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Abstract
In this paper, we study the hedging effectiveness of crude oil futures on the basis of the lower partial moments (LPMs). An

improved kernel density estimation method is proposed to estimate the optimal hedge ratio. We investigate crude oil price

hedging by contributing to the literature in the following twofold: First, unlike the existing studies which focus on

univariate kernel density method, we use bivariate kernel density to calculate the estimated LPMs, wherein the two

bandwidths of the bivariate kernel density are not limited to the same, which is our main innovation point. According to the

criterion of minimizing the mean integrated square error, we derive the conditions that the optimal bandwidths satisfy. In

the process of derivation, we make a distribution assumption locally in order to simplify calculation, but this type of local

distribution assumption is far better than global distribution assumption used in parameter method theoretically and

empirically. Second, in order to meet the requirement of bivariate kernel density for independent random variables, we

adopt ARCH models to obtain the independent noises with related to the returns of crude oil spot and futures. Genetic

algorithm is used to tune the parameters that maximize quasi-likelihood. Empirical results reveal that, at first, the hedging

strategy based on the improved kernel density estimation method is of highly efficiency, and then it achieves better

performance than the hedging strategy based on the traditional parametric method. We also compare the risk control

effectiveness of static hedge ratio vs. time-varying hedge ratio and find that static hedging has a better performance than

time-varying hedging.

Keywords Futures hedging � Improved kernel density estimation � ARCH model � Lower partial moment �
Genetic algorithm � Crude oil price

1 Introduction

Along with the expanding economic and business ties

between countries and increasingly tense international sit-

uation, there are huge fluctuations in the prices of some

important energy and a lot of uncertainty in the future,

especially for the case with crude oil. During the past few

days, international oil price fell sharply as a result of shock.

On the one hand, OPEC, led by Saudi Arabia, and Russia

have failed to reach an agreement on cutting output, and

then Saudi Arabia launched a price war; on the other hand,

the global spread of coronavirus pandemic creates a panic

in the market. Take the crude oil price in March 9, 2020, as

an example, the crude oil price went down 24%, which was

the biggest one-day drop since the 1991 gulf war. In fact, as

a kind of global commodity, crude oil can affect economic

activities and financial markets, for example gold, oil and

equities (Maghyereh et al. 2017), WTI crude oil futures

returns and hedge funds (Zhang and Wu 2019), global

crude oil market and China’s commodity sectors (Meng

et al. 2020), and so on. Therefore, under the background of

highly volatile crude oil price, considering its complex risk

transmission mechanism, people who need to hedge oil

price risk are not limited to oil producers and refiners only,

but also financial market participants and policy makers.
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Hedging is one of the most important functions of

futures markets. When hedging the risk of crude oil price,

we have to establish a hedged portfolio. Computational

problems arise when we embed spot and futures in a

portfolio. The traditional parametric and semi-parametric

methods usually assume that the joint distribution is

known, which is likely to cause misspecification if we have

no economic reason to prefer one functional form over

another (Backus et al. 1998). For example, Feng et al.

(2012) argue that the assumption of a certain type of dis-

tribution can cause biased results when studying carbon

returns. By contrast, nonparametric kernel density does not

require any prior information related to distributions and

estimators are driven by real data (Li and Racine 2007), so

the misspecification problem can be relieved to a large

extent. For this purpose, kernel density estimation is

adopted in this paper to fit the joint distribution of the

hedged portfolio. There are a number of researches about

financial problems by means of kernel density estimation.

Bouezmarni and Rombouts (2010) adopted the gamma

kernel density under the background of positive time series

data for the sake of boundary problems and demonstrated

the superiority of it. Harvey and Oryshchenko (2012) uti-

lized kernel density estimations to describe probability

density functions of stock market indexes. Shi et al. (2017)

combined the Bayes discriminant approach based on the

multivariate kernel density with the extension discriminant

approach to advance the concreteness of discrimination.

Yan and Han (2019) compared the performance of some

normal mixture models and kernel density estimations in

fitting the behavior of different stock returns. Since that the

hedging research is related to the spot and futures returns,

so we adopt bivariate kernel density estimation, at the same

time, different from the existing literature which sets up a

same bandwidth for different variables (Hazelton and

Marshall 2009; Gramacki and Gramacki 2017), we assume

two different bandwidth for spot and futures and find the

optimal solutions by minimizing the mean integrated

square error. In this process, normal distribution is assumed

for simplifying calculation, but this assumption is solely

used for acquiring optimal bandwidths and is local to some

extent, which is different from the global distribution

assumption in the traditional parameter method and has

better performance empirically.

There is a condition for using the kernel density esti-

mation that variables must be independent of each other,

which is opposite to the fact that spot returns and futures

returns are highly related. So we adopt autoregressive

conditional heteroskedasticity (ARCH) model to separate

two independent series from spot and futures returns,

named noise terms in the model, and the density function

of independent noised is estimated through kernel density.

The ARCH model was introduced by Engle(1982), aiming

to investigate the time-varying volatility of economic data

and being used widely in financial market, especially in

pricing financial derivatives and measuring investment

risk. Giot and Laurent (2004) compared the performance of

a model on the basis of the daily realized volatility and a

daily ARCH type model, aiming to study the volatility of

stocks and exchange rate returns. Catani and Ahlgren

(2017) proposed a bootstrap combined equation-by-equa-

tion Lagrange multiplier test for ARCH errors in VAR

models in order to overcome the difficulty of high

dimensionality facing multivariate tests. Further, ARCH

model also plays an important role in crude oil market

volatility analysis. Cheong (2009) used ARCH model,

which considers lots of crucial volatility facts just like

clustering volatility, to discuss the time-varying volatility

within some important crude oil markets. Nademi and

Nademi (2018) conducted a price forecast of crude oil

including OPEC, WTI and Brent by means of a semi-

parametric Markov switching AR-ARCH model. There is

also one point we’d like to stress, although ARCH model is

adopted, we do not want to research volatility, and the only

purpose is to obtain two independent series.

For the risk management, a appropriate risk measure is

consequential, and the adopted one in this paper is lower

partial moment (LPM). The characteristics of LPM when

measuring the risk include: (1) measurement of one-side

risk, and the focus is the negative deviation from the target

rate of return, that is, downside risk; in addition, by mea-

suring the return characteristics of loss (Brogan and Stid-

ham 2008), the lower partial moment can reflect the

difference of investors’ attitude towards profit and loss. (2)

By setting different target rates of return and risk param-

eters, the LPM can contain the heterogeneity of investors.

(3) LPM satisfies the subadditivity, monotonicity and

transformation invariance as a coherent measure of risk. (4)

Decision criterion based on the LPM conforms to the

expected utility maximization criterion and the random

dominant criterion, and it is not necessary to make special

assumptions about the utility function. Due to the out-

standing features of it, LPM has been the center of a large

amount of studies. Demirer and Lien (2003) calculated the

optimal hedging ratios and corresponding hedging perfor-

mance as well as compared the results between short and

long hedgers. Baghdadabad (2014) extended the n-degree

A-DRM risk measures within the framework of n-degree

LPM and then put up with a new MV model to evaluate the

US investors’ indications in respect to portfolio perfor-

mance. Dai et al. (2017) calculated the optimal hedging

ratios by means of minimizing the LPM. Jasemi et al.

(2019) put up with an practical methodology to approxi-

mate the LPM of the first order to dealing with computa-

tional difficulties. In this paper, we deduce the hedging
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strategy of crude oil futures based upon the lower partial

moments (LPMs).

The rest of paper is structured as follows:Section 2

introduces kernel density estimation, deriving the functions

which optimal bandwidths cater to. And then Section 3

introduces the ARCH model and solves the parameter

estimation by genetic algorithm. We incorporate the kernel

density into the LPMs and calculate the optimal hedging

position in Section 4. Further, empirical analysis including

the comparison between kernel density estimation and

parametric method as well as static hedging and dynamic

hedging is conducted in Section 5. Based on the research

results, conclusions and suggestions for investors are pro-

vided in Section 6.

2 An improved kernel density estimation
method

There are parametric, semi-parametric and nonparametric

methods to determine the probability density function of

the sample data, and the common nonparametric methods

include histogram and kernel density estimation. The

concept of histogram estimation is simple, but the result is

discontinuous, that is, the density value will suddenly drop

to zero at the regional boundary, while the kernel density

has the advantage of continuous estimation, and it is an

efficient nonparametric density estimation method. The

expression of kernel density is as follows:

f̂ ðx1; x2Þ ¼
1

nh1h2

Xn

i¼1

K
X1i � x1

h1
;
X2i � x2

h2

� �
ð1Þ

where n is the number of sample, h1 and h2 represent the

bandwidths or smooth parameters. In the existing research,

h1 and h2 are generally considered to be the same, i.e.,

h1 ¼ h2 ¼ h, while, in this paper, we are not assuming

they’re the same. X1i and X2i are the two given sample

series, Kð�; �Þ is kernel function. Many studies have pointed

out that different kernel functions have little effect on the

accuracy of kernel density estimation, and there is

asymptotic normality for kernel estimation in most sam-

ples, so Gaussian kernel is selected in this paper.

Kernel density fuses the form with observation point as

the center, and the performance depends on the bandwidth

selection. If the bandwidth is too small, the whole

estimation, especially the tail, will appear interference and

have a tendency to increase variance; if the bandwidth is

too large, the distribution characteristics will be masked,

and overaveraging will make the estimator have a large

deviation. When considering estimation at a single point, a

natural measure is the mean square error(MSE), defined as

MSEðf̂ ðx1; x2ÞÞ ¼ Eðf̂ ðx1; x2Þ � f ðx1; x2ÞÞ2 ð2Þ

By standard elementary properties of mean and variance,

MSEðf̂ ðx1; x2ÞÞ ¼ ðEf̂ ðx1; x2Þ � f ðx1; x2ÞÞ2

þ varf̂ ðx1; x2Þ
ð3Þ

The first and most widely used way of placing a measure

on the global accuracy of f̂ is the mean integrated square

error (MISE) (Silverman 1986), defined as

MISEðf̂ ðx1; x2ÞÞ ¼
ZZ

MSEðf̂ ðx1; x2ÞÞ dx1 dx2

¼ E

ZZ
ðf̂ ðx1; x2Þ � f ðx1; x2ÞÞ2 dx1 dx2

¼
ZZ

ðEf̂ ðx1; x2Þ � f ðx1; x2ÞÞ2 dx1 dx2

þ
ZZ

varf̂ ðx1; x2Þ dx1 dx2

ð4Þ

which gives the MISE as the sum of the integrated square

bias and the integrated variance.

Let y1 ¼ X1i; y2 ¼ X2i; t1 ¼ y1�x1
h1

; t2 ¼ y2�x2
h2

, and the

kernel function Kð�; �Þ is a symmetric function satisfying:
ZZ

Kðt1; t2Þ dt1 dt2 ¼ 1;

ZZ
t1Kðt1; t2Þ dt1 dt2 ¼ 0;

ZZ
t2Kðt1; t2Þ dt1 dt2 ¼ 0

ð5Þ

As was pointed out earlier, the calculation of bias is not

determined by the size of sample (n) but rather the band-

width (h1; h2), of course, if the calculation of bandwidth

depends on the n, then the bias will depend on n through its

dependence on h. The approximation expression of bias is

obtained as follows:
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biasðx1; x2Þ

¼ Ef̂ ðx1; x2Þ � f ðx1; x2Þ

¼
ZZ

1

h1h2
K

y1 � x1
h1

;
y2 � x2

h2

� �
f ðy1; y2Þ dy1 dy2

� f ðx1; x2Þ

¼
ZZ

Kðt1; t2Þ½f ðx1 þ h1t1; x2 þ h2t2Þ � f ðx1; x2Þ� dt1 dt2

þ 1

2
h22t

2
2

o2f

ox22

�
dt1 dt2

¼ 1

2
h21

o2f

ox21

ZZ
t21Kðt1; t2Þ dt1 dt2

þ h1h2
o2f

ox1ox2

ZZ
t1t2Kðt1t2Þ dt1 dt2

þ 1

2
h22

o2f

ox22

ZZ
t22Kðt1; t2Þ dt1 dt2

¼ 1

2
h1h2

h1
h2

o2f

ox21
k1 þ 2

o2f

ox1ox2
k2 þ

h2
h1

o2f

ox22
k3

� �

ð6Þ

where,

k1 ¼
ZZ

t21Kðt1; t2Þ dt1 dt2;

k2 ¼
ZZ

t1t2Kðt1t2Þ dt1 dt2;

k3 ¼
ZZ

t22Kðt1; t2Þ dt1 dt2

ð7Þ

By integrating the result above, we can get the following

one:
ZZ

ðEf̂ ðx1; x2Þ � f ðx1; x2ÞÞ2 dx1 dx2

� 1

4
h21h

2
2

ZZ
h1
h2

o2f

ox21
k1 þ 2

o2f

ox1ox2
k2

�

þ h2
h1

o2f

ox22
k3

�2
dx1 dx2

ð8Þ

We now turn to the variance,

varf̂ ðx1; x2Þ

¼ Eðf̂ ðx1; x2Þ2Þ � ðEf̂ ðx1; x2ÞÞ2

¼ 1

nh1h2

ZZ
K2ðt1; t2Þf ðx1 þ h1t1; x2 þ h2t2Þ dt1 dt2

� 1

n

ZZ
Kðt1; t2Þf ðx1 þ h1t1; x2 þ h2t2Þ dt1 dt2

�

� f ðx1; x2Þ þ f ðx1; x2Þ�2

¼ 1

nh1h2

ZZ
K2ðt1; t2Þ f ðx1; x2Þ þ h1t1

of

ox1

�

þ h2t2
of

ox2
þ 1

2
h21t

2
1

o2f

ox21
þ h1h2t1t2

o2f

ox1ox2

þ 1

2
h22t

2
2

o2f

ox22

�
dt1 dt2 �

1

n
½f ðx1; x2Þ þ oðh1h2Þ�2

¼ 1

nh1h2
f ðx1; x2Þ

ZZ
K2ðt1; t2Þ dt1 dt2 þ o

1

n

� �

� 1

nh1h2
f ðx1; x2Þ

ZZ
K2ðt1; t2Þ dt1 dt2

ð9Þ

The result is obtained by using the approximation for the

bias and assuming that h1; h2 is small and n is large. Fur-

ther, we have
ZZ

varĥðx1; x2Þ dx1 dx2

¼ 1

nh1h2

ZZ
K2ðt1; t2Þ dt1 dt2

ð10Þ

The expressions of MISE and AMISE can be obtained

according to the analysis mentioned above:

MISEf̂ ðx1; x2Þ

¼ 1

4
h21h

2
2

ZZ
h1
h2

o2f

ox21
k1 þ 2

o2f

ox1ox2
k2

�

þ h2
h1

o2f

ox22
k3

�2
dx1 dx2 þ

1

nh1h2

ZZ
K2ðt1; t2Þ dt1 dt2

þ o h21h
2
2 þ

1

nh1h2

� �

AMISEf̂ ðx1; x2Þ

¼ 1

4
h21h

2
2

ZZ
h1
h2

o2f

ox21
k1 þ 2

o2f

ox1ox2
k2

�

þ h2
h1

o2f

ox22
k3

�2
dx1 dx2 þ

1

nh1h2

ZZ
K2ðt1; t2Þ dt1 dt2

ð11Þ

Then we can get the optimal window width h�1 and h�2 by

calculating the follow equations:
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oAMISEf̂ ðx1; x2Þ
oh1

¼ 0

oAMISEf̂ ðx1; x2Þ
oh2

¼ 0

8
>>><

>>>:
ð12Þ

That is, the optimal window widths satisfy:

1

2
h1h

2
2

ZZ
k1h1
h2

o2f

ox21
þ 2k2

o2f

ox1ox2
þ k3h2

h1

o2f

ox22

� �2
dx1 dx2

þ 1

2
h21h

2
2

ZZ
k21h1
h22

o2f

ox21

� �2
"

þ 2k1k2
h2

o2f

ox1ox2

o2f

ox21
� 2k2k3h2

h21

o2f

ox1ox2

o2f

ox22

� k23h
2
2

h31

o2f

ox22

� �2
#
dx1 dx2

� 1

nh21h2

ZZ
K2ðt1; t2Þ dt1 dt2 ¼ 0

1

2
h21h2

ZZ
k1h1
h2

o2f

ox21
þ 2k2

o2f

ox1ox2
þ k3h2

h1

o2f

ox22

� �2
dx1 dx2

þ 1

2
h21h

2
2

ZZ
2k2k3
h1

o2f

ox22

�

� h21k
2
1

h32

o2f

ox21

� �2

� 2k1k2h1
h22

o2f

ox1ox2

o2f

ox21

þ k23h2
h21

o2f

ox22

� �2
#
dx1 dx2

� 1

nh1h
2
2

ZZ
K2ðt1; t2Þ dt1 dt2 ¼ 0

ð13Þ

The solutions of Eqs. (13) depend on the real density

function. Assume that g1 �Nð0; r21Þ; g2 �Nð0;r22Þ, and

they are independent of each other. It should be empha-

sized that the normal assumption here is only a local

assumption made in the derivation of the optimal window

width, which is substantially different from the global

assumption made in the parametric method. The joint

density of g1 and g2 is

f ðx1; x2Þ ¼
1

2pr1r2
exp � x21

2r21
þ x22
2r22

� �� �
ð14Þ

We think this as the real density of population, and the

derivative part contained in the above two equations can be

expressed as follows:

o2f

ox21
¼ x2 � r21

2pr51r2
exp � x21

2r21
þ x22
2r22

� �� �

o2f

ox21
¼ x22 � r22

2pr1r52
exp � x21

2r21
þ x22
2r22

� �� �

o2f

ox1ox2
¼ x1x2

2pr31r
3
2

exp � x21
2r21

þ x22
2r22

� �� �

ð15Þ

At the same time, for the f̂ ðx1; x2Þ in Eq. (1), we adopt

Gaussian kernel, and k1; k2 and k3 are calculated as follows:

k1 ¼ 1; k2 ¼ 0; k3 ¼ 1 ð16Þ

Then, Eqs. (13) can be simplified as follows:

nh21h2ð3h31r22 þ h1h
2
2r

2
1Þ � 4r51r

3
2 ¼ 0

nh1h
2
2ð3h32r21 þ h21h2r

2
2Þ � 4r31r

5
2 ¼ 0

(
ð17Þ

By solving the equations, we can obtain the new optimal

window widths ðh�1; h�2Þ, for which we can estimate the

kernel density f̂ ðx1; x2Þ:

f̂ ðx1; x2Þ

¼ 1

nh�1h
�
2

Xn

i¼1

1

2p
exp � 1

2

X1i � x1
h�1

� �2
 (

þ X2i � x2
h�2

� �2
!)

ð18Þ

3 Independent sequences from ARCH Model

Since the sample data are not independent of each other in

finance, insurance and other aspects, it would be a mistake

to estimate the kernel density directly using the relevant

data. Therefore, we use the ARCH model to fit the returns

of spot and futures prices, and further to obtain the inde-

pendent errors. Based on the independent errors, we esti-

mate the optimal bandwidth for binary kernel density.

ARCH model is able to describe the time-varying

volatility of economic data, and the generalized ARCH

model can further depict the clustering of volatility, that is,

volatility will change as time goes by as well as present an

relatively high or low situation at some time. Of course,

ARCH model is used here just for separating independent

series and has nothing to do with volatility. The funda-

mental content of ARCH model is shown as follows:

Optimal futures hedging strategies based on an improved... 14773

123



Xt ¼ uXt�1 þ et

et ¼ Dtgt

Dt ¼ diagð
ffiffiffiffiffiffi
h1t

p
;
ffiffiffiffiffiffi
h2t

p
Þ

h1t ¼ w1 þ A11e21;t�1 þ A12e22;t�1

h2t ¼ w2 þ A21e21;t�1 þ A22e22;t�1

8
>>>>>>>><

>>>>>>>>:

ð19Þ

where Xt ¼
X1t

X2t

� �
; et ¼

e1t
e2t

� �
; gt ¼

g1t
g2t

� �
;u ¼

u1

u2

� �
; and w1;w2;A11;A12;A21;A22 are constant param-

eters that should be estimated.

Since that the distribution of gt is unknown, so here the

quasi-likelihood estimation method is adopted. That is, we

maximize the following criterion function to obtain the

quasi-likelihood estimation of parameters.

L ¼ 1

n

Xn

t¼1

ð� 1

2
lnðdetðDtCDtÞÞ �

1

2
eTt ðDtCDtÞ�1etÞ ð20Þ

Then we deduce the concrete form of criterion function, as

we all know,

e1t
e2t

� �
¼ g1t

ffiffiffiffiffiffi
h1t

p

g2t
ffiffiffiffiffiffi
h2t

p
 !

;
e1t
e2t

� �
¼

X1t � u1X1t�1

X2t � u2X2t�1

� �

ð21Þ

Let C ¼ 1 0

0 1

� �
. We have

eTt ðDtCDtÞ�1et

¼ g1t
ffiffiffiffiffiffi
h1t

p
g2t

ffiffiffiffiffiffi
h2t

p	 

1

h1t
0

0
1

h2t

0
BB@

1
CCA

g1t
ffiffiffiffiffiffi
h1t

p

g2t
ffiffiffiffiffiffi
h2t

p

 !

¼ g21t þ g22t
ð22Þ

In this way, the likelihood function can be expressed as:

L ¼ � 1

2n

Xn

t¼1

ðlnðh1th2tÞ þ g21t þ g22tÞ ð23Þ

and

g1t
g2t

� �
¼ D�1

t

e1t
e2t

� �
¼

X1t � u1X1t�1ffiffiffiffiffiffi
h1t

p

X2t � u2X2t�1ffiffiffiffiffiffi
h2t

p

0
BB@

1
CCA ð24Þ

So, it yields

g21t ¼
ðX1t � u1X1t�1Þ2

h1t
; g22t ¼

ðX2t � u2X2t�1Þ2

h2t
ð25Þ

Then, the likelihood function is shown as follows:

L ¼� 1

2n

Xn

t¼1

lnðh1th2tÞ þ
ðX1t � u1X1t�1Þ2

h1t

 

þðX2t � u2X2t�1Þ2

h2t

! ð26Þ

In parallel, we know that,

h1t ¼ w1 þ A11ðX1t�1 � u1X1t�2Þ2

þ A12ðX2t�1 � u2X2t�2Þ2

h2t ¼ w2 þ A21ðX1t�1 � u1X1t�2Þ2

þ A22ðX2t�1 � u2X2t�2Þ2

ð27Þ

Finally, based on the given data, we can rewrite the like-

lihood function as follows

L ¼ � 1

2n

Xn

t¼1

ðY1t þ Y2t þ Y3t þ Y4tÞ ð28Þ

where,

Y1t ¼ lnðw1 þ A11ðX1t�1 � u1X1t�2Þ2

þ A12ðX2t�1 � u2X2t�2Þ2Þ

Y2t ¼ lnðw2 þ A21ðX1t�1 � u1X1t�2Þ2

þ A22ðX2t�1 � u2X2t�2Þ2Þ

Y3t ¼
ðX1t � u1X1t�1Þ2

w1 þ A11ðX1t�1 � u1X1t�2Þ2 þ A12ðX2t�1 � u2X2t�2Þ2

Y4t ¼
ðX2t � u2X2t�1Þ2

w2 þ A21ðX1t�1 � u1X1t�2Þ2 þ A22ðX2t�1 � u2X2t�2Þ2

To estimate the parameters in the ARCH model, Alzghool

and Al-Zubi (2018) adopted semi-parametric methods

including quasi-likelihood and asymptotic quasi-likelihood

estimation. For the problem of numerical implementation

of model structure choice, approach, which is based on

genetic algorithm, is proposed. It is a heuristic search

algorithm used for solving optimization and modeling tasks

by random selection, combination and variation of the

required parameters with the use of mechanisms that

resemble biological evolution. A distinctive feature of

genetic algorithm is an emphasis on the use of ‘‘crossing’’

operator, which makes an operation of recombination of

solution candidates, whose role is similar to that of crossing

in living nature. In this paper, GA is used to tune the

parameters that maximize quasi-likelihood.
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4 Lower Partial Moments

LPM is associated with downside risk, according to Bawa

and Linderberg (1997) and Lien and Tse (2001); its

expression is shown as follows:

Lðc;m; rpÞ ¼ E½maxð0; c� rpÞ�m ð29Þ

where c is the expected return and n is the power of the

shortfall, the higher c is, the investors expect a higher

return; m represents the risk aversion coefficient, if m\1,

the investors appetite for risk, and if m[ 1, the investors

are risk-aversion. In particular, let m ¼ 0, the LPM is the

equal of value-at-risk (VaR); when m ¼ 1, the LPM is

equivalent to conditional value at risk (CVaR); when c ¼ 0

and m ¼ 2, the LPM is similar to semi-variogram of

Markowitz. In addition, rp is the hedged portfolio return,

and rp ¼ rs � Hrf , in which rs is the spot return, rf is the

futures return and H is the hedged ratio.

Based on ARCH model, we can express rs and rf as

follows:

rs ¼ r1 þ
ffiffiffiffiffi
h1

p
g1

and

rf ¼ r2 þ
ffiffiffiffiffi
h2

p
g2

Then we incorporate the noise into LPM:

L ¼ E½maxð0; c� r1 �
ffiffiffiffiffi
h1

p
g1 � Hðr2 þ

ffiffiffiffiffi
h2

p
g2ÞÞ�m

¼
ZZ

D1

½c� r1 �
ffiffiffiffiffi
h1

p
x1 � Hðr2 þ

ffiffiffiffiffi
h2

p
x2Þ�m

f ðx1; x2Þ dx1 dx2
ð30Þ

Here, D1 ¼ c� r1 �
ffiffiffiffiffi
h1

p
x1 � Hðr2 þ

ffiffiffiffiffi
h2

p
x2Þ� 0. f ðx1; x2Þ

are the joint density of g1 and g2. Whenever the joint

distribution of rs and rf is known, we can apply numerical

methods to find the optimal hedge ratio. Due to the fact that

the true distribution of rs and rf is unknown, so we adopt an

indirect method to estimate the distribution of the hedged

portfolio returns considering any given c. Specifically, for a

given c, we construct the data series for g1 and g2 from the

data of rs and rf , and then apply nonparametric methods to

estimate the distribution of g1 and g2. The details are as

follows.

5 Minimum LPM Hedged Ratios

Further, we incorporate the calculated kernel density into

the LPM. For the calculation of optimal hedging ratios,

traditional approach called static hedging figures out a

constant value by minimizing the risk measure, which

originated from Johnson (1960) and Stein (1961), who

select an optimal futures position to minimize the variance

of the hedged portfolio. Then Ghosh (1993) adopted the

error correction model to calculate the constant hedge ratio

based on the cointegration theory. Although the static

hedging strategy has been widely used in existing litera-

ture, it ignores the time-varying characteristic of the (co)-

variance between the spot and futures returns. Qu et al.

(2019) investigated the dynamic hedging performance of

China’s CSI 300 index futures, utilizing the high-frequency

intraday information with RMVHR-based models. So we

calculate the optimal hedging ratios of static and dynamic

hedging, respectively.

5.1 Optimal hedged ratios based on the static
Hedging

The optimal hedged ratios are calculated based on the

whole sample data. Based on Eq. (30), the expression of

LPMs is written as follows:

L ¼ E½maxð0; c� r1 �
ffiffiffiffiffi
h1

p
g1 � Hðr2 þ

ffiffiffiffiffi
h2

p
g2ÞÞ�m

¼
Xn

i¼1

ZZ

D2

½c� r1i �
ffiffiffiffiffiffi
h1i

p
x1 � Hðr2i þ

ffiffiffiffiffiffi
h2i

p
x2Þ�m

1

nh�1h
�
2

1

2p
exp � 1

2

X1i � x1
h�1

� �2

þ X2i � x2
h�2

� �2
" #( )

dx1 dx2

where D2 : c� r1i �
ffiffiffiffiffiffi
h1i

p
x1 � Hðr2i þ

ffiffiffiffiffiffi
h2i

p
x2Þ� 0. Let

I1 ¼
Z D3

�1

1

2nph�1h
�
2

½c� r1i �
ffiffiffiffiffiffi
h1i

p
x1i

� Hðr2i þ
ffiffiffiffiffiffi
h2i

p
x2iÞ�m exp � 1

2

X1i � x1
h�1

� �2
( )

dx1

Here, D3 :
c�r1i�Hðr2iþ

ffiffiffiffi
h2i

p
x2Þffiffiffiffi

h1i
p , then we have

I1 ¼
Z þ1

0

1ffiffiffiffiffiffi
h1i

p
2nph�1h

�
2

um

exp � 1

2

ffiffiffiffiffiffi
h1i

p
X1i � cþ uþ r1i þ Hðr2i þ

ffiffiffiffiffiffi
h2i

p
x2Þffiffiffiffiffiffi

h1i
p

h�1

� �2
( )

du

ð31Þ

Therefore, the LPMs are expressed by

L ¼
Xn

i¼1

Z þ1

�1
exp � 1

2

X2i � x2
h�2

� �2
( )

I1 dx2 ð32Þ

We can obtain the optimal hedged ratio by calculating
oL
oH ¼ 0, that is, the optimal hedged ratio satisfies the fol-

lowing equation:
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Xn

i¼1

Z þ1

�1
exp � 1

2

X2i � x2
h�2

� �2
( )

oI1
oH

dx2 ¼ 0 ð33Þ

According to Eq. (31), we have

oI1
oH

¼
Z þ1

0

um exp� 1

2

Affiffiffiffiffiffi
h1i

p
h�1

� �2 Aðr2i þ
ffiffiffiffiffiffi
h2i

p
x2Þ

�h�1ðh1iÞ
3
2

ð34Þ

where A ¼
ffiffiffiffiffiffi
h1i

p
X1i þ u� cþ r1i þ Hðr2i þ

ffiffiffiffiffiffi
h2i

p
x2Þ.

For the different values of m, we can deduce the con-

dition that the optimal hedge ratio satisfies. The results are

shown in the following proposition.

Proposition 1 Suppose a hedger want to hedge the

downside risk measured by LPMs with a static hedging

strategy. The optimal hedge ratio H�, therefore, satisfies
the following conditions:

• when m ¼ 0, the optimal hedged ratio H� is solved

from the following equation

Xn

i¼1

exp � 1

2

ðaH� þ bÞ2

h�21 h1i þ h�22 H�2h2i

( )

ah�21 h1i � bH�h�22 h2i

ðh�21 h1i þ H�2h�22 h2iÞ
3
2

¼ 0

ð35Þ

where a ¼
ffiffiffiffiffiffi
h2i

p
X2i þ r2i; b ¼

ffiffiffiffiffiffi
h1i

p
X1i � cþ r1i. X1i;X2i

are the return series of spot and futures for the given

data. h�1; h
�
2 are the best bandwidths estimated based on

Eqs. (17). And, h1i; h2i are obtained from Eq. (27).

• when m ¼ 1, the optimal hedged ratio H� is solved

from the following equation

Xn

i¼1

Z þ1

�1

vffiffiffiffiffiffi
h2i

p exp � 1

2

a� vffiffiffiffiffiffi
h2i

p
h�2

� �2
( )

U
�b� H�vffiffiffiffiffiffi

h1i
p

h�1

� �
dv ¼ 0

ð36Þ

• when m ¼ 2, the optimal hedged ratio H� is solved

from the following equation

Xn

i¼1

Z þ1

�1

ffiffiffiffiffiffi
2p
h2i

r
ðbvþ H�v2Þ

exp � 1

2

a� vffiffiffiffiffiffi
h2i

p
h�2

� �2
( )

U
�b� H�vffiffiffiffiffiffi

h1i
p

h�1

� �
dv

þ
Xn

i¼1

h�21 h�2h1i
ffiffiffiffiffiffiffiffiffiffiffi
2ph2i

p
ðah�21 h1i � bH�h�22 h2iÞ

ðh�21 h1i þ H�2h�22 h2iÞ
3
2

exp � 1

2

ðaH� þ bÞ2

h�21 h1i þ h�22 H�2h2i

( )
¼ 0

ð37Þ

5.2 Optimal hedged ratios based on the dynamic
Hedging

Different from the static hedging, the optimal hedged ratio

in every day changes according to the market states. The

LPMs in day k (k ¼ 1; 2; 3. . .n) is expressed as follows:

Lk ¼ E½maxð0; c� r1 �
ffiffiffiffiffi
h1

p
g1 � Hðr2 þ

ffiffiffiffiffi
h2

p
g2ÞÞ�m

¼
Xn

i¼1

ZZ

D2

½c� r1k �
ffiffiffiffiffiffi
h1k

p
x1 � Hðr2k þ

ffiffiffiffiffiffi
h2k

p
x2Þ�m

1

nh�1h
�
2

1

2p
exp � 1

2

X1i � x1
h�1

� �2

þ X2i � x2
h�2

� �2
" #( )

¼
Xn

i¼1

Z þ1

�1
exp � 1

2

X2i � x2
h�2

� �2
( )

I2 dx2

ð38Þ

where

I2 ¼
Z D3

�1

1

2nph�1h
�
2

½c� r1i �
ffiffiffiffiffiffi
h1i

p
x1 � Hðr2i þ

ffiffiffiffiffiffi
h2i

p
x2Þ�m

exp � 1

2

X1i � x1
h�1

� �2
( )

dx1

and D3 :
c�r1k�Hðr2kþ

ffiffiffiffiffi
h2k

p
x2Þffiffiffiffi

h1i
p Then we can get the optimal

hedged ratio Hk by calculating the first-order condition of
oLk
oHk

¼ 0, that is, the optimal hedged ratio satisfy the fol-

lowing equation:

Xn

i¼1

Z þ1

�1
exp � 1

2

X2i � x2
h�2

� �2
( )

oI2
oHk

dx2 ¼ 0 ð39Þ

Here,

oI2
oHk

¼
Z þ1

0

um exp� 1

2

Affiffiffiffiffiffi
h1k

p
h�1

� �2 Aðr2k þ
ffiffiffiffiffiffi
h2k

p
x2Þ

�h�1ðh1kÞ
3
2

and

A ¼
ffiffiffiffiffiffi
h1k

p
X1i þ u� cþ r1k þ Hðr2k þ

ffiffiffiffiffiffi
h2k

p
x2Þ

For the different values of m, we can deduce the condition

that the optimal dynamic hedge ratio in day k satisfies. The

results are shown in the following proposition.

Proposition 2 Suppose a hedger want to hedge the

downside risk measured by LPMs with a dynamic hedging

strategy. The optimal hedge ratio H�
k in day k, therefore,

satisfies the following conditions:

• when m ¼ 0, the optimal dynamic hedged ratio H�
k

satisfy the following equation
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Xn

i¼1

exp � 1

2

ðaH�
k þ bÞ2

h�21 h1k þ h�22 H�2
k h2k

( )

ah�21 h1k � bH�
k h

�2
2 h2k

ðh�21 h1k þ H�2
k h�22 h2kÞ

3
2

¼ 0

ð40Þ

where a ¼
ffiffiffiffiffiffi
h2k

p
X2i þ r2k; b ¼

ffiffiffiffiffiffi
h1k

p
X1i � cþ r1k.

• when m ¼ 1, the optimal dynamic hedged ratios satisfy

the following equation

Xn

i¼1

Z þ1

�1

vffiffiffiffiffiffi
h2k

p exp � 1

2

a� vffiffiffiffiffiffi
h2k

p
h�2

� �2
( )

U
�b� H�

k vffiffiffiffiffiffi
h1k

p
h�1

� �
dv ¼ 0

ð41Þ

• when m ¼ 2, the optimal dynamic hedged ratios satisfy

the following equation

Xn

i¼1

Z þ1

�1

ffiffiffiffiffiffi
2p
h2k

r
ðbvþ H�

k v
2Þ exp � 1

2

a� vffiffiffiffiffiffi
h2k

p
h�2

� �2
( )

U
�b� H�

k vffiffiffiffiffiffi
h1k

p
h�1

� �
dv

þ
Xn

i¼1

h�21 h�2h1k
ffiffiffiffiffiffiffiffiffiffiffi
2ph2k

p
ðah�21 h1k � bH�

k h
�2
2 h2kÞ

ðh�21 h1k þ H�2
k h�22 h2kÞ

3
2

exp � 1

2

ðaH�
k þ bÞ2

h�21 h1k þ h�22 H�2
k h2k

( )
¼ 0

ð42Þ

6 Empirical Study

In this section, we achieve the following tasks. First,

descriptive statistics for spot and futures returns. Second,

estimation of relevant parameters in ARCH model through

genetic algorithm. Third, optimal hedged ratios and cor-

responding effectiveness are calculated according to dif-

ferent objective return (c) and risk aversion coefficient

(m) of LPMs, and comparisons, including kernel density

versus parametric method under the framework of static

hedging, static hedging versus dynamic hedging by kernel

density, kernel density versus parametric method in

dynamic hedging, are made. The conclusions are at the

end.

6.1 Data

According to the ex ante versus ex post method (Alizadeh

et al. 2015; Ghoddusi and Emamzadehfard 2017), we

divide the history day data of WTI crude oil into two parts

for the sake of static hedging research. The former part for

the in-sample analysis covers the period between January

2, 2015, and April 7, 2018, while the latter part for the out-

of-sample analysis covers from April 8, 2018 to October

11, 2019. For the dynamic hedging, in order to simplify the

calculation, we select 100 samples included in the sample

data mentioned above to accomplish the test. The in-sam-

ple analysis covers the period between January 2, 2015,

and March 16, 2015, while the out-of-sample analysis

covers from April 8, 2018, to June 4, 2018. The optimal

bandwidths calculated of in-sample and out-of-sample are

h�1 ¼ 0:2405; h�2 ¼ 0:0881 and h�1 ¼ 0:1992; h�2 ¼ 0:0701,

respectively. Here is the descriptive statistic of the whole

data in Figure 1:

From Fig. 1, we can clearly notice the volatility clus-

tering among the estimators of noise. Further, we test the

ARCH effects which are shown in Table 1.

For Table 1, the upper gives summary statistics on

returns while the lower presents the results of ARCH effect

test. It is obvious that there exists positive or negative

skewness or kurtosis among the in-sample and out-of-

sample data, especially for the case with futures returns in

sample which have the largest skewness and kurtosis, that’s

to say, it is more appropriate to adopt kernel density to

estimate the distribution of returns rather than normal

assumption. In addition, the LM(K) statistic delineates the

existence of ARCH effect for spot and futures returns,

which identifies the rationality of our usage of ARCH

model to fit the return data and obtain the independent

noise series.

6.2 Parameter estimation of ARCH model

Genetic algorithm is adopted in this paper to solve the

parameter estimation problem of ARCH model, which has

been widely used as a high-efficiency optimization instru-

ment. The GA was proposed first by Holland (1975), which

operates directly on the structure object without the limi-

tation of derivative and continuity of function. According

to Abdullah et al. (2018), the GA can conduct a multidi-

rectional search within crowds of candidate solutions,

which allows the seeds of possible success to be spread

uniformly over the whole solution space and make itself

achieve success in the process of optimizing compared to

single search point-based algorithms. Genetic algorithm is

a kind of stochastic algorithm, developing randomly gen-

erated individuals for better solution by iterative process,

and the definition of the survival of the fittest of this

algorithm is a process to find the optimal offspring, and the

ultimately generated individual is the optimal solution

within the optimization process. Each individual represents

a solution of the optimization problem, and the fitness is
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used as the evaluation index. Fitness represents the survival

chance of the individuals. The higher the fitness is, the

higher the probability of the individual entering the next

iteration. In practical optimization problems, fitness is

usually the value of objective function. During iteration,

new individuals are generated by crossover operators and

mutation operators, and two different generations are

generated by random combination and exchange of ele-

ments in a pair of individuals by crossover operators, while

the mutation operator adds some small random changes to

the offspring. Genetic algorithm can set reinitialization

after each convergence to ensure that the most suitable in-

dividuals are retained in the iteration process and new

random individuals can be created at the same time, so as
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Fig. 1 Estimators of noise from in-sample to out-of-sample

Table 1 Descriptive statistic of returns and Engle tests

In-sample Out-of-sample

spot futures spot futures

Mean �0.0008 �0.0016 0.0091 0.0041

Median �0.0265 �0.0024 �0.0082 �0.0088

Standard deviation 0.7280 0.2667 0.5549 0.1844

Variance 0.5300 0.0711 0.3080 0.0340

Excess kurtosis 4.3167 13.8038 7.8448 9.5273

Skewness �0.0553 0.6398 �0.0619 �0.1502

Range 5.7676 3.7390 5.4997 2.0740

Minimum �3.0707 �1.4327 �3.2471 �1.3089

Maximum 2.6969 2.3063 2.2526 0.7651

Engle test Q-statistic P-value Q-statistic P-value Q-statistic P-value Q-statistic P-value

LM(4) 216.20 0.000 216.20 0.000 5.2838 0.000 6.1253 0.000

LM(6) 258.09 0.000 258.09 0.000 15.151 0.000 8.3496 0.000

LM(8) 332.75 0.000 332.75 0.000 17.650 0.000 12.356 0.000

LM(10) 413.66 0.000 413.66 0.000 18.553 0.000 12.698 0.000
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to reduce the risk of premature convergence of the algo-

rithm. The parameters of ARCH model for in-sample data

are estimated and are presented in Table 2.

6.3 Empirical results of static hedging

Static hedging means that the optimal hedged ratios and

effectiveness are calculated according to all the sample

data, with all the sample data as a whole. At the same time,

the results based on the kernel density estimation are

compared with the ones under parameter method which

assumes a normal distribution through the standardization

of sample according to the center limit theorem. Their

results of in-sample test are shown in Tables 3 and 4, and

Table 5 depicts the result of out-of-sample test.

From Tables 3 and 4, we can firstly confirm that all the

hedging effectiveness is bigger than zero, so the model

constructed by us to solve the hedging problem is effective.

Then we can see that situations differ with the change of

risk aversion coefficient. For the case m ¼ 0, compared

with kernel density estimation, the hedged ratios are rela-

tively smaller while the effectiveness is higher for the most

data of results of parametric. For example, when c ¼ 0:01,

the former position and effectiveness are 0.34 and 0.48

while the latter ones are 0.21 and 0.51. When m ¼ 1, it is

difficult to tell which one is better, because two results are

similar. For the case c ¼ �0:002, there are a relatively

smaller position and a relatively higher effectiveness in

parametric method, but the opposite is true for the case

c ¼ �0:005. Different from the previous results, when

m ¼ 2, the result of kernel density estimation achieves a

better performance. When c ¼ �0:01, the position is larger

while the effectiveness is lower in parametric method; in

addition, for the same efficiency, the positions calculated

by parametric method are generally larger. Next we turn to

the out-of-sample results which are shown in Table 5.

For the results using kernel density estimation, whether

m ¼ 0;m ¼ 1 or m ¼ 2, the hedging effectiveness of out-

of-sample test is higher than the ones of in-sample test

generally; on the contrary, effectiveness from out-of-sam-

ple test becomes smaller compared with the results of in-

sample for parametric method. Finally, combination of the

in-sample analysis is likely that kernel density estimation

represents the real distribution characteristics of data in

financial market better and achieves a better hedging

performance.

6.4 The empirical results of dynamic hedging

Dynamic hedging means that the calculation of the optimal

hedged ratios and effectiveness is based on the single daily

data; for the all the observations, we can get n results. Here

c ¼ 0. At first, we compare static hedging and dynamic

hedging under the framework of kernel density. The results

of in-sample and out-of-sample test as well as the com-

parison with static hedging are shown in Figures 2 and 3, in

which the value represented by the straight line is the result

of static hedging with same target return(c ¼ 0) and risk

aversion coefficient(m).

From Figs. 2 and 3, we find that for the in-sample result,

considering the optimal hedging ratios, there are half the

points above and half the points below the straight line, so

there is no particular benefit to using one approach over the

Table 2 Parameter estimators of

static hedging
Parameter w1 w2 A11 A12 A21 A22 /1 /2

in-sample 0.0012 0.0133 0.0354 �0.0622 �1.1058 �0.8922 0.1944 �0.1108

Table 3 Optimal LPM hedge ratios based on the kernel density

estimation

c Hedging ratios Effectiveness

m ¼ 0 m ¼ 1 m ¼ 2 m ¼ 0 m ¼ 1 m ¼ 2

0.01 0.34 0.32 0.17 0.48 0.85 0.79

0.005 1.12 1.48 0.16 0.59 0.88 0.76

0.002 0.96 0.86 0.08 0.52 0.81 0.75

0 0.58 0.33 0.13 0.43 0.74 0.76

�0.002 0.94 0.93 0.86 0.64 0.86 0.82

�0.005 0.44 0.40 0.08 0.35 0.69 0.79

�0.01 0.66 0.53 0.06 0.30 0.37 1.00

Table 4 Optimal LPM hedge ratios based on the parametric method

c Hedged ratio Effectiveness

m ¼ 0 m ¼ 1 m ¼ 2 m ¼ 0 m ¼ 1 m ¼ 2

0.01 0.21 0.33 0.25 0.51 0.86 0.86

0.005 0.49 0.69 0.98 0.61 0.89 0.94

0.002 0.50 0.25 0.01 0.59 0.79 0.82

0 0.92 0.72 0.23 0.73 0.87 0.86

�0.002 0.61 0.16 0.72 0.60 0.74 0.92

�0.005 0.96 0.91 0.21 0.70 0.87 0.86

�0.01 0.42 0.34 0.30 0.46 0.70 0.87
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other. Then we turn to the effectiveness; it is obvious that

the effectiveness obtained by static hedging is higher than

most of results of dynamic hedging. The similar conclusion

can be acquired from the out-of-sample test, that is, static

hedging strategy achieves better performance. In addition,

it is of crucial importance that, whether for optimal hedg-

ing ratios or for effectiveness, the results of dynamic

hedging are discrete and unstable, what’s more, there are

many invalid points that the effectiveness is below the

zero. Further, we incorporate the calculated optimal hedged

ratios into the portfolios rp ¼ rs � Hrf , finding different

wealth paths, and there is a descriptive statistic about

returns shown in Table 6 and 7.

From Tables 6 and 7, we can see that all the mean and

most of medians of static hedging strategy are bigger than

those of dynamic hedging strategy, as for variance,

although the values of static hedging are little bigger for

the in-sample test, the opposite is the truth with out-of-

sample test, that is, static hedging strategy achieves better

performance. In a word, we think static hedging based on

the whole sample is a more appropriate hedging strategy.

The above content compares the performance of static and

dynamic hedging under the framework of kernel density;

more importantly, in order to prove the superiority of our

improved kernel density, the comparison between kernel

density and parametric method should be made under the

framework of dynamic hedging. The optimal hedging

ratios and efficiency based on the in-sample data as well as

the results from out-of-sample data are shown in Table 8.

Because there is a large amount of data in results, difficult

to show in pictures, so we compare them in a statistical

sense.

For the in-sample results, by comparing mean and

median, it is easy to find that the optimal hedging ratios

calculated by kernel density are smaller, which means

lower cost, than those obtained by parametric method,

while the efficiency calculated by kernel density is higher.

For out-of-sample efficiency, we also find kernel performs

better. So the conclusion can be drawn that the strategy

based on the kernel density achieves better hedging per-

formance with lower cost compared with parametric

method, which proves the superiority of our improved

kernel density again.

Table 5 Comparison based on the out-of-sample test

c Kernel density estimation Parametric method

m ¼ 0 m ¼ 1 m ¼ 2 m ¼ 0 m ¼ 1 m ¼ 2

0.01 0.49 0.89 0.87 0.46 0.84 0.68

0.005 0.65 0.92 0.95 0.61 0.87 0.57

0.002 0.63 0.81 0.79 0.51 0.77 0.55

0 0.75 0.90 0.85 0.31 0.62 0.57

�0.002 0.64 0.72 0.93 0.63 0.82 0.72

�0.005 0.72 0.89 0.85 0.16 0.48 0.68

�0.01 0.42 0.74 0.88 0.33 0.58 0.99
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Fig. 2 In-sample hedging performances of static and dynamic hedging
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7 Conclusion

The LPMs measures an individual hedger’s downside risk,

as opposed to the two-sided risk measure. This study pro-

posed an improved kernel density estimation to estimate

the optimal hedge ratio of crude oil futures hedging based

on LPMs. Our goal in this paper is twofold: (a) Due to the

correlation between spot and futures returns, we extend the

kernel method to the bivariate case. Furthermore, different

from the existing literature, for the spot and futures returns,

we assume different optimal bandwidths which are

calculated by minimizing the mean integrated square error.

(b) In order to get independent time series, we adopt ARCH

model which relevant parameters are estimated by means

of genetic algorithm. The purpose of this treatment is to

satisfy the independent sequence requirement of binary

kernel density estimation. In the part of empirical analysis,

comparisons, including kernel density versus parametric

method under the framework of static hedging, static

hedging versus dynamic hedging by kernel density, kernel

density versus parametric method in dynamic hedging, are

made.
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Fig. 3 Out-of-sample hedging performances of static and dynamic hedging

Table 6 In-sample hedging

returns of static and dynamic

hedging

m ¼ 0 m ¼ 1 m ¼ 2

Static Dynamic Static Dynamic Static Dynamic

Mean 0.00002 �0.00062 �0.00005 �0.0077 �0.00012 �0.00140

Variance 0.00078 0.00013 0.00065 0.00018 0.00060 0.00013

Median �0.00008 �0.00160 0.00007 �0.00110 �0.00018 �0.00180

Minimum �0.11910 �0.02570 �0.10910 �0.03770 �0.11350 �0.02570

Maximum 0.09320 0.02930 0.08180 0.02970 0.08460 0.02970

Table 7 Out-of-sample hedging

returns of static and dynamic

hedging

m ¼ 0 m ¼ 1 m ¼ 2

Static Dynamic Static Dynamic Static Dynamic

Mean 0.00154 0.00088 0.00020 �0.00022 0.00025 �0.00028

Variance 0.00004 0.00084 0.00039 0.00063 0.00035 0.00057

Median 0.00010 0.00038 �0.00028 �0.00008 �0.00009 �0.00300

Minimum �0.11650 �0.1170 �0.11460 �0.11290 �0.1130 �0.11780

Maximum 0.07200 0.1048 0.0714 0.04630 0.07080 0.04880
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Empirical results reveal that, at first, the hedging strat-

egy based on the kernel density estimation method is of

highly efficiency, and then it achieves better performance

than the hedging strategy based on the traditional para-

metric method (normal) under the framework of both static

hedging and dynamic hedging, that is, smaller hedged

ratios and higher effectiveness, which proves the superi-

ority and robustness of our improved kernel density fully.

What’s more, in accordance with the comparison of opti-

mal positions, effectiveness and returns, we come to the

conclusion that the results of static hedging strategy are

better and more stable due to the incorporation of more

sample points while the results of dynamic hedging strat-

egy are inefficient, discrete and unstable.

Last but not least, when calculating optimal bandwidths,

normal distribution is assumed for simplifying calculation,

which is local to some extent in kernel density and is dif-

ferent from the global distribution assumption in the tra-

ditional parameter method. So how to avoid dependence on

distributions altogether and obtain the optimal bandwidths

through simple calculation in the case of higher dimensions

will be challenging and rewarding.
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