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Abstract
The Picture fuzzy linguistic set (PFLS) is an extension of the intuitionistic fuzzy set (IFS) and linguistic variables (LVs),
which has been applied successfully in the process of decision making. Considering the lack of closeness of extant PFLS
operations and the interrelationship among input attributes do not consider. In this paper, for the sake of addressing those
limitations, we firstly redefine some novel operational laws for PFLS by introducing linguistic scale functions and the related
properties are studied. Then, a novel score function and accuracy function are also defined to compare PFLSs. Subsequently,
in consideration of the superiority of the Muirhead Mean (MM) operator in capturing the interaction relationship between the
input parameters, we extend the MM operator to the Picture fuzzy linguistic context and then propose Picture fuzzy linguistic
weighted MM operator and its dual form in a new light. After that, these operators have adopted to build two novel models to
solve multiple attribute decision-making (MADM) problems. Finally, a practical example for the selection of the innovative
“Mobike” sharing bike design is provided to illustrate the practicality and effectiveness of proposed approaches.

Keywords Picture fuzzy linguistic set · Muirhead Mean (MM) operator · Linguistic scale functions · Multiple attribute
decision making

1 Introduction

Decisionmaking (DM) is a common activity in our daily life.
Owing to the DM problems are usually uncertain and fuzzy,
it is difficult for decisionmakers (DMs) to depict the attribute
values as real numbers. Hence, Zadeh (1965) proposed the
concept of the linguistic variable and fuzzy set (FS) to pro-
cess the fuzzy linguistic information. Afterward, based on
fuzzy set theory, intuitionistic fuzzy set (IFS) was first intro-
duced by Atanassov (1986), which can be used to describe
uncertainty more comprehensively than FS, and attracted
many researchers’ attentionSingh et al. (2020);Wang (2020);
Akram et al. (2021).
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Although the IFS theory has been obtained many achieve-
ments in practical application, there are some situations in
which it is inappropriate to handle the information combined
with IFS. Voting is a typical example, generally, people’s
voting views contain multiple types, including vote support,
vote again, abstain and refuse to vote, which cannot be accu-
rately represented by traditional FS or IFS. Therefore, to
overcome such issues, Cuong and Kreinovich (2014) origi-
nated the notion of the Picture fuzzy set (PFS), which is a
generalization of the IFS. The Picture fuzzy set is composed
of three degrees representing the degree of positive mem-
bership, the degree of neutral membership, and the degree
of negative membership. Since the appearance of the PFS,
much progress has been made in the research of the PFS
theory Cuong and Hai (2015); Singh (2015); Son (2015);
Zhang et al. (2020); Ju et al. (2020); Yang et al. (2020);
Wang et al. (2020); Qiyas et al. (2020); Jana et al. (2019);
Wei (2018); Khalil et al. (2019). Such as Singh (2015) put
forward a clustering analysis method based on his research
on the correlation coefficients of PFS. Jana et al. Jana et al.
(2019) extend the Dombi operator to the PFS domain and
proposed a variety of aggregation operators to solve picture
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fuzzy MADM problems. Khalil et al. (2019) put forward an
interval-valued Picture fuzzy soft set and applied it to the data
during analysis. Si et al. (2021) proposed a decision-making
method for optimal drug selection using Picture Fuzzy Set
(PFS), Dempster-Shafer (D-S) Evidence Theory and Grey
Relational Analysis (GRA) to provide better treatment for
COVID-19 patients.

It is clear to find that in the above multiple informa-
tion representation tools, the performance of each alternative
under different criteria is by experts based on their knowl-
edge and experience for DM problems in quantitative form.
However, due to the nature of qualitative criteria and uncer-
tainty of the real problems, DMs prefer to use linguistic
terms (LTs) to express their opinions. Though the linguis-
tic terms are not as good as numbers in terms of information
representation accuracy, they are closer to human linguis-
tic habit. For example, when people evaluate the risk level
of the stock market, the linguistic term “low”, “medium”
and “high” can be employed, which are more in line with
the human cognitive process. Up to now, a lot of extended
fuzzy linguistic approaches have been developed. Combing
IFS theory with linguistic variables, Li andWang (2009) pro-
posed an intuitionistic linguistic set (ILS). Xian et al. (2015)
developed the intuitionistic fuzzy linguistic-induced ordered
weighted averaging (IFLIOWA) operator, which attributes
values in the form of intuitionistic fuzzy linguistic variables.
More recently, based on PFS and linguistic variables, Peng
and Yang (2016) proposed the Pythagorean fuzzy linguistic
sets (PFLSs) and applied it to the evaluation of emergency
response capabilities of the government departments. Akram
et al. (2021) developed a hesitation fuzzy N soft ELECRE-
II method to adapt to the hesitation in the MADM problem.
Inspired by the idea of Lq-ROFS,Akramet al. (2021) uses the
flexible characteristics of Einstein operators to introduce lan-
guage q-rung orthopair fuzzy graphs (Lq-ROFGs) to further
explore effective methods for handling complex MAGDM
situations. Adeel proposed Adeel et al. (2019) a new con-
cept ofm-polar fuzzy linguistic variables (mFLV) to increase
the richness of linguistic variables based on m-polar fuzzy
(mF) methods, on this basis, has also developed a method
Adeel et al. (2019) for multi-criteria group decision making
(MCGDM) the m-polar fuzzy language TOPSIS method.

In view of the superiority of LTs in facilitating the
expression of evaluation values by DMs, at the same time,
considering that there is little research on extending linguistic
variables to PFS. Ashraf et al. (2018) proposed the concept
of picture fuzzy linguistic set on the basis of PFS and LTs to
describe the complex cognitive information, and the corre-
sponding operational laws of PFLS are defined. Meanwhile,
by introducing Archimedean triangular norms (t-norms) and
triangular conorms (s-norms), Liu and Zhang (2018) defined
new operational rules for PFLVs to handle cases concern-
ing the selection of ERP system. However, because PFLS

has not appeared for a long time, the comparison rules and
operational rules are not perfect, there are situations that
exceed the defined limits or cannot be compared. Take the
MADM problem of the research sexual treatment plan for
COVID-19 patients Si et al. (2021) as an example, suppose
that S = {s0, s1, ..., s6} be a LTS, H1=〈s3, 0.3, 0.2, 0.5〉 and
H2=〈s5, 0.2, 0.4, 0.3〉 are two PFLSs, then by the opera-
tional rules given by Ashraf et al. (2018), we can obtain the
result of H1 ⊕ H2 is 〈s8, 0.44, 0.08, 0.15〉, obviously, the
linguistic term part beyond the upper bound of redefined S.
This seems unreasonable. Assume that H1=〈s3, 0.5, 0, 0.3〉
and H2=〈s3, 0.3, 0, 0.1〉 are two PFLSs, we can obtain H1 is
indifferent from H2,whichdoes not totallymeet our intuition.
Moreover, the existingMADMproblems are often dealt with
without considering the correlation between attributes.Muir-
head Mean (MM) operator was first proposed by Muirhead
(1902), which is a powerful and useful aggregation operator
in information fusion.Comparedwith the existing commonly
used operators with the same function, such as BMGou et al.
(2017); Xia et al. (2013) orMSM liu et al. (2020); Rong et al.
(2020) operators, the prominent advantage of the MM is that
it can consider the interrelationship among any input argu-
ments by an alterable parameter, which can apply in different
application scenarios.Moreover, BMandMSMoperators are
special cases of MM operators. In this sense, the MM opera-
tor can get more comprehensive fusion information than BM
or MSM operator. What’s more, to the best of our knowl-
edge, there is a research gap concerning the MM operator
with the evaluation information expressed in PFLVs. Thus, it
is necessary to extend theMM operator to the field of Picture
fuzzy linguistic and discussed some special properties of the
developed operators. Then, with the purpose of more clearly
expressing the intent of this paper, the specific motivation is
as follows:

• The extant operational rules of PFLSs are not closed.
Because in some special cases, the linguistic term part
might beyond the upper bound of redefined S. This
paper redefines some novel operational laws for PFLS
by introducing linguistic scale functions (LSFs), which
can effectively make up the flaws of existing operational
laws.

• The comparison rules of PFLSs cannot work in some
cases and is hard to explain the meaning of subscript
operations in linguistic terms, especially multiplication
and division. A novel score function and accuracy func-
tion are proposed, and corresponding comparison rules
of PFLVs are defined, which can improve the comparison
rules.

• In real MADM cases, the attributes tend to interact with
each other. However, the vast majority of current studies
assume that attributes are independent. TheMMoperator
is extended and its dual form to the Picture fuzzy linguis-
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tic environment and develop two aggregation operators
in this paper, which can capture the interrelationship of
attributes to make the results more reasonable.

To do so, the remainder of this paper is structured as
follows: In Sect. 2, briefly review some concepts of LTS,
PFLS, MM, and DMM operators. In Sect. 3, redefined some
novel operational laws of PFLVs by introducing the LSFs,
and the corresponding comparison rules are developed. In
Sect. 4, combine the MM operator and its dual form with
picture fuzzy linguistic information and put forward pic-
ture fuzzy linguistic aggregation operators, including picture
fuzzy linguisticweightedMM(PFLWMM)operator and pic-
ture fuzzy linguisticweightedDMM(PFLWDMM)operator,
and the properties of them are studied. In the next section,
utilize those operators to create two models to solve MADM
problems under picture fuzzy linguistic context. In Sect. 6,
a case study about the selection of the innovative “Mobike”
sharing bike design is provided to illustrate the usefulness and
practicality of our proposed methods, and the conclusion is
included in Sect. 7.

2 Preliminaries

In the following, we briefly recall some concepts and prop-
erties of linguistic term set (LTS), Picture fuzzy set (PFS),
Picture fuzzy linguistic set (PFLS), and Muirhead Mean
(MM) operators.

2.1 The linguistic term set

Suppose that S = {st |t = 0, 1, . . . , l−1} be a linguistic term
set (LTS) with odd cardinality, where st represents possible
value for a linguistic variable. In addition, the linguistic ele-
ments in S should satisfy the following conditions Herrera
et al. (1995); Zadeh (1975):

1) If sa, sb ∈ S and a < b, then sa < sb;
2) There exists the negation operator: neg(sa) = sb, where

a = l−1−b;
3) Max(sa, sb) = sa , if sa ≥ sb;
4) Min(sa, sb) = sa , if sa ≤ sb.

For example, when l = 7, then S could be given as fol-
lows: S = {s0 = extremely poor , s1 = poor , s2 =
slight poor , s3 = f air , s4 = slight good, s5 = good, s6
= very good}.

Furthermore, in order to retain original decision informa-
tion as much as possible, Xu (2004) extended the discrete
linguistic term set to a continuous form S = {st |t ∈ [0, l −
1]}, where l is a sufficiently large positive integer.

2.2 Picture fuzzy set

Definition 1 Cuong and Kreinovich (2014) Let X be a fixed
finite set. Then, the Picture fuzzy set (PFS) A on X is pro-
posed by Cuong and Kreinovich (2014) as follows:

A = {〈x, PA(x), IA(x), NA(x)〉|x ∈ X}. (1)

where the functions PA(x) : X → [0, 1]; IA(x) :
X → [0, 1]; NA(x) : X → [0, 1] with the follow-
ing condition 0 ≤ PA(x) + IA(x) + NA(x) ≤ 1,∀x ∈
X . The functions PA(x), IA(x), and NA(x), respectively,
represent positive-membership degree, neutral-membership
degree and negative-membership degree of element x in
X . The degree of refusal-membership is defined for x as
πA(x) = 1− PA(x)− IA(x)− NA(x). For convenience, the
pair (PA(x), IA(x), NA(x)) is called Picture fuzzy number
(PFN).

Furthermore, Cuong and Kreinovich (2014) defined some
basic logical operations of PFN, which are shown as follows:

Definition 2 Cuong and Hai (2015) Let A = (PA(x), IA(x),
NA(x)) and B = (PB(x), IB(x), NB(x)) be any two PFNs
over the universe X . Then the operations between two PFNs
are stated as:

(1) If PA(x) ≤ PB(x), IA(x) ≥ IB(x) and NA(x) ≥ NB(x)
for all x ∈ X , then A ⊆ B;

(2) A = B if A ⊆ B and B ⊆ A;
(3) A ∪ B = {〈x,max{PA(x), PB(s)},min{IA(x), IB(x)},

min{NA(x), NB(x)}〉|x ∈ X};
(4) A ∩ B = {〈x,min{PA(x), PB(s)},max{IA(x), IB(x)},

max{NA(x), NB(x)}〉|x ∈ X}.

Subsequently, Wei Cuong and Hai (2015) constructed some
novel operations of PFN on the basis of the operation rules
of IFS as follows:

Definition 3 Wei (2017) Let A = (PA(x), IA(x), NA(x))
and B = (PB(x), IB(x), NB(x)) be any two PFNs over the
universe X , λ ∈ [0, 1]. Then the operational laws are defined
as:

(1) A⊕ B = (PA(x)+ PB(x)− PA(x)PB(x), IA(x)IB(x),
NA(x)NB(x));

(2) A ⊗ B = (PA(x)PB(x), IA(x) + IB(x) − IA(x)IB(x),
NA(x) + NB(x) − NA(x)NB(x));

(3) λA = (1 − (1 − PA(x))λ, IA(x)λ, NA(x)λ);
(4) Aλ = (PA(x)λ, 1 − (1 − IA(x))λ, 1 − (1 − NA(x))λ);
(5) AC = (NA(x), IA(x), PA(x)).
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2.3 Picture fuzzy linguistic set

Definition 4 Ashraf et al. (2018) Let X be a fixed universe,
and S = {s0, s1, ..., sτ−1} be a LTS. Then, the Picture fuzzy
linguistic set H in X is denoted as follows:

H = {〈sθ(x), PH (x), IH (x), NH (x)〉|x ∈ X}. (2)

where sθ(x) ∈ S, the numbers PH (x), IH (x) and NH (x),
respectively, represent positive membership degree, neutral
membership degree and negative membership degree of ele-
ment x to sθ(x), and satisfy PH (x), IH (x), NH (x) ∈ [0, 1]
and 0 ≤ PH (x)+IH (x)+NH (x) ≤ 1. For∀x ∈ X ,πH (x) =
1−PH (x)− IH (x)−NH (x) could be represented the refusal
degree of element x to sθ(x). For convenience, the simplifica-
tion of H is denoted by 〈sθ(x), (P(x), I (x), N (x))〉, which
is called Picture fuzzy linguistic variable (PFLV).

At the same time, Ashraf et al. (2018) defined some opera-
tional laws of PFLV as follows:

Definition 5 Ashraf et al. (2018) Let Hi = 〈sθ(xi ), (P(xi ),
I (xi ), N (xi ))〉(i = 1, 2) be any two PFLVs and λ ≥ 0. Then
the operations of PFLV can be denoted as:

(1) λH1 = 〈sλθ(x1), (1 − (1 − P(x1))λ, I (x1)λ, N (x1)λ)〉;
(2) H1

λ = 〈s(θ(x1))λ
, (P(x1)λ, 1− (1 − I (x1))λ, 1− (1−N

(x1))λ)〉;
(3) H1⊕H2 = 〈sθ(x1)+θ(x2), (P(x1)+P(x2)−P(x1)P(x2),

I (x1)I (x2), N (x1)N (x2))〉;
(4) H1⊗H2 = 〈sθ(x1)×θ(x2), (P(x1)P(x2), I (x1)+ I (x2)−

I (x1)I (x2), N (x1) + N (x2) − N (x1)N (x2))〉.

2.4 MM operator

The MM operator was originally introduced by Murihead
Muirhead (1902).

Definition 6 Muirhead (1902) Assume that a j ( j = 1, 2, ...,
n) be a group of non-negative real numbers, and Q =
(Q1, Q2, ..., Qn) ∈ Rn be a vector of parameters. ThenMM
operator is explained as

MMQ(a1, a2, ..., an) =
⎛
⎝ 1

n!
∑
σ∈Sn

n∏
j=1

a
Q j

σ( j)

⎞
⎠

1∑n
j=1 Q j

. (3)

Furthermore, then dual MM (DMM) operator is proposed by
liu et al. (2020) as follows:

DMMQ(a1, a2, ..., an)

= 1∑n
j=1 Q j

⎛
⎝ ∑

σ∈Sn

n∏
j=1

Q jaσ( j)

⎞
⎠

1
n!

. (4)

where σ( j)( j = 1, 2, ..., n) is any permutation of {1, 2, ...,
n} and Sn is the set of all permutations of {1, 2, ..., n}.

3 Some novel operational laws and
measures for PFLS

3.1 Linguistic scale functions

Traditional operational laws of PFLS are to calculate directly
utilizing the subscript of linguistic terms based on assump-
tions that the deviation between adjacent linguistic terms is
equal. It does not completely match the real problems. For
instance, the DM may believe that the deviation between
“fair” and “slight good” is less than the deviation between
“slight good” and “good” in terms of the academic research
level of the teacher.Moreover, the result of the operationmay
exceed the bounder limit of LTS. Thus, in order to respond
flexibly and reasonably to this problem, in this section, by
combining linguistic scale functions proposed byWang et al.
(2014), we innovate some novel operational laws for PFLS
to make the results logical.

Definition 7 Let S = {st |t = 0, 1, ..., τ − 1} be a LTS and
λt be a numeric value which represents the semantic of st .
Then the linguistic scale functions (LSFs) f is the mapping
from st to λt (t = 0, 1..., τ − 1) is defined as:

f : st → λt (t = 0, 1, ..., τ − 1). (5)

(1)The deviations between adjacent linguistic terms are
equal, then

f (st ) = λt = t

τ − 1
. (6)

(2)The deviations between adjacent linguistic terms are
increasing with the extension from s0, then

f (st ) = λt

=

⎧⎪⎪⎨
⎪⎪⎩

ς(τ−1)/2 − ς(τ−1−2t)/2

2ς(τ−1)/2 − 2
(t = 0, 1, ..., (τ − 1)/2)

ς(τ−1)/2+ς(2t−τ+1)/2−2
2ς(τ−1)/2−2 (t=(τ +1)/2, (τ +3)/2, ..., τ −1)

.

(7)

where ς is a threshold, which can be determined according
to the specific situations.

(3)The deviations between adjacent linguistic terms are
decreasing with the extension from s0, then

f (st ) = λt
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=

⎧⎪⎪⎨
⎪⎪⎩

((τ − 1)/2)a − ((τ − 1)/2 − t)a

2((τ − 1)/2)a
(t = 0, 1, ..., (τ − 1)/2)

((τ−1)/2)b+(t−(τ−1)/2)b
2((τ−1)/2)b (t=(τ +1)/2, (τ +3)/2, ..., τ −1)

.

(8)

where a, b ∈ [0, 1] can be determined based on the practical
case. Especially, a, b = 1, f (st ) = t

τ−1 .

3.2 Some novel operational laws for PFLS

Considering that there aremany deficiencies in the traditional
PFLS algorithm, such as the operation result exceeds the
upper bound of redefined LTS. In this part, we redefine some
novel operational laws of PFLV based on linguistic scale
functions, which are described as follows.

Definition 8 Let Hi = 〈sθ(xi ), (P(xi ), I (xi ), N (xi ))〉(i =
1, 2, 3) be any three PFLVs and λ > 0. Then, based on LSFs,
novel operational laws for PFLVs are given as follows:

(1) H1 ⊕ H2 = 〈 f −1( f (sθ(x1)) + f (sθ(x2)) − f (sθ(x1)) f
(sθ(x2))), (P(x1) + P(x2) − P(x1)P(x2), I (x1)I (x2),
N (x1)N (x2))〉;

(2) H1 ⊗ H2=〈 f −1( f (sθ(x1)) × f (sθ(x2))), (P(x1)P(x2),
I (x1)+I (x2)−I (x1)I (x2), N (x1)+N (x2)−N (x1)
N (x2))〉;

(3) λH1 = 〈 f −1(1− (1 − f (sθ(x1)))
λ), (1− (1 − P(x1))λ,

I (x1)λ, N (x1)λ)〉;
(4) H1

λ = 〈 f −1( f (sθ(x1))
λ), (P(x1)λ, 1−(1 − I (x1))λ, 1−

(1 − N (x1))λ)〉;
(5) H1

C = 〈 f −1(1 − f (sθ(x1))), (N (x1), I (x1), P(x1))〉.

Example 1 Continue to utilize the examplementioned earlier.
H1 = 〈s3, (0.5, 0.2, 0.1)〉 and H2 = 〈s5, (0.4, 0.2, 0.2)〉 are
two PFLVs. Suppose that S be a LTS with a granularity of
7, f (st ) is given as Eq.(6) and λ = 2. By Definition 8, the
following results can be obtained:

(1) H1 ⊕ H2 = 〈 f −1( f (s3) + f (s5) − f (s3) f (s5)), (0.5+
0.4−0.5×0.4, 0.2×0.2, 0.1×0.2)〉 = 〈s5.5, (0.7, 0.04,
0.02)〉;

(2) H1⊕H2 = 〈 f −1( f (s3)× f (s5)), (0.5×0.4, 0.2+0.2−
0.2 × 0.2, 0.1 + 0.2 − 0.1 × 0.2)〉 = 〈s5.5, (0.2, 0.36,
0.28)〉;

(3) 2H1 = 〈 f −1(1 − (1 − f (s3))2), (1 − (1 − 0.5)2, 0.22,
0.12)〉 = 〈s4.5, (0.75, 0.04, 0.01)〉;

(4) (H1)
2 = 〈 f −1( f (s3))2), ((0.5)2, 1 − (1 − 0.2)2, 1 −

(1 − 0.1)2)〉 = 〈s1.5, (0.25, 0.36, 0.19)〉;
(5) H1

C = 〈 f −1(1 − f (s3)), (0.1, 0.2, 0.5)〉 = 〈s3, (0.1,
0.2, 0.5)〉.

Apparently, the above operational results are still PFLVs.
Moreover, it can be found that the linguistic term in the

calculation result does not exceed the upper limit of LTS,
which illustrates the rationality and progress of the improved
method we have proposed and ensures the credibility of the
calculation result.

3.3 The novel score and accuracy functions

Definition 9 Suppose S = {s0, s1, ..., sτ−1} be a LTS, H =
〈sθ(x), (P(x), I (x), N (x))〉 be a PFLV. Then, the novel score
function M(H) of H can be represented as:

M(H) = I nd(sθ(H)) ×
(
1 + P(H) − N (H)

2

)
. (9)

the novel accuracy function NF(H) of H can be defined as:

NF(H) = I nd(sθ(H)) × (P(H) + I (N ) + N (H)) . (10)

where I nd(sθ(H)) is the subscript of linguistic term sθ(H),
P(H) is the P(x) value of H , I (H) is the I (x) value of H
and N (H) is the N (x) value of H .

Definition 10 For any two PFLVs H1 and H2, then

(1) If M(H1) > M(H2), then H1 � H2;
(2) If M(H1) < M(H2), then H1 ≺ H2;
(3) If M(H1) = M(H2),then

(i) IfNF(H1) > NF(H2), then H1 � H2;
(ii) If NF(H1) < NF(H2), then H1 ≺ H2;
(iii) If NF(H1) = NF(H2), then H1 ∼ H2;

Example 2 For H1 = 〈s2, 0.3, 0.3, 0.2〉 and H2 = 〈s2, 0.4,
0.25, 0.3〉. If f (st ) is given as Eq.(6), M(H1) = M(H2) =
0.1.Then, the accuracy functions of the twoPFLVs NF(H1) =
1.6 and NF(H2) = 1.9, therefore, H2 > H1.

4 Picture fuzzy linguistic MuirheadMean
aggregation operators

In the light of the superiority of Muirhead Mean (MM) oper-
ators in coping with the interaction relationship between the
input parameters, and taking into account attribute weights
simultaneously. This section explains MM operators con-
cerning PFLVs and suggests the MM aggregation operators
withPFLVs alongwithPicture fuzzy linguisticweightedMM
operator (PFLWMM) and Picture fuzzy linguistic weighted
DMM operator (PFLWDMM).

4.1 Picture fuzzy linguistic weightedMM operator

Definition 11 Let a j ( j = 1, 2, ..., n) be a group of PFLVs
with their weight vector be ωi = (ω1, ω2, ..., ωn)

T , satisfy-
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ing ωi ∈ [0, 1] and ∑n
i=1 ωi = 1. Q = (Q1, Q2, ..., Qn) ∈

Rn be a vector of parameters. Then the definition of the
PFLWMM operator is expressed as:

PFLWMMQ
nω(a1, a2, ..., an)

= (
1

n! ( ⊕
σ∈Sn

(
n⊗
j=1

(nωσ( j)aσ( j))
Q j )))

1∑n
j=1 Q j . (11)

Theorem 1 Assume that a j ( j = 1, 2, · · · , n) be a set of
PFLVs. The fused result obtained by PFLWMM operator is
shown as

PFLWMMQ
nω(a1, a2, ..., an)

=
( 1

n!
(

⊕
σ∈Sn

( n⊗
j=1

(nωσ( j)aσ( j))
Q j

))) 1∑n
j=1 Q j

= 〈 f −1
((

1 −
∏
σ∈Sn

(
1 −

n∏
j=1

×(1 − (1 − f (sθ(aσ( j))))
nωσ( j) )Q j )

1
n!
) 1∑n

j=1 Q j ),
(
1 −

∏
σ∈Sn

×
(
1 −

n∏
j=1

(1 − (1 − P(aσ( j)))
nωσ( j) )Q j )

1
n! )

1∑n
j=1 Q j ,

1 −
(
1 −

∏
σ∈Sn

×
(
1 −

n∏
j=1

(1 − (1 − I (aσ( j)))
nωσ( j) )Q j )

1
n! )

1∑n
j=1 Q j ,

1 −
(
1 −

∏
σ∈Sn

(
1 −

n∏
j=1

×(1 − (1 − N (aσ( j)))
nωσ( j) )Q j )

1
n! )

1∑n
j=1 Q j 〉. (12)

where n is the number of attributes, ωi is weight vector.

Proof (i) The linguistic set part:

nωσ( j)sθ(aσ( j))

= f −1(1 − (1 − f (sθ(aσ( j))))
nωσ( j) ).

Then, ⊕
σ∈Sn

((ωσ( j)sθ(aσ( j)))
Q j ) = { f −1

(
1 − ∏

σ∈Sn

(
1 −

n∏
j=1

(1 − (1 − f (sθ(aσ( j))))
nωσ( j) )Q j

))
},

Thus,

( 1

n!
(

⊕
σ∈Sn

(
(ωσ( j)sθ(aσ( j)))

Q j
)))

1
n∑
j=1

Q j

= { f −1
((

1 −
∏
σ∈Sn

(
1 −

n∏
j=1

(1 − (1 − f

×(sθ(aσ( j))))
nωσ( j) )Q j )

1
n!
) 1∑n

j=1 Q j
)
}.

(ii)The Picture fuzzy set part:

ωσ( j)aσ( j) = {1 − (1 − P(aσ( j)))
ωσ( j) ,

(I (aσ( j)))
ωσ( j) , (N (aσ( j)))

ωσ( j)}.

Then,
n⊗
j=1

(ωσ( j)aσ( j))
Q j = {

n∏
j=1

(1 − (1 − P

(aσ( j)))
ωσ( j) )Q j , 1 −

n∏
j=1

(1 − (I (aσ( j)))
ω( j))Q j , 1 −

n∏
j=1

(1 − (N (aσ( j)))
ω( j))

Q j },
thus,

(
1

n!
(

⊕
σ∈Sn

(
n⊗
j=1

(ωσ( j)aσ( j))
Q j

))) 1∑n
j=1 Q j

= {(1 −
∏

σ∈Sn
(1 −

n∏
j=1

(1 − (1 − P(aσ( j)))

ωσ( j)

)Q j )
1
n! )

1∑n
j=1 Q j ,

1 − (1 −
∏
σ∈Sn

(1 −
n∏
j=1

(1 − (1 − I (aσ( j)))

ωσ( j)

)Q j )
1
n! )

1∑n
j=1 Q j ,

1 − (1 −
∏
σ∈Sn

(1 −
n∏
j=1

(1 − (1 − N (aσ( j)))

ωσ( j)

)Q j )
1
n! )

1∑n
j=1 Q j }..

Therefore,

PFLWMMQ
nω(a1, a2, ..., an)

= (
1

n! ( ⊕
σ∈Sn

(
n⊗
j=1

(nωσ( j)aσ( j))
Q j )))

1
n∑
j=1

Q j

= 〈 f −1((1 −
∏

σ∈Sn
(1 −

n∏
j=1

×(1 − (1 − f (sθ(aσ( j))))
nωσ( j) )Q j )

1
n! )

1∑n
j=1 Q j ),

(1 −
∏
σ∈Sn

(1 −
n∏
j=1

(1 − (1 − P(aσ( j)))

nωσ( j)

)Q j )
1
n! )

1∑n
j=1 Q j ,

1 − (1 −
∏

σ∈Sn
(1 −

n∏
j=1

(1 − (1 − I (aσ( j)))

nωσ( j)

)Q j )
1
n! )

1∑n
j=1 Q j

1 − (1−
∏

σ∈Sn
(1−

n∏
j=1

(1−(1−N (aσ( j)))

nωσ( j)

)Q j )
1
n! )

1∑n
j=1 Q j 〉.

Hence, Eq.(12) is kept. ��

Example 3 Let b1 = 〈s2, 0.2, 0.4, 0.4〉, b2 = 〈s3, 0.1, 0.4,
0.5〉, b3 = 〈s2, 0.3, 0.5, 0.2〉 be three PFLVs. If f (st ) is
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given as Eq.(6), Q = (0.2, 0.3, 0.5) and ω = (0.4, 0.3, 0.3),
then according to Theorem 2, we can obtain:

PFLWMM(0.2,0.3,0.5)
(0.4,0.3,0.3) (〈s2, 0.2, 0.4, 0.4〉,

〈s3, 0.1, 0.4, 0.5〉, 〈s2, 0.3, 0.5, 0.2〉)
= 〈 f −1((1 − ((1 − (1 − (1 − f (s2))

1.2)0.2

×(1 − (1 − f (s3))
0.9)0.3

×(1 − (1 − f (s2))
0.9)0.5)

×(1 − (1 − (1 − f (s2))
1.2)0.2 × (1 − (1 − f (s2))

0.9)0.3

×(1 − (1 − f (s3))
0.9)0.5)

×(1 − (1 − (1 − f (s3))
0.9)0.2 × (1 − (1 − f (s2))

1.2)0.3

×(1 − (1 − f (s2))
0.9)0.5)

×(1 − (1 − (1 − f (s3))
0.9)0.2 × (1 − (1 − f (s2))

0.9)0.3

×(1 − (1 − f (s2))
1.2)0.5)

×(1 − (1 − (1 − f (s2))
0.9)0.2 × (1 − (1 − f (s2))

1.2)0.3

×(1 − (1 − f (s3))
0.9)0.5)

×(1 − (1 − (1 − f (s2))
0.9)0.2 × (1 − (1 − f (s3))

0.9)0.3

×(1 − (1 − f (s2))
1.2)0.5))

1
3! )

1
1 ),

1 − ((1 − (1 − (1 − 0.2)1.2)0.2 × (1 − (1 − 0.1)0.9)0.3

×(1 − (1 − 0.3)0.9)0.5)

×(1 − (1 − (1 − 0.2)1.2)0.2 × (1 − (1 − 0.3)0.9)0.3

×(1 − (1 − 0.1)0.9)0.5)

×(1 − (1 − (1 − 0.1)0.9)0.2 × (1 − (1 − 0.2)1.2)0.3

×(1 − (1 − 0.3)0.9)0.5)

×(1 − (1 − (1 − 0.1)0.9)0.2 × (1 − (1 − 0.3)0.9)0.3

×(1 − (1 − 0.2)1.2)0.5)

×(1 − (1 − (1 − 0.3)0.9)0.2 × (1 − (1 − 0.2)1.2)0.3

×(1 − (1 − 0.1)0.9)0.5)

×(1 − (1 − (1 − 0.3)0.9)0.2 × (1 − (1 − 0.1)0.9)0.3

×(1 − (1 − 0.2)1.2)0.5))
1
3! )

1
1 ,

1 − (1 − ((1 − (1 − 0.41.2)0.2 × (1 − 0.40.9)0.3

×(1 − 0.50.9)0.5)

×(1 − (1 − 0.41.2)0.2 × (1 − 0.50.9)0.3

×(1 − 0.40.9)0.5)

×(1 − (1 − 0.40.9)0.2 × (1 − 0.41.2)0.3

×(1 − 0.50.9)0.5)

×(1 − (1 − 0.40.9)0.2 × (1 − 0.50.9)0.3

×(1 − 0.41.2)0.5)

×(1 − (1 − 0.50.9)0.2 × (1 − 0.41.2)0.3

×(1 − 0.40.9)0.5)

×(1 − (1 − 0.50.9)0.2 × (1 − 0.40.9)0.3

×(1 − 0.41.2)0.5)))
1
3! )

1
1 ,

1 − (1 − ((1 − (1 − 0.41.2)0.2 × (1 − 0.50.9)0.3

×(1 − 0.20.9)0.5)

×(1 − (1 − 0.41.2)0.2 × (1 − 0.20.9)0.3

×(1 − 0.50.9)0.5)

×(1 − (1 − 0.50.9)0.2 × (1 − 0.41.2)0.3

×(1 − 0.20.9)0.5)

×(1 − (1 − 0.50.9)0.2 × (1 − 0.20.9)0.3

×(1 − 0.41.2)0.5)

×(1 − (1 − 0.20.9)0.2 × (1 − 0.41.2)0.3

×(1 − 0.50.9)0.5)

×(1 − (1 − 0.20.9)0.2 × (1 − 0.50.9)0.3

×(1 − 0.41.2)0.5)))
1
3! )

1
1 〉

= 〈s2.268, 0.208, 0.441, 0.344〉.

Next, explore the desirable properties of the PFLWMMoper-
ator. Qualified operators should be able to give a clear order
to different schemes in decision-making. This requires proof
of its idempotency, boundedness and monotonicity, so as to
avoid the situation where the operator gives the same sorting
result as much as possible.

Property 1 (Idempotency). If a j = a = 〈sθ(a), P(a), I (a),

N (a)〉 for all j( j = 1, 2, ..., n), then

PFLWMMQ
nω(a1, a2, ...an) = a.

Proof Since a j = a( j = 1, 2, ..., n), and
∑n

i=1 ωi = 1,
based on Theorem 2, we can get

PFLWMMQ
nω(a1, a2, ..., an)

= (
1

n! ( ⊕
σ∈Sn

(
n⊗
j=1

(nωσ( j)aσ( j))
Q j )))

1∑n
j=1 Q j

= 〈 f −1((1 −
∏
σ∈Sn

(1 − f (sθ(a
σ( j) )

)
∑n

j=1 Q j )
1
n!
)

1∑n
j=1 Q j ),

((1 −
∏
σ∈Sn

(1 − P(a
σ( j) )

∑n
j=1 Q j )

1
n!
)

1∑n
j=1 Q j ,

1 − (1 −
∏
σ∈Sn

(1 − (1 − I (a
σ( j) ))

∑n
j=1 Q j )

1
n!
)

1∑n
j=1 Q j ,

1 − (1 −
∏
σ∈Sn

(1 − (1 − N (a
σ( j) )

∑n
j=1 Q j )

1
n!
)

1∑n
j=1 Q j )〉

= 〈 f −1(( f (sθ(a
σ( j) )

)
∑n

j=1 Q j )

1∑n
j=1 Q j )),

(P(a
σ( j) )

∑n
j=1 Q j )

1∑n
j=1 Q j , 1

−((1 − I (a
σ( j) ))

∑n
j=1 Q j )

1∑n
j=1 Q j ,

1 − ((1 − N (a
σ( j) ))

∑n
j=1 Q j )

1∑n
j=1 Q j 〉 = a.

Then, the proof of Property 1 is completed. ��

Property 2 (Boundedness). Let a j = 〈sθ(a j ), P(a j ), I (a j ),

N (a j )〉( j = 1, 2, ..., n) be a lists of PFLVs. If a−
j = min a j
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and a+
j = max a j , then

a−
j ≤ PFLWMMQ

nω(a1, a2, ..., an) ≤ a+
j .

Proof Since a−
j ≤ a j ≤ a+

j for all j( j = 1, 2, ..., n), let
a = 〈sθ(a), P(a), I (a), N (a)〉. It is obvious that

min{sθ(a j )} ≤ sθ(a) ≤ max{sθ(a j )}, min{P(a j )} ≤
P(a) ≤ max{P(a j )}

min{I (a j )} ≤ I (a) ≤ max{I (a j )}, min{N (a j )} ≤
N (a) ≤ max{N (a j )}

According to properties 1-2, a−
j ≤ PFLWMMQ

nω(a1,

a2, ..., an) ≤ a+
j . Therefore, the proof of Property 2 is com-

pleted. ��
Property 3 (Monotonicity). Assume that a j = 〈sθ(a j ),

P(a j ), I (a j ), N (a j )〉 and b j = 〈sθ(b j ), P(b j ), I (b j ),

N (b j )〉( j = 1, 2, ..., n) are two lists of PFLVs. Let a j ≤ b j

for all j , then

PFLWMMQ
nω(a1, a2, ..., an)

≤ PFLWMMQ
nω(b1, b2, ..., bn).

Proof Since a j ≤ b j for all j , we can get

n∏
j=1

(1 − (1 − P(aσ( j)))
ωσ( j) )

QJ

≤
n∏
j=1

(1 − (1 − P(bσ( j)))
ωσ( j) )

QJ .

��
Thus,

(
1 −

∏
σ∈Sn

(1−
n∏
j=1

(1 − (1 − P(aσ( j)))
ωσ( j) )

QJ )
1
n!

) 1∑n
j=1 Q j

≤ (1 −
∏
σ∈Sn

(1−
n∏
j=1

(1 − (1 − P(bσ( j)))
ωσ( j) )

QJ )
1
n! )

1∑n
j=1 Q j .

That’s P(a) ≤ P(b). Similarity, we can obtain sθ(a) ≤
sθ(b), I (a) ≤ I (b) and N (a) ≥ N (b), therefore, PFL

WMMQ
nω(a1, a2, ..., an) ≤ PFLWMMQ

nω(b1, b2, ..., bn).
So, the Property 3 is right.

PFLWMM operator does not have the property of Com-
mutatively.

Remark 1 In the case where ω = (1/n, 1/n, ..., 1/n)T , then
PFLWMM operator degenerates into the PFLMM operator.

PFLMMQ(a1, a2, ..., an)

= 〈 f −1
((

1 −
∏
σ∈Sn

(1 −
n∏
j=1

f (sθ(aσ( j)))

Q j

)

1
n! )

1
n∑
j=1

Q j )
,

(
1 −

∏
σ∈Sn

(
1 −

n∏
j=1

P(aσ( j))

Q j ) 1
n! ) 1∑n

j=1 Q j ,

1 − (1 −
∏
σ∈Sn

(1 −
n∏
j=1

(1 − I (aσ( j)))

Q j

)

1
n!
)

1∑n
j=1 Q j ,

1 − (1 −
∏
σ∈Sn

(1 −
n∏
j=1

(1 − N (aσ( j)))

Q j

)

1
n!
)

1∑n
j=1 Q j 〉

(13)

4.2 Picture fuzzy linguistic weighted DMMoperator

Definition 12 Let a j ( j = 1, 2, ..., n) be a group of PFLVs
with their weight vector be ωi = (ω1, ω2, ..., ωn)

T , satisfy-
ing ωi ∈ [0, 1] and ∑n

i=1 ωi = 1. Q = (Q1, Q2, ..., Qn) ∈
Rn be a vector of parameters. Then the definition of the
PFLWDMM operator is expressed as:

PFLWDMMQ
nω(a1, a2, ..., an)

= 1∑n
j=1 Q j

( ⊗
σ∈Sn

(
n⊕
j=1

(Q ja
nωσ( j)
σ ( j) )))

1
n! . (14)

Theorem 2 Assume that a j ( j = 1, 2, · · · , n) be a set of
PFLVs. The fused values obtained by PFLWDMM operator
are shown as:

PFLWDMMQ
nω(a1, a2, ..., an)

= 1∑n
j=1 Q j

( ⊗
σ∈Sn

(
n⊕
j=1

(Q ja
nωσ( j)
σ ( j) )))

1
n!

=
〈
f −1

((
1 −

∏
σ∈Sn

(
1 −

n∏
j=1

×(1 − (1 − f (sθ(aσ( j))
))
nωσ( j) )

Q j
) 1
n!

) 1∑n
j=1 Q j

)
,

1 −
(
1 − ⊗

σ∈Sn

(
1 −

n∏
j=1

(1 − P(aσ( j)

)nωσ( j)
)

Q j ) 1
n!

)

1∑n
j=1 Q j ,

(
1 −

∏
σ∈Sn

(
1 −

n∏
j=1

(1 − (1 − I (aσ( j)))
nωσ( j)

)Q j ) 1
n!

)

1∑n
j=1 Q j

,

(
1 −

∏
σ∈Sn

(
1 −

n∏
j=1

(1 − (1 − N (aσ( j)

))nωσ( j))Q j ) 1
n!

)

1∑n
j=1 Q j 〉.

(15)

The proof process is similar to the PFLWMM operator, its
omitted the proof.

Example 4 Let d1 = 〈s2, 0.2, 0.4, 0.4〉, d2 = 〈s3, 0.1, 0.4,
0.5〉, d3 = 〈s2, 0.3, 0.5, 0.2〉 be three PFLVs. If f (st ) is
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given as Eq.(6), Q = (0.2, 0.3, 0.5) and ω = (0.4, 0.3, 0.3),
then according to Theorem 3, we can obtain:

PFLWDMM (0.2,0.3,0.5)
(0.4,0.4,0.2) (〈s1, 0.3, 0.2, 0.4〉, 〈s3, 0.1, 0.4,

0.5〉, 〈s2, 0.4, 0.3, 0.3〉)
= 〈 f −1((1 − (1 − ((1 − (1 − f (s1)

1.2)0.2

×(1 − f (s3)
1.2)0.3(1 − f (s2)

0.6)0.5)

×(1 − (1 − f (s1)
1.2)0.2 × (1 − f (s2)

0.6)0.3

×(1 − f (s3)
1.2)0.5)

×(1 − (1 − f (s3)
1.2)0.2 × (1 − f (s1)

1.2)0.3

×(1 − f (s2)
0.6)0.5)

×(1 − (1 − f (s3)
1.2)0.2 × (1 − f (s2)

0.6)0.3

×(1 − f (s1)
1.2)0.5)

×(1 − (1 − f (s2)
0.6)0.2 × (1 − f (s1)

1.2)0.3

×(1 − f (s3)
1.2)0.5)

×(1 − (1 − f (s2)
0.6)0.2 × (1 − f (s3)

1.2)0.3

×(1 − f (s1)
1.2)0.5))

1
3! )),

(1 − (1 − ((1 − (1 − 0.31.2)0.2 × (1 − 0.11.2)0.3

×(1 − 0.40.6)0.5)

×(1 − (1 − 0.31.2)0.2 × (1 − 0.40.6)0.3

×(1 − 0.11.2)0.5)

×(1 − (1 − 0.11.2)0.2 × (1 − 0.31.2)0.3

×(1 − 0.40.6)0.5)

×(1 − (1 − 0.40.6)0.2 × (1 − 0.31.2)0.3

×(1 − 0.11.2)0.5)

×(1 − (1 − 0.40.6)0.2 × (1 − 0.11.2)0.3

×(1 − 0.31.2)0.5)

×(1 − (1 − 0.31.2)0.2 × (1 − 0.11.2)0.3

×(1 − 0.40.6)0.5))
1
3! )

1
1 ,

(1 − ((1 − (1 − (1 − 0.2)1.2)0.2 × (1 − (1 − 0.4)1.2)0.3

×(1 − (1 − 0.3)0.6)0.5)

×(1 − (1 − (1 − 0.2)1.2)0.2 × (1 − (1 − 0.3)0.6)0.3

×(1 − (1 − 0.4)1.2)0.5)

×(1 − (1 − (1 − 0.4)1.2)0.2 × (1 − (1 − 0.2)1.2)0.3

×(1 − (1 − 0.3)0.6)0.5)

×(1−(1−(1 − 0.4)1.2)0.2×(1 − (1 − 0.3)0.6)0.3

×(1 − (1 − 0.2)1.2)0.5)

×(1 − (1 − (1 − 0.3)0.6)0.2 × (1 − (1 − 0.4)1.2)0.3

×(1 − (1 − 0.2)1.2)0.5)

×(1 − (1 − (1 − 0.3)0.6)0.2 × (1 − (1 − 0.2)1.2)0.3

×(1 − (1 − 0.4)1.2)0.5))
1
3! )

1
1 ,

(1 − ((1 − (1 − (1 − 0.4)1.2)0.2 × (1 − (1 − 0.5)1.2)0.3

×(1 − (1 − 0.3)0.6)0.5)

×(1 − (1 − (1 − 0.4)1.2)0.2 × (1 − (1 − 0.3)0.6)0.3

×(1 − (1 − 0.5)1.2)0.5)

×(1 − (1 − (1 − 0.5)1.2)0.2 × (1 − (1 − 0.4)1.2)0.3

×(1 − (1 − 0.3)0.6)0.5)

×(1 − (1 − (1 − 0.5)1.2)0.2 × (1 − (1 − 0.3)0.6)0.3

×(1 − (1 − 0.4)1.2)0.5)

×(1 − (1 − (1 − 0.3)0.6)0.2 × (1 − (1 − 0.5)1.2)0.3

×(1 − (1 − 0.4)1.2)0.5)

×(1 − (1 − (1 − 0.3)0.6)0.2 × (1 − (1 − 0.4)1.2)0.3

×(1 − (1 − 0.5)1.2)0.5))
1
3! )

1
1 )〉 = 〈s2.232, 0.320, 0.277, 0.372〉

Similarly, in order to further illustrate that the PFLWDMM
operator can give a clear order to different schemes and can
avoid the same ordering situation as much as possible, the
three properties that the operator satisfies are expressed as
follows.

Property 4 (Idempotency). If all a j ( j = 1, 2, ..., n) are
equal, i.e., a j = a for all j , then

PFLWDMMQ
nω(a1, a2, ..., an) = a.

Property 5 (Boundedness). Let a j = 〈sθ(a j ), P(a j ), I (a j ),

N (a j )〉( j = 1, 2, ..., n) be a lists of PFLVs. If a−
j = min a j

and a+
j = max a j , then

a−
j ≤ PFLWDMMQ

nω(a1, a2, ..., an) ≤ a+
j .

Property 6 (Monotonicity). Assume that a j = 〈sθ(a j ),

P(a j ), I (a j ), N (a j )〉 andb j = 〈sθ(b j ), P(b j ), I (b j ), N (b j )〉
are two lists of PFLVs. Let a j ≤ b j for all j , then

PFLWDMMQ
nω(a1, a2, ..., an) ≤ PFLWDMMQ

nω(b1, b2, ..., bn).

The proof of above three properties is similar to PFLWMM,
so the proof is omitted.

Remark 2 In the case where ω = (1/n, 1/n, ..., 1/n)T , then
PFLWDMM operator degenerate into the PFLDMM opera-
tor.

PFLDMMQ(a1, a2, ..., an)

= 〈 f −1
(
1 −

(
1 − ⊗

σ∈Sn

(
1 −

n∏
j=1

(1 − sθ(aσ( j)))
Q j

) 1
n! ) 1∑n

j=1 Q j
)
,

1 −
(
1 − ⊗

σ∈Sn

(
1 −

n∏
j=1

(1 − P(aσ( j)))
Q j )

1
n!
) 1∑n

j=1 Q j ,

(
1 −

∏
σ∈Sn

(1 −
n∏
j=1

(I (aσ( j)))

Q j

)

1
n! ) 1∑n

j=1 Q j ,

(
1 −

∏
σ∈Sn

(
1 −

n∏
j=1

(N (aσ( j)))

Q j ) 1
n! ) 1∑n

j=1 Q j 〉. (16)
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5 Multiple attribute decision-making
algorithm based on picture fuzzy linguistic
information

In this part, we shall develop a new algorithm based on
the Picture fuzzy linguistic aggregation operators to solve
MADM problems under picture fuzzy linguistic environ-
ment. Let A = {A1, A2, ..., Am} be the set of alternatives,
C = {C1,C2, ...,Cn} be the set of attributes, and ω =
{ω1, ω2, ..., ωn} be the weight of attribute such that ω j >

0( j = 1, 2, ..., n) and
∑n

i=1 ω j = 1. Suppose that H =
(hi j )m×n = 〈si j , (Pi j , Ii j , Ni j )〉m×n is the picture fuzzy lin-
guistic decision matrix, where hi j is an PFLV and expresses
the evaluation value of alternative Ai with respect to the
attribute C j by the decision maker.

In the following, we utilize the PFLWMM (PFLWDMM)
operator to solve MADM problems with PFLV information.
The following steps are provided to find the best alternatives.
The flowchart of the proposed method is shown in Fig. 1.

Step 1. Normalize the attribute values. In a real problem,
there are two types of attributes, then we need trans-
formed cost type into benefit one to construct a standard-
ized decision-making matrices by utilizing Eq.(17). (For
convenience, standardized decision-making matrices still
expressed by H = (hi j )m×n)

hi j = 〈 f −1(1 − f (shi j )), N (hi j ), I (hi j ), P(hi j )〉. (17)

Step 2. Aggregate all attribute values hi j ( j = 1, 2, ..., n)

of each alternative to the comprehensive values hi by uti-
lizing the PFLWMM operator defined by Definition 11 or
PFLWDMM operator defined by Definition 12.

Step 3. Compute the score values E(hi )(i = 1, 2, ...,m) of
the PFLVs hi by Eq.(9). If the values of score function are
same, we will use the accuracy function to further compari-
son.

Step 4. Order all the alternatives Ai by the comparison
method of PFLVs and select the best choice by E(hi ) or
H(hi ).

Step 5. End.

6 Illustrative example and comparative
analysis

In this section, we shall present a numerical example con-
cerning the selection of the innovative “Mobike” sharing bike
design, which is adapted from Liao et al. (2018) to show the
feasibility and applicability of the proposed models.

6.1 background

In order to solve the “last few kilometers of travel” problem,
sharing bike as a new formof sharing economy appear in peo-
ple’s field of vision. Because of no limit of time and place
for taking and parking bikes, and attracted more and more
people attentions. “Mobike” is one of many shared cycling
brands. In order to enhance the competitiveness of its brand,
“Mobike” pays much more attention at the beginning of the
bicycle design phase tomake the designed bicyclemore com-
fortable and safe.

Assume that “Mobike” company want to select the opti-
mal bicycle design from four bicycle production factory
{A1, A2, A3, A4}, after thoughtful survey of the informa-
tion, the “Mobike” company have considered the following
key criteria, including comfort C1, practicality C2, versa-
tility C3 and security of C4, whose weighted vector is
ω= (0.25, 0.3, 0.25, 0.2)T . The linguistic term set S =
{s0, s1, ..., s6} is utilized. The specific semantic of the lin-
guistic term set is expressed as: s0 = extremely poor, s1
= poor, s2 = slight poor, s3 = fair, s4 = slight good, s5 =
good, s6 = extremely good. For example, twelve experts are
invited to assess the optimal bike design, s4 is the linguis-
tic variable, which is an evaluation value for alternative A1

with respect to attribute C1. On the day of the judging, only
eleven experts participate in the assessment, and one person
was absent. Suppose that four out of eleven experts voted
for s4, six remained neutral, and one people voted against,
then evaluation information given by experts can be denoted
by < s4, 4/12, 6/12, 1/12 >. Then, the decision matrixes is
shown in Table 1.

Then, we can use the models developed in Sect. 5 for
obtaining the optimal alternative. The following steps are
involved:

Step 1. Normalize attribute values. In this example, because
of all attributes are the benefit type, so there is no need for
transformation.

Step 2. Based on Table 1, aggregate the attribute val-
ues hi j ( j = 1, 2, ..., n) of each alternative by utilizing
the PFLWMM operator given in Eq.(12) or PFLWDMM
operator given in Eq.(15) to obtain the overall values
hi (i = 1, 2, ...,m). If f (st ) is given as Eq.(6) and Q =
(0.2, 0.3, 0.2, 0.3), then, the fused results are listed in Table
2.

Step 3. Compute the score values of each alternative com-
bined with Eq.(9), the results are shown in Table 3.

Step 4. Based on the score values of the overall alternative
present inTable 3.We can rank all the alternatives by utilizing
Definition 10. It is obviously find that the ranking of the
bike production factory based on the different aggregation
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Fig. 1 The proposed algorithm based on the PFLV aggregation operators to solve MADM problems

Table 1 The Picture fuzzy linguistic information decision matrix

Alternative C̃1 C̃2 C̃3 C̃4

A1 < s4, 4/12, 6/12, 1/12 > < s2, 6/12, 4/12, 2/12 > < s3, 4/12, 7/12, 1/12 > < s4, 2/12, 9/12, 1/12 >

A2 < s4, 2/12, 7/12, 2/12 > < s3, 6/12, 3/12, 2/12 > < s2, 5/12, 4/12, 3/12 > < s5, 8/12, 2/12, 1/12 >

A3 < s2, 10/12, 1/12, 1/12 > < s1, 8/12, 1/12, 3/12 > < s5, 2/12, 8/12, 1/12 > < s3, 2/12, 8/12, 2/12 >

A4 < s3, 2/12, 8/12, 1/12 > < s4, 9/12, 2/12, 1/12 > < s4, 7/12, 4/12, 1/12 > < s3, 2/12, 8/12, 1/12 >

Table 2 The aggregating results
by the PFLWMM (PFLWDMM)
operator

Alternative P̃ FLWMM P̃FLWDMM

A1 < s3.144, 0.249, 0.619, 0.098 > < s3.426, 0.301, 0.547, 0.09 >

A2 < s3.342, 0.362, 0.347, 0.174 > < s3.822, 0.443, 0.296, 0.160 >

A3 < s2.352, 0.247, 0.602, 0.096 > < s3.276, 0.586, 0.232, 0.068 >

A4 < s3.606, 0.355, 0.488, 0.074 > < s3.942, 0.621, 0.234, 0.069 >

123



14752 S. Xian et al.

Table 3 The score function of the different sharing bicycle design

Alternative P̃ FLWMM P̃FLWDMM

A1 1.809 2.074

A2 1.985 2.452

A3 1.354 2.486

A4 2.310 3.059

Table 4 Ranking of the different sharing bicycle design

Alternative Õrdering

PFLWMM A4 � A2 � A1 � A3

PFLWDMM A4 � A3 � A2 � A1

operator is slightly different. The order results are shown in
Table 4.

Step 5. The bicycle production factory A4 is the optimal
choose.

6.2 Comparative analysis

For proving the prominent advantages of the proposed
methods under picture fuzzy linguistic environment,we com-
pare the proposed methods with existing methods such as
the methods based on PFLNWAA Ashraf et al. (2018),
PFLNWGA Ashraf et al. (2018) and A-PFLWAA Liu and
Zhang (2018) to rank this example and the ranking results
are presented in Table 5 and Fig. 1.

We can clearly find that the result of the best alternative
obtained by our proposed operators is consistent with other
exiting operators and represent A4 is the best solution. This
effectively proves the validity and rationality of our proposed
method. Further, it is clear that the overall rankingorder based
on the PFLNWGA and A-PFLWAA operators are identical
although the values of score function are different, there are
some differences compared to the ranking result derived by
our proposed methods.

In the following, we will dedicate to figure out the reasons
for those different ranking results.

6.2.1 Comparison with PFLNWAA and PFLNWGA operator

In this section, we explore the influence of PFLWMM
and PFLWDMM operators on the ranking results of DM
schemes. Exploiting PFLNWAAandPFLNWGAoperator in
Ashraf et al. (2018) to calculate the above example as a com-
parison. The comparison aspects including the score function
and ranking results. The comparison results are shown in
Table 5 and Fig. 2.

The operator aggregation method for calculating the
ranking of schemes is different from the PFLNWAA and

PFLNWGA operators Ashraf et al. (2018). This is because
this paper uses the language scaling function to ensure that
the calculation results fall within the pre-defined language
interval, and fully explore the influence of the relationship
between attributes. The results in the table have become a
strong support for the method in this paper. From this new
perspective, the results of the method proposed in this article
are more reasonable and credible.

6.2.2 Comparison with A-PFLWAA operator

In this section, we explore the influence of A-PFLWAA
operator on the ranking results of DM schemes. Exploiting
A-PFLWAA operator in Liu and Zhang (2018) to calculate
the above example as a comparison. The comparison aspects
including the score function and ranking results. The com-
parison results are shown in Table 5 and Fig. 2.

It can be seen that the operator aggregation method for
calculating the ranking of the scheme is different from the
PFLNWGA operator Liu and Zhang (2018). This is because
the method proposed in this paper transforms the subscript
calculation of LTs into the corresponding semantic calcula-
tion, which can easily give a reasonable explanation to the
meaning of the operation rules and avoid erroneous results.
Liu and Zhang (2018) exploited Archimedean t-norm and
s-norm defined PFLV general operating rules still have limi-
tations, because the calculation of the language term in PFLS
is directly based on the subscript of LTs, this method cannot
reasonable explanation subscript calculation.

6.2.3 Influence of parameter Q on the decision-making
results

In this section, we take diverse values to Q in the PFLWMM
and PFLWDMM operators to obtain the score function and
ranking order. Exploiting PFLNWAA, PFLNWGA and A-
PFLWAA operator operators in Ashraf et al. (2018); Liu
and Zhang (2018) to calculate the above example as a com-
parison. The comparison aspects including the semantics of
linguistic terms, the relationship of multiple attributes and
information aggregation. The comparison results are shown
in Table 6 and Fig. 3.

From Table 6 and Fig. 3, we can easily conclude that the
score function values varies with the parameter Q changes.
When setting different Q except Q = (1, 0, 0, 0), the respec-
tive overall ranking order of PFLWMM and PFLWDMM
operator are the same, namely, the order of PFLWMM is
A4 � A2 � A1 � A3, and the order of PFLWDMM is
A4 � A3 � A2 � A1. It is sufficient to verity the effective-
ness of proposed methods. What’s more, it is obvious to see
that the score function values of each alternative decrease
with increasing of the interrelationship of the input attribute
in PFLWMM operator, while the score function values of
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Table 5 Ranking results by different methods

Aggregation operator Score function E(hi ) Ranking results

PFLNW AA [22] E(A1) = 1.939, E(A2) = 2.140 E(A3) = 2.046, E(A4) = 2.995 A4 � A2 � A3 � A1

PFLNWGA [22] E(A1) = 3.065, E(A2) = 3.163 E(A3) = 2.874, E(A4) = 3.660 A4 � A2 � A1 � A3

A − PFLW AA [23] E(A1) = 1.913, E(A2) = 2.263 E(A3) = 1.731, E(A4) = 3.271
(suppose g(x) = − log x)

A4 � A2 � A1 � A3

PFLWMM E(A1) = 1.809, E(A2) = 1.985 E(A3) = 1.354, E(A4) = 2.310
(suppose P = (0.2, 0.3, 0.2, 0.3)

A4 � A2 � A1 � A3

PFLWDMM E(A1) = 2.074, E(A2) = 2.452 E(A3) = 2.486, E(A4) = 3.069
(suppose P = (0.2, 0.3, 0.2, 0.3)

A4 � A3 � A2 � A1

Fig. 2 Ranking results by
different methods

Table 6 Ranking results by
utilizing different values of Q in
the proposed operators

Parameter vector Q Operator Score values of alternatives Ranking results
A1 A2 A3 A4

Q = (1,0,0,0) PFLWMM 2.016 2.304 2.429 3.139 A4 � A3 � A2 � A1

PFLWDMM 1.757 1.901 1.294 2.438 A4 � A2 � A1 � A3

Q = (1,1,0,0) PFLWMM 1.898 2.142 1.777 2.682 A4 � A2 � A1 � A3

PFLWDMM 2.090 2.149 2.151 2.694 A4 � A3 � A2 � A1

Q = (1,1,1,0) PFLWMM 1.845 2.053 1.487 2.417 A4 � A2 � A1 � A3

PFLWDMM 2.023 2.308 2.367 2.884 A4 � A3 � A2 � A1

Q = (1,1,1,1) PFLWMM 1.804 1.980 1.341 2.299 A4 � A2 � A1 � A3

PFLWDMM 2.076 2.442 2.502 3.071 A4 � A3 � A2 � A1

Q = (2,2,2,2) PFLWMM 1.804 1.980 1.342 2.299 A4 � A2 � A1 � A3

PFLWDMM 2.076 2.461 2.502 3.072 A4 � A3 � A2 � A1

Q = (2,0,0,0) PFLWMM 2.103 2.394 2.727 3.300 A4 � A2 � A1 � A3

PFLWDMM 1.652 1.727 1.107 2.301 A4 � A3 � A2 � A1

Q = (3,0,0,0) PFLWMM 2.188 2.474 2.980 3.428 A4 � A2 � A1 � A3

PFLWDMM 1.551 1.631 0.976 2.195 A4 � A3 � A2 � A1

Table 7 The comparisons of different methods

Methods Whether the semantics of
linguistic terms are
considered

Whether the relationship of
multiple attributes is capture

Whether make information
aggregation more flexible
by a parameter or function

PFLNWAA No No No

PFLNWGA No No No

A-PFLWAA No No Yes

The proposed methods Yes Yes Yes

123



14754 S. Xian et al.

Fig. 3 Ranking results by different methods (a) PFLWMM. (b) PFLWDMM

each alternative increase with increasing of the interrelation-
ship of the input attribute in PFLWDMM operator. Hence,
the parameter Q can be regarded as the DM’s risk prefer-
ence, and DM can choose appropriate Q based on actual
conditions.

6.2.4 Further discussion

To more intuition show the superiority and the typical char-
acteristics of our proposed methods compared with exiting
other methods, we conduct a comparative analysis whose
features are listed in Table 7.

From Table 7, it is evident that the approaches in Ashraf
et al. (2018) fuse picture fuzzy linguistic information through
commonly used weighted averaging operator, and the oper-
ation process is relatively simple. However, there are some
limitations, including the computation resultsmay be beyond
the predefined LTSs, and not enough flexibility to face actual
situations, etc. In addition, although the methods by Liu and
Zhang (2018) can face different conditions by choose diverse
function g(x), the interrelationship of input attribute is not
considered, because it assumes that all input attributes are
independent. Our proposed methods capture the interrela-
tionship of among attributes, but also shows good flexibility
and practically by adjusting the values of argument Q,
namely, the methods we proposed can effectively make up
for the shortcomings of above mention methods. Therefore,
the proposed methods are more reasonable and flexible than
some exiting methods to solve the Picture fuzzy linguistic
problems.

7 Conclusions

Picture fuzzy language set is an effective tool to express
the complex cognitive information in MADM problems.
However, the current research results still have many lim-
itations for the MADA problem of the fuzzy set analysis of

exploiting PFLS. Specifically, the operational rules and com-
parison rules of PFLS are not yet complete. The language
term part may exceed the upper limit of the redefined S,
so it is impossible to exploit PFLS to compare and analyze
MADM problems with such situations. Moreover, most of
the attributes in the MADM problems have correlations, and
the current PFLSmethods treat the attributes as independent,
which may be caused irrational outputs. Committed to solv-
ing the above problems, in this article, some PFLVs operating
rules are re-improved by introducing LSFs, and then a novel
score function and accuracy function are proposed. Then,
in order to reasonably deal with the relationship between
the attributes, MM and DMM operators are employed to
process PFLV, and two aggregation operators are proposed
based on the new operation rules, including the Picture Fuzzy
Language Weighted MM (PFLWMM) operator and Picture
fuzzy language weighted DMM (PFLWDMM) operator. The
different properties of those recommended operators are
studied. In order to verify the superiority of the proposed
operator, two MADM methods based on PFLWDMM and
PFLWDMM operators were developed to solve the problem
of selecting the design scheme of shared bicycle “Mobike”.
The results show that the scheme recommendation based on
the proposed method is significantly different from other
schemes, which shows the effectiveness of the proposed
method.

In the future, we will further discuss the new method
of considering the MADM problem under the condition of
attribute correlation in PFLV, such as from the perspective
of fuzzy soft sets and fuzzy soft graphs Akram and Luq-
man (2020); Adeel et al. (2020). The current method uses
MM and DMM operators to process the correlation, and its
calculation is slightly more complicated. In addition, it is
of great significance to further study the related theories of
PFLV and explore their applications in the decision-making
of data-driven companies.
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