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Abstract
PUF (Physical unclonable function) is a new hardware security primitive, and the research on PUFs is one of the emerging
research focuses. For PUF-based mutual authentication protocols, a method to abstract the security properties of hardware by
using logic of events is proposed, and the application aspects of logic of events are extended to protocols based on hardware
security. With the interaction of PUF-based mutual authentication protocol formally described by logic of events, the basic
sequences are constructed and the strong authentication property in protocol interaction process is verified. Based on the logic
of events, the freshness of nonces is defined, and the persist rule is proposed according to the concept of freshness, which
ensures the consistency of the protocol state and behavior predicate in the proof process, and reduces the complexity and
redundancy in the protocol analysis process. Under reasonable assumptions, the security of the protocol is proven, and the
fact that logic of events applies to PUF-based mutual authentication protocols is shown.

Keywords Cryptographic protocols · Logic of events · Physical Unclonable Function · Theorem proving.

1 Introduction

The security of cryptographic protocols plays an important
role in the field of information security, especially in the
aspects of device identification, identity authentication, key
generation and storage, which should be considered when
choosing appropriate cryptographic protocols. In recent
years, with the rapid development of information technol-
ogy, mobile devices and embedded devices have begun to be
widely used. However, there are some problems in intelligent
mobile devices, such as poor computing power and resource
constraints. These constraints lead to great obstacles in the
application of traditional cryptographic protocols, which are
almost impossible to achieve (Herder 2014). Therefore, in
order to ensure the security of equipment, it is necessary to
modify the implementation of traditional cryptographic pro-
tocols or use new mechanisms.

PUF (Physical Unclonable Function) is a promising
new hardware security primitive which can be understood
as a new “digital fingerprint” (ONeill 2016). Due to its
unique physical characteristics, it can ensure the secu-
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rity of devices under relatively low power consumption
(Barbareschi et al. 2018). PUFs can distinguish different
semiconductors according to their physical structure during
semiconductor fabrication. When supplied with challenge, it
will produce unique and unpredictable response according
to the internal physical changes (Barbareschi et al. 2018).
Because the uniqueness of physical changeswithin each chip,
even if the same challenge is supplied, no two devices will
generate the same response, which gives the uniqueness and
non-clonability to the results of generation. So PUFs can be
used as the unique identifier of the semiconductor device
(Ruhrmair et al. 2009), and research on PUF-based crypto-
graphic protocols is of great important in both theory and
practical.

Formal methods mean a combination of a mathematical
or logical model of a system and its requirements, and the
system and conditions are analyzed by effective procedure to
determinewhether the systemsatisfies the constraints (Mead-
ows 2003). It is a more rigorous method that is different from
conventional security detection, providing a security means
to detect the objects that need to be verified, and helping cryp-
tographic protocols to truly realize the security properties
they claim. Theorem proving is significant method in formal
methods, which uses mathematical language to describe the
system and its properties, and then deduces and proves the
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properties according to axiomatic systems to ensure that the
desired results can be achieved (Yang 2018).

In summary, the contributions of the specific works are as
follows.

(1) The freshness of nonces based on event structure, event
classes and axiom cluster is defined.

(2) The persist rule is proposed according to the concept of
freshness, which can ensure the consistency of the proto-
col state and behavior predicate in the proof process, and
reduce the complexity and redundancy in the protocol
analysis process.

(3) Hardware security properties are abstracted by using
logic of events.

(4) The interaction of PUF-based mutual authentication pro-
tocol is formally described, the basic sequences are
constructed, and the strong authentication property in
protocol interaction process is proved.

(5) The logic of events applied to PUF-based mutual authen-
tication protocols is shown.

The rest of this paper is organized as follows: Sect. 2 intro-
duces the related work on PUF-based mutual authentication
protocols and Sect. 3 describes the structure of PUF-based
mutual authentication protocol. In Sect. 4, the introduction
of logic of events is given and the persist rule is proposed
to ensure the consistency of the protocol state and behavior
predicate in the proof process. Section 5 gives the security
proof of PUF-based mutual authentication protocol in detail,
and Sect. 6 summarizes this paper and gives a prospect for
future work.

2 Related work

Because of the vulnerabilities of most cryptographic proto-
cols based on traditional encryption and the need for plenty
of computing resources, so that for smart mobile devices,
choosing a cheap and secure way to authenticate devices
has gradually become a research focus. And the PUF-based
authentication protocols have been widely concerned due to
its security and cost.

In 2002, the concept of PUF was first formally proposed
by Pappu (2002), and they showed that although the cost of
the physical one-way function is low, it is difficult to dupli-
cate, which is intrinsically tamper resistant. In 2007, Suh and
Devadas (2007) demonstrated the feasibility of using PUFs
for low-cost identity authentication and key generation, and
proposed the PUF-based authentication method for the first
time. Later, many cryptographic protocols used this authen-
tication method for identity authentication.

In 2011, Meguerdichian and Potkonjak (2011) enabled
ultra-low power security protocols for trusted devices by

integrating PUFs directly into sensor hardware, including
authentication and public key communication. In the same
year, Brzuska et al. (2011) proposed that PUFs could be
added to UC (Universal Composition) framework to model
tokens and derive schemes with strong security guarantees.
In 2012, van Dijk and Ruhrmair (2012) proved the usability
of PUFs in cryptographic protocols and showed that in order
to make PUFs a broadly applicable cryptographic tool, new
hardware attributes were required. The research and applica-
tion of PUFs has gradually changed from the basic security
tasks to more complex encryption protocols. In 2013, Lee
et al. (2013) proposed a mutual authentication scheme for
wireless body area network based on PUFs. In 2014, Wachs-
mann and Sadeghi (2014) explored the design of trusted
embedded systemsbasedonPUFs, anddiscussedhow to inte-
gratePUF into lightweight device authentication. Since2014,
more andmore scholars have joined the design of PUF-based
authenticationprotocols, combiningPUFwith authentication
schemes in certain lightweight devices or smart IoT devices.
In 2015, Delvaux (2015) published valuable research results
on PUF-based protocols, which not only summarized the
recent progress in PUF-based authentication protocols, but
also pointed out that future research should focus on devel-
oping a PUF with truly powerful encryption properties. In
2019, Chatterjee et al. (2019) proposed a formal analysis
tool for evaluation of PUFs by observing the correlation-
spectra of the PUF instances under test. In 2020, Focardi
and Luccio (2020) presented the first mechanized symbolic
model for PUFs that allows for precisely reasoning about
their securitywith respect to a variegate set of attackers. They
formally proved security properties and specified the capa-
bilities required by the attacker to break them.

The research on PUF-based authentication protocols has
undergone numerous improvements and innovations since it
was proposed.Whether it is a simpler authentication protocol
based on PUF or a PUFs integrated cryptographic protocol
based on UC framework, it reflects the development trend
of PUF-based protocols in different periods. However, in the
process of security analysis of PUF-based protocols, most
people use cryptanalysis directly, and there are only a handful
of cases using formal methods to analyze PUF-based proto-
cols, most of which use BAN logic. Although the definition
of BAN logic rules is relatively mature and widely studied,
BAN logic relies on initial assumptions, which may lead to
slight discrepancies between the analysis results and the orig-
inal protocol design (Yanan 2018).

3 PUF-based authentication protocols

3.1 Authentication

Consider an honest agentA obeying a protocol. If A performs
an instance of the full initiator sequence with parameter B,
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then provided that B is honest and also obeys the protocol,
there should be an instance of the responder sequence at B
that forms amatching conversation for the first twomessages
in the protocol (we can not be sure that the third message,
sent by A, will be received by B). Similarly, if B performs an
instance of the full responder sequence, then there should be
a matching conversation with A of length three. This authen-
tication process can effectively prevent the third party from
pretending to be any party of the communication parties from
destroying the communication, that is, ensuring that the com-
munication parties are honest subjects.

In the registration phase, the trusted third party with PUF
devices stores the corresponding CRPs (challenge-response
pairs) in a secure database by executing each device, and
registers the IDs of all devices in the database for future ver-
ification operations. And in the authentication phase, when a
trusted third party needs to authenticate the device, it selects
the corresponding challenge from the database and remotely
acquires the PUF response from the device. If the differ-
ence between the response provided by the device and the
response recorded previously is limited to the pre-set thresh-
old, the device will be authenticated successfully, and the
CRP will delete from the database to prevent replay attacks.

3.2 PUF-based authenticationmethod

The PUF-based authentication method was first proposed
by Suh and Devadas (2007), which is intended to prove the
feasibility of using PUF for low-cost authentication and cryp-
tographic key generation. They provide a low-cost mutual
authentication between principals, and this scheme can be
divided into register phase and authentication phase.

Since most PUF-based authentication protocols are based
on this authentication method proposed by Suh and Devadas
(2007), this paper takes the authentication protocol based
on this authentication framework as an example, to analyze
the security of its verification phase. The principals of PUF-
based mutual authentication protocols are divided into the
authenticator and the authenticated party, in which the initia-
tor holds the response of the PUF and the responder holds the
equipment of the assembled PUF, and the default is that both
principals hold the pre-agreed symmetric key. The interaction
of the main authentication information is shown in Fig. 1.

The process of PUF-based mutual authentication proto-
cols is as follows.

(1) First, the initiator sends an authentication request to the
responder.

(2) The responder generates nonce1 and obtains the PUF’s
response R′, calculates the HD (helper data, generated
by XOR of the coded nonce and R ) and encrypts it with
the symmetric key K , then sends the ID of the responder,
the encrypted ciphertext and nonce1 to the initiator.

Fig. 1 Description of main interactive information in mutual authenti-
cation

(3) The initiator decrypts the ciphertext to get HD based on
ID of the responder, and uses the previously agreed secret
key K . Then uses R already owned to restore the current
PUF’s response R′, and object on R′ hash to get the secret
key K ′. After that, the initiator generates nonce2, uses
K ′ to encrypt the information < nonce2||nonce1 > and
sends the ciphertext to the responder.

(4) The responder calculates the hash value of R′ and gets
the secret key K ′, decrypts the received ciphertext and
determines whether nonce1 is the same as the one it sent
before. If it is the same, the identity authentication suc-
ceeds; otherwise, the authentication fails.

(5) The responder generates nonce3 and sends the informa-
tion< nonce3||nonce2 > to the initiator after encrypting
with K ′.

(6) The initiator uses K ′ to decrypt and determine whether
nonce2 is the same as the one it sent before. If it is the
same, the identity authentication succeeds; otherwise, the
authentication fails.

4 Logic of events

Logic of events (Bickford and Constable 2003; Xiao and
Bickford 2009) is one of the formalmethods,which describes
the protocols and algorithm of distributed systems. The basic
framework of logic of events mainly includes the theoretical
basis, theoretical system (including logical axiom and infer-
ence) and formal description system (Bickford andConstable
2010;Meihua et al. 2015). Among them, the theoretical basis
is used tomodel the initial encryption system. The theoretical
system provides a set of complete inference system for the
proof of cryptographic protocols. The formal description sys-
tem describes and defines the thread sequence and matching
session of the protocols.

4.1 Theoretical basis

The basic part of logic of events is themost basic theory in the
process of proving the security properties of cryptographic
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Table 1 BASIC SYMBOLS
AND SEMANTICS

Symbol Quantity

I d Generally refers to the principals involved in protocol

Atom Class of secret information

Data All messages and plaintext

x Members in Data

e Event

E Event set

n A challenge number in Nonce

Nonce Challenge number set

loc(e) A function on e, represents the principal of e

key(e) The secret key of the principal of e

Has Logical inclusion

bs Basic sequences

≤ Local finite partial order

protocols, which is used to model the initial encryption sys-
tem. The basic symbols and semantics are given in Table 1.

In the formal analysis of cryptographic protocols, three
types of values are needed to build the logic of events: B,
I d and Atom (Bickford 2008). B is used to judge whether a
proposition is true or false, I d is used to distinguish the dif-
ferent principals in cryptographic protocols, and Atom is an
“unpredictable” data value. Generally, Atom is used to rep-
resent anything that cannot be guessed, such as the nonce in
cryptographic protocols, the ciphertext in the process of pro-
tocol transmission and the private key held by the principal
itself.

Formula (1) is used to define the independence of the infor-
mation, which assert that the information associated with
event e contains Atom a.

¬ (in f o (e) ||a) (1)

In order to identify the point of information transmission,
which is the event (Bickford and Constable 2010) in opera-
tion, we need to define the structure of the event sequence as
formula (2).

< E, loc,<, inf o > (2)

By classifying different events in the protocol interaction
process, the information associated with the events can be
found, which means that the type of information depends
on the event classes. Therefore, the events are defined and
divided into seven categories: send, receive, new, encrypt,
decrypt, sign and verify (Bickford and Constable 2010). The
cryptographic protocols contain the messages of data tuples

such as nonces, signatures and principals. We can define it
as a binary tree data as shown in formula (3).

Data≡de f T ree (I d + Atom) (3)

Formula (3) can represent all the information and plaintext
we need; then, the protocol action type can be defined as (4).

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

{new (a) |a ∈ Atom}
{send (x) |x ∈ Data}
{rcv (x) |x ∈ Data}

{sign (t) |t ∈ (Data × Id × Atom)}
{verify (t) |t ∈ (Data × Id × Atom)}
{encrypt (t) |t ∈ (Data × Id × Atom)}
{decrypt (t) |t ∈ (Data × Id × Atom)}

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(4)

4.2 Theoretical system

It is the core of proving the security of cryptographic pro-
tocols to define the message types and describe the rules of
cryptographic protocols. In this section, we will also give the
definition of freshness and propose the persist rule.

(1) Key axiom
Key axiom is as shown in (5), it means that the sym-
metric key can only match itself, while the private key
assigned to the principal only matches the relative pub-
lic key. In the interaction process of protocols, there are
no two principals (in logic of events, this is defined as
identifiers) will have the same private key.
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⎛
⎜⎜⎜⎜⎜⎜⎝

AxiomK : ∀A, B : I d.∀k, k : K ey.∀a : Atom; MatchingKeys(k, k′) ⇔
MatchingKeys(k′, k) ∧ MatchingKeys(Symm(a); k) ⇔
k = Symm(a) ∧ MatchingKeys(PrivKey(A); k) ⇔

k = A ∧ MatchingKeys(A; k) ⇔
k = PrivKey(A) ∧ PrivKey(A) = PrivKey(B) ⇔

A = B

⎞
⎟⎟⎟⎟⎟⎟⎠

(5)

(2) Causal axioms
The causal axiom includes three axioms: AxiomR,
AxiomV and AxiomD, which correspond to event
classes receive, verify and decrypt. These three axioms
associate the event classes receive, verify and decrypt
with three other event classes send, signature and
encrypt, respectively (Bickford and Constable 2010),
as shown in formula (6).
⎛
⎜⎜⎜⎜⎜⎜⎝

AxiomR : ∀e : E(Rcv).∃e′ : E(Send).(e′ < e) ∧ Rcv(e) = Send(e′)
AxiomV : ∀e : E(Veri f y).∃e′ : E(Sign).(e′ < e) ∧ Veri f y(e) = Sign(e′)
AxiomD : ∀e : E(Decrypt).∃e′ : E(Encrypt).e′ < e ∧ DEMatch(e, e′)

DEMatch(e, e′)≡de f plaintext(e) = plaintext(e′)∧
ciphertext(e) = ciphertext(e′)∧
MatchingKeys(key(e); key(e′))

⎞
⎟⎟⎟⎟⎟⎟⎠

(6)

AxiomR and AxiomV are almost the same, both of
which illustrate the behavior matching in the process of
protocol interaction. AxiomD is similar to the previous
two axioms, except that key is introduced. Therefore,
AxiomDstates that the corresponding event encryptwill
hold the same information before the event decrypt, and
the key can be matched.

(3) Disjointness axioms
The disjointness axioms contain two disjoint relations:
one is about the disjoint of seven event classes, and
the other is about the disjoint of nonces, private keys,
signatures and ciphertext. As shown in formula (7), it is
specified that any event in seven special classes is not
in other event classes (Bickford and Constable 2010).

⎛
⎜⎜⎝

ActionDis joint : ∃ f : E → Z .∀e : E .

(e ∈ E(New) ⇒ f (e) = 1) ∧ (e ∈ E(Send) ⇒ f (e) = 2)∧
... ∧ ...

(e ∈ E(Decrypt) ⇒ f (e) = 7)

⎞
⎟⎟⎠ (7)

The second disjoint axiom is shown in formula (8),
states that the nonces generated by a principal do not
intersect with the private keys, signatures or ciphertext
held by the same principal.

⎛
⎜⎜⎜⎜⎝

NonceCiphers AndDis joint : ∀n : E(New).

∀s : E(Sign).∀e : E(Encrypt).∀A : I d.

New(n) �= signature(e) ∧ New(n) �= ciphertext(e)∧
New(n) �= Private(A) ∧ ciphertext(e) �= Private(A)∧

signature(s) �= Private(A) ∧ signature(s) �= ciphertext(e)

⎞
⎟⎟⎟⎟⎠

(8)

(4) Honesty axiom
The private key of the honest principal will not be
released, so the signature event, encrypt event and
decrypt event all occur on the same honest principal.
AxiomS carves the properties of the honest principal as
follows (9).

AxiomS : ∀A : I d.∀s : E(Sign).∀e : E(Encrypt).
∀d : E(Decrypt).Honest(A) ⇒⎧⎨

⎩
signer(s) = A ⇒ (loc(s) = A)∧

key(e) = PrivateKey(A) ⇒ (loc(e) = A)∧
key(d) = PrivateKey(A) ⇒ (loc(d) = A)

⎫⎬
⎭

(9)

(5) Flow relation
Flow relation is a complex axiom, which is the relation
between causal events of nonces. The Act type contains
seven event classes, called actions (Yanan 2018). (e
has a) is true if and only if Atom a is included in Action
e, as defined below (10).

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ehas a≡de f

(e ∈ E(New) ∧ New(e) has a)∨
(e ∈ E(Send) ∧ Send(e) has a)∨

(e ∈ E(Receive) ∧ Receive(e) has a)∨
(e ∈ E(Encrypt) ∧ Encrypt(e) has a)∨
(e ∈ E(Decrypt) ∧ Decrypt(e) has a)∨

(e ∈ E(Sign) ∧ Sign(e) has a)∨
(e ∈ E(Veri f y) ∧ Veri f y(e) has a)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(10)

The flow direction of Atom a from e1 to e2 is recorded
as e1

a→ e2, including the following situations: e1 and e2
occur in the same principal; Atom a is sent through the
plaintext between the event send and receive; Atom a in
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the plaintext of encrypt event, and the ciphertext flows
to a matching decrypt event. The specific flow relation
recursion is as shown in (11).

e1
a→ e2=rec(e1 has a ∧ e2 has a ∧ e1≤loce2)

∨( ∃s : E(Send).∃r : E(Rcv).e1 ≤ s < r ≤ e2
∧Send(s) = Rcv(r) ∧ e1

a→ s ∧ r
a→ e2

)

∨⎛
⎜⎝

∃e : E(Encrypt).∃d : E(Decrypt).e1 ≤ e < d ≤ e2
∧DEMatch(d, e) ∧ key(d) �= Symma(a)

∧e1 a→ e ∧ e
ciphertext→ d ∧ d

a→ e2

⎞
⎟⎠

(11)

(6) Nonce axiom
AxiomF is the nonce axiom, which consists of three
parts: AxiomF1, AxiomF2 and AxiomF3. The first part
of AxiomF is about the flow properties, as shown in
(12).

AxiomF1 : ∀e1 : E(New).∀e2 : E .e2has New(e1)

⇒ e1
New(e1)→ e2 (12)

AxiomF2, AxiomF3 introduces signature, ciphertext
and the relationship between two events. It does not
stipulate that signature or ciphertext is related to special
events. If an event contains signature or ciphertext, sig-
natures or encrypt events with the same information can
be inferred (Bickford and Constable 2010), as shown in
(13).

⎛
⎜⎜⎜⎜⎜⎝

AxiomF2 : ∀e1 : E(Sign).∀e2 : E .e2 hassignature(e1) ⇒
∃e′ : E(Sign).Sign(e′) = Sign(e1) ∧ e′ signature(e1)→ e2

AxiomF3 : ∀e1 : E(Encrypt).∀e2 : E .e2 has
ciphertext(e1) ⇒ ∃e′ : E(Encrypt).

Encrypt(e′) = Encrypt(e1) ∧ e′ ciphertext(e1)→ e2

⎞
⎟⎟⎟⎟⎟⎠

(13)

(7) Persist Rule
In logic of events, the freshness of nonces has not been
defined, so the concept of Fresh needs to be introduced
first. Assuming that there is an Atom a, Fresh means
that no principal other than the principal itself can have
any message containing Atom a, and in logic of events,
it will not be introduced in the form of logic of events,
but the result type is defined as Boolean value. Fresh
can be used to refer to any information, but here it is
only used to describe the nonces, so as to determine the
freshness of the nonces. In addition, when an event does
not have Atom a, it does not have the freshness of Atom
a.
Fresh is introduced to judge whether the nonces have
been sent to other principals. In order to ensure the con-
sistency of protocol state and behavior predicate, reduce

the complexity and redundancy of protocol analysis pro-
cess, persist rule is proposed. As shown in formula (14),
P is used to refer to persist, which stipulates that the
freshness of messages or the Boolean value of events
will not change when certain behaviors are executed.

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

∃e1, e3 : E .∀e2 : Send.e1 < e2 < e3∧
P(e1, e3) ⇒

e1 /∈ E(New) ∨ Send(e2) �= New(e1)
∃e1 : E(New).∃e2, e3 : E .e1 < e2 < e3∧

P{Fresh(e1, New(e1)), Fresh(e3, New(e1))} ⇒
plaintext(e2)||New(e1)∧
ciphertext(e2)||New(e1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(14)

4.3 Formal description system

The basic sequence is the parameter list of the protocols, and
the parameter is the principals’ identifiers, which is com-
posed of two or more events. The principal who abides by
the protocol participates in multiple threads, and the thread
is the basic sequence instance of the protocol and complies
with the protocol.

(1) Threads
Thread is an ordered list of events at single location, sat-
isfying formula (15).

Thread≡de f {thr : Act List |∀i : thr [i]<locthr [i + 1]}
(15)

The message in a thread is a collection of all send and
receive events in this thread, as shown in (16).

isMsg(e)≡de f e ∈ E(Send) ∨ e ∈ E(Rcv)

messages(thr)≡de f f ilter(isMsg, thr)
(16)

For the messages s and r , s is the sent message, r is the
received message, if s and r deliver the same message,
there is a weak matching relationship between the two
messages, represented by s ∼ r ; if there is a direct causal
relationship between s and r , and s occurs before r , then
there is a strong matching relationship between s and r ,
represented by s �→ r , as follows formula (17).

⎛
⎝
s ∼ r≡de f s ∈ E(Send) ∧ r ∈ E(Rcv)∧

Send(s) = Rcv(r)
s �→ r≡de f s ∼ r ∧ s < r

⎞
⎠ (17)

(2) Matching conversations
Thread thr1 and thread thr2 form a matching session
with a length of n, containing at least n messages. When
the first n messages in a thread are paired, each pair of
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< m1,m2 > satisfies m1 �→ m2 ∨ m2 �→ m1, and the

strongmatching session is defined as thr1
n≈ thr2. If each

pair of < m1,m2 > satisfies only m1 ∼ m2 ∨m2 ∼ m1,
a weak matching session will be obtained, which is

recorded as thr1
n∼ thr2.

The protocol guarantees that the thread matching session
satisfies the strong matching property in different loca-
tions, and the strong matching property avoids replay
attacks, which has more causality proof than the weak
matching property.
In the protocol, protocol actions (pas) correspond to
threads, which are recorded as pas(thr). If they have the
same length, ||pas|| = ||thr ||, then the event matching
meets ∀i < ||thr||.pas[i](thr [i]).

(3) Basic sequences

Basic sequence is a parameter list of basic protocol
events, and the parameters of principals are identifiers;
principals abide by the protocol and participate in multi-
ple threads of the protocol. Threads are instances of the
protocol and interact with another principal in different
event positions. The protocol studied by c allowsmultiple
principals to participate (Bickford and Constable 2010).
A principal is a member instance of the basic sequence, if
an error occurs in the signature or encrypt event, the corre-
sponding verify or decrypt event will not occur (Bickford
and Constable 2010). If a principal fails to connect or
is not trusted in the protocol, the corresponding receive
event of the interaction sequencewill not appear. If a prin-
cipal abides by the protocol, the session will end with
receive, verify and decrypt events as a complete basic
sequence.
The basic sequence is the relationship between two
events’ positions and a thread. When the thread is the
position parameter given by the basic sequence, the rela-
tionship is true. The basic sequence members are as
follows (18).

Basic≡de f I d → I d → Thread → P (18)

(4) Protocol Definition
Logic of events uses the basic sequence relation table bss
to define the protocol, and the protocol is the assertion
of the storage location, and the formula is expressed as
I d → P . And the Protocol (bss) is defined as follows.

⎛
⎜⎜⎝

λA.∀e : Act .loc(e) = A ⇒
(∃thr .inOneof (e, thr , bss, A))∧

∀thr1, thr2.(inOneof (e, thr1, bss, A)∧
inOneof (e, thr1, bss, A)) ⇒ thr1 � thr2

⎞
⎟⎟⎠ (19)

The event of principals is an instancemember of the basic
sequence. If the event is one or more instance members,

the instance is compatible. The compatibility needs to
meet the consistency of parameter selection in the two
instances (Bickford and Constable 2010).

5 Provingmutual authentication property of
PUF-based protocol

5.1 Proof procedures

In the process of using theorem proving method to prove
security properties in cryptographic protocols, the general
proof step is to define two situations based on the initiator
or responder of the protocol, and then prove the matching
session according to the precondition and postcondition of
the protocol state.

Finally, two aspects are considered in detail, the proof
of weak authentication property and strong authentication
property.

However, when using logic of event to prove the secu-
rity properties of the protocol, besides the proof of mutual
weak authentication property and strong authentication prop-
erty, the definition of the basic sequence of protocol and the
analysis of the unilateral sequence of initiator and respon-
der should be taken into account. Only when the bilateral
sequences are proved to have strong authentication property
can the recognition of protocol be proved. The specific proof
process of protocol security based on logic of event is shown
in Fig. 2, and detailed information is as follows.

(1) First, it is necessary to formally describe the protocol,
standardize the basic sequence of the initiator and respon-
der, and define the strong authentication attributes that the
protocol needs to verify;

(2) On the premise of an honest subject, analyze the thread
message and assume that the selected thread is a basic
sequence instance, define the action on the thread, con-
firm the matching session that needs to be proved, and
then prove the authentication of the initiator or receiver
unilaterally;

(3) Confirm whether the matching event matches the current
matching session. If itmatches, enter the follow-up proof.
If not, continue to select the matching session until it is
confirmed that the currentmatching eventmeets theweak
match;

(4) When it has been proved that the weak match is satisfied,
analyze the match length in the protocol interaction pro-
cess, and prove the strong match session according to the
relevant axioms and rules in LoET;

(5) If the strong authentication of one party has been success-
fully proved, it is necessary to prove the strong authenti-
cation of the other party. Only one party meets the strong
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Fig. 2 The process of proving protocol security property based on logic
of event

authentication, indicating that the entire agreement still
does not meet the strong authentication property.

5.2 Detailed proof

In the research of PUF-basedmutual authentication protocol,
this paper makes the following assumptions: the response of
PUFheld by the initiator is credible; in the process of protocol
interaction, the nonce is not considered to be leaked due to
internal reasons before send event; the interference attack
of PUF caused by noise and environmental disturbance is
not considered; all principals except honest one can steal the
transmission information.

Fig. 3 The principle of PUF implementation

First, we need to abstract the functions implemented by
PUF. The main principle of PUF to realize its own security
is shown in Fig. 3.

To be specific, the security of PUF is mainly achieved
by obtaining HD through XOR of encoded response and
nonce of the responder, and then obtaining the encoded nonce
through XOR of response R and HD of the initiator, decod-
ing the encoded nonce with XOR and restoring the response
R′ of the responder, and obtaining the second secret key K
through R.

The above functions are abstracted by using logic of
events, as shown in the following formula.

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

New(nonce1),
Encrypt(<< K ′ >, K >),

Send(< B, nonce1,<< K ′ >, K >>),

Rcv(< B, nonce1,<< K ′ >, K >>),

Decrypt(<< K ′ >, K )

New(nonce2)
Encrypt(<< nonce2||nonce1 >,K′ >)

Send(<< nonce2||nonce1 >,K′ >)

Rcv(<< nonce2||nonce1 >,K′ >)

Decrypt(<< nonce2||nonce1 >,K′ >)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

By abstracting the functions of PUF, we can use logic
of events to describe the PUF-based mutual authentica-
tion protocol according to the abstracted functions. Firstly,
I1, I2, I3, I4, I5 are defined as the basic sequences generated
by the initiator, and R1, R2, R3, R4 are the basic sequences
generated by the responder. The protocol description based
on logic of events is shown in Fig. 4:

To define the identity authentication properties through
LoET and verify the authentication of the PUF-based mutual
authentication protocol, the PUF-based mutual authentica-
tion protocol is sorted by the concept of basic sequence in
logic of events, as shown in Fig. 5.

If a protocol can guarantee a strong matching session
between two threads in different event locations, the proto-
col satisfies the strong authentication properties. Therefore,
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Fig. 4 Description of interactive information in mutual authentication

Fig. 5 The basic sequence of PUF-based mutual authentication proto-
col

by analyzing the basic sequence and defining the PUF-based
mutual authentication protocol as Protocol([I1, I2, I3, I4,
I5, R1, R2, R3, R4]), we can see that the strong authentica-
tion properties to be verified in the security certification of
the protocol are Nse| = auth(I5, 4)∧ Nse| = auth(R4, 3).

First, we should prove the formula Nse| = auth(I54).
Suppose I ni tiator �= Responder (A and B, respectively,
refer to later), and both principals follow the PUF-based
mutual authentication protocol. According to the defini-
tion of the basic sequence, each thread is an instance
of the basic sequence. Let e0<loce1<loc . . . <loce6 be the
events in thr1, Because the principal of thr1 is A, so
the principal of the event is also A, and for some atoms

s1, s2, s3, K ′, K , nonce1, nonce2, nonce3 have:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Rcv(e0) =< B, nonce1, s1 > ∧
Decrypt(e1) =<< K ′ >, K , s1 > ∧

New(e2) =< nonce2 > ∧
Encrypt(e3) =<< nonce2||nonce1 >, K ′, s2 > ∧

Send(e4) =< s2 > ∧
Rcv(e5) =< s3 > ∧

Decrypt(e6) =<< nonce3||nonce2 >, K ′, s3 >

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

According to AxiomD and AxiomS, there is an event and
this event canmake the formula e′ < e6∧DEMatch(e1, e′)∧
loc

(
e′) = B ∨ loc

(
e′) = A hold. Since B follows the

PUF-based mutual authentication protocol, event e′ must
be an instance member in the basic sequence of the PUF-
based mutual authentication protocol. In the basic sequence,
there are I2, I3, I4, I5, R2, R3, R4 that contain the event
Encrypt(). In order to ensure the validity of the event, the
event classes that the initiator A and the responder B partici-
pate in must be two or more sides, as shown in the following
formula.

⎛
⎜⎜⎜⎜⎝

∀A,B : (A �= B).

∀e1, e2 : ((e1 ∈ A, e2 ∈ B) ∧ (e1 < e2))
∨(Send(e1) = Rcv(e2)∨
(Sign(e1) = Verify(e2)∨

(Decrypt(e1) = Encrypt(e2)

⎞
⎟⎟⎟⎟⎠

Therefore, I2, I3, I4, I5 can be excluded, which means
that there is a basic sequence in R2, R3, R4 that may form a
matching session with I5.

Suppose e′ is an example of R2, then for atoms nonce1′,
K1

′, K2, s1′,C (K1
′ is the evolution of K , K2 is the evolution

of K1
′), e0′, e1′, e2′, e3′ exist on principal B, which are:

⎛
⎜⎜⎜⎜⎝

e0′<loce1′<loce2′<loce3′∧
Rcv(e0′) =< C > ∧

New(e1′) =< nonce1′ > ∧
Encrypt(e2′) =<< K2

′ >, K1
′, s1′ > ∧

Send(e3′) =< B, nonce1′, s1′ >

⎞
⎟⎟⎟⎟⎠

From the above formula, it can be found that the encrypted
event e2′ in R2 does not match the decrypted event e6, so
the possibility that e′ is an instance in R2 can be excluded.
Similarly, R3 can also be excluded.

Assuming e′ is an instance of R4, and for some atoms
s2′, s3′, nonce1′, nonce2′, nonce3′, K2

′ andprincipalD, there
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are events e0′, e1′, e2′, e3′, e4′, e5′, e6′, e7′, e8′ at principal B
such that:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

e0 ′<loce1′<loce2 ′<loce3′<loce4′<loce5′<loce6′<loce7′<loce8′∧
Rcv(e0 ′) =< D > ∧New(e1′) =< nonce1′ > ∧

Encrypt(e2′) =<< K2
′ >, K1

′, s1′ > ∧
Send(e3′) =< B, nonce1′, s1′ > ∧

Rcv(e4′) =< s2 ′ > ∧
Decrypt(e5′) =<< nonce2 ′||nonce1′ >, K2

′, s2 ′ > ∧
New(e6′) =< nonce3′ > ∧

Encrypt(e7′) =<< nonce3′||nonce2 ′ >, K2
′, s3′ > ∧

Send(e8′) =< s3′ >

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Through the above formula, the following can be found:

(
Encrypt(e′) =<< nonce3||nonce2 >, K ′, s3 >

=<< nonce3′||nonce2′ >, K2
′, s3′ >= Encrypt(e7′)

)

It can be seen that e7′ = e′, D = A, nonce3′ =
nonce3, nonce2′ = nonce2, K2

′ = K ′, s3′ = s3, and it can
be concluded that:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

e0 ′<loce1′<loce2 ′<loce3′<loce4′<loce5′<loce6′<loce7′<loce8′∧
Rcv(e0 ′) =< A > ∧New(e1′) =< nonce1 > ∧

Encrypt(e2′) =<< K ′ >, K , s1 > ∧
Send(e3′) =< B, nonce1, s1 > ∧

Rcv(e4′) =< s2 > ∧
Decrypt(e5′) =<< nonce2||nonce1 >, K ′, s2 > ∧

New(e6′) =< nonce3 > ∧
Encrypt(e7′) =<< nonce3||nonce2 >, K ′, s3 > ∧

Send(e8′) =< s3 >

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

After it is known that, e′ must be an instance in R4, there
must be an event e′′, and this event can make e′′ < e5′ ∧
DEMatch(e5′, e′′)∧loc

(
e′′) = A∨loc

(
e′′) = Bhold, which

is equivalent to Encrypt
(
e′′) =<< nonce2||nonce1 >

, K ′, s2 >.
Therefore, e′′ must be an instance member in the basic

sequence of the PUF-based mutual authentication protocol.
In the basic sequence, I2, I3, I4, I5, R2, R3, R4 contain the
event Encrypt(). Since it is based on the current events that
have occurred, if all events that have not occurred are not
taken into account, I4, I5 can be excluded. Then, according
to the above proof formula, R2, R3, R4 can be excluded. It
can be concluded that there is a basic sequence in I2, I3 that
contains sequence e′′.

Suppose e′′ is an instance on I2, for atoms K1
′, K2

′, s1′,
nonce1′, E , event e0′′, e1′′, e2′′ exist in principal A, then there
are:

⎛
⎜⎜⎝

e0′′<loce1′′<loce2′′∧
Encrypt(e0′′) =<< K2

′ >, K1
′, s1′ > ∧

Send(e1′′) =< E, nonce1′, s1′ > ∧
Rcv(e2′′) =< E, nonce1′, s1′ >

⎞
⎟⎟⎠

From the above formula, it can be concluded that the
encrypted event e0′ in I2 does not match the decrypt event
e5′, so the possibility that e′′ is an instance of I2 is excluded.

Suppose e′′ is an instance of I3, for atoms K1
′, K2

′, s1′,
s2′, nonce1′, nonce2′, F , e3′′, e4′′, e5′′, e6′′ exist in principal
A, which are:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

e0′′<loce1′′<loce2′′<loce3′′<loce4′′<loce5′′<loce6′′∧
Encrypt(e0′′) =<< K2

′ >, K1
′, s1′ > ∧

Send(e1′′) =< E, nonce1′, s1′ > ∧
Rcv(e2′′) =< E, nonce1′, s1′ > ∧

Decrypt(e3′′) =<< K2
′ >, K1

′, s1′ > ∧
New(e4′′) =< nonce2′ > ∧

Encrypt(e5′′) =<< nonce2′||nonce1′ >, K2
′, s2′ > ∧

Send(e6′′) =< s2′ >

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

According to the above results, we can get:

(
Encrypt(e′′) =<< nonce2||nonce1 >, K ′, s2 >

=<< nonce2′||nonce1′ >, K2
′, s2′ >= Encrypt(e5′′)

)

Then, we can see that there are e5′′ = e′′, F =
B, nonce2′ = nonce2, nonce1′ = nonce1, K2

′ = K ′, s2′ =
s2, and we can get:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

e0′′<loce1′′<loce2′′<loce3′′<loce4′′<loce5′′<loce6′′∧
Encrypt(e0′′) =<< K ′ >, K , s1 > ∧
Send(e1′′) =< B, nonce1, s1 > ∧
Rcv(e2′′) =< B, nonce1, s1 > ∧

Decrypt(e3′′) =<< K ′ >, K , s1 > ∧
New(e4′′) =< nonce2 > ∧

Encrypt(e5′′) =<< nonce2||nonce1 >, K ′, s2 > ∧
Send(e6′′) =< s2 >

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

When e′′ is an instance in I3, there must be another event
e′′′ and this event can make the following formula e′′′ <

e3′′ ∧ DEMatch(e3′′, e′′′) ∧ loc
(
e′′′) = A ∨ loc

(
e′′′) = B

true, that is Encrypt
(
e′′′) =<< K ′ >, K , s1 >.

If e′′′ exists, then event e′′′ must be an instance member in
the basic sequence of the PUF-based mutual authentication
protocol, among which I2, I3, I4, I5, R2, R3, R4 contain the
event Encrypt(). Since the event status point is based on the
event that has occurred, the event that has not occurred will
not be taken into account, R3, R4, I4, I5 can be excluded.
Then, according to the above proof formula, I1, I2 can be
excluded. It can be concluded that there is a basic sequence
in R1, R2 that contains sequence e′′′.

Suppose e′′′ is an instance on R1, there is no atom on
R1, and e′′′ needs to match e5′′, so the possibility that e′′′ is
an instance on R1 is excluded. Suppose e′′′ is an instance on
R2, for atoms nonce1′, K1

′, K2
′, s1′,G, event e0′′′, e1′′′, e2′′′
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exist in principal B, then there are:

⎛
⎜⎜⎝

e0′′′<loce1′′′<loce2′′′∧
New(e0′′′) =< nonce1′ > ∧

Encrypt(e1′′′) =<< K2
′ >, K1

′, s1′ > ∨
Send(e2′′′) =< G, nonce1′, s1′ >

⎞
⎟⎟⎠

From the above description of events, it can be found that:

(
Encrypt(e′′′) =<< K ′ >, K , s1 >=
<< K2

′ >, K1
′, s1′ >= Encrypt(e1′′′)

)

Then, we can see that there are e1′′′ = e′′′, F = B, K =
K1

′, K2
′ = K ′, s1′ = s1, and we can get:

⎛
⎜⎜⎝

e0′′′<loce1′′′<loce2′′′∧
New(e0′′′) =< nonce1 > ∧

Encrypt(e1′′′) =<< K ′ >, K , s1 > ∧
Send(e2′′′) =< B, nonce1, s1 >

⎞
⎟⎟⎠

According to the above results, we can get:

⎛
⎝

Rcv(e0) =< B, nonce1, s1 >= Send(e3′)∧
Send(e4) =< s2 >= Rcv(e4′)∧
Rcv(e5) =< s3 >= Send(e8′)

⎞
⎠

There is already a weak match session of length 3.
The next, to prove the strong match session, we must

first prove that e3′ < e0, e4 < e4′, e8′ < e5. In the above-
mentioned proof, according toAxiomFand the Flow relation,
we can see that there is a sending event between event e3′, e0,
combining the persist rule, and we can know that the fresh-
ness of nonce1 changes after the send event, and in e0, the
fresh state of nonce no longer exists.

Suppose n = thr [ j] , n ∈ E (New) , e = thr [i] , j < i ,
then there is no k between j and i , so that thr [k] ∈ E (Send),
and New (n) is not released before e.

For events e3′, e0, if e3′ ≤ j , the resulting sequence is
e3′ < e0. Conversely, if e0<loc j<loce3′, then j must be a
member of some other threads of B, but according to the
above inference, there is no sending event between e3′, e0,
that is, the freshness of the nonce has been kept before e0,
and e3′ < e0 can be proved by AxiomF. In addition, we
can use the same logic to combine persist rule, AxiomF and
flow relation to prove e4 < e4′ and e8′ < e5, then Nse| =
auth(I5, 4) is proved.

The same reason can prove that Nse| = auth(R4, 3), and
we can get the final formula that needs to be proved, that is,
Nse| = auth(I5, 4) ∧ Nse| = auth(R4, 3), the PUF-based
mutual authentication protocol meets two strong authenti-
cation properties at the same time. We can judge that in
the authentication process of the protocol, there is no pos-
sibility that the attacker disguises the initiator and responder

and attacks by replay attacks. The security of the PUF-based
mutual authentication protocol is proved.

6 Conclusions and future work

In this paper, we use the method of theorem proving which
based on logic of event to analyze the security property of
PUF-based mutual authentication protocol. The main work
is as follows.

(1) On the basis of logic of event, the freshness of nonce
is defined for the first time, and persist rule is proposed
according to the freshness concept to ensure the con-
sistency of protocol states and behavior predicates in the
proof process, and reduce the complexity and redundancy
in protocol analysis process.

(2) The interaction of PUF-based mutual authentication pro-
tocol is formally described by using logic of event, and
the security property of the protocol is formally analyzed
to verify its strong authentication property.

(3) Logic of event is used to abstract hardware security func-
tions for the first time, verify protocols based on hardware
security and expand the application scope of logic of
event. In addition, although this paper has successfully
verified the security of PUF-based mutual authentication
protocol, there are still some problems.

(4) This paper does not consider the PUF interference attack
caused by noise and environmental disturbance in the real
environment. This is also a defect that theorem proving
cannot consider in some aspects. Next, we can consider
using other formal methods to analyze the security of the
protocol.

(5) With the rapid development of various types of cryp-
tographic protocols, logic of event lacks corresponding
axioms and rules in the process of dealing with some
protocols. Therefore, in order to verify the new protocols
and the new security properties other than authentication,
logic of event needs to be further expanded.
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