710 0.685/0.651 0.721/0.741 0.729/0.729

Table 4 reports the f-score of all methodologies at various noise degree. The maxi-

mum f-score processed by the proposed model for pure Columba, Eclipse, and Scarab

datasets 0.889, 0.698, and 0.889, respectively. Fig 6 shows the deviation curve about

f-score from various SDP models over different noise degree.

We can see in Fig. 6(b) that RF and SVM-based SDP have the least, and most devi-

ated curve, respectively. In all noise level scenarios the RF-based SDP has approxi-

mately equal f-score, their respective f-score values at 10%, 20%, 30%, 40%, 50%,

60%, 70%, & 80% noise levels are 0.871, 0.872, 0.849, 0.873, 0.847, 0.855, 0.871,

& 0.874 respectively. The f-score is still more than 0.85 after 40% of noise; this can

be because of the sample space of buggy and clean instance are approx equal.

f-score values of Eclipse data on various noise states are shown in Fig. 6(a). We can

see in Table 4 and Fig. 6(c), the highest f-score value for pure Eclipse data processed

by NB-based SDP model, is 0.974, followed by RF with 0.968 f-score value. The

lowermost f-score of Eclipse data is 0.870 which is produced by AdaBoost-based

SDP model. The least deviated curve is of proposed model and J48-based SDP mod-

els, whereas the most deviated curve is of NB-based SDP technique, as shown in

Fig. 6(a). The f-score value of RF-based SDP method at 10%, 20%, 30%, 40%, 50%,

60%, 70% & 80% noise levels are 0.940, 0.919, 0.869, 0.861, 0.841, 0.844, 0.870,

& 0.844 respectively. The f-score is still more than 0.8 after 50% of noise. When

the noise increases, the sample of actual buggy/clean instances degrades. Hence, the

sample space of both classes becomes approximately equal, so the model leads to a
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(a) F-measure of Eclipse dataset. (b) F-measure of Columba dataset.

(c) F-measure of Scarab dataset.

Fig. 6: F-measure of all three datasets.

good fitted model and outperforms at the high noise level.

In Table 4, we can see the f-score of Scarab data by various methodologies under dif-

ferent noise conditions. The maximum f-score value is 0.889 for the Scarab data, and

the RF-based SDP model produces it. After that J48-based model with 0.867 f-score

value. Fig. 6(c) shows the deviation curve of all five SDP methods at various noise

stages. We can see in Fig.6(c) that RF and J48 have the most consistent results in

every noise situation, whereas SVM has the most deviated curve. The f-score value

of RF-based model under various noise conditions like 10%, 20%, 30%, 40%, 50%,

60%, 70%, & 80% are 0.889, 0.882, 0.895, 0.885, 0.884, 0.870, 0.878, and 0.883 re-

spectively. SVM, NB, and AdaBoost-based defect prediction models are not effective

after high noise levels.

Table 6 and Fig. 7 reports the ROC of all five models under various noise levels. The

maximum ROC value for pure Columba data is 0.951, which is produced by the RF-

based model, as shown in Fig. 7(b). Then after J48-based SDP has ROC value, i.e.,

0.843. Lowest ROC produced by SVM-based method with 0.58 ROC value. NB and

AdaBoost-based SDP model has a moderate performance with 0.717 and 0.748 ROC

values, respectively.

The variation of ROC values for Eclipse data, as shown in Fig. 7(a). The maximum

and minimum ROC values for pure Columba dataset is 0.967 (RF), and 0.566 (SVM),
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(a) ROC of Eclipse dataset. (b) ROC of Columba dataset.

(c) ROC of Scarab dataset.

Fig. 7: ROC of all three datasets.

respectively. In the Table 6 we can see that RF-based SDP outperform at every noise

level as compared with other baseline models. ROC produced by RF-based technique

at 10%, 20%, 30%, 40%, 50%, 60, 70%, & 80% noise level are 0.960, 0.963, 0.950,

0.968, 0.956, 0.959, 0.946, 0.957 & 0.961 respectively.

The ROC of Scarab data at various noise degree is shown in Fig. 7(c). The maxi-

mum ROC value at 0% noise is 0.960, which is processed by the proposed model,

followed by J48-based model with 0.889 with ROC value. The ROC curve generated

by RF-based SDP is almost uniform with the least deviation compared with other

methodologies, indicated RF outperforms over every SDP model at various noise

levels.

The boxplot range of performance measures of various SDP models over 0% to 80%

noise levels is shown in Fig.8 to Fig. 12. Fig. 8 reports the boxplot range of TPR value

at different noise level for all three datasets. We can see in the Fig. 8(a), the range of

TPR value for NB-based SDP model is from 0.608 (20% noise) to 0.677 (0% noise),

for SVM 0.536 (80% noise) to 0.744 (0% noise), for J48 0.805 (30% noise) to 0.851

(0% noise), for RF 0.848 (50% noise) to 0.893 (0% noise), and for AdaBoost 0.591

(60% noise) to 0.731 (0% noise). Similarly for Eclipse dataset the boxplot range for

NB-based SDP is 0.612 (40% noise) to 0.854 (0% noise), for SVM 0.618 (50% noise)
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(a) Boxplot range of TPR at various noise level for

Columba dataset.

(b) Boxplot range of TPR at various noise level for Eclipse

dataset.

(c) Boxplot range of TPR at various noise level for Scarab

dataset.

Fig. 8: Boxplot over range of True positive rate (TPR) value at various noise level for

all three dataset.

to 0.910 (0% noise), for J48 0.813 (50% noise) to 0.930 (0% noise), for RF 0.844

(60% noise) to 0.975 (0% noise), and for AdaBoost 0.489 (60% noise) to 0.9 (0%

noise). Fig. 8(b) shows the boxplot range of TPR over various SDP models with cor-

responding noise value for Eclipse dataset. As Fig. 8 reports, the range of NB-based

SDP is from 0.612 (40% noise) to 0.854 (0% noise), range of SVM-based model is

from 0.618 (50% noise) to 0.910 (0% noise), range of J48-based model is from 0.813

(50% noise) to 0.930 (0% noise), RF-based defect prediction model is from 0.844

(60% noise) to 0.975 (0% noise), and the range of AdaBoost is from 0.489 (60%

noise) to 0.9 (0% noise). It indicated that most of the models optimally performed

at 0% noise, whereas performance degrades as noise increases. As the quartile range

of TPR value produced by Adaboost over Eclipse data is maximum as shown in Fig.

8(b), that indicates the model is unstable and misclassified instance. Fig. 8(c) shows

the boxplot range of TPR for Scarab dataset by four baseline models at various noise

levels. TPR range by NB-based SDP is from 0.616 (60% noise) to 0.732 (10% noise),

the range of SVM-based SDP is from 0.714 (70% noise) to 0.852 (10% noise), range

of J48-based model is from 0.826 (60% noise) to 0.867 (0% noise), for RF-based

SDP, the range is from 0.870 (60% noise) to 0.890 (0% noise), and for AdaBoost-
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(a) Boxplot range of FPR at various noise level for

Columba.

(b) Boxplot range of FPR at various noise level for Eclipse.

(c) Boxplot range of FPR at various noise level for Scarab.

Fig. 9: Boxplot over range of False positive rate (FPR) value at various noise level

for all three dataset.

based technique, the range lies between 0.660 (80% noise) to 0.783 (0% noise).

Fig. 9 shows the boxplot range of FPR values for four baseline method at different

noise level for all three datasets. The boxplot range of FPR values over Columba data

is shown in Fig. 9(a). The FPR range of NB-based model lies form 0.317 (60% noise)

to 0.395 (20% noise). As the quartile range of FPR value produced by SVM-based

method over Eclipse and Columba datasets is maximum, as shown in Fig. 9(b) and

Fig.9(a), respectively, that indicates the model is unstable and misclassified instance.

SVM-based model the lies from 0.383 (60% noise) to 0.611(10% noise), J48-based

technique the FPR value lies from 0.168 (60% noise) to 0.216 (0% noise), RF-based

defect prediction model the value lies from 0.146 (60% noise) to 209 (0% noise), and

for AdaBoost defect prediction model FPR values lies between 0.402 (60% noise) to

554 (80% noise). The FPR range for Eclipse data is shown in Fig 9(b), the range of

FPR values for NB-based model lies from 0.220 (30% noise) to 0.284 (40% noise),

for SVM-based model FPR range lies from 0.294 (60% noise) to 778 (0% noise), for

J48-based technique FPR value lies from 0.111 (70% noise) to 0.458 (0% noise), for

RF-based model FPR value lies between 0.106 (70% noise) to 0.261 (10% noise),

and for AdaBoost-based SDP method FPR lies from 0.403 (60% noise) to 0.792 (0%

noise). Fig. 9(c) shows the FPR for Scarab dataset at various noise level, for NB de-
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(a) Boxplot range of f-score at various noise level for

Columba.

(b) Boxplot range of f-score at various noise level for

Eclipse.

(c) Boxplot range of f-score at various noise level for

Scarab.

Fig. 10: Boxplot over range of f-score value at various noise level for all three dataset.

fect perdition model the FPR range is from, 0.272 (10%) to 0.392 (60%), SVM-based

model FPR lies from 0.176 (20%) to 0.294 (70%), J48-based technique lies between

0.132 (0%) to 0.188 (50%), RF-based model lies from 0.109 (30%) to 0.147(50%),

and for AdaBoost model FPR range is from 0.217 (0%) to 0.470 (50%). The quar-

tile range of FPR value produced by Adaboost-based SDP model over Scarab data is

maximum, as shown in Fig. 9(c); it reports that the model is least stable and misclas-

sified actual instances.

Fig. 10 shows the boxplot range of F-measure over all three dataset produced by five

baselines methods under various noise levels. Fig. 10(a) reports the boxplot range of

f-score produced by defect prediction methods. The f-score range for Columba data

produced by NB, SVM, J48, RF, and AdaBoost-based SDP models are 0.614 (20%)

to 0.68 (0% noise), 0.565 (40% noise) to 0.682 (0% noise), 0.821 (50% noise) to

0.851 (0% noise), 0.847 (50% noise) to 0.889 (0% noise), and 0.570 (20% noise) to

0.709 (0% noise); similarly for Eclipse data 0.616 (40% noise) to 0.974 (0% noise),

0.613 (50% noise) to 0.879 (0% noise), 0.813(50% noise) to 0.924 (0% noise), 0.844

(60% noise) to 0.968 (0% noise), 0.370 (60% noise) to 0.870 (0% noise) as shown

in Fig 10(b). The quartile range of f-score value processed by Adaboost-based defect

prediction model over Scarab and Eclipse dataset is maximum, as shown in Fig. 10(c),
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(a) Boxplot range of precision at various noise level for

Columba.

(b) Boxplot range of prcsision at various noise level for

Eclipse.

(c) Boxplot range of precision at various noise level for

Scarab.

Fig. 11: Boxplot over range of precision value at various noise level for all three

dataset.

and Fig.10(b), respectively. It indicates that models are least stable and misclassified

the actual buggy instances. The boxplot range for f-score over Scarab data is shown

in Fig. 10(c), the range for NB, SVM, J48, RF, and AdaBoost-based SDP models are

0.618(60%) to 0.727( 0%), 0.711 (70%) to 0.852 (10%), 0.832 (70%) to 0.867 (0%),

0.870 (60%) to 0.895 (30%), and 0.621 (60%) to 0.783 (0%) respectively.

Fig. 11 shows the boxplot range for precision by all four SDP models, the values were

calculated at 0% to 80% noise level. Fig. 11(a) shows the boxplot range of precision

over Columba data. The range of precision for NB, SVM, J48, RF, and AdaBoost-

based SDP over Columba dataset are 0.629 (20% noise) to 0.713 (0% noise), 0.616

(40% noise) to 0.752 (0% noise), 0.804 (30% noise) to 0.850 (0% noise), 0.848 (50%

noise) to 0.894 (0% noise), and 0.598 (60% noise) to 0.709 (0% noise) respectively.

Similarly for Eclipse dataset the values lies from 0.632 (40% noise) to 0.911 (0%

noise), 0.629 (50% noise) to 0.910 (0% noise), 0.813 (50% noise) to 0.923 (0%

noise), 0.845 (60% noise) to 0.970 (0% noise), and 0.487 (50% noise) to 0.870 (0%

noise) respectively as shown in Fig. 11(b). The boxplot range of FPR value produced

by Adaboost-based model over Eclipse data is maximum, as shown in Fig. 11(b);

it signify that the model is unstable and misclassified true instances. The range for
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(a) Boxplot range of ROC at various noise level for

Columba.

(b) Boxplot range of ROC at various noise level for

Eclipse.

(c) Boxplot range of ROC at various noise level for Scarab.

Fig. 12: Boxplot over range of ROC value at various noise level for all three dataset.

Scarab dataset when NB, SVM, J48, RF, and AdaBoost-based SDP model where

applied are 0.612 (60% noise) to 0.746 (10% noise), 0.719 (70% noise) to 0.856

(0% noise), 0.826 (60% noise) to 0.870 (0% noise), 0.870 (60% noise) to 0.890 (0%

noise), and 0.661 (60% noise) to 0.783 (0% noise), respectively as shown in Fig.

11(b). It indicates that, when the model is unstable or overfitted the range of preci-

sion values will be high. When the model is good fit the range is shorter. The shortest

range of values is of RF-based SDP model, so it is highly stable and good fit model.

Fig. 12 reports the boxplot range of ROC over datasets with various noise level pro-

duced by five baselines methods. The boxplot range for Columba data is shown in

Fig. 12(a), the ROC range for Columba data produced by NB, SVM, J48, RF, and

AdaBoost-based SDP models are from 0.655 (20% noise) to 0.719 (70% noise),

0.544 (10% noise) to 0.629 (30% noise), 0.811 (30% noise) to 0.847 (60% noise),

0.937 (30% noise) to 0.951 (0% noise), and 0.623 (60% noise) to 0.748 (0% noise),

respectively. Similarly for Eclipse data boxplot range of ROC are 0.711 (40% noise)

to 0.851 (0% noise), 0.691 (70% noise) to 0.566 (0% noise), 0.895 (70% noise) to

0.793 (0% noise), 0.931 (50% noise) to 0.967 (0% noise), 0.547 (50% noise) to 0.831

(0% noise), respectively as shown in Fig. 12(b). The quartile range of ROC value pro-

cessed by Adaboost-based defect prediction model over Scarab and Eclipse dataset

is maximum, as shown in Fig. 11(c), and Fig.11(b), respectively. It suggest that the
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models are least stable and misclassified the actual true buggy instances. Fig. 12(c)

presents the boxplot range of ROC value over Scarab dataset for NB, SVM, J48, RF,

and AdaBoost based models are 0.647 (60% noise) to 0.792 (0% noise), 0.710 (70%

noise) to 0.851 (10% noise), 0.839 (50% noise) to 0.889 (0% noise), 0.946 (60%

noise) to 0.968 (30% noise), and 0.685 (60% noise) to 0.964 (50% noise), respec-

tively.

5.4 How does the class imbalance problem affect the performance of various SDP

models over different noise levels?

We have also conducted experiments over datasets without applying sampling tech-

niques at various noise levels. The second column of each Table from Table 2 to

Table 6 reports the performance metrics without using the sampling method at a dif-

ferent noise level. Its easy to analyze from Table 2 that for each non-sampling-based

SDP model over all three datasets. The TPR value is less at various noise levels

compared with sampling-based SDP models. Similarly, the FPR produced by SDP

methods in which the sampling technique is not utilized, and they have higher FPR

values compared with sampling-based methods, as shown in Table 3. f-score values

of every model in which sampling technique is not applied have lesser compared

with sampling-based SDP techniques over every dataset at various noise levels, as

shown in Table 4. Similarly, the precision and ROC values are even lower at differ-

ent noise levels produced by imbalanced SDP models compared with sampling-based

SDP models, as shown in Table 5 and Table 6, respectively. Although at high noise

level (60% to 80%), the sampling-based SDP model misclassifies the actual class in

some rare cases, which causes the worst performance. Since in very few cases, the

non-sampling based SDP outperforms because the cardinality of buggy instance is

more than a clean instance; it implies the model is overfitted towards buggy instances.

But sampled based SDP models doesn’t overfitted at any noise level.

5.5 Compare the performance of proposed approach with other classical SDP

models without applying sampling method.

As we discussed earlier, all three datasets are imbalanced. In this section, we com-

pared the performance of imbalanced baseline methods with an imbalanced sug-

gested approach over every dataset. The TPR value of RF without applying the sam-

pling method is higher than all non-sampling classical methods, as shown in Ta-

ble 2. The maximum TPR value by RF without using sampling technique on pure

Columba, Eclipse, and Scarab datasets is 0.748 at 0%, 0.940 at 0%, and 0.783, re-

spectively, whereas the highest TPR value by other classical technique without ap-

plying sampling-based model are 0.724 (AdaBoost at 0%), 0.970 (SVM at 0%),

and 0.756 (AdaBoost at 0%), respectively as shown in Table 2. Lowest FPR value

reported by RF not having applied sampling technique on Columba, Eclipse, and

Scarab datasets are 0.317 at 50%, 0.296 at 50%, and 0.217 at 0% noise, respectively.

Whereas the minimum FPR value reported by other classical models without apply-

ing the sampling-based model are 0.355 (SVM at 0%), 0.238 (J48, AdaBoost at 60%),
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and 0.227 (J48 at 0%), respectively as shown in Table 3.

The maximum value of F-measure reported by RF when the sampling method is not

applied over pure Columba, Eclipse, and Scarab datasets is 0.718, 0.921, and 0.783,

respectively, as shown in Table 4. Although the maximum F-measure value reported

by other traditional models without applying the sampling technique are 0.707 (J48

at 0%), 0.965 (SVM at 0%), and 0.755 (AdaBoost at 0%), respectively. We have also

reported the precision value of the classical model and suggested approach in Table

5. The uppermost precision value reported by RF when sampling is not utilized over

pure Columba, Eclipse, and Scarab datasets are 0.730, 0.95, and 0.783, respectively.

Whereas the maximum precision value reported by other traditional models over pure

datasets when no sampling method applied are 0.705 (J48), 0.971 (SVM), and 0.756

(AdaBoost), respectively. The uppermost ROC value produced by RF without utiliz-

ing sampling technique over pure Columba, Eclipse, and Scarab datasets are 0.793,

0.964, and 0.744, respectively, as reported in Table 6. Although the maximum F-

measure value produced by other traditional models without applying sampling tech-

nique are 0.748 (J48 at 20%), 0.806 (AdaBoost at 10%), and 0.830 (AdaBoost at 0%),

respectively. As reported above, in most of cases, the classical classifiers outperform

at 0% noise level. As all the 3 datasets are imbalanced, so it leads to an overfitted

model and produces biased results. But RF avoids overfitting [93] up to some extent.

Table 7: Comparision of ROC of Randon forest based SDP with respect to other best

SDP model at different noise level. Note here AB is AdaBoost.

0% 10% 20% 30% 40% 50% 60% 70% 80%

Columba RF 0.951 0.941 0.949 0.937 0.948 0.940 0.950 0.946 0.951

Other 0.748 (AB) 0.845 (J48) 0.830 (J48) 0.811 (J48) 0.847 (J48) 0.828 (J48) 0.847 (J48) 0.840 (J48) 0.833

(J48)

Eclipse RF 0.967 0.951 0.951 0.953 0.944 0.931 0.937 0.944 0.937

Other 0.851 (NB) 0.848 (J48) 0.858 (J48) 0.854 (J48) 0.859 (J48) 0.859 (J48) 0.876 (J48) 0.895 (J48) 0.876

(J48)

Scarab RF 0.960 0.963 0.950 0.968 0.956 0.959 0.946 0.957 0.961

Other 0.889 (J48) 0.874 (J48) 0.862 (J48) 0.858 (J48) 0.853 (J48) 0.964 (AB) 0.859 (J48) 0.865 (J48) 0.875

(J48)

5.6 Insightful discussion

When the noise level increases in datasets, the learning technique started misclassi-

fied the actual class, and the performance of classical SDP models degrades. As the

noise level increases, the number of actual class degrades, and the model becomes

predicting the wrong class as an actual class. Although when the sampling method
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not applied over traditional baseline models, due to the imbalance dataset, the clas-

sifiers started overfitting and leads to unsatisfactory outperformed results. AdaBoost

is an ensemble learning (EL) method; the EL methods mainly split the dataset and

combined the results. EL is also avoids overfitting problem [94]. In a few cases, Ad-

aBoost outperformed over RF-based model when sampling technique is not applied;

such results are unbiased.

When we applied the sampling technique, the proposed model outperforms over each

SDP model approximately in every noise level. In very few cases, the AdaBoost and

SVM surpass the performance. When noise level increases, the classical SDP mod-

els started degrading its performances, because the actual class started reducing and

model start predicting the notional classes. RF and J48 are tree-based models, and the

leaf node represents the class. RF provides an improvement over other trees model

by way of small tweaking that decorrelates the tree. At every split in the RF, the

algorithm is not even allowed to consider a majority of the available predictors (pos-

sible square root of the full set). RF method uses the square root of total predictors

causes better results when the noise level increases. It also offers efficient estimates

of the test error without incurring the cost of repeated model training associated with

cross-validation, so it’s sufficient to avoid notional class and predict the actual class.

6 General discussion and threats to validity

We conducted a significant test using the Wilcoxon Rank-Sum test [95] the noise ver-

sus clean performance of the proposed model and other SDP models at different noise

levels for all three datasets. In table 7, we have listed the ROC value of the proposed

model and other optimal SDP models at various noise level. In table 7, we reported

corresponding ROC values of the proposed model and other optimal baselines meth-

ods at particular noise levels. Obuchowskil et al. [96] suggested that non-parametric

testing using ROC is effective over other evaluation metrics. We have taken two sam-

ples, in the first sample (S1), we have listed ROC values of the proposed model with

increasing order of noise level from 0% to 80%, whereas in Sample two (S2), we have

listed the ROC of most optimal SDP model at that noise level in the same order of

noise. The hypothesis H0 is the median (difference) between two samples is 0, and

hypothesis H1 is the median (difference) > 0. The sample size n1 = n2 = 27. Based

on the information provided, the significance level is α = 0.005, and the critical value

for a right-tailed test is zc = 2.58. The rejection region for this right-tailed test is R

= z: z> 2.58, where R is the rank sum of sample n1, and n1 is 1082. We got z =

5.873 since it is observed that z = 5.873 > zc; its concluded that the null hypothesis

is rejected. Therefore, there is enough evidence to claim that the population median

of differences is greater than 0, at the 0.005 significance level.

Few threats to the validity of these experiments are follows.

– We have collected an open-source dataset for our experiments, the types of noise

present in open source dataset and software available in a large organization may

be different because of data acquisition by different trained employees. It will be

better if private industries reveal their dataset so that it can be tested over noise

resistance and class imbalance problem.
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– We have used public dataset as a pure dataset, but there can be some instances

which are not correctly linked, and some defect items are not adequately lined by

SCM. It is also possible that few defects may not be recorded by a bug tracking

system.

– We have not considered feature noise in our study, and this noise also impacts the

performance of an SDP model.

– As we have randomly added noise in the public dataset by changing class labels,

but it can be possible that sound can follow the specified pattern. That pattern can

be because of poorly managed data during development.

– It is challenging to perform significant analysis between all five performance mea-

sures. It needs a multi-variant significant non-parametric test.

– We have used TPR, FPA, F-measure, Precision and ROC performance measures

which have been widely used in SDP [3, 97, 98], another threats to validity to our

conclusion.

– We performed Wilcoxon signed-rank test to investigate the performances made by

various approaches; it is a classical method to validate significant improvements

over these methods.

– In future we plan to reduce threats by performing experiments over other diverse

datasets.

7 Conclusion and future work

Noise and class imbalance problems are the two significant challenges in SDP. We

have performed 864 experiments over 3 public datasets and analyzed the noise en-

dure for well know SDP models. We have manually added noise into it from 0 to

80%. We have used 4 baseline SDP methods and trained them using these noisy

datasets. We have used random sampling to avoid the class imbalance problem. We

also suggested an approach that can tolerate maximum noise and still outperforms

over baseline methods. We have also compared the performance without applying

sampling methods. We found the proposed approach surpasses the performance over

baseline technologies with noisy instances and with imbalanced data. We have also

provided a few guidelines. Additionally, we have concluded a few points that are

listed below.

(i) We have applied Random sub-sampling as a sampling technique which provides

the most effective results compared with other sampling techniques.

(ii) Random forest outperforms compared with other state of the art techniques. RF

has high noise tolerate rate (30% to 40%) compared with other methodologies.

(iii) AdaBoost is least capable, and it has very lesser noise dealing capacity, i.e., from

10% to 20% only.

(iv) J48 is also approximately active as random forest and has a higher level of noise

dealing capacity in the range of 30% to 40%.

(v) The TPR and FPR of RF have the least deviation; however, SVM and AdaBoost

have high variation toward the noise. J48 and NB have an average difference after

noise is added.
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(vi) The f-score and ROC of RF are consistently similar in every noise scenario for

all three data. SVM and NB have a high deviation when noise are added. J48 and

AdaBoost have moderates deviation.

(vii) Naive Bayes and SVM are moderately active and have an intermediate level of

noise tolerance ability, Naive Bayes has up 30%, and SVM has up to 40% noise

bear level.

We have used public datasets; software industries should reveal their project data so

that better data sources can be available for research purposes. Noise dealing algo-

rithms need to be suggested because no such algorithm is present to deal with noise

in defect data items.

There is a scope of ensemble learning in software bug tracking systems; it can out-

perform with state-of-the-art techniques. There is still deep learning-based model is

not available till now because of lesser number of instance in a dataset, by applying

data augmentation, we can make our training set bigger so that deep learning-based

architecture can easily apply. Even deep learning architecture can be used as a feature

selection method. Cross defect bug tracking systems can also be helpful for different

types of software systems, and we must be careful while combining other metrics and

their datasets because it can create redundancy, which affects the performance of the

learning model.
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