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Abstract: 

In this paper a resource flow based branch-and-bound procedure is designed to solve the well-

known resource constrained project scheduling problem under the mixed uncertainty of fuzziness 

and randomness (FS-RCPSP). The objective is to minimize the expected makespan of the project 

subject to precedence and resource constraints. The proposed branch-and-bound can be 

employed to obtain optimal solutions and also can be truncated in order to find promising near 

optimal solutions. The depth-first strategy is utilized for constructing the search tree and earliest 

start time (EST) concept is adopted for selecting a node for further branching while traversing 

the tree down to the leaves. The performance of developed branch-and-bound is benchmarked 

against CPLEX and SADESP across an extensive set of 960 problems. The results returned by 

the proposed algorithm show experimentally its effectiveness to solve the FS-RCPSP.  

 

Keyworks: Fuzzy stochastic durations; resource-constrained project scheduling, resource flow, 

branch-and-bound.
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1. Introduction 

One of the important issues when planning a project is the scheduling of some identified 

activities. Our work is concerned with a well-known problem in the area of scheduling, named 

Resource-Constrained Project Scheduling Problem (RCPSP), under the uncertain environment. 

The objective of RCPSP is to minimize the project makespan subject to precedence and resource 

constraints. Each activity needs a fixed amount of renewable resources in its processing time. 

The availability of resources and the activity durations are assumed to be known and fixed and 

the preemption is not allowed for the activities. A real-life example to this problem is a 

construction project where there are precedence relations between the activities and the 

availability of some resources, for example human resources, in some time periods are limited. 

Many attempts have been made to propose exact, heuristic, and meta-heuristic procedures to 

solve the RCPS problem with deterministic parameters. Examples of such research efforts are 

Brucker et al. (1998), Damay et al. (2007), Pantouvakis and Manoliadis (2006), Ying et al. 

(2009), Mahdi Mobini (2009), Zamani (2011), Sebt et al. (2013), Kumar and Vidyarthi (2016), 

and Sheng et al. (2019).  

In most of the real world situations, since the scheduling parameters of a project cannot be 

exactly estimated, it would be more appropriate if in addition to precedence and resource 

constraints, uncertainties are also taken into account in the scheduling process. The majority of 

research efforts to cope with the uncertain information in the project scheduling problems 

introduce reactive, proactive (robust), stochastic, or fuzzy scheduling approaches (Herroelen and 

Leus, 2005). In the reactive scheduling, the uncertainty is not considered directly at the time of 

generating a schedule, but the baseline schedule is repaired or rescheduled when disruptions 

occur. However, in proactive scheduling, a baseline schedule protected as much as possible 

against disruptions is generated. Some recently published papers in reactive and/or proactive 

project scheduling are Sadeh et al. (1993), Van de Vonder et al. (2007), Lambrechts et al. (2008), 

Leus and Herroelen (2004), Artigues et al. (2013), and Bruni et al. (2017). In contrast to the 

proactive scheduling, in the stochastic scheduling no baseline schedule is produced and all the 

scheduling decisions are usually made based on a dynamic decision process, called policy, at the 

time of execution. In the stochastic project scheduling, it is assumed that activities have been 

performed several times in the previous projects, and therefore there is enough historical data to 
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provide a probability distribution for each activity. However, in fuzzy project scheduling, due to 

the lack of historical data, activity durations are estimated by some experts. Since these 

estimations are vague and imprecise, activity durations are represented by fuzzy numbers. Some 

papers being published in the area of Stochastic-RCPSP (S-RCPSP) or Fuzzy-RCPSP (F-

RCPSP) are as follows: Ashtiani et al. (2011), Fang et al. (2015), Rostami et al. (2018), Atli and 

Kahraman (2012), and finally Atli and Kahraman (2013), Zoulfaghari et al. (2016). In real world 

projects, especially in construction projects, it is possible to have both kinds of uncertainties (i.e., 

randomness and fuzziness) in durations of activities. In these projects, the duration of some 

activities (activities with enough historical data about the duration) can be modelled as a 

probability distribution and that of others (activities without enough historical data about the 

duration) can only be estimated imprecisely by experts. The corresponding scheduling problem 

for these projects is called fuzzy stochastic project scheduling problem and its resource 

constrained version (FS-RCPSP) is addressed in the current paper.  

Some researchers have coped with the situations where randomness and fuzziness appears 

simultaneously and have proposed mathematical tools to model this kind of uncertainty. Some of 

these tools are as follows: probability of a fuzzy event (Zadeh, 1968), probabilistic set (Hirota, 

1981), random fuzzy variable (Liu, 2002a; Liu, 2002b), and fuzzy random variable (Puri and 

Ralescu, 1986; Kruse and Meyer, 1987; Buckley, 2005). Note that the mathematical tools 

‘random fuzzy variable’ and ‘fuzzy random variable’ are different from each other. Roughly 

speaking, random fuzzy variables are fuzzy variables taking ‘random variable’ values and fuzzy 

random variables are random variables taking ‘fuzzy variable’ values (Zhu and Liu, 2005). An 

early application of the concept of a fuzzy random variable was in scheduling. Itoh and Ishii 

(2005) assumed that uncertainty only exists in activity due-dates and employed fuzzy random 

variables for modeling these uncertainties in an n-job machine. A fuzzy stochastic project 

scheduling problem for the first time was addressed by Ke and Liu (2007). Using random fuzzy 

variables for modeling of uncertainties, they proposed three models for solving the problem 

under study: expected cost minimization model, (α,β)-cost minimization model, and chance 

maximization model. They also proposed a hybrid intelligent algorithm for solving these models. 

Huang et al. (2009) proposed an expected cost model with random fuzzy variables to handle the 

software project scheduling problem and solved this model using an intelligent genetic 

algorithm. Nematian et al. (2010) were the first researchers to tackle the Fuzzy Stochastic-
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RCPSP (FS-RCPSP) by considering the ready time, duration, and deadline of activities to be 

fuzzy random variables and converting the resulted model with fuzzy random variables into a 

mixed-integer linear programming model. Xu and Zhang (2012) studied a more complicated 

problem, namely resource constrained multiple project scheduling problem when randomness 

and fuzziness co-exists. The problem was formulated as a multi-objective model with fuzzy 

random variables for minimizing the total project time and the total tardiness penalty of all 

projects. This model was solved by a hybrid genetic algorithm with a fuzzy logic controller. 

Chen and Zhang (2016) presented a proactive strategy for Preemption-RCPSP with fuzzy 

random duration and resource availabilities. They proposed a mathematical formulation model 

for this problem with the objective function of maximizing the sum of free slack and then 

transformed it into an equivalent crisp model. Finally, they demonstrated the efficiency of the 

model and proactive strategy just by a numerical example. Alipouri et al. (2017) addressed the 

RCPSP under the fuzzy random environment using the fuzzy probability theory of Buckley 

(2005). They proposed a mathematical programming model with fuzzy random variables 

exploiting the concept of the resource flow network. Then, this model was transformed into an 

MILP model with crisp parameters and variables. They implemented this MILP model in 

AIMMS (2014) modeling software and solved 960 benchmark problems using the CPLEX 

12.6.0.1 solver of this software. Their results showed that the CPLEX solver in AIMMS could 

work well on most of the benchmark problems; however, this solver could not find any integer 

solution for about 10% of the problems with 30 activities and 31% of the problems with 60 

activities. In addition, the computational efforts required for solving some of the benchmark 

problems were high. All these drawbacks can prevent practitioners to use CPLEX solver in real 

world applications for solving FS-RCPSP. More recently, Alipouri et al. (2019) proposed a self-

adaptive differential evolution hyper-heuristic algorithm, named SADESP, to solve the same 

problem and model tackled by Alipouri et al. (2017). They also solved the same 960 benchmark 

problems as Alipouri et al. (2017) and reported the results for 500, 5000, 50000 and 100000 

computed schedules by the algorithm. Unlike the CPLEX, SADESP was able to find integer 

solutions for all 960 instances, such that with 100000 computed schedules, SADESP worked 

well (i.e., found better, equal or close objective values) than CPLEX on about 96.88% (i.e., 465 

out of 480) of the J30 problems and 95.21% (i.e., 457 out of 480) of the J60 problems.  
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All the above mentioned drawbacks of CPLEX in solving the MILP model of Alipouri et al. 

(2017) motivated us to introduce a new exact search methodology based on branch-and-bound 

(B&B) algorithm which can act better than CPLEX and also SADESP in driving policies for FS-

RCPSP. Due to the following two reaons branch-and-bound was chosen for the current research: 

1- FS-RCPSP belongs to the set of complex combinatorial problems and very often branch-and-

bound is the only exact technique which can optimaly solve these problems within an acceptable 

computational effort (Demeulemeester and Herroelen, 2002), and 2- Branch-and-bound can be 

truncated and used as a heauristic to find a near optimal solution within a reasonable time for the 

large-scale problems having many activities. Branch-and-bound has been used by many 

resaerchers to solve RCPSP and its variants. For example, Brucker et al. (1998) and Dorndorf et 

al. (2000) solves RCPSP with a B&B, Davari and Demeulemeester (2018) proposes a B&B for 

the chance-constrained RCPSP, Kolisch et al. (1995), Sprecher et al. (1997), Sprecher and Drexl 

(1998), and Altintas and Azizoglu (2020) present a B&B for a multi-mode project scheduling 

sroblem with a single non-renewable resource, and so on. To the best of our knowledge, there is 

not any research to propose a B&B method for FS-RCPSP.  

Author of the current study believes the contribution of this paper is threefold. First,  the problem 

is modelled as a fuzzy stochastic version of RCPSP (FS-RCPSP) handling the two key sources of 

uncertainty in a unified way. Second, to the best of the author’s knowledge, it is the first effort to 

propose a B&B algorithm to solve project scheduling problems in an uncertain environment. 

Third, to the best of the author’s knowledge, this is the first time in the literature that the resource 

flow concept is employed in a B&B procedure for solving a variant of RCPSP. 

The remainder of this paper is organized as follows. In the next section, some preliminaries on 

resource flow and fuzzy probability theories are presented. In section 3, the FS-RCPSP problem 

description and its model formulations are provided. In section 4, our proposed resource flow 

based branch-and-bound algorithm for solving FS-RCPSP is presented. In section 5, the results 

of computational experiments to test the potency of our method in solving the FS-RCPSP are 

reported. Finally, in section 6, concluding remarks are drawn out and future works are presented.  

2. Basic Concepts and Definitions 

In this section, some general information is given on resource flow theory. Then, we review 

some key concepts in Buckley's (2005) approach to modelling uncertainty using fuzzy 
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probability theory and fuzzy random variables. Hereafter, we place a “bar” and a “tilde” over a 

letter to denote a fuzzy number and a fuzzy random number, respectively.  

2.1. Resource flow theory 

In any feasible schedule, upon the completion of an activity i its resources must be allocated to 

other activity/activities. The key idea of resource flow theory is to determine the number of 

resource units of type l that are transferred from the end of one activity to the beginning of 

another activity. Based on these resource links between the activities a network, named resource 

flow network, can be constructed for each resource type. Therefore, this network depicts how 

units of a resource type are passed on between the activities in the schedule. In RCPSP, the 

problem of resource conflicts existing among the activities of the project can be solved by 

introducing appropriate resource flow networks. 

2.2. Fuzzy probability theory  

A discrete probability function P  on all subsets of a finite set 1{ ,..., }U u u  is defined as 

({ })P u a  , 0 1a   all   and 
1

1a



 

 . This probability function is able to handle the 

uncertainties arising from natural variability (randomness) but cannot deal with the uncertainties 

due to imprecise information (fuzziness). In order to handle both kinds of uncertainty, Buckley 

(2005) substitutes a fuzzy number ({ })a P x   for each crisp number a  and assumes that 

0 1a   for all  . The discrete setU  together with the a  values is a discrete fuzzy 

probability distribution (Buckley, 2005). Buckley (2005) considers the restriction “there are 

, 1a a     so that 
1

1a



 

 ” on the a  values and accordingly defines the fuzzy probability 

of 1{ ,.., }ku u  , 1 k   , and the expected value of a discrete fuzzy probability distribution by 

their α-cut as follows: 

1 1

( ) { ,1 , 1}
k

P a a a a


    
 

 
 

       , for 10  , 
(1) 

1 1

{ ,1 , 1}x a a a a
 

     
 

  
 

      , for 10  . 
(2) 
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Let °U  be a fuzzy random variable and let ( , )f u  be a fuzzy probability density, where u IR  

and  
Q ,...,1  is for parameters q , Qq 1 . The fuzzy probability of ° 1 2[ , ]U z z  and the 

expected value of fuzzy probability density ( , )f u  are defined by their α-cut as follows:  

° 2

1
1 2( [ , ]) { ( ; ) ,1 , ( ; ) 1},

z

q q
z

P U z z f u du q Q f u du    



        for 10  . (3) 

{ ( ; ) ,1 , ( ; ) 1},q quf u du q Q f u du     
 

 
       for 10  , (4) 

In this research, the same as Alipouri et al. (2017, 2019), fuzzy random variables with fuzzy 

normal density functions are employed to represent the durations of activities. Moreover, all 

fuzzy parameters are represented by triangular fuzzy numbers (TFNs). A fuzzy normal density is 

shown as ),( 2N , wherein only the values of   and 2  have become fuzzy compared to the 

crisp normal density ),( 2N . Buckley (2005) provides the result that the fuzzy mean of 

),( 2N  equals to   and its fuzzy variance is 2 .  

3. Problem Description and Formulation 

The problem under study is FS-RCPSP, which is a variant of RCPSP considered in an uncertain 

environment in which randomness and fuzziness exist simultaneously. Here, we just consider the 

uncertainties existing in durations of activities, owing to the fact that extending the proposed 

algorithm to another algorithm which considers the uncertainties in other parameters is 

straightforward.  

In FS-RCPSP a single project consisting of n+2 activities is considered. The activities are 

numbered 0 to 1n , where 0th and ( 1n )th activities are start and end dummy activities, 

respectively. Each activity j cannot be interrupted once in progress (i.e., preemption is not 

allowed), and has to be started after all its immediate predecessor activities i (
jIPi ) have 

finished (i.e., precedence constraint). We have L renewable resources (e.g., equipment and 

human resources), and each resource Ll  has a limited capacity lR  ( Ll 1 ) throughout the 

project duration. Each activity j requires 
jlr  ( 10  nj , Ll 1 ) units of resource l once in 

progress. The sum of resource requirements for resource l at any time period t cannot exceed lR  

(i.e., resource constraint). The processing time of activity j is denoted as jd
~

 ( 10  nj ) 
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which is a fuzzy random variable. The start and finish time of each activity j are respectively 

shown by 
js~  and jf

~
 ( 10  nj ). The objective is to find precedence and resource feasible 

completion times for all activities which lead to the minimum expected makespan.  

Based on the description above, FS-RCPSP can be formulated as follows:  

1

~
nfMin  

s.t. 
(5) 

 Ejiallfordff jji  ),(
~~~~  (6) 

0 0 0s f %%  (7) 

TtftdfitBLlRr

tBi

iiilil ,...,1,}
~~~

|{)(,,...,1
)(




 (8) 

1,...,00
~

 niforf i  (9) 

where, E is the set of all precedence relations and B(t) is the set of activities being processed at 

the time period t. In this formulation, constraints (6) and (8) are respectively used to impose 

precedence and resource constraints. Due to the lack of a suitable approach for transferring set 

)(tB  to a linear constraint and also due to the presence of fuzzy random parameters and 

variables, the above mathematical programming model cannot be solved directly. Therefore, 

Alipouri et al. (2017) made use of assumptions and concepts introduced by Artigues et al. (2003) 

and introduced a resource flow network model for FS-RCPSP. Based on the fuzzy probability 

theory of Buckley (2005), they represented the durations of activities by fuzzy random variables 

with normal probability density ),( 2N , where   and 2  are triangular fuzzy numbers. 

Then, adopting the concept of expected value of a fuzzy random variable, they transferred their 

model with fuzzy random variables to the following mixed integer linear programming (MILP) 

model with deterministic parameters and variables (Alipouri et al., 2017).  

)()()( 2,13,132,122,11,11   nnnnn fffffZMin   

s.t. 

(10) 

 

 Ejixij  ),(1  (11) 

21 ( , ) ,ij jix x i j V i j      (12) 

kikjjiVkjixxx jkijik  ,,,),,(1 3  (13) 
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jiVjiMMdxff jijji  ,),()( 2
1,1,1,  (14) 

jiVjiMMdxff jijji  ,),()( 2
2,2,2,  (15) 

jiVjiMMdxff jijji  ,),()( 2
3,3,3,  (16) 

Viff in  1,1,1  (17) 

Viff in  2,2,1
 (18) 

Viff in  3,3,1  (19) 

niLlVirC il
Vj

l
ij  

,,  (20) 

1,,  
jLlVjrC jl

Vi

l
ij  (21) 

1,,,),(),min(0 2  jniLlVjixrrC ijjlil
l
ij  (22) 

jiVjixij  ,),(}1,0{ 2  (23) 

0,1 0,2 0,3 0f f f    (24) 

where 
ijx  is a binary variable denoting that activity j is started immediately after the completion 

of activity i whenever 1ijx , otherwise 0ijx . l

ijC  denotes the amount of resource l directly 

transferred from activity i to activity j. V and E are the set of all activities and the set of all 

precedence relations, respectively. The objective function (10) minimizes the expected 

completion time of the end dummy activity and consequently the expected completion time of 

the project, ),,( 3,12,11,11 
 nnnf fff

n
 . To obtain this objective value, Alipouri et al. (2017) 

adopted the technique described in Buckley and Feuring (2000). First, the problem of 

minimizing the fuzzy number 
1nf

  was converted into a multi-objective problem; then, the 

multi-objective problem was converted into a single objective problem with the use of weights 

3,2,1,0  ii , 1321   . This is a flexible objective function for project managers 

since they can vary the values of weights to satisfy their different requirements. Equation (11) 

introduces the precedence relations between the activities. Constraint (12) is transiting constraint 

and constraint (13) ensures that no cycles will exist in the network. Constraints (14)-(19) are 

employed for setting the completion times of activities. Constraints (20)-(22) are resource flow 

inequalities. By constraint (22) the resource flow values are limited to ),min( jlil rr  of arc ),( ji  if 

the arc exists. Constraints (20) and (21) have been devised to ensure that the incoming flow on 



 

10 

 

node i is equal to the outgoing flow from that node. In the next section, the proposed branch-and-

bound procedure for solving this problem is presented. 

4. The Proposed Branch-and-bound Algorithm  

In what follows, a branch-and-bound procedure is described to solve the FS-RCPSP. This 

algorithm can be employed to obtain optimal solutions and also can be truncated in order to find 

promising near optimal solutions. In section 4.1, the branching strategy is presented. Section 4.2 

is devoted to the description of five simple and effective rules for pruning the solution tree. The 

algorithmic description of the proposed B&B for solving FS-RCPSP is summarized in section 

4.3. Finally, in section 4.4, an illustrative numerical example is given.   

4-1. Branching and node selection 

In this subsection, we describe how a solution tree is built by the proposed B&B. In other words, 

our strategy in creating new nodes of the tree and selecting a node for further branching is 

explained. Based on the literature, there are three main branching strategies for constructing a 

search tree.  

 Best-first strategy, also known as frontier search or skiptracking strategy, which always 

selects the intermediate node with the lowest bound to branch from next.  

 Breadth-first strategy, which processes all the nodes at one level of the search tree before 

going to a higher level.  

 Depth-first strategy, also known as backtracking strategy, which explores a path by 

processing node by node down a branch until a node on the path is fathomed or a 

complete solution is reached. Then, if there exists at least one previously created, 

unfathomed, intermediate node which has not been fully explored, backtracking is 

accomplished.  

In breadth-first strategy the number of nodes at each level grows exponentially, leading to avoid 

using this strategy for complex problems. Also, the same as breadth-first strategy, the best-first 

strategy is unable to find a feasible solution before ending the search and requires more storage 

capacity than the depth-first strategy. However, a depth-first strategy can find a feasible solution 

right away leading to have a rather good solution if the algorithm is truncated prematurely. All 



 

11 

 

the advantages of depth-first strategy against other strategies encouraged us to employ this 

strategy for constructing the search tree. 

While traversing the tree down to the leaves, a decision has to be made at each level of the tree 

about selecting a node for further branching. To this end, in this study the earliest start time 

(EST) concept is employed as explained later in this subsection.  

In section 3, it was explained that processing time of each activity i is represented as fuzzy 

normal density ),( 2
iiN   and the values of i  and 2

i  are assumed to be triangular fuzzy 

numbers. Based on the fuzzy probability theory of Buckley (2005), the expected duration of each 

activity i with fuzzy normal density ),( 2
iiN   is i . Therefore, the expected makespan is also a 

triangular fuzzy number which can be calculated using the expected durations of activities, 

),,( 3,2,1, iiid ddd
i
 . Thus, these expected durations will be the base of the calculations in the 

proposed B&B. Using the expected values of activity durations does not mean to ignore 

randomness, since these expected values are descriptive quantities calculated based on the 

probability distributions of fuzzy random variables. It is worthwhile noting that, while traversing 

on the search tree, if it is needed to compare two triangular fuzzy numbers, their corresponding 

crisp (Cr) values are compared. The corresponding crisp value of the triangular fuzzy number 

1 2 3( , , )B b b b  is calculated using the following equation: 

1 1 2 2 2 3 3 2( ) ( ) ( )
B

Cr b b b b b       . (25) 

Each node of the search tree is associated with a partial schedule in which an expected fuzzy 

finish time is assigned to an activity of the project. Here, based on the concept of resource flow 

theory, resource precedence relations are defined between the activities that resource transferring 

has taken place between them. These relations will lead to have feasible partial and/or complete 

schedules in every node of the search tree (Artigues et al., 2003). To the best of author’s 

knowledge, this is the first time in the literature that the resource flow concept is employed in a 

B&B procedure for solving a variant of RCPSP.  

In the first step of constructing the search tree, the start dummy activity is scheduled at the root 

node and its expected start and finish times are set to (0,0,0). Moreover, all the available 

resources are assigned to this dummy activity, and also resource requirements of the end dummy 
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activity are considered to be equal to the available amount of the resources. The branching 

process is started by adding eligible activities (i.e., unscheduled activities for which all 

predecessors have scheduled) of the first level, as children, to the root node, as parent. To this 

end, at this first level, the algorithm probes for all the activities that the start dummy activity is 

their only predecessor, and stores them in the eligible activities set of the first level, EAS1. Then, 

one node is created for each activity in EAS1 and this activity is scheduled to start at expected 

time (0,0,0). The resources required by each of these newly scheduled activities are transferred 

from the start dummy activity. Among all these newly added nodes, one node has to be selected 

to branch from it in the next level of search tree. For this selection, an expected EST value and 

its corresponding crisp value (see Equation (26)) are calculated for all the activities of the 

project. The competing activity with the lowest ESTCr  value (using the lower activity number as 

a tie breaker) is selected for further branching.  

)()()( 2,3,32,22,1,1 iiiiiEST ESTESTESTESTESTCr
i

  , (26) 

where 1,iEST , 2,iEST , and 3,iEST are earliest start times of activity i which are respectively 

calculated by applying the critical path method on the most optimistic, most likely, and most 

pessimistic values of the expected durations of project activities.  

So far, we could explain the first iteration of the proposed B&B algorithm. From this iteration on 

until the end of search process the procedure is somehow different, as some strategies for 

avoiding the node redundancy are employed by the algorithm to reduce the search space of the 

problem. After selecting a node (we call this node and its corresponding activity as SN and SA, 

respectively) from the set EASm of level m to add to the tree, based on the resource flow network 

and precedence relations existing on the current path, activities which have been scheduled so far 

and are able to provide resources to the activity of the selected node are listed. The activities on 

this list are sorted based on the non-decreasing order of their expected finish time and from the 

activity that has the lowest expected finish time it is started to transfer the resources into activity 

SA. Transferring of resources is continued until this activity has collected all its required 

resources. The resource transferor activities which are not the predecessor of activity SA are 

considered as the resource predecessor of this activity. Then, after taking into account the 

pruning rules presented in the next subsection, if activity SA is not fathomed, this activity is 
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scheduled at the earliest possible expected start time equal to or greater than the expected time of 

the activity scheduled at the previous level.  

4-2. Pruning Rules 

In order to speed up the above proposed branching procedure, it is necessary to introduce some 

pruning rules which are used to fathom the nodes that branching from them is proved to be 

unnecessary. Fathoming of a node can happen if it is proved that this node contains non-optimal 

or infeasible solutions, or by branching from the other intermediate nodes of the search tree a 

similar or better solution could be obtained (Demeulemeester and Herroelen, 2002). In building 

our proposed search tree we relied on the following five pruning rules which are simple and 

effective. These pruning rules are the extended version of the pruning rules which have been 

proposed in literature for the precedence tree algorithm.  

Rule 1. If a child node is scheduled to start in the same expected start time as its parent and it has 

“smaller” (arbitrarily one can use the word “larger”) activity number, this child node is 

fathomed. This is because a same partial solution can be produced in another branch of the tree, 

this time by scheduling the smaller numbered activity before the one with the higher number.  

Rule 2. Assume that activity SA∈EASm is going to be scheduled on expected start time μ̅sSN
 at 

level m of the B&B tree. If this activity can be performed at a previous level with an expected 

start time less than μ̅sSN
 and without violating resource and precedence constraints, the 

corresponding node of this activity (i.e., SN) is fathomed. This is because of the existence of a 

node at the previous level that branching from it will result in a same schedule that can be 

produced by shifting the identified activity/activities.  

The other three pruning rules are based on the calculation of lower bounds. The lower bounds 

calculated for a node are compared with an upper bound. If at least one of the lower bounds of 

the node exceeds or equals the current upper bound of the search tree, that node is pruned. The 

initial value of the upper bound is set to the sum of the expected durations of all activities of the 

project. Each time a complete solution with a better expected makespan is found by the B&B 

algorithm, the upper bound is changed to be equal to this expected makespan.  
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Ideally, the best lower bound value for a given node is the value of the best accessible objective 

value to the problem at hand from this node. However, here obtaining this value is itself NP-hard 

leading us to relax the problem in order to calculate the lower bounds. Therefore, in this study, 

after the relaxation of resource constraints, an expected distance matrix, denoted as DM , that its 

elements are triangular fuzzy numbers, is calculated as explained in Remark 1 and used in the 

calculation of lower bounds.  

Remark 1. Let ),,( 3,2,1, ijijijdm dmdmdm
ij
  be a triangular fuzzy number denoting the expected 

length of a longest path (expected distance) from activity i to activity j. The Floyed-Warshall 

algorithm, which has the time complexity of O(n3) (see Lawler (1976)), is used three times to 

calculate the expected distance matrix VjidmDM ij  ,)( . This algorithm is applied on the most 

optimistic values of expected durations of activities to calculate the 1,ijdm  and on the most likely 

and most pessimistic values to calculate the 2,ijdm  and 3,ijdm , respectively.  

Rule 3. If a child node is selected to start in the same expected start time as its parent node, a 

lower bound (LB1) for the child node can be calculated by adding the expected start time of the 

parent node to the remaining expected distance from the activity of the child node to the end 

dummy activity.  

Rule 4. Let LNm be the set of unscheduled activities having numbers lower than the activity of 

node SN of the search tree. A lower bound (LB2) for this node is calculated as follows.  

}1,max{)1,1,1(2  njLNiLB mdms ijSN
 , (27) 

where 
SNs  denotes the expected start time of the activity of the node SN. This rule can be easily 

justified using Rule 1, where any lower numbered activity prohibited from being scheduled in an 

expected start time equal to or smaller than that of the currently scheduled, higher numbered 

activity.  

Rule 5. Let SN be a given node of the search tree with EASm denoting the set of eligible activities 

to be scheduled after SN. A lower bound (LB3) for the node SN can be calculated as follows.  
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3 max{ , 1}
SN SN ijs d dm mLB i EAS j n        . (28) 

4-3. Algorithmic description 

The algorithmic description of the proposed B&B for solving FS-RCPSP is given in this 

subsection. The B&B procedure consists of the following eight steps. Also, the flowchart of the 

proposed B&B is illustrated in Figure 1.  

Step1. Read data related to the problem at hand: the number of non-dummy activities to be 

scheduled (n), expected processing time of each activity i (i=0, …, n+1) as triangular 

fuzzy number ),,( 3,2,1, iii ddd , precedence relations, resource requirement of each activity, 

resource availabilities, truncating criteria.  

Step 2. Calculate the expected distance matrix DM  using expected durations of activities and 

critical path method calculations as explained in Remark 1. 

Step 3. Set the values of 1 , 2 , and 3  to user-defined values. Set the initial upper bound as 





n

i

di
UB

1

 . Set the level of the B&B tree 0m . Calculate the expected EST value for 

each activity of the project.  

Step 4. Schedule the start dummy activity to start and finish at the expected time (0,0,0) and 
assign all the available resources to this dummy activity. Assume that the resource 
requirement of dummy activity n+1 is equal to the availability of resources. Update the 
partial schedule PS={0}. 

Step 5. Increment the level number by one and find the eligible activities of first level, EAS1. 
Schedule all the activities of EAS1 to start at expected time (0,0,0) and transfer the 
resources required by these activities from start dummy.  

Step 6. Select the node with the lowest expected EST value (using lower activity number as a tie 
breaker) to branch from it at the next level. Update PS with regard to the selected activity. 
Set m=m+1. 

Step 7. WHILE there is at least one unexplored, unfathomed node or truncating criteria are not 
satisfied, Do 

           Step 7.1. Find the eligible activities EASm of level m, and select the activity with the 
lowest expected EST value (using lower activity number as a tie breaker), denoted 
as SA, for further branching.  

           Step 7.2. Based on the resource flow and precedence relations existing on the current 
path, list activities being able to send resources to SA and prioritize them 
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considering their expected finish time such that lowest expected time results in 
highest priority.  

           Step 7.3. Starting from the activity with highest priority transfer resources to SA until SA 
gets all its required resources, consider the transferor activities which are not the 
predecessor of activity SA as the resource predecessor of this activity.  

           Step 7.4. Considering five pruning rules presented in section 4.2, if activity SA is not 
fathomed, go to step 7.5; otherwise go to step 7.6.  

           Step 7.5. Create a node for activity SA and schedule it at the earliest possible start time 
equal to or greater than the expected start time of the activity scheduled at the 
previous level. Set m=m+1, and set PS. If SA is the end dummy activity, update 
upper bound.  

           Step 7.6. If there exists at least one unexplored, unfathomed node, backtrack on the search 
tree to select another node to branch from next and then update m and PS with 
regard to the location of the selected node; otherwise go to step 8.  

Step 8. END WHILE 

It is necessary to metion that, based on Alcaraz and Maroto (2001), an optimal solution for 

RCPSP can only be achieved by the exact solution procedure in small projects, usually with 

fewer than 60 activities, which are not highly resource constrained. For projects with large-scale 

activities there can be two scenarios to apply the proposed B&B: 1- using more powerful 

computers to solve the project to optimality, and 2- truncating the algorithm based on a user-

defined criteria to find a near optimal solution. 
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Figure 1. Flowchart of proposed branch-and-bound algorithm 
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4-4. Numerical example 

In this section, our proposed resource flow-based B&B procedure is used to find an optimal 

solution for the project instance shown in Figure 2. In this activity-on-the-node network, each 

node is the representative of an activity and the numbers above and below each node denote 

respectively the expected duration and resource requirement of that activity. The resource 

availability for this project equals 7. Values of 1 , 2 , and 3  are set to 0.1, 0.8, and 0.1, 

respectively. The initial upper bound is calculated as )43,27,13(
7

1


i

di
UB  . Figure 3 depicts 

how the B&B tree can be built on this instance.  
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Figure 2. Activity network of the example project 

In Figure 3, the first line of every node shows the node number on the left and the activity 

number of that node on the right. Moreover, on the second line of every node the expected start 

and finish times for the activity scheduled at that node are indicated. Each pair of numbers on the 

last line of every node in Figure 3 is assigned to a resource flow. The first and second numbers of 

a pair correspond respectively to the number of activity sending the resource to the node and the 

amount of the resource which is sent. In the search tree of Figure 3 the fathomed nodes are 

depicted in gray or in dotted lines, such that the gray nodes are the nodes pruned by pruning rules 

1 and/or 2 and the nodes with dotted lines are the nodes pruned because of the lower bound 

based pruning rules 3, 4, and/or 5.  

The search tree initially (i.e., at level 0) consists of the root node in which start dummy activity is 

scheduled to start and finish at the expected time (0,0,0). The eligible activities of level 1 are 
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EAS1={1,2,3}, which get their required resources from start dummy activity and are scheduled to 

start at the expected time (0,0,0), see step 5 of the algorithm. The expected EST for all the 

activities in EAS1 are equal, so activity 1 which has a lower number than the others is selected to 

branch from it at level 2. The eligible activities of level 2 are EAS2={2,3,6}, among them activity 

2 is selected as SA considering the expected EST values. In regard to the resource flow and 

precedence relations on the current path, activities 0 (having 5 units of resources) and 1 (having 

2 units of resources) can send their resources to activity 2. Considering the expected finish times, 

since activity 0 has higher priority than activity 1 (see step 7.2 of the algorithm) for sending 

resources to activity 2, 3 units of resources are transferred from start dummy activity to activity 

2. Activity 2 is not fathomed by any of the presented pruning rules, so a node is created for this 

activity with expected start and finish times equal to (0,0,0) and (3,5,7), respectively. The partial 

schedule has now three activities PS={0,1,2}. At level 3, EAS3 consists of three activities 3, 4, 

and 6. The priority of activity 3 in regard to the expected EST values is more than the others; 

therefore activity 3 is considered as SA. Since this activity is not fathomed by any of the pruning 

rules, it is scheduled to start at expected time (1,2,3) getting its required resources from root node 

(2 units of resources) and activity 1 (one unit of resources). Activity 1 is a resource transferor to 

activity 3 but is not its predecessor, thus activity 1 is considered as a resource predecessor of 

activity 3. It is continued to traverse the tree down until a complete feasible schedule is obtained 

by scheduling the end dummy activity to start and finish at expected time (8,19,31). The upper 

bound is now updated by setting its value to the expected finish time of end dummy activity, i.e. 

UB=(8,19,31). Then, since there exist unexplored, unfathomed nodes on the search tree, the 

backtracking is done and the node 12 on level 5 is selected as SN. However, this node is 

fathomed because its LB3 equals UB and another node, node 13 in Figure 3, is selected for 

evaluation. This search process finishes after 58 nodes have evaluated and the expected time 

(8,19,31) is resulted as the minimum value for the expected makespan.  
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Figure 3. The B&B tree for the numerical example of Figure 2. 
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5. Computational Experiments 

The algorithm proposed in section 4.3 was implemented in Matlab programming language on a 

laptop with Windows 7 operation system, Intel Core 2 Duo and a CPU at 2.00 GHz. In Section 

5.1 the tested benchmark problem instances are described. In Section 5.2 a sensitivity analysis is 

carried out to investigate the effects of different settings for the weights 1 , 2 , and 3 on the 

performance of the B&B. Finally, in Section 5.3 the computational results are provided. 

5-1. Test instances 

Since there is no benchmark problem set for RCPSP with fuzzy random activity times, we act the 

same as Alipouri et al. (2017, 2019) and take the J30 and J60 sets of benchmark problems from 

the PSPLIB (see site: http://www.om-db.wi.tum.de/psplib/data.html) as the base and generate 

problems with fuzzy random activity durations. Sets J30 and J60 has been systematically 

generated by the standard project generator ProGen and each set consists of 480 instances.  

Here, durations of activities are assumed to be fuzzy normal variables and the calculations are 

carried out based on the expected values of the durations, ),,( 3,2,1, iiid ddd
i
 , 10  ni , 

which are triangular fuzzy numbers. Therefore, by generating triangular fuzzy times for the 

expected durations of activities, with regard to their deterministic durations, suitable benchmark 

problems for testing the performance of our proposed procedure can be produced. To this end, 

2,id , 10  ni , is set to the deterministic estimation for activity i, 1,id  and 3,id , 10  ni , 

are calculated as 22,1,  ii dd  and 32,3,  ii dd , respectively, and the values of 1,id  are bounded 

by zero. Finally, expected durations of start and end dummy activities are set to (0,0,0). 

5-2. Sensitivity analysis 

A sensitivity analysis was carried out to investigate the effects of different settings for the 

weights 1 , 2 , and 3  on the performance of the B&B. 96 benchmark problems selected 

randomly from the 96 groups of problems generated in Section 5.1. These were solved to 

optimality by the proposed B&B based on the 10 scenarios shown in Table 1 for the weights 1 , 

2 , and 3 . 

http://www.om-db.wi.tum.de/psplib/data.html
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Table 1. Different scenarios for the setting of weights 
1

 , 
2

 , and 
3

 . 

Weights 

S
cen

ario
1 

S
cen

ario
2 

S
cen

ario
3 

S
cen

ario
4 

S
cen

ario
5 

S
cen

ario
6 

S
cen

ario
7 

S
cen

ario
8 

S
cen

ario
9 

S
cen

ario
10 

1
 &

3
  0.45 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0 

2
  0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

For each of the scenarios in Table 1, the mean of the defuzzified makspans for both sets J30 and 

J60 are reported in Figure 4. The well-known centroid of area (COA) method is employed to 

defuzzify fuzzy numbers. As seen in Figure 5, an increase in the value of 2  (from scenario 1 to 

8) leads to a decrease in defuzzified makespans of both sets. However, from scenario 8 to 

scenario 10, increasing the value of 2  increases the defuzzified makespans. Therefore, based on 

this sensitivity analysis, values 0.1, 0.8, and 0.1 are appropriate settings respectively for the 

weights 1 , 2 , and 3 in order to calculate the fitness values in the proposed B&B. 

 

Figure 4. Results of the sensitivity analysis 

5-3. Computational results 

The literature review of FS-RCPSP indicated that, so far only Nematian et al. (2010), Alipouri et 

al. (2017), and Alipouri et al. (2019) have proposed a method to solve this problem. Nematian et 

al. (2010) did not report any results from applying their MILP model on any benchmark problem 

and just illustrated their proposed procedure by an example with 7 activities. Hence, in this 

paper, the performance of our proposed B&B algorithm is only compared with the results 

obtained by Alipouri et al. (2017, 2019) to solve the 960 benchmark problem instances identified 
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earlier. Comparing against CPLEX and SADESP provides quantitative results that are easily 

reproducible by other researchers. 

Based on the sensitivity analysis carried out in Section 5.2 and also in the same setting as 

Alipouri et al. (2017, 2019), in all experiments, values of 1 , 2 , and 3  are considered to be 

0.1, 0.8, and 0.1, respectively. Alipouri et al. (2019) showed based on a sensitivity analysis that 

this setting for the weights results in minimum defuzzified makespans. The results obtained by 

applying CPLEX, SADESP (with 100000 computed schedules) and our proposed algorithm to 

solve the project instances generated from J30 and J60 sets are presented in Tables 2 and 3. 

These instances, based on the input parameters of ProGen, are classified into 96 groups – 48 

groups for each set – each one containing 10 problems. The number of problems out of 10 that 

B&B was able to find an integer solution for them, the mean of objective values (Mean of Z), 

and the mean of computation times (Mean of CPU) are reported for each groups in both tables. 

In addition, the same results reported in Alipouri et al. (2017) and Alipouri et al. (2019) are 

presented in these tables under the CPLEX and SADESP columns for comparison. In both tables, 

for those groups which their results are differentiated in italics from other results, the CPLEX 

could only find integer solutions for some of the problems. The results of CPLEX for these 

groups are only for those problem instances for which it was able to find integer solutions. Bold 

numbers in the columns of Tables 2 and 3 show where either CPLEX, SADESP or B&B has 

performed better in regard to mean of Z and mean of CPU times. Since Alipouri et al. (2019) has 

compared the results of SADESP with CPLEX, this comparison is not discussed in this paper.  

Table 2. CPLEX, SADESP, and proposed B&B results from solving 480 generated problems (48 groups) generated 

from J30 set 

No. Group 

CPLEX SADESP (100000 schedule) Proposed branch-and-bound 

Solved 

No. 

Mean 

of Z 

Mean of 

CPU (s) 

Solved 

No. 

Mean 

of Z 

Mean of 

CPU (s) 

Solved 

No. 

Mean 

of Z 

Mean of CPU 

(s) 

1 j30_1 10 40.40 365.57 10 40.75 7568.43 10 40.4 240.67 

2 j30_2 10 38.62 13.11 10 38.62 8126.23 10 38.62 8.07 

3 j30_3 10 48.84 1.14 10 49.15 8243.15 10 48.83 0.60 

4 j30_4 10 42.06 0.38 10 41.93 7992.04 10 41.93 0.63 
5 j30_5 10 58.50 5308.60 10 56.94 8342.16 10 56.49 3705.92 

6 j30_6 10 41.15 3821.49 10 42.09 8265.25 10 41.14 2356.22 

7 j30_7 10 38.09 45.18 10 38.39 8326.16 10 38.09 23.87 

8 j30_8 10 40.82 1.99 10 40.78 7953.77 10 40.78 1.74 

9 j30_9 0 N/A 4934.15 10 62.9 8234.62 10 60.07 16553.42 
10 j30_10 10 43.64 3767.31 10 42.32 8122.30 10 42.30 2133.73 

11 j30_11 10 45.67 3027.07 10 45.35 8256.12 10 45.30 1285.02 

12 j30_12 10 40.20 8.87 10 40.23 8066.26 10 40.13 4.25 
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13 j30_13 0 N/A 3369.70 10 61.88 8421.26 10 60.10 13562.67 
14 j30_14 10 42.89 6517.80 10 42.31 8168.16 10 40.72 3973.02 

15 j30_15 10 43.85 2620.86 10 43.6 8421.11 10 43.57 678.33 

16 j30_16 10 37.27 178.35 10 37.23 7939.15 10 37.23 119.80 

17 j30_17 10 47.82 38.83 10 47.87 8224.40 10 47.82 158.63 
18 j30_18 10 44.53 1.43 10 44.42 8061.22 10 44.39 12.25 
19 j30_19 10 42.25 16.53 10 42.25 8155.12 10 42.25 10.94 

20 j30_20 10 41.43 3.23 10 41.44 8325.32 10 41.43 2.32 

21 j30_21 10 58.96 13411.07 10 57.87 8065.16 10 57.3 5894.60 

22 j30_22 10 44.54 2702.73 10 44.61 8233.13 10 44.53 2243.70 

23 j30_23 10 45.84 385.11 10 45.88 8316.14 10 45.84 168.90 

24 j30_24 10 42.19 4.47 10 42.19 8398.46 10 42.19 0.381 

25 j30_25 0 N/A 5482.67 10 64.00 8763.16 10 63.46 21802.88 
26 j30_26 10 46.92 4101.51 10 46.68 8536.15 10 46.67 1249.32 

27 j30_27 10 46.57 141.04 10 46.43 8011.56 10 46.32 370.72 
28 j30_28 10 46.15 3196.74 10 46.14 8077.82 10 46.14 3.53 

29 j30_29 0 N/A 4596.00 10 72.95 8043.55 10 71.16 20753.57 
30 j30_30 10 48.82 10739.64 10 47.16 8079.88 10 46.03 2750.33 

31 j30_31 10 45.28 4716.09 10 44.89 8012.43 10 43.73 2729.92 

32 j30_32 10 44.90 48.66 10 44.86 8623.18 10 44.86 4.17 

33 j30_33 10 49.54 4.65 10 50.38 8466.58 10 49.54 46.35 
34 j30_34 10 47.85 1.90 10 47.83 8523.55 10 47.83 1.60 

35 j30_35 10 46.89 10.30 10 46.89 8433.15 10 46.89 2.94 

36 j30_36 10 46.65 7.03 10 46.65 8442.10 10 46.65 1.88 

37 j30_37 10 64.03 10471.41 10 64.04 8823.16 10 63.73 3725.03 

38 j30_38 10 49.55 964.60 10 49.83 8522.13 10 49.55 1040.17 
39 j30_39 10 47.93 13.14 10 47.93 8321.16 10 47.93 3.68 

40 j30_40 10 45.69 1.72 10 45.69 8522.88 10 45.69 0.78 

41 j30_41 8 86.41 6045.91 10 75.04 8369.16 10 74.09 5194.53 

42 j30_42 10 51.61 9401.20 10 51.21 8590.20 10 51.03 5326.87 

43 j30_43 10 47.51 5734.81 10 47.68 8566.16 10 47.51 1922.11 

44 j30_44 10 44.65 3.22 10 44.64 8346.13 10 44.64 1.66 

45 j30_45 5 89.08 6211.25 10 82.77 8324.08 10 82.09 6097.32 

46 j30_46 10 51.78 10143.28 10 50.17 8346.50 10 50.17 3539.95 

47 j30_47 10 45.95 3577.96 10 46.00 8003.18 10 45.85 1468.97 

48 j30_48 10 45.31 3.13 10 45.31 8046.13 10 45.31 2.19 

As it is seen in Table 2, the CPLEX was unable to find an integer solution for all problem 

instances in 4 groups of J30 set, resulting in a corresponding ‘N/A’ entry. This was also the case 

for two and five instances in groups j30_41 and j30_45, respectively. In contrast, SADESP (after 

100000 trials) and B&B was able to find integer solutions for all 480 instances of J30. Compared 

to the CPLEX, proposed algorithm performed better in terms of the mean of Z in 32 of the 48 

groups, and both algorithms were tied in 16 groups. When B&B’s results for set J30 is compared 

to those of SADESP, corresponding figures are 32 and 16, respectively. Where B&B beat 

CPLEX, the average margin between the mean results was 1.24% with some groups showing 

larger margins than 2%, e.g. j30_5 (3.44%), j30_10 (3.07%), j30_14 (5.06%), j30_21 (2.82%), 

j30_30 (5.71%), j30_31 (3.42%), and j30_46 (3.11%). The average margin between the results 

returned by B&B and SADESP was 0.77% in favor of B&B. Where B&B beat SADESP, the 

average margin between the mean results was 1.02% with some groups showing larger margins 
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than 2%, e.g. j30_6 (2.26%), j30_9 (4.50%), j30_13 (2.88%), j30_14 (3.76%), j30_29 (2.45%), 

j30_30 (2.40%), and j30_31 (2.58%). The average margin between the results returned by B&B 

and SADESP for J30 set was 0.68% in favor of B&B. Based on the results, our algorithm 

worked well (better or equal) on 100% of the problems in J30 set in terms of the mean of Z. 

Table 3. CPLEX, SADESP, and proposed B&B results from solving 480 generated problems (48 groups) generated 

from J60 set 

No. Group 

CPLEX SADESP (100000 schedule) Proposed branch-and-bound 

Solved 

No. 

Mean 

of Z 

Mean of 

CPU (s) 

Solved 

No. 

Mean 

of Z 

Mean of 

CPU (s) 

Solved 

No. 

Mean 

of Z 

Mean of CPU 

(s) 

1 j60_1 10 61.95 13712.01 10 62.19 14362.25 10 61.95 11654.12 

2 j60_2 10 55.09 327.22 10 55.21 15263.11 10 55.09 168.22 

3 j60_3 10 57.73 897.56 10 57.73 14900.88 10 57.73 263.15 

4 j60_4 10 56.97 0.87 10 56.95 14766.54 10 56.95 0.67 
5 j60_5 0 N/A 8926.37 10 78.21 14908.26 10 70.29 13186.25 

6 j60_6 8 56.89 14128.38 10 56.98 14866.57 10 56.16 8215.11 

7 j60_7 10 57.76 230.03 10 57.96 14004.26 10 57.76 103.25 

8 j60_8 10 56.50 25.09 10 56.50 13994.45 10 56.50 10.03 

9 j60_9 0 N/A 15389.13 10 86.49 13958.22 10 76.31 11263.25 
10 j60_10 4 59.95 21836.50 10 61.06 14696.55 10 60.00 8435.16 

11 j60_11 10 54.91 3721.25 10 53.89 14776.45 10 53.05 2144.20 

12 j60_12 10 53.10 122.26 10 53.09 13980.22 10 53.09 74.23 

13 j60_13 0 N/A 3369.70 10 92.36 14378.93 10 88.27 12005.59 

14 j60_14 6 60.48 4490.70 10 57.59 14425.78 10 56.44 2694.14 

15 j60_15 7 60.60 1871.2 10 60.65 14680.23 10 60.56 1309.84 

16 j60_16 10 53.02 253.22 10 53.09 13457.65 10 53.02 316.45 

17 j60_17 6 61.42 11746.37 10 68.54 14030.49 10 61.40 16924.06 
18 j60_18 10 63.37 124.58 10 64.86 14365.32 10 63.37 175.23 
19 j60_19 10 59.86 27.45 10 59.86 13908.25 10 59.86 12.12 

20 j60_20 10 60.87 0.56 10 60.87 13963.24 10 60.87 0.49 

21 j60_21 0 N/A 17342.3 10 81.29 14805.46 10 81.19 12386.52 

22 j60_22 0 N/A 213782.2 10 60.14 14069.19 10 59.61 16529.32 
23 j60_23 10 59.04 147.28 10 59.04 13904.29 10 59.04 85.26 

24 j60_24 10 58.30 22.41 10 58.30 14334.45 10 58.30 13.26 

25 j60_25 0 N/A 8937.23 10 83.65 14288.71 10 82.53 15266.08 
26 j60_26 6 52.97 4138.00 10 63.64 14375.12 10 59.26 2483.79 

27 j60_27 10 61.60 5026.36 10 61.73 14322.45 10 61.60 1843.32 
28 j60_28 10 61.91 54.86 10 61.89 13864.22 10 61.89 46.26 

29 j60_29 0 N/A 16283.70 10 95.33 14364.66 10 92.10 25328.89 
30 j60_30 5 66.46 12562.18 10 67.44 13949.28 10 64.68 6279.25 

31 j60_31 10 58.24 6221.54 10 58.29 13761.44 10 58.09 7952.36 

32 j60_32 10 65.12 178.37 10 65.12 14076.16 10 65.12 101.03 

33 j60_33 10 73.02 4605.7 10 74.26 14792.13 10 72.52 3201.11 
34 j60_34 10 62.51 1398.67 10 63.48 14041.46 10 62.09 800.26 

35 j60_35 10 63.10 13.5 10 64.26 13908.26 10 63.10 11.51 

36 j60_36 10 60.44 0.62 10 60.42 13983.23 10 60.41 0.54 

37 j60_37 0 N/A 11231.45 10 88.49 14720.47 10 85.74 9863.25 

38 j60_38 7 63.59 7525.78 10 65.55 14853.73 10 61.89 5268.04 
39 j60_39 10 64.34 4845.14 10 64.36 14315.29 10 64.24 4325.29 

40 j60_40 10 64.43 5.25 10 64.41 13952.16 10 64.41 16.25 

41 j60_41 0 N/A 14651.5 10 99.28 14762.11 10 96.73 22853.20 

42 j60_42 0 N/A 7638.2 10 66.16 14236.19 10 64.89 13200.58 

43 j60_43 10 65.34 7834.66 10 65.34 14729.10 10 65.34 8621.48 

44 j60_44 10 62.08 45.82 10 62.08 13942.72 10 62.08 37.12 
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45 j60_45 0 N/A 19456.3 10 98.22 14326.30 10 96.09 13265.26 

46 j60_46 0 N/A 6738.4 10 66.28 14235.16 10 65.82 5562.13 

47 j60_47 10 60.67 11851.27 10 60.64 13992.15 10 59.93 3596.25 

48 j60_48 10 64.37 149.32 10 64.35 14233.20 10 64.35 99.36 

For J60 set, which has more challenging problems than J30 set, the CPLEX could not find an 

integer solution for all problem instances in 12 groups having ‘N/A’ entry in Table 3. In contrast, 

SADESP (after 100000 trials) and proposed B&B was again able to find integer solutions for all 

480 instances of J60. Compared to the CPLEX, in 32 of the 48 groups for J60 sets, B&B 

performed better in terms of the mean of Z, whilst both algorithms were tied in the remaining 16 

groups. When B&B’s results for set J60 is compared to those of SADESP, corresponding figures 

are 34 and 14, respectively. Where B&B beat CPLEX, the average margin between the mean 

results was 0.55% and all the margins were smaller than 2% except for j60_11(3.39%). The 

average margin between the results returned by the two algorithms was 0.23% in favor of B&B. 

Where B&B beat SADESP, the average margin between the mean results was 2.59% with 14 

groups showing larger margins than 2%. The average margin between the results returned by 

B&B and SADESP for J60 set was 1.83% in favor of B&B. Based on the results, our algorithm 

worked well (i.e., better or equal) on 100%  of the problems in J60 set in terms of the mean of Z. 

CPU time of the algorithms should also be compared to clarify their costs. Since the 

specifications of the employed operating system for the current study are the same as Alipouri et 

al. (2017) and Alipouri et al. (2019), a fair comparison can be done easily just by comparing the 

CPU times reported in Tables 2 and 3. As seen in these tables, in 42 of the 48 groups for J30 and 

40 of 48 groups for J60, the computation time taken by CPLEX was higher than B&B, whilst for 

the remaining 6 groups for J30 and 8 groups for J60, CPLEX performed better in terms of the 

mean of CPU times. Also, it is observed in Tables 2 and 3 that in 44 of the 48 groups for J30 and 

45 of the 48 groups for J60 the mean of the mean of CPU time taken by SADESP (with 100000 

produced schedules) was higher than proposed B&B, whilst for the remaining 4 groups for J30 

and 3 groups for J60, SADESP performed better in terms of the mean of CPU times. But should 

it be taken into consideration that, based on the results of Alipouri et al. (2019) the computation 

time taken by SADESP scales proportionally with the number of schedules evaluated, and the 

distribution of computation times for SADESP was fairly uniform.  

Based on the above numerical experimental results on the project instances generated from J30 

and J60 sets from PSPLIB, it can be seen that the proposed B&B outperforms SADESP and 
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CPLEX. Meanwhile, the comparison of CPU times of algorithms indicates that in average the 

proposed B&B is faster than SADESP and CPLEX on 89% of the instances. In short, proposed 

B&B is more effective and efficient than SADESP and CPLEX in solving FS-RCPSP.  

6. Conclusion 

In this study, we addressed the fuzzy stochastic resource-constrained project scheduling problem 

(FS-RCPSP), where the objective is to minimize the expected makespan of the project subject to 

precedence and resource constraints under the mixed uncertainty of fuzziness and randomness. 

The uncertainties were represented by fuzzy random variables and calculations carried out based 

on the expected value of the durations. We designed a resource flow based B&B procedure 

incorporating with five pruning rules to find optimal solutions for this problem. The proposed 

B&B was successfully tested on 960 benchmark instances generated by ProGen project schedule 

generator. Our results indicated that the proposed approach can perform better than CPLEX 

solver and SADESP to solve the FS-RCPSP problems, which allows its use in practice to handle 

project schedule uncertainties.  

Future research should consider testing the proposed B&B algorithm on a wider variety of 

benchmark problems in order to validate both the generality and robustness of this approach to 

fuzzy stochastic resource-constrained project scheduling. Currently, only the mean of the activity 

durations, modeled as fuzzy random variables, is used in the calculations of the proposed 

algorithm. Future studies can consider modeling other project parameters (e.g. the resource 

requirements of activities) as fuzzy random variables and include the variance of uncertain 

parameters along with the mean value in the model. Moreover, future research should try to 

introduce scenarios and to find a compromise between the solutions related to every scenario. 

Proposing more effective pruning rules can also be a good subject for future researches. 
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