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Abstract 

One of the most important and effective works of water resource planning and 

management is determining the specific, applicable, regulated operating policies 

of the Zayandehroud dam reservoir, as a case study, in which it should be user-

friendly and straightforward for the operator. For this purpose, different methods 

have been proposed in which each of them has its limitations. Due to the unique 

capabilities of the genetic programming (GP) model, here, this method is used to 

determine the operating rule curves and policies of the dam reservoir. For this 

purpose, here, two cases are proposed in which, in the first case, each month is 

individually simulated and modeled. However, in the second case, all months are 

simulated simultaneously. A second case is proposed here to determine simple 

and more applicable operation rule curves. In addition, two approaches are 
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suggested for each case in which in the first approach, the influential input 

variables are selected by presenting the hybrid method. In the proposed hybrid 

method, the artificial neural network (ANN) model is equipped with non 

dominated sorting genetic (NSGA-II) algorithm leading to a hybrid method 

named the ANN-NSGA-II method. However, in the second approach, the 

influential input variables are selected automatically using the GP method. Here, 

the hybrid method is proposed and used to overcome the limitations of existing 

usual method. In other words, it is proposed to reduce the number of influential 

input variables of data-driven methods and select the effective ones. The obtained 

results of all proposed cases and approaches are presented and compared with the 

standard operation policy (SOP) method, stochastic dynamic programming (SDP), 

ANN model and, NLP method. Comparison of the results shows the acceptable 

performance of the proposed cases and approaches. In other words, the best- 

obtained values of (stability index) SI index and water deficit (objective function 

value) are 49.3% and 32, respectively. 

Keywords: Operation rule curve; Stochastic water inflow values; Genetic 

programming; Stochastic dynamic programming; Artificial neural network. 

1- Introduction 

Nowadays, the water resources limitation becomes a sever problem in many areas 

which is restricted the area’s developments. Therefore, water resource 

management is an essential challenge for these areas. Generally, water storage of 

dam reservoirs is one the most critical water resource. However, determining the 

optimal operation policies is a complex decision process in which the optimal 
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amount of water release from a reservoir is determined based on the reservoir 

storage capacity, water demand, and the inflow into the reservoir. Generally, to 

optimally operate the water stored in the dams’ reservoirs, it is necessary to 

determine the reservoir operation policies presenting as rule curves or tables 

leading to determine the optimal water release or the storage volume values of a 

reservoir at different operational time period. 

Due to this fact, these days, many scientific and applicable types of research have 

been done in the research field of operation rule curve and policies 

determinations. For example, Karamouz and Houk (1982) used the dynamic 

programming (DP) method, regression analysis, and a simulation model to obtain 

operating rules and policies of the dam reservoir considering 48 states. In this 

study, the annual operating rules were determined considering 12 states and, the 

monthly operating rules were determined considering 36 states. The results 

showed that this proposed method was a very effective and simple method for 

reservoir rule curve determination. Karamouz and Houk (1987) compared the 

performance of two methods, means the DP and stochastic dynamic programming 

(SDP), to determine the reservoir operation rule curves. Comparison of the results 

showed that the performance of the DP method was better for determining the 

operation rules of large-scale reservoir and the performance of the SDP method 

was better for small cases. Rossi et al. (1999) used the discrete differential 

dynamic programming (DDDP) method with the objective function of minimizing 

the deficiency of water releases and demand to optimize the water release values 

from the reservoir. In addition, multiple linear regression method and artificial 
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neural network (ANN) model were also used to determine the reservoir operation 

policies. Here, in these methods, water storage values at the start of the operation 

time period, water inflow and, water releases values were considered as state 

variables. The results showed that using the ANN method was improved the 

efficiency of the method in comparison with the regression method. Mousavi et al. 

(2004) proposed a new method named fuzzy stochastic dynamic programming 

(FSDP) by combining the SDP and fuzzy logic methods. In this proposed method, 

the uncertainty of the hydrological variables and the inaccuracy of the results of 

the discrete variables were investigated. In this method, the transition probability 

matrix was obtained using the fuzzy logic and the fuzzy Markov chain. The 

results of the proposed hybrid FSDP method were compared here with the results 

of the SDP method, in which the results of the FSDP method were better than the 

SDP method. Chang et al. (2005) used the genetic algorithm (GA) and fuzzy logic 

method to solve this problem. In other words, they used the adaptive network- 

based fuzzy inference system (ANFIS) model to determine the operation rule 

curves of the reservoir. The results showed that using artificial intelligence was 

improved the system performance and, the ANFIS model was a capable model for 

the learning process of different data and information resources. Kerachian and 

Karamuoz (2006) used water quality simulation models and the deterministic and 

stochastic models to determine the reservoir operation rule curves and policies. In 

this research, Nash’s bargaining theory was used to resolve the stakeholder’s 

conflicts. The simulation model was used here to obtain the thermal stratification 

of the reservoir and the quality of the water release from the reservoir. In addition, 



 5 

the varying length genetic algorithm (VLGA) was used in this study, in which the 

computational complexity is less than the SDP model. The results of this study 

showed that the proposed model was a capable model to reduce the salinity of the 

water release from the reservoir and water storage in the reservoir. Paredes and 

Lund (2006) used a linear programming (LP) method to determine the reservoir 

operation rule curves considering the water quality parameters during drought and 

wet seasons. Chang and Chang (2009) used the non dominated sorting genetic 

algorithm (NSGA-II) algorithm to determine the operation rule curves of the 

multi-objective multi-reservoir system. The results of this research indicated the 

capabilities of this algorithm for determining the operation rule curves of the 

multi-objective multi-reservoir system. Karamouz et al. (2009) proposed a new 

quantitative-qualitative model for the stochastic operation of the dam reservoir 

considering the uncertainty of water inflow into the reservoir. In this study, the 

operation rule curves were determined and, the water allocation problem was 

solved to increase the reliability of water quality at the downstream and upstream 

of the reservoir. For this purpose, a method, named the bayesian stochastic genetic 

algorithm (BSGA) model, was used to determine the reservoir operation rule 

curve considering the uncertainties of water inflow values. The obtained results 

showed the capability of this proposed method. Malekmohammadi et al. (2009) 

used a model named, varying chromosome length genetic algorithm (VLGA-II) 

and bayesian method, to determine the reservoir operation rule curves. The 

proposed approach was used to minimize the long-term water scarcity damages 

and short-term flood damage of multi-reservoir systems. Here, the obtained 
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operation rule curves using the bayesian network were compared with the fuzzy 

linear regression model. Comparison of the results showed that the loss values 

were reduced by using the bayesian theory. In addition, the obtained results of this 

method were more accurate than other methods. Jothiprakash et al. (2011) used 

GA and SDP methods to determine the operation rule curves of a multi-reservoir 

system. Here, minimizing the deviation of water demand was considered as 

objective function. Comparison of the results showed that the performance of the 

GA was better than the SDP method. In addition, the water reseals values 

obtained with the SDP model were not able to supply the water demand for most 

months. Castelletti et al. (2013) used a reinforcement learning algorithm, and a 

method called fitted Q iteration (FQI) to determine the operation rule curves of a 

multi-objective reservoir. The results showed that using this approach was 

increased the water quality downstream and in the dam reservoir. In addition, the 

water allocated for agriculture purposes was extremely reduced. Fu et al. (2013) 

used a method called factorial-based fuzzy stochastic dynamic programming to 

solve the reservoir operation optimization problem. Here, the proposed algorithm 

was incorporated stochastic, fuzzy processes and their relationship. This algorithm 

was a combination of the SDP method, fuzzy Markov chain and, factorial analysis 

techniques. This model was an applicable model to determine the optimal water 

release policies from reservoir at uncertain conditions. Boluri-Yazdeli et al. 

(2014) used the standard operating policy (SOP), SDP, linear decision rule (LDR) 

and, non-linear decision rule (NLDR) methods to determine the operation rule 

curves of the dam reservoir. In this study, a useful multi-criteria decision-making 
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method which means the ELECTRE-I method, was used to determine the 

operation rule curve. To evaluate the used methods, the reliability and residency 

indexes and the system efficiency were calculated. This study showed that the 

residency of LDR and NLDR methods were the lowest values and reliability 

values were highest and, overall, using the NLDR method led to better results. 

Taghian et al. (2014) used GA and LP methods to determine the operation rule 

curves of multi-objective multi-reservoir system for water resources restriction 

conditions. Here, the objective function of the LP model was to minimize the cost 

function. The results showed that the search space size of the GA was reduced by 

using the LP model. In addition, this model was a capable model to model the 

droughts periods over several years. Akbari Alashti et al. (2014) used the non-

linear programming (NLP) method, GA, and fixed-length gene genetic 

programming (FLGGP) for the online operation of the three-reservoir system. 

Comparison of the results showed the better performance of the FLGGP method 

for determining the reservoir operation rule curves. Li et al. (2014) used the 

genetic programming (GP) method to determine the operation rule curve of a 

multi-reservoir system. For this purpose, at first, the optimal operation policies 

were determined using the DP method. Comparison of the results showed that the 

GP results were better than the ANN results, and energy production and system 

reliability were increased by using the GP method. Ashofteh et al. (2015) used GP 

to determine the reservoir operation rule curve for normal and climate change 

conditions. Here, water inflow, reservoir storage volume, and downstream water 

demand values were considered as GP model input variables. In addition, 
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maximization of system reliability and minimization of system vulnerability were 

considered as objective functions of the problem. The results showed that the GP 

results were improved 29% up to 32% by considering climate change conditions. 

Zhang et al. (2015) used the bayesian model averaging (BMA) to determine the 

operation rule curves of the dam reservoir considering uncertainties of the 

problem. The proposed model consisted of three steps as follow: 1) deterministic 

optimization using the DDP2 and 2) using the least square support vector machine 

(LS-SVM), two dimensional surface model  (SURF) and piecewise linear 

regression (PL-REG) models to determine the operation rule curve, and, 3) 

combining the three obtained operation rule curves. The results showed that the 

water release values were increased by using the DDP2 method in comparison 

with the results of the PL-REG, LS-SVM, and the BMA models. Spiliotis et al. 

(2016) used the particle swarm optimization (PSO) algorithm to determine the 

hedging rule of a multi-reservoir system. Two models were proposed here. The 

first model consisted of a hedging rule curve that only included drought and no 

drought conditions, and a specific bound between the two conditions was also 

considered. However, in the second model, two hedging rule curves were defined, 

including no drought, alert, and emergency conditions. The starting point for 

solving the problem was risk analysis to determine the boundary that it was 

limited the water release from the reservoir. The proposed mechanism was used to 

reduce the problem dimension. Sharma et al. (2016) used the SDP method to 

determine the optimal operation policies for dam reservoirs. In this research, the 

water storage volumes of the reservoir at the start of the operation time and the 
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water inflow into the reservoir were considered as the state variables. In addition, 

minimizing the difference between the water storage volumes and the water 

release values and their expected values were considered as the objective function 

of the problem. In addition, the effect of state variable discretization for 

determining the optimal reservoir operation policies was also investigated. The 

results showed that if the unequal discretization intervals were considered for 

water storage volume variables, the objective function values were improved 8% 

to 58% compared to similar discretization intervals method. Finally, the water 

storage volumes at the end of each operation time were determined for different 

conditions. Haguma et al. (2017) used four methods called counting, ordinary 

least-squares regression, robust linear model regression, and multivariate 

conditional distribution to determine the transition probability matrix and finally 

to study the effect on the short-term operation of the multi-reservoir system. In 

this research, two approaches of the equal interval and the equal number of 

discretization were used to discretize the variables. Comparison of the results 

showed that the discretization approaches had the highest effect on the results of 

the regression and counting methods, and the least effect on the multivariate 

conditional distribution method. Saadat and Asghari (2017) proposed a new 

method named reliability improved stochastic dynamic programming (RISDP) 

method to determine the reservoir operation rule curves. In proposed method, the 

infeasible solution was not created compared with the usual SDP method. Here, 

the concept of reliability was used to increase the water release values from the 

reservoir to satisfy water demand. The results showed that using this algorithm 
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was improved the results and avoided creating an infeasible solutions. Lei et al. 

(2017) proposed a new and more accurate method for determining the transition 

probability matrix for reservoir operation policies determination using the SDP 

method. In this study, the Copula function was used to determine the transition 

probability matrix, and the function value was determined at the last operation 

period using an iterative method. This method was studied for a dam reservoir in 

China, and its results were compared with the conventional and usual SDP 

method. Saadat and Asghari (2018) determined the optimal water storage volumes 

of the reservoir using SDP and a new method named cooperating SDP and non-

linear programming (CSDP). The acceptable results were obtained for this model 

by using a smaller number of state variables. The results showed that the 

reliability of the CSDP model was better than the SDP model. In addition, the 

distance-based interpolation formula (DBIF) was used to evaluate the efficiency 

of different methods proposed for determining the reservoir operation policies.  

The results showed that the performance of the CSDP model was better than the 

multiple linear regression (MLR) model. Ashofteh et al. (2019) used bi-objective 

genetic programming (BO-GP) algorithm to optimize the reservoir operation rules 

and policies. Here, the BO-GP algorithm was able to determine the optimal 

reservoir operation policies by calculating the Pareto front. The results showed the 

acceptable performance of the BO-GP algorithm to solve the multi-objective 

reservoir operation optimization problem. In addition, the system vulnerability 

and reliability were 16% up to 41% and 46% up to 78%, respectively. 
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Investigating the mentioned researches indicates that proposing new methods or 

modifying the existing techniques to determine the reservoir operation rule curves 

and policies is one of the most significant and attractive fields for water resources 

researchers and operators. Due to this fact, the applicable and straightforward 

form of operation rule curves is requested by the operator, planner, and manager 

for sustainable water resource management. Due to the unique characteristics of 

the GP method, therefore, the operation rule curves of the Zayandehroud dam 

reservoir are determined here using the GP method by proposing two cases.  In 

the first case, the operation rule curve of each month is obtained individually. 

However, in the second case, the operation rule curves of all months are obtained 

simultaneously. These proposed cases are one of the innovations of this research, 

leading to more applicable operation rule curves. In addition, here, two different 

approaches are also presented for each case. In the first approach, the influential 

input variables are selected by proposing the hybrid ANN-NSGA-II method, 

combining the ANN model with NSGA-II (non dominated sorting genetic) 

algorithm. However, in the second approach, the influential input variables are 

selected automatically using the GP method.  Reviewing the researches shows that 

some hydrological variables such as water discharge and various conditions of the 

reservoir such as water storage volume and water demand at the downstream are 

influential and essential variables and factors which are affected the reservoir 

operation policies for water supply. Therefore, here, the water inflow, 

precipitation, demand, and storage volume values with different time lags (1 to 12 

months) are initially considered here as input variables. In addition, another input 
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variable means time index T related to each operation time, is also considered to 

improve the accuracy of obtained results. It should be noted that one of the most 

crucial challenges of data-driven methods such as GP is selecting the useful and 

practical input data set. Therefore, different techniques such as experimental and 

trial and error methods have been proposed to solve this problem. Each of these 

methods has its limitations and disadvantages. Therefore, here, the hybrid ANN-

NSGA-II method is proposed and used to reduce the number of influential input 

variables and select the useful ones. This fact is another innovation of this 

research, which is fully presented in the section “proposed method”. As a case 

study, the operation policies of the Zayandehroud dam reservoir are predicted 

using proposed methods and compared with the obtained results of other methods. 

For comparison propose, all obtained results are compared here with the SOP 

(standard operation policy) method, SDP, ANN model, and NLP methods using 

different indexes such as SI (sustainability index). Comparison of the results 

shows the acceptable performance of the proposed cases and approaches 

highlighted in the section “results and discussion”. 

Therefore, the structure of the present research is as follows. By reviewing the 

literature and highlighted the research innovations in the introduction section, in 

the second section, a brief description of the used methods is presented. The data 

and information of the study area (Zayandehroud dam reservoir) are shown in the 

third section. In the fourth section, the proposed methods are presented. The 

results of the proposed methods are presented and compared with other methods 
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such as ANN in the fifth section. Finally, in the sixth section, some concluding 

remarks are given. 

2- Basic concept of the used method  

In this section, a brief description of the used method is presented. Here, the GP 

method is used to determine the operation rule curves of the Zayandehroud dam 

reservoir, and therefore, it is briefly described. By combining the ANN model and 

NSGA-II algorithm, a method is proposed for selecting influential input variable 

called the ANN-NSGA-II method. Therefore, in this section, the ANN model and 

NSGA-II algorithm are briefly described. In addition, the operation rule curves of 

the Zayandehroud dam reservoir are determined using SOP, SDP, ANN, and NLP 

methods for comparison purposes, and therefore, these methods are also briefly 

described. 

It is worth noting that these methods are usual traditional methods which are fully 

described in many types of research. Therefore, details of these methods are not 

fully presented in this paper. In this section, brief descriptions of these methods 

are only given. 

2-1- Genetic programming (GP) 

In general, based on the concept of the genetic algorithm (GA), the GP method 

was proposed, which is inspired using the naturally evolutionary rule. Generally, 

finding a direct relationship between physical parameters is a unique future of the 

GP method in comparison with other data-driven method leading to an applicable 

approach (Shiri and Kishi, 2011). Furthermore, influential input variables can be 
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easily selected using this method (Naseri et al., 2011). The basic steps of using the 

GP method to solve problems are presented as follows: 

1) The initial population is selected randomly. 

2) Best chromosomes are selected and repeated for next generation. The 

roulette-wheel, tournament, and ranking methods are more common 

selecting methods. 

3) To start the evolution process of generations, better chromosomes are 

used, considering crossover and mutations operators with predefined 

probabilities. It should be noted that a function and terminal can be 

replaced with another function and terminal, respectively, in this process. 

Generally, by using the crossover operator, some parts of the chromosome 

are replaced with the same parts of the other chromosomes. Furthermore, 

using the mutation operator, a function or number can be replaced with 

another function or number, respectively. 

4)  Among finding solution processes, better chromosomes are replaced with 

worst chromosomes, and best chromosomes remain unchanged. 

5) These steps are continued until the best solution is obtained (Johari et al., 

2006). 

It is worth noting that the terminal consisting of random numbers and variables, 

the mathematical functions, and appropriate fitness function should be set before 

the GP process is started. 

The general idea of the GP is to use parse trees as chromosomes which can be 

capture expressions in a given formal syntax. Depending on the problem, and the 
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users' perceptions of what the solutions should look like, this can be the syntax of 

arithmetic expressions, formulas in first-order predicate logic, or code written in a 

programming language based on the parameters set. 

Due to the unique characteristics of the GP, this model was highly used for a 

variety of machine learning tasks in different fields. A review of the GP model 

and its applications in the field of civil engineering was presented by Zhang et al. 

(20201) over the last decade. In addition, some modified forms of GA were also 

proposed in different fields of engineering problems to overcome the limitations, 

such as researches of Wu et al. (2011), Pawlak et al. (2015), and Bourisli et al. 

(2018). 

2-2- Non dominated sorting genetic (NSGA-II) algorithm 

Based on the Darwinian evolution theory and the natural evolution process, a new 

algorithm named GA was proposed. In this theory, only the survivals of creatures 

that are more consistent with their surroundings and more graceful remain. In this 

algorithm, each decision variables values represent by a gene, and the combining 

of genes leads to a chromosome. Generally, the GA process to solve an 

optimization problem can be summarized as follow: 

1- The initial population of chromosomes is selected. 

2- The fitness function values of each chromosome are determined. 

3- Chromosomes with better fitness function values are selected for the next 

generations. 

4- The crossover and mutation operators for subsequent population are 

applied. 

https://link.springer.com/article/10.1007/s10462-020-09894-7#auth-Qianyun-Zhang
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5- The fitness function values of the new population are determined. 

6- Steps 2 to 5 are continued until the stopping criteria are reached. 

Generally, using the concept of the GA, the NSGA-II algorithm was proposed. In 

this algorithm, based on the number of dominated solutions in comparison with 

other existing solutions, a rank has been assigned to each solution. In other words, 

a rank one has been assigned to the solutions that have not been dominated, 

representing the Pareto front rank one. In continues, the Pareto front rank one 

solutions are removed from search space, and remained solutions are compared 

with each other leading to Pareto front rank two. In other words, rank of two has 

been assigned to the solutions that have not been dominated. Finally, this process 

is continued until all solutions are classified into different Pareto front with other 

ranks.  

The crowding distance concept is generally used by the NSGA-II algorithm to 

decide which points of a particular Pareto front will be removed or remained, 

presenting by equations (1), (2), and (3). Therefore, a D value is calculated, and 

the points with smaller D values are eliminated for all points of the particular 

front. The more considerable D value represents that, removing these points might 

decrease the greater variety of the search space. 
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Where, i+1 and i-1 = the periphery points of the point i for the Pareto front; 1

id  

and 2

id = the domain of the point i for the whole regions of 1f  and 2f  (the 

objective functions of the problem), respectively; minf  = minimum values of the 

objective function; maxf = maximum values of the objective function. 

Generally, the NSGA-II algorithm process to solve a multi-objective optimization 

problem can be summarized as follow: 

1- The initial generation, tP , is generated in which it contains N members. 

2- The objective function values of each chromosome are calculated. 

3- The parent generation is sorted, and each solution is ranked based on the 

none dominant sorting approach. 

4- By using crossover and mutation operators for the initial generation, the 

new generation, tQ , is produced. 

5-  By combining tP  and tQ  generations, the new generation, tR , is produced 

in which it contains 2N number. 

6- Sorting the new generation, tR , is done based on the non-stack 

classification method, and therefore, Pareto front with a different rank is 

produced. 

7- Based on the crowding distance concept, N members are selected to create 

1tP  generation from tR  generation in which it has 2N members. 

8- The created generation, 1tP , is sorted and the crossover and mutation 

operators are used to produce the new generation, 1tQ . 



 18 

9- This process is repeated until the best solution is obtained (Sepahvand et 

al., 2019) [30]. 

2-3- Artificial neural network (ANN) model 

Based on the human brain neural network, an intelligent computational system 

was proposed, which called the ANN model. This model comprises of a 

combination of information processing units called neurons in which one or more 

inputs are received, and the outputs are determined using the predetermined non-

linear function (Raman and Sunilkumar, 1995). Nowadays, the ANN model 

solves many problems due to unique features (Ferench et al., 1992). 

To create the structure of an ANN model, the number of neurons, input, hidden 

and output layers, and weights should be defined. Different methods are proposed 

and used to determine the proper values of these parameters. Generally, these 

parameters can be determined using experimental and try and error methods to 

avoid under and, or over fitting problems. In addition, many different ANN 

models have been proposed by combining these parameters. One of the most 

famous and straightforward ANN models is feed-forward neural network (FFNN) 

model, which is used to predict time series variables in different fields such as 

water engineering using non-linear functions for hidden layers. Nowadays, 

various forms of ANN models have also been proposed for this purpose (Nourani 

et al., 2019; Sharghi et al., 2018). Furthermore, various methods have been 

generally proposed to reduce the error of the ANN model. Back propagation 

network (BPN) is one of the most usual methods in which it commonly used the 

steepest gradient method to improve the weight of connected neurons. 
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Furthermore, the BPN network is a capable model for enhancing the interaction of 

processor elements by adding hidden layers (Mishra and Desai, 2006). 

Another essential parameter of the ANN model is the transition function in which 

different function such as and linear, non-linear, sigmoid, sigmoid tangent, and so 

on have been proposed and used for each layer of the ANN model. The proper 

function can be defined using experimental and trial and error methods. Based on 

the previous researches, here, the most usual and simple form of the ANN means 

feed-forward back propagation network is used for prediction process using the 

sigmoid function (
x

e
1

1
). It is worth noting that all data should be normalized to 

standardize different values of input and output variables using equation (4). 

minmax

min

XX

XX
X n 


                                                                                       (4) 

Where, X = original data; nX  = normalized data; minX  = minimum value of data; 

and maxX  = maximum value of data. 

2-4- Stochastic dynamic programming (SDP) method 

SDP method is the most commonly usual method in which it is completely 

presented in many types of research, and therefore, a brief description of this 

method is presented in this section. SDP is a modified form of the dynamic 

programming (DP) method which is used to solve the stochastic problem. In this 

method, the state ((sn)) and decision (dn) variables should be defined and 

discretized. This method is used to solve serial nature problems such as reservoir 

operation optimization problem. For this purpose, the problem can be divided into 

N sub-problem leading to the N stage, and each stage, n (n=1,….,N), can be 
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solved separately due to Bellman principles. For the reservoir operation 

optimization problem, each operation period (t) can be considered as a stage. In 

addition, the state variables are the water storage values at the start of operation 

period (s(t)). Furthermore, the water storage values at the end of operation period 

(s(t+1)) or water releases for the reservoir at operation period t (R(t)) can be 

considered as decision variables. Due to the stochastic nature of water inflow into 

the dam reservoir, in the SDP method, the transition probability matrix should be 

computed by discretizing the water inflow bounds. By defining the recurrence 

relationship (function), r, the best decision values for each state variable of each 

stage can be computed, and this process is continued for the next state until all N 

stages are covered. This relationship can be defined based on the objective 

function of the problem, previous decision, and transition probability matrix 

values. It is worth noting that the state variable of next stage (n+1) can be 

determined using the transition function (st+1=t(st,dt)). Figure 1 shows the SDP 

process for solving the optimization problem schematically. 

It should be noted that the primary and usual form of the SDP method has some 

limitations and problems. Therefore, here, a method is proposed and used for the 

SDP method to solve a fundamental problem of this method. In other words, the 

feasible operation policies can not be determined for some cases using the SDP 

method. This problem is solved by considering the maximum or minimum 

allowable water storage volume values and recomputing the water release values 

when the dam reservoir operation problem is simulated.  

2-5- Standard operation policy (SOP) method 
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The SOP method is one of the usual traditional methods for determining the 

operation policies of the dam reservoir. In this method, the water releases values 

from the reservoir proportionally related to the water inflow availability. In other 

words, it is assumed both past and future conditions, and therefore the water 

inflows will be available at any time. In this method, if the dam reservoir is 

empty, the water release value is equal to zero. In addition, if the water storage 

values at the operation period are greater than the water demand, the water reseal 

values from the reservoir are similar to the water demand values and the overflow 

values stored in the reservoir. Furthermore, when the reservoir water storage is not 

fully capable of storing, some percentage of the water demand is not satisfied 

(Emadi et al., 2016). Therefore, the water release values and the water storage 

volumes are calculated based on the following equations: 
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Where, )(tR  = water release from the reservoir at operation period t; )(tS  = water 

storage volume at the start of operation period t; )(tD  = water demand at the 

operation period t; )(tI  = water inflow into the reservoir at the operation period t; 

and maxS  = maximum value of water storage volume. 

3- Case study 

To investigate and evaluate the performance of the different proposed methods for 

reservoir rule curve determinations, here, the Zayandehroud dam reservoir is 

considered as a case study. Generally, the Zayandehroud catchment’s area is 
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located between latitudes from 5131   to 5433   north and longitudes 

from 2050   to 5453  east. The annual average value of rainfall is 140 

millimeter (mm) in which it is varied from at least 50 millimeters (mm) in the east 

up to a maximum of 1500 mm in the west (Babaei et al., 2019). This catchments 

area is 1.6% of the total area of Iran, with a value of 26,972 Km2. Figure 2 shows 

the location of several hydrometric stations of the Zayandehroud catchment 

(Safavi et al., 2015). The north and south limitations of this area are the Salt Lake 

catchment and Abarqoo Desert basin, respectively. In addition, the east and west 

limitations of this area are Dagh-Sorkh Playa and Siyah-Kooh mountains and the 

Karun River basin, respectively (Babaei et al., 2019). 

Zayandehroud dam catchment area is about 4120 Km2 in which the area of the 

main branch of the Zayandehroud catchment located at the Ghaleh-Shahrokh 

station is 1500 Km2. In addition, the area of the Pladsjan River catchment located 

at the Skandari station is 1,600 Km2, and the area of the Samandang River 

catchment located at the Mendarjan station is 227 km2. Finally, the area of 

catchment located after underground hydrometric stations or directly drained into 

the dam's lake is 793 km2 (Safavi et al., 2015). 

In this research, the observation data from 1976 to 2013 have been used 

containing the data of Ghaleh-Shahrokh, Skandari, and Mendarjan stations and the 

natural water inflow (without considering the flow of transfer tunnels) and 

precipitation. Here, the average annual total precipitation is about 140 mm in 

which it is varied from 1500 mm in the west to 50 mm in the east (Saadat and 

Asghari, 2017).  
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It should be noted that the maximum and minimum water storage volumes of the 

reservoir are 1447.4 cubic per meter (MCM) and 115.2 MCM, respectively. In 

addition, the maximum and minimum water releases values from the reservoir are 

500 and zero MCM, respectively. The observed water inflow values into the 

Zayandehroud dam reservoir are presented in figure 3. 

4- Proposed method 

In this research, different methods are proposed to determine the reservoir 

operation policies of the Zayandehroud dam reservoir for water supply. For this 

purpose, at first, the influential input variables and essential parameters should be 

defined for modeling. Reviewing the researches shows that some hydrological 

variables such as water discharge and various conditions of the reservoir such as 

water storage volume and water demand at the downstream are influential and 

essential variables and factors which are affected the reservoir operation policies 

for water supply. Therefore, for data-driven models, the water inflow, 

precipitation, demand, and storage volume values with different time lags (1 to 12 

months) are initially considered here as input data set. In addition, another input 

data set means time index T, is also considered to improve the accuracy of the 

obtained results. This parameter is related to each time of reservoir operation 

policy. In addition, the water storage volume at the end of the operation period of 

the target month is considered as the output data set.  

In this research, at first, different optimization methods such as SDP and NLP 

methods are used to determine the optimal operation rule curves of the 

Zayandehroud dam reservoir. Here, the best-obtained results are selected by 
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evaluating these methods, and finally, these results are used to determine reservoir 

operation rule curves using GP and ANN methods. It should be noted that the 

formula is the main output results of the GP method which can be used as 

reservoir operation policies. Therefore, in the GP method, a relationship is 

generally superior to select as the best formula in which it involves all or more 

parameters. In addition, to select the best formula, the RMSE and R2 values 

should also be used. Therefore, for the proposed GP model, the formula with the 

lowest error value and including the maximum number of independent parameters 

has been selected.  In this paper, the equations of section five are the final output 

of the GP method using proposed cases in which they can be used as reservoir 

operation rule curves. 

In this research, two ceases are proposed for each GP and ANN method. In the 

first case, each month is modeled separately, and in the second case, all months 

are modeled simultaneously. Selecting the influential input data set for data-

driven methods is one of the most essential challenges of these methods in which 

different methods have been proposed to solve it. Experimental and try and error 

methods are the most usual methods used for this purpose. However, here, two 

approaches are proposed for each case to select the influential input data set. In 

the first proposed case, the influential input variables are selected by proposing 

the hybrid ANN-NSGA-II method. However, in the second one, the influential 

input variables of the GP methods are automatically selected the using specific 

future of this method. Figure 4 schematically shows the different defined 

processes of this research. 
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Generally, considering each of the input variables separately and using the try and 

error method to investigate its effect on the output results is a usual and formal 

method to select input data sets for data-driven models. However, a hybrid ANN-

NSGA-II method is proposed here for this purpose which is fully described as 

follows. In the proposed method, the independent physical variables 1X   to nX  

are assumed and used to determine the dependent variables as output results to 

select the characteristics and features of variables. The goal of this process is to 

define a subset of the feature. This feature should be defined as small as possible 

to predict the new output O correctly. Generally, usual definite approach can not 

be proposed for this problem. However, different optimization algorithms can be 

used for it. This problem is a multi-objective optimization problem in which it can 

be defined as follows: 
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Where, ix̂  = the number of chosen features, ix̂  = the chosen inputs, O = the 

output vector, and f̂  =the objective function of the model. It is worth noting the 

objective function is generally obtained based on the chosen inputs. 

In this research, the NSGA-II algorithm is used to solve this optimization 

problem. This algorithm is combined here with the ANN model, and therefore, the 

hybrid ANN-NSGA-II method is proposed. In this proposed method, a 

relationship between input and output variables can be found using the ANN 

model. 
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In the research, the operation policies of the Zayandehroud dam reservoir are 

determined using the SDP method. For this purpose, all state variables (water 

storage volumes at the beginning of the operation period) are discretized into 

different interval values. The computation process requires a specific number 

defined as an interval index which is usually the average value of the interval 

bounds. A review of this research field shows that several approaches have been 

proposed for discretizing the state variables. These approaches are classified as 1) 

Classic method, 2) Savarenskiy method, 3) Moran method, 4) equal interval 

values method, and 5) an equal number of data method (Karamouz et al., 2003). 

Using the equal interval values method leads to some intervals with no data, and 

therefore, the computational process is disrupted. Due to this fact, in this research, 

the equal number of data method is used to discrete the state variables. By 

discretizing the state variables, the Markov matrices determination is another 

critical step. In this research, an efficient method is used to calculate the 

probabilities of Markov matrices values. For this purpose, at first, the monthly 

water inflow value is ascended. Then different intervals (such as two, three, four, 

or five intervals) are determined so that the number of data in each interval is the 

same (Saadat and Asghari, 2007). 

Furthermore, here, the operation policies of the Zayandehroud dam reservoir are 

determined using the NLP method. For this purpose, two linear and non-linear 

optimization models are proposed for determining the reservoir operation policies 

using the historical and observational data (current conditions). Decision-making 

problems, such as reservoir operation optimization problem, can be defined as a 
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mathematical model. This model can be solved using different methods. For this 

purpose, it is necessary to determine the decision variables, constraints and, the 

objective function of the problem. 

Generally, the objective function of the reservoir operation problem can be 

defined as minimizing the cost or loss or maximizing the benefit. In this research, 

minimizing the summation of water release losses in comparison with the 

downstream water demand is defined as the objective function of the problem 

(Soghrati and Moeini, 2020): 
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Where, Z  = the objective function of the problem, n = the total number of the 

operation time period, )(tR  = water release from the reservoir at operation time 

period t, )(tD  = water demand at the operation time period t, and maxD  = 

maximum water demand. 

Here, the water release from the reservoir at each operation time period is 

considered as the decision variable of the problem. In addition, all constraints 

should be defined to define the mathematical optimization model completely. 

Generally, the continuity equation is the most important constraint of this problem 

which is defined as: 

)()()(S(t)=1)S(t tLtRtI                                                                  (8) 

Where, )1( tS  = reservoir storage volume at the end of operation time t (start of 

operation time t+1), )(tS  = reservoir storage volume at the beginning of operation 

time t, )(tR  = water release from the reservoir at operation time t, )(tI  = water 
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inflow at operation time t, and )(tL  = water loses at operation time t including 

infiltration from dam reservoir and evaporation. Other constraints of this problem 

are water storage and water release bounds which are defined as: 

maxmin S(t)S S                                                                                    (9) 

maxmin R(t)R R                                                                                   (10) 

Where, maxS  = maximum water storage volume of the reservoir, minS  = minimum 

water storage volume of the reservoir, maxR  = maximum water releases from the 

reservoir, minR  = minimum water releases from the reservoir, and other 

parameters are defined before. 

Here, the defined optimization model is developed and extended to define an 

optimization model for reservoir rule curves and policies determination 

considering the current conditions. Generally, in this problem, the water releases 

values can be defined as a linear or non-linear polynomials function of water 

inflow or water storage values at the different operation time and other effective 

parameters. In this research, two linear functions (equation 10 and 11) and one 

non-linear function (equation 12) are defined to determine the operation rule 

curves of the reservoir. It is worth noting that based on the previous researches; 

the typical patterns of the equations are defined as follows (Mousavi et al. 2007; 

Bozorg Haddad et al. 2008; Fallah-Mehdipour et al., 2013; Bolouri-Yazdeli et al., 

2014). 

ymmy,mmy, 1‚....‚N=y  &  1‚.....‚12=m     b+I a=R                                    (11) 
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Where, myR ,  = water releases from the reservoir at mth month and yth year, myI ,  = 

water inflow into the reservoir at mth month and yth year, myS ,  = water storage 

volume of the reservoir at mth month and yth year, myP ,  = the precipitation values 

at mth month and yth year, and yN  = the number of total years, and other 

parameters are defined before. These newly defined equations (11, 12, and 13) are 

replaced with water release parameters ( )(tR ) of equation 7, leading to three 

different optimization models for reservoir rule curves determination. These 

optimization models can be solved using different methods in which the NLP 

method (GAMS software) is used here to solve these optimization models. 

Generally, different criteria such as root mean squared error (RMSE), correlation 

coefficient (R), and Nash Sutcliffe (NS) are usually used to evaluate the 

performance and to select the best model for water inflow prediction. These 

criteria are defined as (Gong et al., 2016): 
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Where, imX , = ithe computational data, ioX , = ithe observational data, imX , = 

average value of computational data, ioX , = average value of observational data 

and N  is the number of data. 

It is worth noting that several indexes such as the reliability, resiliency, 

vulnerability, maximum deficit, and sustainability indexes have been proposed 

and used to evaluate the performance of different proposed models. These indexes 

can be defined as (Safavi et al., 2016; Sandoval-Solis et al., 2011): 
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Where, timelRe = reliability index of time, volumelRe = reliability index of volume, 

f= the total number of failures (the number of operation periods that the goal is not 

obtained), n= the total number of operating periods, Max Def= maximum deficit 

for all operating periods, Res= resiliency index, sf = the total number of continues 

failures, Vul= vulnerability index, SI = the sustainability index and other 

parameters were defined before. 

5- Results and discussion 

In this section, the operation rule curves and policies of the Zayandehroud dam 

reservoir are presented and compared using different indexes such as SI. These 

results are determined here using SOP, SDP, NLP (solving three defined models), 

and both cases and approaches of ANN and GP models. It is worth noting that 

water loses values from the Zayandehroud dam reservoir at operation periods are 

assumed here to zero due to lack of data and information.  

At first, the reservoir operation policies are determined using the SOP method in 

which these results are presented in figure 5. Then, the operation policies are 

determined using the equal number of data approach for the SDP method. Table 1 

shows the obtained results when the number of intervals is equivalent to five. In 

this table, k denotes the reservoir storage volume interval, and i denotes the water 

inflow interval. In addition, the infeasible solutions are presented with small 

horizontal dash lines. These values are corrected using the method proposed in 

section 4. The probabilities values of Markov matrices are presented in tables 2 

and 3 considering five and ten intervals for water inflow, respectively. In addition, 

tables 4 and 5 show the boundaries of the monthly state variable (water storage 
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volumes) classes for five and ten-time interval cases, respectively. Furthermore, 

the obtained water releases from the reservoir (operation policies) are presented in 

figure 6 using the proposed process of SDP method for five and ten-time intervals 

cases. 

Comparison of the results of the SDP method shows that the results of five-time 

interval case are better than the ten-time interval case due to the fact that the 

number of infeasible solutions is smaller in this case. This fact is highlighted at 

the end of this section by computing the water resource indexes such as SI. 

In this research, the optimal operation policies of the Zayandehroud dam reservoir 

over 38 years are also determined by solving three proposed mathematical 

optimization models using GAMS software. The constant coefficients of 

operation policies of the first model are presented in table 6 for all months. In 

addition, the constant coefficients of operation policies of the second and third 

models are presented in table 7 and 8, respectively, for an operation period of 21 

March to 20 September. Finally, the obtained water releases values from the 

reservoir (operation policies) are presented in figure 7 using all proposed 

optimization models. Comparison of the results shows that the results of the third 

proposed model are better than other proposed models due to smaller objective 

function values. In addition, the first model is a simple and applicable model with 

a smaller SI index value.  These facts are highlighted at the end of this section by 

computing the water resource indexes such as SI and objective function values. 

To show the efficiency of the GP model, here, this model is also used to 

determine the operation policies of the Zayandehroud dam reservoir by proposing 
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two cases and approaches. For this purpose, the results of the third mathematical 

optimization model are used for modeling. At first, it is necessary to determine the 

proper values of the GP parameters in which they are obtained by the sensitivity 

analysis approach. In other words, these values are obtained using usual and 

formal methods, means trial and error method. The obtained proper values are 

shown in table 9. At first, the obtained results of the first proposed cases are 

presented for this case. The influential input variables for each month are shown 

in table 10. It is worth noting that, in this case, the obtained objective function 

value and SI indexes are 33.94 and 51.3%, respectively. Comparison of the results 

shows that the acceptable values can be determined for water storages volumes at 

the end of the month using both proposed approaches of the GP model. Figure 8 

shows the predicted values of water storage volumes at the end of the month using 

the GP model compared to actual observed values. It is worth noting that different 

equations can be proposed to predict the water storage volume of the 

Zayandehroud dam reservoir at the end of the month using the first case of the GP 

model. The obtained equations for each month, which can be used as reservoir 

operation rule curves, are presented as follow: 
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Where, all the parameters were defined before. These equations can be used to 

determine the water storage values at the end of operation period (monthly 

operation period) based on the water inflow, precipitation, demand, and storage 

volume values. 

 The operation policies of the Zayandehroud dam are determined using both 

approaches of the second proposed case of the GP model. The obtained results of 

the first approach of the second GP case are presented in table 11, considering two 

conditions (with and without considering time index, T). Figure 9 shows the water 

storage volume values at the end of the operation period (month) using the first 

proposed approach of the second GP case with and without considering time 
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index T. Furthermore, the obtained equations for reservoir operation policies 

determinations are presented as equation 35 and 36 with and without considering 

time index T. 
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Where, all the parameters are defined before. These equations can be used to 

determine the water storage values at the end of the operation period (monthly 

operation period) based on the water inflow, precipitation, demand, and storage 

volume values. Comparison of the results shows that using this proposed 

approach leads to acceptable results for the Zayandehroud dam operation policies 

in which the accuracy of the results is improved by considering time index T. 

Finally, the obtained results of the second approach of the second GP case are 

presented in table 12, considering two conditions (with and with considering time 

index, T). Comparison of the results shows that using this proposed approach 

leads to acceptable results for Zayandehroud dam reservoir operation policies in 

which the obtained equations are presented as equations 37 and 38 respectively, 

with and without considering time index T. Figure 10 shows the water storage 

volume values at the end of the operation period (month) using the second 

proposed approach of the second GP case with and without considering time 

index T. Comparison of the results shows the better performance of first proposed 

approach for reservoir operation policy determination.  
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Where, all the parameters are defined before. These equations can be used to 

determine the water storage values at the end of the operation period (monthly 

operation period) based on the water inflow, precipitation, demand, and storage 

volume values. 

It is worth noting that the obtained objective function value and SI index are 33.94 

and 51.3%, respectively, using the first case of the GP model. In addition, the 

obtained objective function value and SI index are 32 and 49.3%, respectively, 

using the second case of the GP model. Furthermore, figure 11 shows the best 

water storage volume values at the end of the operation period (month) using both 

proposed cases of the GP model. 

Finally, the ANN model is also used here to evaluate the performance of proposed 

approaches and cases of the GP method for determining the Zayandehroud dam 

reservoir operation policies. For this purpose, the results of all mathematical 

optimization models are also used for modeling. Table 13 shows the structure of 

the ANN model for predicting the constant coefficients of the operation rule curve 

(coefficient of the first model). In addition, the best R2 and RMSE values of the 

train (test) process are 1 (0.98) and 0.33 (1.06), respectively, using the third 

mathematical optimization model for the constant coefficient of reservoir rule 

curves determination. Furthermore, the objective function and SI values are 29.67 

and 47.8%, respectively. It is worth noting that the structure of the second and 

third models is similar to that of the proposed structure presented in table 13, and 

only the output vectors are different. The monthly water release values of the 
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Zayandehroud dam reservoir are shown in figure 12 using the third proposed 

model of ANN. 

 Finally, the obtained values of all defined indexes for all proposed and used 

methods are presented in table 14. The obtained results indicate that the results of 

proposed GP-based methods are acceptable in comparison with other proposed 

methods. In addition, the proposed GP-based models can overcome the limitations 

of other proposed methods leading to simple and more applicable operation 

policies for the Zayandehroud dam reservoir. 

At the end of this research, a critical issue should be noted. Here, the reservoir 

operation rule and policies of the Zayandehroud dam reservoir are determined to 

satisfy the downstream water demand without considering social issues such as 

farmers’ behavior in anthropogenic droughts condition. Therefore, extending and 

developing the proposed methods to provide future insights for policy-makers and 

assess the performance of complex water resources systems such as the methods 

of Pouladi et al. (2019 and 2020) is an essential issue, and therefore, it should be 

considered for future studies. 

6- Conclusion remarks 

In this research, two different approaches for two suggested cases were proposed 

to determine the operating policies of the Zayandehroud dam reservoir using GP. 

In the first approach, by hybridizing the ANN model with the NSGA-II algorithm, 

a hybrid method was used to reduce and select influential input data set. However, 

in the second approach, the influential input variables were chosen automatically 

using the GP method. The obtained results were compared with the SOP, SDP, 

https://www.sciencedirect.com/science/article/abs/pii/S0022169419306286#!
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ANN model, and NLP proposed methods by computing the reliability, resiliency, 

vulnerability, maximum deficit, and sustainability indexes. For NLP methods, 

here, three different mathematical optimization models were proposed and solved 

using GAMS software. Comparison of the results showed that using the SDP 

method led to an infeasible solution, means inaccurate value for reservoir 

operation policies of some months. However, this problem was solved by 

considering the values of allowable water storage volume bounds, and computing 

new values for the water release. In addition, for the best ANN model, the RMSE 

and R2 values of the training (test) data set were 0.33 (10.6) MCM and 1 (0.98), 

respectively, using results of the third mathematical optimization method. 

Furthermore, by using the results of the third mathematical optimization method, 

the second proposed GP case led to simple and more applicable reservoir 

operation policies in comparison with the first proposed case. In other words, the 

obtained water deficit values of the second proposed GP case were smaller than 

the first one with the value of 32, in which in this case, the SI value was 49.3%.  

Finally, a comparison of the obtained indexes values of all proposed and used 

methods showed that the results of proposed GP-based methods are acceptable in 

comparison with other proposed methods leading to simple and more applicable 

operation policies for the Zayandehroud dam reservoir. For future studies, extend 

these methods based on the socio-hydrological modeling framework for assessing 

the performance of complex water resources systems should be noticed. 
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Table 1: Operating policy of the Zayandehroud dam reservoir considering five 

intervals for SDP method 
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1 --- --- --- --- --- --- --- --- --- --- --- --- 

2 --- --- --- --- --- --- --- --- --- --- --- --- 

3 --- --- --- --- --- --- --- --- --- --- --- --- 

4 --- --- --- --- --- --- --- --- --- --- --- --- 

5 --- --- --- --- --- --- --- --- --- --- --- --- 

2 

1 --- --- --- --- --- --- --- --- --- --- --- --- 

2 --- --- --- --- --- --- --- --- --- --- --- --- 

3 60 12 --- --- --- --- --- --- --- --- --- --- 

4 110 242 175 15 --- --- --- --- --- --- --- 24 

5 274 204 259 71 36 --- --- --- --- --- --- 163 

3 

1 --- 76 88 125 136 52 85 --- --- --- --- 114 

2 71 132 110 137 145 63 96 33 --- 13 --- 139 

3 294 179 142 13 --- --- --- --- --- --- 138 151 

4 344 409 173 184 11 --- --- --- 23 34 155 179 

5 341 371 425 240 39 97 116 70 64 58 41 318 

4 

1 131 212 213 242 279 218 208 --- --- --- 90 10 

2 207 267 235 255 288 229 219 68 122 126 98 269 

3 430 315 267 130 136 113 73 75 16 12 108 282 

4 480 379 297 302 153 122 77 85 28 23 125 75 

5 477 382 381 357 182 139 87 104 69 171 165 448 

5 

1 285 299 320 382 390 334 332 157 19 66 61 138 

2 361 354 342 395 399 346 343 264 33 75 199 27 

3 417 402 374 271 247 229 197 271 113 86 209 40 

4 466 466 405 442 264 239 201 282 125 96 227 203 

5 495 469 489 497 293 256 211 300 166 244 267 342 
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Table 2: Probabilities values of Markov matrices considering five-time intervals 

for reservoir inflow 
        to  

from 
1 2 3 4 5 1 2 3 4 5 

 23 September to 22 October 23 October to 21 November 

1 0.7 0.2 0.1 0 0 0 0.1 0 0 0.1 

2 0.429 0.286 0.143 0 0.143 0.286 0.143 0.143 0.286 0.143 

3 0 0.125 0.5 0.375 0 0 0.5 0.375 0 0.125 

4 0 0.25 0 0.625 0.125 0 0.125 0.5 0.25 0.125 

5 0 0 0.222 0 0.778 0 0 0 0.444 0.556 

 22 November to 21 December 22 December to 20 January 

1 0 0.1 0 0 0 0.6 0 0.1 0.1 0.1 

2 0.143 0.429 0.143 0.143 0.143 0.286 0.429 0.286 0 0 

3 0 0.125 0.75 0.125 0 0.2 0.25 0.5 0 0 

4 0 0.25 0.125 0.375 0.25 0 0.125 0.125 0.625 0.125 

5 0 0 0 0.333 0.667 0 0 0 0.222 0.778 

 21 January to 19 February 20 February to 20 March 

1 0.5 0.4 0.1 0 0 0.3 0.4 0.3 0 0 

2 0.429 0.286 0.286 0 0 0.429 0.143 0 0.286 0.143 

3 0.25 0.125 0.125 0.25 0.25 0.25 0.125 0.25 0.125 0.25 

4 0 0 0.25 0.5 0.25 0.25 0.125 0.375 0 0.25 

5 0 0 0.222 0.222 0.556 0 0 0 0.556 0.444 

 21 March to 20 April 21 April to 21 May 

1 0.9 0.1 0 0 0 0.9 0 0.1 0 0 

2 0.143 0.429 0.286 0.143 0 0.143 0.571 0.286 0 0 

3 0 0.125 0.5 0.25 0.125 0 0.375 0.375 0.25 0 

4 0 0.25 0.250 0.125 0.375 0 0 0.250 0.625 0.125 

5 0 0 0 0.444 0.556 0 0 0 0.111 0.889 

 22 May to 21 June 22 June to 22 July 

1 0.7 0.1 0.2 0 0 0.7 0.3 0 0 0 

2 0.429 0.429 0.143 0 0 0.429 0.429 0.143 0 0 

3 0 0.375 0.375 0.25 0 0 0.125 0.75 0.125 0 

4 0 0 0.25 0.5 0.25 0 0 0.125 0.625 0.25 

5 0 0 0 0.222 0.778 0 0 0 0.222 0.778 

 23 July to 22 August 23 August to 22 September 

1 0.8 0.2 0 0 0 0.4 0.3 0.2 0 0.1 

2 0.286 0.429 0.286 0 0 0.429 0.286 0.143 0 0.143 

3 0 0.25 0.625 0.125 0 0.25 0 0.25 0.5 0 

4 0 0 0.125 0.75 0.125 0 0.25 0.25 0.375 0.125 

5 0 0 0 0.111 0.889 0.111 0 0.111 0.111 0.667 
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Table 3: Probabilities values of Markov matrices considering ten-time intervals 

for reservoir inflow 
          to  

from 
1 2 3 4 5 6 7 8 9 10 

23 September to 22 October 

1 0.667 0.167 0 0 0.167 0 0 0 0 0 

2 0.667 0 0.333 0 0 0 0 0 0 0 

3 0 0.5 0.5 0 0 0 0 0 0 0 

4 0 0 0.2 0.25 0 0.25 0 0 0 0.25 

5 0 0 0 0 0.25 0.25 0.5 0 0 0 

6 0 0 0 0.25 0.5 0 0.25 0 0 0 

7 0 0 0 0.5 0 0 0 0.25 0 0.25 

8 0 0 0 0 0 0 0.25 0.75 0 0 

9 0 0 0 0 0 0.5 0 0 0.25 0.25 

10 0 0 0 0 0 0 0 0 0.6 0.4 

23 October to 21 November 

1 0.833 0 0 0 0 0 0 0 0.167 0 

2 0.333 0.667 0 0 0 0 0 0 0 0 

3 0 0.25 0.5 0 0 0 0 0 0.2 0 

4 0 0 0.25 0 0.25 0 0.25 0.25 0 0 

5 0 0 0 0.25 0.5 0.25 0 0 0 0 

6 0 0 0.25 0.5 0 0 0 0 0 0.25 

7 0 0 0 0.25 0 0.5 0 0 0 0.25 

8 0 0 0 0 0.25 0.25 0.25 0.25 0 0 

9 0 0 0 0 0 0 0.25 0.25 0.5 0 

10 0 0 0 0 0 0 0.2 0.2 0 0.6 

22 November to 21 December 

1 0.833 0.167 0 0 0 0 0 0 0 0 

2 0.333 0.333 0.333 0 0 0 0 0 0 0 

3 0 0.25 0.5 0 0 0 0 0 0.25 0 

4 0 0 0.25 0.25 0.25 0 0.25 0 0 0 

5 0 0 0 0.25 0.5 0.25 0 0 0 0 

6 0 0 0 0 0.25 0.5 0 0.25 0 0 

7 0 0 0 0.25 0 0 0.25 0 0.25 0.25 

8 0 0 0 0.25 0 0.25 0 0.5 0 0 

9 0 0 0 0 0 0 0.25 0 0.5 0.25 

10 0 0 0 0 0 0 0.2 0.2 0 0.6 
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Table 3: Continue 

22 December to 20 January 

1 0.667 0.167 0 0 0.167 0 0 0 0 0 

2 0.333 0 0 0.333 0 0 0.333 0 0 0 

3 0 0 0.5 0 0 0.25 0 0 0 0.25 

4 0.25 0.25 0 0.25 0.25 0 0 0 0 0 

5 0 0 0.25 0.25 0.5 0 0 0 0 0 

6 0 0.25 0 0.25 0 0.5 0 0 0 0 

7 0 0 0.25 0 0 0 0.25 0.25 0 0.25 

8 0 0 0 0 0 0.25 0.25 0.5 0 0 

9 0 0 0 0 0 0 0.25 0 0 0.75 

10 0 0 0 0 0 0 0 0.2 0.8 0 

21 January to 19 February 

1 0.5 0 0.333 0.167 0 0 0 0 0 0 

2 0.667 0 0 0 0 0.333 0 0 0 0 

3 0 0.25 0.25 0.25 0 0.25 0 0 0 0 

4 0.25 0 0.25 0.25 0 0.25 0 0 0 0 

5 0 0.25 0 0.25 0 0 0.25 0.25 0 0 

6 0 0.25 0 0 0.25 0 0 0 0.25 0.25 

7 0 0 0 0 0.25 0 0.25 0.5 0 0 

8 0 0 0 0 0.25 0 0.25 0 0 0.5 

9 0 0 0 0 0 0.25 0 0 0.25 0.5 

10 0 0 0 0 0.2 0 0.2 0.2 0.4 0 

20 February to 20 March 

1 0.5 0 0.167 0.167 0.167 0 0 0 0 0 

2 0 0 0 0.333 0 0.667 0 0 0 0 

3 0.25 0.25 0 0.25 0 0 0 0 0.25 0 

4 0 0.25 0 0.25 0 0 0 0.5 0 0 

5 0 0.25 0 0 0.25 0 0 0 0 0.5 

6 0.25 0 0.25 0 0 0.25 0.25 0 0 0 

7 0.25 0 0.5 0 0.25 0 0 0 0 0 

8 0 0 0 0 0.25 0.25 0 0 0.25 0.25 

9 0 0 0 0 0 0 0.5 0.25 0.25 0 

10 0 0 0 0 0 0 0.2 0.2 0.2 0.4 
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Table 3: Continue 

21 March to 20 April 

1 0.667 0.167 0.167 0 0 0 0 0 0 0 

2 0.667 0 0.333 0 0 0 0 0 0 0 

3 0 0.5 0 0.25 0 0.25 0 0 0 0 

4 0 0 0.5 0 0.25 0 0.25 0 0 0 

5 0 0 0 0 0.5 0.25 0.25 0 0 0 

6 0 0 0 0.25 0 0.25 0 0.25 0.25 0 

7 0 0 0 0.5 0.25 0.25 0 0 0 0 

8 0 0 0 0 0 0 0 0.25 0.25 0.5 

9 0 0 0 0 0 0 0.25 0.25 0.5 0 

10 0 0 0 0 0 0 0.2 0.2 0 0.6 

21 April to 21 May 

1 1.0 0 0 0 0 0 0 0 0 0 

2 0 0.667 0.333 0 0 0 0 0 0 0 

3 0 0.25 0.25 0 0.25 0.25 0 0 0 0 

4 0 0 0.25 0.5 0.25 0 0 0 0 0 

5 0 0 0 0.25 0 0.750 0 0 0 0 

6 0 0 0.25 0.25 0 0 0.5 0 0 0 

7 0 0 0 0 0.25 0 0.25 0.5 0 0 

8 0 0 0 0 0.25 0 0.25 0.25 0.25 0 

9 0 0 0 0 0 0 0 0 0.5 0.5 

10 0 0 0 0 0 0 0 0.2 0.2 0.6 

22 May to 21 June 

1 0.833 0.167 0 0 0 0 0 0 0 0 

2 0 0.333 0.333 0 0 0.333 0 0 0 0 

3 0.25 0.25 0 0 0.5 0 0 0 0 0 

4 0 0 0.5 0.5 0 0 0 0 0 0 

5 0 0 0.25 0.25 0.5 0 0 0 0 0 

6 0 0 0 0.25 0 0.25 0.5 0 0 0 

7 0 0 0 0 0 0.25 0.25 0.5 0 0 

8 0 0 0 0 0 0.25 0 0.25 0.5 0 

9 0 0 0 0 0 0 0.25 0 0.5 0.25 

10 0 0 0 0 0 0 0 0.2 0 0.8 

 
 



 52 

 
 
 

Table 3: Continue 

22 June to 22 July 

1 0.5 0.333 0 0.167 0 0 0 0 0 0 

2 0 0.333 0.667 0 0 0 0 0 0 0 

3 0.25 0 0.25 0.5 0 0 0 0 0 0 

4 0.5 0 0 0.25 0.25 0 0 0 0 0 

5 0 0 0.25 0 0.25 0.5 0 0 0 0 

6 0 0 0 0 0.25 0.5 0 0.25 0 0 

7 0 0 0 0 0.25 0 0.25 0.25 0.25 0 

8 0 0 0 0 0 0 0.25 0.5 0.25 0 

9 0 0 0 0 0 0 0.25 0 0.25 0.5 

10 0 0 0 0 0 0 0.2 0 0.2 0.6 

23 July to 22 August 

1 0.667 0 0.167 0.167 0 0 0 0 0 0 

2 0.333 0.667 0 0 0 0 0 0 0 0 

3 0.25 0.25 0.5 0 0 0 0 0 0 0 

4 0 0 0 0.5 0.25 0.25 0 0 0 0 

5 0 0 0.25 0 0.25 0.25 0.25 0 0 0 

6 0 0 0 0.25 0.5 0.25 0 0 0 0 

7 0 0 0 0 0 0.25 0.5 0.25 0 0 

8 0 0 0 0 0 0 0.25 0.5 0.25 0 

9 0 0 0 0 0 0 0 0.25 0.5 0.25 

10 0 0 0 0 0 0 0 0 0.2 0.8 

23 August to 22 September 

1 0.5 0 0 0 0 0.333 0 0 0 0.167 

2 0.333 0 0.333 0.333 0 0 0 0 0 0 

3 0 0.5 0.5 0 0 0 0 0 0 0 

4 0 0 0 0.5 0.25 0 0 0 0.25 0 

5 0 0.25 0 0 0 0.25 0 0.5 0 0 

6 0.25 0 0 0 0.25 0 0.25 0.25 0 0 

7 0 0 0 0.25 0.25 0.25 0.25 0 0 0 

8 0 0 0.25 0 0 0 0.25 0.25 0.25 0 

9 0 0 0 0 0 0 0 0 0.5 0.5 

10 0.2 0 0 0 0.2 0 0.2 0 0 0.4 
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Table 4: The boundary of obtained classes for water inflow (five intervals) 

boundary 
1 2 3 4 5 1 2 3 4 5 

23 September to 22 October 23 October to 21 November 

down 0 12.46 23.4 29.1 33.9 0 19.1 29.1 36.15 46.60 

up 
12.4

6 
23.4 29.1 33.9 56.73 19.1 29.1 36.15 46.60 79.5 

 22 November to 21 December 22 December to 20 January 

down 0 22.9 36.13 43.4 54.7 0 25.7 34.7 45.1 55.8 

up 22.9 36.13 43.4 54.7 176.4 25.7 34.7 45.1 55.8 98.4 

 21 January to 19 February 20 February to 20 March 

down 0 30.5 37.7 48.0 65.39 0 55.3 80.1 92.9 120 

up 30.5 37.7 48.0 65.39 171 55.3 80.1 92.9 120 463.7 

 21 March to 20 April 21 April to 21 May 

down 0 95.7 171.6 227 277 0 73.1 128 176.1 239 

up 95.7 171.6 227 277 745 73.1 128 176.1 239 456.0 

 22 May to 21 June 22 June to 22 July 

down 0 41.16 62.90 94.9 125 0 21.3 34.1 52.3 80.7 

up 
41.1

6 
62.90 94.9 125 329 21.3 34.1 52.3 80.7 224 

 23 July to 22 August 23 August to 22 September 

down 0 15.5 24.3 38.2 55.1 0 9.10 20.3 27.26 36.69 

up 15.5 24.3 38.2 55.1 138 9.10 20.3 27.26 36.69 71.2 
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Table 5: The boundary of obtained classes for water inflow (ten-time intervals) 

Date boundary 1 2 3 4 5 6 7 8 9 10 

23 

September 

to 22 

October 

down 0 8.1 16.9 20.5 26.3 28.28 29.98 32.6 35.33 38.92 

up 8.1 16.9 20.5 26.3 28.3 29.98 32.63 35.3 38.92 49.15 

23 October 

to 21 

November 

down 0 14.6 23.8 27.3 31.0 34.13 38.18 44.5 48.74 55.89 

up 14.6 23.8 27.3 31.0 34.1 38.18 44.47 48.7 55.89 74.87 

22 

November 

to 21 

December 

down 0 16.4 29.4 34.8 37.5 5.40 46.81 51.6 58.0 64.75 

up 16.4 29.4 34.8 37.5 5.40 46.81 51.56 58.0 64.75 126.9 

22 

December 

to 20 

January 

down 0 21.6 29.8 33.3 36.3 42.74 47.53 52.8 58.83 70.45 

up 21.6 29.8 33.3 36.3 42.7 47.53 52.80 58.8 70.45 89.15 

21 January 

to 19 

February 

down 0 27.5 33.5 35.4 40.2 45.65 50.42 58.8 72.04 82.03 

up 27.5 33.5 35.4 40.2 45.7 50.42 58.75 72.0 82.03 128.2 

20 February 

to 20 March 

down 0 51.5 59.1 76.0 84.3 89.45 96.4 107.3 133.5 178.7 

up 51.5 59.1 76.0 84.3 89.5 96.43 107.3 133.5 178.7 339.9 

21 March to 

20 April 

down 0 76.8 114.7 153.9 189.3 218.8 236.3 251.1 303.5 333.8 

up 76.8 114.7 153.9 189.2 218.8 236.3 251.1 303.5 333.8 549.2 

21 April to 

21 May 

down 0 59.5 86.8 112.0 144.8 163.8 188.3 226.5 253.1 319.5 

up 59.5 86.8 112.0 144.8 163.8 188.3 226.5 253.1 319.5 416.1 

22 May to 

21 June 

down 0 29.5 52.7 58.4 67.3 84.9 104.9 113.4 137.5 160.6 

up 29.5 52.7 58.4 67.3 84.9 104.9 113.4 137.5 160.6 258.0 

22 June to 

22 July 

down 0 17.2 25.4 32.0 36.2 41.7 63.0 74.4 86.9 102.0 

up 17.2 25.4 32.0 36.2 41.7 63.0 74.4 86.9 102.0 170.6 

23 July to 

22 August 

down 0 13.8 17.1 21.3 27.4 33.4 42.9 52.8 57.4 71.4 

up 13.8 17.1 21.3 27.4 33.4 42.9 52.8 57.4 71.4 96.6 

23 August 

to 22 

September 

down 0 6.1 12.0 17.9 22.7 25.6 28.8 33.1 40.2 46.6 

up 6.1 12.0 17.9 22.7 25.6 28.8 33.1 40.2 46.6 60.7 
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Table 6: Coefficients of operating rule curve for all months obtained from the 

first mathematical optimization model 

          Date 
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a 0.775 1.036 -0.06 1.452 1.7 -0.023 

b -51.598 -49.727 19.638 -19.158 -20.502 1.626 
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a 7.473 1.202 1.141 0.714 -0.365 0.697 

b -26.306 -10.481 -8.079 -11.226 87.263 176.669 

 

 

 

 

Table 7: Coefficients of operating rule curve for the operation period of 21 March 

to 20 April obtained from the second mathematical optimization model 

Coefficient        
Value -1.53 1.096 -0.851 0.557 0.272 0.028 0.619 

Coefficient        
Value 0.097 -0.173 -0.105 1.291 -1.592 2.46 -2.568 

Coefficient        
Value 0.713 1.592 -0.205 -0.117 0.236 -0.075 -0.101 

Coefficient        
Value 201.0 -41.57 -0.149 -0.253 0.191 5.136 -15.133 
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Table 8: Coefficients of operating rule curve for the operation period of 21 March 

to 20 April obtained from the third mathematical optimization model 

Coefficient         
Value -0.431 0 0.314 0 -0.367 0 0.391 0 

Coefficient         
Value -0.273 -0.043 0.078 0 -0.038 0 -0.587 0.012 

Coefficient         
Value 0.425 0 0.226 0 0.117 0 -0.035 0.011 

Coefficient         
Value 108.0- 0 -0.184 0 0.73 -0.01 -0.024 0 

Coefficient         
Value 441.0 -0.038 0.386 0 0.14 0 0.444 0 

Coefficient         
Value 0.087 -0.108 -0.022 -0.237 0 0.079 0 0.289 

Coefficient        
Value -0.227 0 0 0.132 0 -0.101 0 

 

 

Table 9: Best obtained values of the GP parameters  

population size 200 

number of generations 3000 

functions 
+, -, *, .,^, sqrt, sin, 

cos, tan, ln, exp 
maximum number of 

nodes 
50 

crossover rate 0.93 

mutation rate 0.07 
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Table 10: Effective input variables for determining operating rule curve using 

ANN-NSGA II hybrid algorithm (first case) 

Date Input variables 

21 March to 20 April S(t), S(t-2), S(t-10), I(t), I(t-1), D(t-3), D(t-6) 

21 April to 21 May S(t), S(t-3), I(t), I(t-11), P(t) 

22 May to 21 June S(t), S(t-3), S(t-10), I(t), I(t-5) 

22 June to 22 July S(t), S(t-1), I(t), I(t-1) 

23 July to 22 August S(t), S(t-1), I(t), I(t-1) 

23 August to 22 

September 
S(t), S(t-3), I(t), I(t-1), I(t-3) 

23 September to 22 

October 
S(t), S(t-3), I(t), I(t-2), I(t-3) 

23 October to 21 

November 
S(t), S(t-8), I(t), I(t-1), I(t-5), I(t-7) 

22 November to 21 

December 
S(t), S(t-4), I(t), I(t-1), I(t-4) 

22 December to 20 

January 
S(t), S(t-1), S(t-5), I(t), I(t-1) 

21 January to 19 

February 
S(t), S(t-3), S(t-5), I(t), I(t-6), D(t-6), D(t-7) 

20 February to 20 

March 
S(t), S(t-5), I(t), I(t-4), P(t-1), D(t-6), D(t-8), D(t-11) 

 
Table 11: Results of operating rule curve determining using the first approach of 

GP with and without time index T (second case) 

Effective input variables 
Objective 

function 
SI  

T, S(t), S(t-1), S(t-10), I(t), I(t-1) 32 49.3% 

S(t), S(t-1), S(t-9), I(t), I(t-1), I(t-7), I(t-9), 

I(t-11), P(t-1), P(t-3), P(t-4), P(t-9), D(t), 

D(t-1), D(t-4), D(t-5), D(t-6) 

32.1 49.7% 
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Table 12: Results of operating rule curve determining using the second approach 

of GP with and without time index T (second case) 

Influential input variables 
Objective 

function 
SI 

all variables with time index T 32.06 49.8% 

all variables without time index T 32.98 50% 

 

 

 

 
Table 13: Structure of ANN model for predicting the operating rule curve 

coefficients (first model) 

input variables output variables 

water 

inflow 

water 

demand 
time index 

optimized water 

release 

coefficients of operating 
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Table 14: Obtained index values using different proposed operating rule curve 

models  
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Indexes 
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SDP (five-time intervals) 34 24 0.09 85 0.11 57.5 16 

SDP (ten-time intervals) 28 19 0.08 81 0.15 51.3 20.89 

SOP 57 16 0.15 71 0.095 56.6 31.02 

NLP (first model) 33 26 0.18 72 0.16 55.2 30.14 

NLP (second model) 31 13 0.14 70 0.13 47.9 31.95 

NLP (third model) 31 14 0.13 70 0.13 48.3 29.68 

ANN (third model) 30 13 0.13 70 0.14 47.8 29.67 

GP (first case) 32 18 0.14 70 0.13 51.3 33.94 

GP (second case) 34 14 0.14 70 0.13 49.3 32 
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Figure 1: SDP process to solve problem  

 

 

 
 

Figure 2: Location of the Zayandehroud Basin and its sub-basins (Safavi et al., 

2015) 
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Figure 3: Observed water inflow values of the Zayandehroud dam reservoir 
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Figure 4: A conceptual model of proposed research approach 

 

 

 

 
  

The first case (modeling 

months individually) 

The second case (modeling 

all months simultaneously) 

Investigating the proposed 

methods by computing 

different criteria and indexes 

Start 

 

Data definition (observed water inflow and precipitation) 

 

Determining the operating rule curves 

and policies using different methods 

SDP Mathematical optimization 

model definition (three models) 

Use best results of the mathematical 

optimization model to determine rule curve 

using genetic programming and neural network 

The second approach 

(automatic selection of 

influential variables) 

The first approach 

(using hybrid 

ANN-NSGA-II) 

The first approach 

(using hybrid 

ANN-NSGA-II) 

The second approach 

(automatic selection of 

influential variables) 

SOP 



 63 

 
Figure 5: water release values of the Zayandehroud dam reservoir using SOP 

  

 

 
Figure 6: Water release values of the Zayandehroud dam reservoir using SDP 

(considering five and ten time intervals)  
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Figure 7: Water release values of the Zayandehroud dam reservoir using all 

proposed mathematical optimization models   

 

 
  Figure 8: Predicted values of water storage volumes of the Zayandehroud 

dam reservoir using the first approach of the GP (first case)  
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Figure 9: Predicted values of water storage volumes of the Zayandehroud dam 

reservoir using the first approach of the GP with and without considering time 

index (T) (second case)  

 

 

Figure 10: Predicted values of water storage volumes of the Zayandehroud dam 

reservoir using the second approach of the GP with and without considering time 

index (T) (second case)  
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Figure 11: Predicted values of water storage volumes of the Zayandehroud dam 

reservoir using two proposed cases of the GP  

 

 
Figure 12: Water release values of the Zayandehroud dam reservoir using the 

third ANN model 
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