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Abstract: Isomorphism identification plays an important role in structural design and innovative design. 

Based on the adjacency matrix and loop theory, a new method is proposed in this paper to identify the 

isomorphic kinematic chains. It enriches the application of loop-based theory for isomorphism 

identification. In the kinematic chain, links and joints are connected alternatively and every link 

corresponds to a fixed link degree. Due to the inherent characteristics, the labeled sequence of links can be 

random, which does not affect the result of isomorphism identification. By the programming software 

MATLAB, some examples with 6-,  8-, 10-, 11-, 12-link kinematic chains, and 15-vertex topological graphs 

are presented. Results show that the proposed method applies to topology graphs and kinematic chains with 

one or multiple joints. Compared with other methods, the proposed method is confirmed correctly. And 

there is no counterexample. It lays a solid foundation for structural synthesis in the future. 

Keywords: isomorphism identification; adjacency matrix; pseudo-independence loop; kinematic chain 

1. Introduction 

Application of isomorphism identification to structural synthesis has been proven to be an effective 

procedure, which has a large effect on the efficiency and accuracy of structural synthesis. Up to now, there 

have been many valuable methods illustrated to solve the isomorphism problem. 

Methods based on the adjacency matrix and incidence matrix have been widely used in the field. 

Among many others, He et al. (2001, 2003) proposed the method, which is based on the adjacency matrix 

and makes use of the information of the eigenvalue and eigenvector, which is called eigensystem approach. 

They further proposed a modified adjacency matrix called adjusted adjacency matrix in order to study a 

sufficient condition for the quadratic form approach (He et al., 2005). Yang et al. (2012) proposed a method 

based on the incident matrix. Based on the link-link shortest path distance, Madan (2014) used a kinematic 

chain label as the unique identifier for isomorphism identification among kinematic chains.  

The loop-based method is an effective way to deal with the problem. The application of the loop-based 

technique in association with the hamming number (Pathapati and Rao 2002; Dharanipragada and Chintada 

2016) was introduced to investigate and identify the isomorphism problem. Meanwhile, Rao and  Pathapati 

(2000) developed a method based on the loop to reveal simultaneously that chain and link are isomorphic 

respectively. Based on the concept of the independent loop set and a new structure decomposition 
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algorithm, the edge-based loop algebra theory (Ding, Zhao, and Huang 2010; Ding and Huang 2007) was 

presented to detect the isomorphism.  

The application of intelligent algorithms has been focused on. Kong et al. (1999) provided an artificial 

neural network technique to identify the isomorphism of the mechanism in the kinematic chain. A new 

method based on novel evolutionary approaches was used in isomorphism identification, which included 

artificial immune system (Xiao, Tao, and Liu 2005) and ant algorithm (Yang et al. 2007). To improve the 

efficiency and reliability of isomorphism identification, Yang and Zeng (2009) demonstrated an adaptive 

hybrid genetic algorithm by mixing the improved genetic algorithm and local search algorithm. 

There exist other streams of studies on isomorphism identification. After mechanism topologies were 

summarised and divided into four abstraction levels, Zhang and Li (1999) developed Vertex Feature Degree 

code approach to compare mechanism topology for all levels. And the proposed code approach was shown 

to be applicable to the whole problem space of mechanism topology identification. Arvind et al. (2015) 

presented Boolean functions to study the complexity of isomorphism testing. The functions were illustrated 

by decision trees or decision lists. Based on the concept of information entropy, Rai and Punjabi (2018) 

introduced the formulae of power and efficiency to detect the isomorphism in the kinematic chain. 

In the above literatures, the approaches are very effective to solve the problem in their papers. 

Meanwhile, the automatic method for isomorphism identification is favoured by researchers at home and 

abroad. By the programming software MATLAB, this paper proposes a new method based on the adjacency 

matrix and pseudo-independence loop to detect the isomorphic mechanisms.  

The rest of the paper is divided as follows. In section 2, some common terminologies and principles 

are defined. In section 3, the detailed steps for isomorphism identification of kinematic chains and the 

complexity of the proposed method are illustrated. In section 4, some examples are employed to verify the 

correctness of the proposed method. In section 5, a discussion is demonstrated. Finally, section 6 is reserved 

for conclusions. 

2. Common terminologies 
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(a)                          (b) 

Fig. 1 Simple kinematic chains with six links 

Consider simple kinematic chains with six links, shown in Fig. 1. They are used to illustrate common 

terminologies clearly. 



 

 

2.1 Basic concepts 

2.1.1 Pseudo-independence loop (PIL) 

In this paper, the home link is defined as the starting link of the closed loop. For example, the loop (1, 

2, 3, 4, 1) in Fig. 1(a) is a closed loop. Link 1 is the home link. The inner loop of the kinematic chain inside 

which there is no other closed loop is known as the independent loop. For the simple planar kinematic chain 

in Fig. 1(a), the independent loop is two. However, PIL and independent loop are different concepts. PIL 

is the closed loop starting from the home link and finally back to the home link. It may contain one or more 

independent loops in its inner loop.  

For example, if link 1 is selected as a home link, there will be three PILs in Fig. 1(a). They are the 

loops (1, 2, 3, 4, 1), (1, 2, 3, 4, 5, 6, 1) and (1, 4, 5, 6, 1) respectively. If the link 2 is selected as a home 

link, there will be two PILs in Fig. 1(a). They are the loops (2, 3, 4, 1, 2) and (2, 3, 4, 5, 6, 1, 2) respectively. 

However, there are two independent loops in Fig. 1(a) whatever the home link is. The selection of home 

links does not affect the number of independent loops. Besides, the direction and sequence of labeled links 

do not affect PIL. The loops (1, 2, 3, 4, 1) and (1, 4, 3, 2, 1) are equivalent in this paper. And there is no 

repeated labeled link except home link in a PIL. 

Link degree represents the link type. The degrees of binary link, ternary link, quaternary link are 2, 3, 

4 respectively. If link 1 in Fig. 1(a) is selected as the home link, PILs can be changed into (3, 2, 2, 3, 3), (3, 

3, 2, 2, 3), (3, 2, 2, 3, 2, 2, 3), which correspond to PILs (1, 2, 3, 4, 1), (1, 4, 5, 6, 1) and (1, 2, 3, 4, 5, 6, 1) 

respectively.  

In addition to the definition of the independent loop, there have been many other classic definitions 

related to the loop, such as linkage path code (Yan and Hwang 1984) and self-returning link-walk (Yadav, 

Pratap, and Agrawal 1996). Compared with the classic definitions, PIL is a closed loop with a finite orderly 

sequence of link numbers or link degrees only instead of including joint numbers. PIL in the form of the 

link degree can reflect the link type.  

2.1.2 Adjacency matrix (AM) 

A kinematic chain can be represented by a link-link AM. The number of columns in the AM is equal to that 

of rows. They are determined by the number of links. If link i and link j are connected by a vertex, the value 

of AMij or AMji will be one. Otherwise, it will be zero. Therefore, the expression of AMij is defined as 

1

0
ij

AM


= 


, if link i and link j are adjacent directly 

, otherwise
 

2.2 Basic principles 

2.2.1 Principle 1: For isomorphism identification in the kinematic chains, home links should be the 

same. 

The home link plays an important role in the PIL. The same links are links with identical link degrees. 

Erroneous results can occur if selected home links are different. Consider simple kinematic chains with 



 

 

six links in Fig. 1. For every possible home link, PILs and corresponding link degree sequences are 

shown in Table 1 and Table 2. 

Table 1. PILs of the kinematic chain in Fig. 1(a) 

Home link PIL and corresponding link degree array 

1 
(1, 2, 3, 4, 1), (1, 2, 3, 4, 5, 6, 1) , (1, 4, 5, 6, 1) 

(3, 2, 2, 3, 3), (3, 2, 2, 3, 2, 2, 3) , (3, 3, 2, 2, 3) 

2 
(2, 3, 4, 1, 2), (2, 3, 4, 5, 6, 1, 2) 

(2, 2, 3, 3, 2), (2, 2, 3, 2, 2, 3, 2) 

3 
(3, 4, 1, 2, 3), (3, 4, 5, 6, 1, 2, 3) 

(2, 3, 3, 2, 2), (2, 3, 2, 2, 3, 2, 2) 

4 
(4, 1, 2, 3, 4), (4, 5, 6, 1, 4), (4, 5, 6, 1, 2, 3, 4) 

(3, 3, 2, 2, 3), (3, 2, 2, 3, 3), (3, 2, 2, 3, 2, 2, 3) 

5 
(5, 6, 1, 4, 5), (5, 6, 1, 2, 3, 4, 5) 

(2, 2, 3, 3, 2), (2, 2, 3, 2, 2, 3, 2) 

6 
(6, 1, 4, 5, 6), (6, 1, 2, 3, 4, 5, 6) 

(2, 3, 3, 2, 2), (2, 3, 2, 2, 3, 2, 2) 

Table 2. PILs of the kinematic chain in Fig. 1(b) 

Home link PIL and corresponding link degree array 

1 
(1, 2, 4, 3, 1), (1, 3, 4, 2, 5, 6, 1) , (1, 2, 5, 6, 1) 

(3, 3, 2, 2, 3), (3, 2, 2, 3, 2, 2, 3) , (3, 3, 2, 2, 3) 

2 
(2, 4, 3, 1, 2), (2, 5, 6, 1, 3, 4, 2) , (2, 5, 6, 1, 2)  

(3, 2, 2, 3, 3), (3, 2, 2, 3, 2, 2, 3) , (3, 2, 2, 3, 3) 

3 
(3, 4, 2, 1, 3), (3, 4, 2, 5, 6, 1, 3) 

(2, 2, 3, 3, 2), (2, 2, 3, 2, 2, 3, 2) 

4 
(4, 2, 1, 3, 4), (4, 2, 5, 6, 1, 3, 4) 

(2, 3, 3, 2, 2), (2, 3, 2, 2, 3, 2, 2) 

5 
(5, 6, 1, 2, 5), (5, 6, 1, 3, 4, 2, 5) 

(2, 2, 3, 3, 2), (2, 2, 3, 2, 2, 3, 2) 

6 
(6, 1, 2, 5, 6), (6, 1, 3, 4, 2, 5, 6) 

(2, 3, 3, 2, 2), (2, 3, 2, 2, 3, 2, 2) 

In Fig. 1, there will be three PILs in each kinematic chain if link 1 is selected as the home link. There 

will be two PILs if link 4 in Fig. 1(b) is selected as the home link. However, the erroneous result can occur 

if link 1 in Fig. 1(a) and link 4 in Fig. 1(b) are both selected as the home links. In this paper, link 1 is defined 

as the home link in the kinematic chains. 

Principle 1 will not come into effect until link assortments in the kinematic chains are identical. 

Otherwise, it will be meaningless to select the home link even if PIL sets in the form of the link degree in 

the kinematic chains are one-to-one correspondences.  



 

 

2.2.2 Principle 2: Each labeled link except the home link appears only once in a PIL. 

Principle 2 can guarantee that PIL is a closed loop with a finite orderly sequence of link numbers or link 

degrees. It’s very convenient to reflect the characteristics of the PIL, which include link type and link 

sequence. If principle 2 is ignored, it will lead to the infinite sequence of PIL with relabeled links. Based 

on principle 2, it is not only beneficial to detect the isomorphic kinematic chains but also applicable to 

automatic sketching of kinematic chains (Bedi and Sanyal 2013).  

The body-fractionated kinematic chain contains at least one body that divides the chain into several 

non-fractioned kinematic chains. For the non-fractionated kinematic chain, links except home link can 

appear only once in a PIL. For the planar body-fractionated kinematic chain, it is difficult to find all PILs 

covering all independent loops when the non-fractionated link is selected as the home link. Therefore, it’s 

important to select the home link in the body-fractionated kinematic chain or divide the body-fractionated 

kinematic chain into several non-fractioned kinematic chains properly. 
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(a)                                            (b) 

Fig. 2 Fractionated kinematic chain 

In Fig. 2(a), there is a loop (1, 2, 3, 4, 5, 6, 7, 8, 3, 9, 1). However, the loop doesn’t meet principle 2. 

For a fractionated kinematic chain, the home link is usually the fractionated link. To meet the principle 2, 

link 3 in Fig. 2(a) is selected as the home link, or fractioned kinematic chain in Fig. 2(a) is transformed into 

two non-fractioned kinematic chains in Fig. 2(b). Under this circumstance, the proposed method is still 

applicable. 

3. Method 

3.1 The method for isomorphism identification 

The proposed method is based on the AM and PIL of the kinematic chain. Under the principle 1 and 

principle 2, the detailed steps are: 

Step 1: Define the home link. 

The kinematic chain in Fig. 1(a) should be labeled. Due to the inherent relations among links and 

vertices, the labeled sequence of links can be random. Link 1 in Fig. 1(a) is selected as the home link. The 

selection of the home link in Fig. 1(b) should be consistent with that in Fig. 1(a). There is no requirement 

for other links. For the kinematic chains in Fig. 1, the labeled sequence of other links is clockwise. 



 

 

Step 2: Obtain AMs. 

The AMs in Fig. 1(a) and Fig. 1(b) are 

 

0 1 0 1 0 1

1 0 1 0 0 0

0 1 0 1 0 0

1 0 1 0 1 0

0 0 0 1 0 1

1 0 0 0 1 0

a
AM

 
 
 
 

=  
 
 
 
              

0 1 1 0 0 1

1 0 0 1 1 0

1 0 0 1 0 0

0 1 1 0 0 0

0 1 0 0 0 1

1 0 0 0 1 0

b
AM

 
 
 
 

=  
 
 
 
     

Step 3: Find all PILs in the form of the link degree. 

PILs in Fig. 1(a) are (1, 2, 3, 4, 1), (1, 4, 5, 6, 1) and (1, 2, 3, 4, 5, 6, 1). The corresponding PILs in the 

form of the link degree are (3, 2, 2, 3, 3), (3, 3, 2, 2, 3), (3, 2, 2, 3, 2, 2, 3). Similarly, PILs in Fig. 1(b) are 

(1, 2, 4, 3, 1), (1, 2, 5, 6, 1), (1, 3, 4, 2, 5, 6, 1). And the corresponding PILs in the form of the link degree 

are (3, 3, 2, 2, 3), (3, 3, 2, 2, 3), (3, 2, 2, 3, 2, 2, 3). 

Step 4: Isomorphism identification.  

If PIL sets in the form of the link degree in the kinematic chains are one-to-one correspondences, 

kinematic chains in Fig. 1 are isomorphic. In fact, they are isomorphic. 

3.2 The procedures to obtain PILs 

It’s a crucial part to obtain all PILs in the kinematic chain. Take the kinematic chain in Fig. 1(a) as an 

example. In this section, the procedures to obtain PILs are shown. It’s also applicable to the program. 

Step 1: The PIL starts from the home link whose labeled number is 1. As seen in AMa in section 3.1, 

there are three rows whose numbers are 1 in the first column. It means the home link is connected with the 

other three links. Therefore, the first two labeled numbers in the PILs are (1, 2), (1, 4), and (1, 6).  

Step 2: Similarly, based on principle 2, the third labeled number is 3 in the PIL whose first two labeled 

number is (1, 2). And the third labeled number is 5 in the PIL whose first two labeled number is (1, 6). 

However, for the PIL whose first two labeled number is (1, 4), the third labeled number can be 3 or 5. 

Under this circumstance, there are two PILs that are (1, 4, 3) and (1, 4, 5) respectively. Therefore, there are 

four PILs. They are (1, 2, 3), (1, 4, 3), (1, 4, 5) and (1, 6, 5). 

Step 3: Repeat step 2 until the labeled number of link 1 arises again. If step 2 is executed twice, PILs 

will be changed into (1, 2, 3, 4), (1, 4, 3, 2), (1, 4, 5, 6) and (1, 6, 5, 4). If step 2 is executed three times, 

PILs will be changed into (1, 2, 3, 4, 1), (1, 2, 3, 4, 5), (1, 4, 3, 2, 1), (1, 4, 5, 6, 1), (1, 6, 5, 4, 1) and (1, 6, 

5, 4, 3). Up to now, there have been four PILs whose first number and last number are both 1. In other 

words, they are closed loops. 

Step 4: It’s essential to detect and delete the isomorphic loops in the step. There are 6 PILs after step 

3. They are (1, 2, 3, 4, 1), (1, 2, 3, 4, 5, 6, 1), (1, 4, 3, 2, 1), (1, 4, 5, 6, 1), (1, 6, 5, 4, 1) and (1, 6, 5, 4, 3, 2, 

1). Because PILs start from and end in the home link. The only difference for the isomorphic loops is the 

labeled direction. The PIL (1, 2, 3, 4, 5, 6, 1) and the PIL (1, 6, 5, 4, 3, 2, 1) are isomorphic loop. After step 

4, there will be 3 PILs. They are (1, 2, 3, 4, 1), (1, 4, 5, 6, 1) and (1, 2, 3, 4, 5, 6, 1). 

Therefore, the whole flow chart of the proposed method is shown in Fig. 3. 
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Fig. 3 The flowchart of the proposed method 

3.3 The complexity analysis of the proposed method 

Erroneous results can occur if selected home links are different. In the worst situation, if no information is 

provided, the home link must be defined in all possible different ways. There are two n-link kinematic 

chains a and b. Assume one link in the kinematic chain a is selected as the home link. For kinematic chain 

b, the maximum number of comparisons among different home links to be made is n, and the number of 

PILs for a home link is m. When home links between kinematic chains are identical, time consumption is 

basically dedicated to obtaining PILs and checking whether there are one-to-one mappings between PIL 

sets. If there are at most m PILs in the kinematic chain, comparisons among PIL sets will be at most 

m(m+1)/2. Therefore, the maximum comparison of the proposed method is mn(m+1)/2. 

However, the selection of the home link can be restricted by the link assortment (binary link, ternary 

link, and so on), which can effectively reduce the computation of the comparison. The actual comparison 

is much less than mn(m+1)/2. 

4. Application of the proposed method for isomorphism identification 

There is a clear discriminant criterion and standardized procedures of the proposed method. It’s very 

convenient to program in the software MATLAB. The flow chart in Fig. 3 is illustrated in two main 

procedures. It consists of obtaining PILs and isomorphism identification.  

4.1 Example 

Consider a set of kinematic chains with eight links (Madan 2014; Kamesh, Rao, and Rao 2017). It is shown 

in Fig. 4. 
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(a)                               (b) 

Fig. 4 The kinematic chain with eight links 

The AMs of kinematic chains in Fig. 4(a) and Fig. 4(b) are represented by AMa and AMb respectively. 

0 0 1 1 0 0 0 0

0 0 1 1 0 0 1 0

1 1 0 0 1 0 0 0

1 1 0 0 0 1 0 0

0 0 1 0 0 1 0 1

0 0 0 1 1 0 0 0

0 1 0 0 0 0 0 1

0 0 0 0 1 0 1 0

a
AM

 
 
 
 
 
 =  
 
 
 
 
  

 

0 1 0 0 1 0 0 0

1 0 1 0 0 1 0 0

0 1 0 1 0 0 0 0

0 0 1 0 1 0 0 1

1 0 0 1 0 1 0 0

0 1 0 0 1 0 1 0

0 0 0 0 0 1 0 1

0 0 0 1 0 0 1 0

b
AM

 
 
 
 
 
 =  
 
 
 
 
  

 

After the procedures in section 3.2 are executed, the number of PILs in Fig. 4(a) is four. PILs include 

(1, 3, 2, 4, 1), (1, 3, 5, 6, 4, 1), (1, 3, 5, 8, 7, 2, 4, 1) and (1, 3, 2, 7, 8, 5, 6, 4, 1). PILs in the form of the link 

degree are (2, 3, 3, 3, 2), (2, 3, 3, 2, 3, 2), (2, 3, 3, 2, 2, 3, 3, 2) and (2, 3, 3, 2, 2, 3, 2, 3, 2).  

In Fig. 4(b), the number of PILs is also four. PILs include (1, 2, 3, 4, 5, 1), (1, 2, 6, 5, 1), (1, 2, 3, 4, 8, 

7, 6, 5, 1) and (1, 2, 6, 7, 8, 4, 5, 1). And PILs in the form of the link degree are (2, 3, 2, 3, 3, 2), (2, 3, 3, 3, 

2), (2, 3, 2, 3, 2, 2, 3, 3, 2) and (2, 3, 3, 2, 2, 3, 3, 2). 

Based on the discriminant criterion, kinematic chains in Fig. 4 are isomorphic. 

4.2 Example 

Consider a set of kinematic chains with ten links (Kamesh, Rao, and Rao 2017; Dargar, Hasan, and Khan 

2011). It is shown in Fig. 5. 
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(a)                                         (b) 

Fig. 5 The kinematic chain with ten links 

The AMs of kinematic chains in Fig. 5(a) and Fig. 5(b) are represented by AMa and AMb respectively. 



 

 

After the procedures in section 3.2 are executed, the number of PILs in Fig. 5(a) and that in Fig. 5(b) 

are both eleven. They are illustrated in Table 3. Based on the discriminant criterion, the two kinematic 

chains are isomorphic. 

0 1 0 0 0 0 1 1 1 0

1 0 1 0 0 0 0 0 0 0

0 1 0 1 0 0 0 0 1 0

0 0 1 0 1 0 0 0 0 1

0 0 0 1 0 1 0 0 0 0

0 0 0 0 1 0 1 1 0 0

1 0 0 0 0 1 0 0 0 0

1 0 0 0 0 1 0 0 0 0

1 0 1 0 0 0 0 0 0 1

0 0 0 1 0 0 0 0 1 0

a
AM

 
 
 
 
 
 
 
 =
 
 
 
 
 
 
  

 

0 1 0 0 0 0 1 1 1 0

1 0 1 0 0 0 0 0 0 1

0 1 0 1 0 0 0 0 0 0

0 0 1 0 1 0 0 0 0 1

0 0 0 1 0 1 0 0 0 0

0 0 0 0 1 0 1 1 0 0

1 0 0 0 0 1 0 0 0 0

1 0 0 0 0 1 0 0 0 0

1 0 0 0 0 0 0 0 0 1

0 1 0 1 0 0 0 0 1 0

b
AM

 
 
 
 
 
 
 
 =
 
 
 
 
 
 
  

 

Table 3. The PILs of the kinematic chains in Fig. 4 

No. 

The kinematic chain in Fig. 5 (a) The kinematic chain in Fig. 5 (b) 

PILs 
 PILs in the form 

of the link degree 
PILs 

PILs in the form  

of the link degree 

1 (1, 2, 3, 4, 5, 6, 7, 1) (4, 2, 3, 3, 2, 3, 2, 4) (1, 2, 3, 4, 5, 6, 7, 1) (4, 3, 2, 3, 2, 3, 2, 4) 

2 (1, 2, 3, 9, 1) (4, 2, 3, 3, 4) (1, 7, 6, 8, 1) (4, 2, 3, 2, 4) 

3 (1, 7, 6, 8, 1) (4, 2, 3, 2, 4) (1, 2, 10, 9, 1) (4, 3, 3, 2, 4) 

4 (1, 2, 3, 4, 10, 9, 1) (4, 2, 3, 3, 2, 3, 4) (1, 2, 3, 4, 10, 9, 1) (4, 3, 2, 3, 3, 2, 4) 

5 (1, 7, 6, 5, 4, 10, 9, 1) (4, 2, 3, 2, 3, 2, 3, 4) (1, 2, 10, 4, 5, 6, 7, 1) (4, 3, 3, 3, 2, 3, 2, 4) 

6 (1, 2, 3, 4, 5, 6, 8, 1) (4, 2, 3, 3, 2, 3, 2, 4) (1, 2, 3, 4, 5, 6, 8, 1) (4, 3, 2, 3, 2, 3, 2, 4) 

7 (1, 7, 6, 5, 4, 3, 9, 1) (4, 2, 3, 2, 3, 3, 3, 4) (1, 2, 10, 4, 5, 6, 8, 1) (4, 3, 3, 3, 2, 3, 2, 4) 

8 (1, 8, 6, 5, 4, 3, 9, 1) (4, 2, 3, 2, 3, 3, 3, 4) (1, 7, 6, 5, 4, 10, 9, 1) (4, 2, 3, 2, 3, 3, 2, 4) 

9 (1, 8, 6, 5, 4, 10, 9, 1) (4, 2, 3, 2, 3, 2, 3, 4) (1, 8, 6, 5, 4, 10, 9, 1) (4, 2, 3, 2, 3, 3, 2, 4) 

10 
(1, 2, 3, 9, 10, 4, 5, 6, 

7, 1) 

(4, 2, 3, 3, 2, 3, 2, 3, 

2, 4) 

(1, 7, 6, 5, 4, 3, 2, 10, 

9, 1) 

(4, 2, 3, 2, 3, 2, 3, 3, 

2, 4) 

11 
(1, 2, 3, 9, 10, 4, 5, 6, 

8, 1) 

(4, 2, 3, 3, 2, 3, 2, 3, 

2, 4) 

(1, 8, 6, 5, 4, 3, 2, 10, 

9, 1) 

(4, 2, 3, 2, 3, 2, 3, 3, 

2, 4) 

4.3 Example  

Consider a set of kinematic chains with eleven links (Rai and Punjabi 2018). It is shown in Fig. 6. 

The AMs of kinematic chains in Fig. 6(a) and Fig. 6(b) are represented by AMa and AMb respectively. 

After the procedures in section 3.2 are executed, the number of PILs in Fig. 6(a) is four. PILs include 

(1, 2, 3, 5, 4, 1), (1, 7, 8, 9, 10, 1), (1, 7, 11, 10, 1) and (1, 2, 3, 6, 4, 1). PILs in the form of the link degree 

are (4, 2, 3, 2, 3, 4), (4, 3, 2, 2, 3, 4), (4, 3, 2, 3, 4) and (4, 2, 3, 2, 3, 4).  

In Fig. 6(b), the number of PILs is four. PILs include (1, 2, 3, 5, 4, 1), (1, 8, 7, 10, 9, 1), (1, 2, 3, 6, 4, 

1), (1, 8, 7, 11, 9, 1). And PILs in the form of the link degree are (4, 2, 3, 2, 3, 4), (4, 2, 3, 2, 3, 4), (4, 2, 3, 

2, 3, 4) and (4, 2, 3, 2, 3, 4).  



 

 

Based on the discriminant criterion, kinematic chains in Fig. 6 are not isomorphic. 
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(a)                                            (b) 

Fig. 6 The kinematic chain with eleven links 

0 1 0 1 0 0 1 0 0 1 0

1 0 1 0 0 0 0 0 0 0 0

0 1 0 0 1 1 0 0 0 0 0

1 0 0 0 1 1 0 0 0 0 0

0 0 1 1 0 0 0 0 0 0 0

0 0 1 1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 1 0 0 1

0 0 0 0 0 0 1 0 1 0 0

0 0 0 0 0 0 0 1 0 1 0

1 0 0 0 0 0 0 0 1 0 1

0 0 0 0 0 0 1 0 0 1 0

a
AM

 
 
 
 
 
 
 
 

=  
 
 
 
 
 
 
 
 

0 1 0 1 0 0 0 1 1 0 0

1 0 1 0 0 0 0 0 0 0 0

0 1 0 0 1 1 0 0 0 0 0

1 0 0 0 1 1 0 0 0 0 0

0 0 1 1 0 0 0 0 0 0 0

0 0 1 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 1 1

1 0 0 0 0 0 1 0 0 0 0

1 0 0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 1 0 1 0 0

0 0 0 0 0 0 1 0 1 0 0

b
AM

 
 
 
 
 
 
 
 

=  
 
 
 
 
 
 
 
 

 

4.4 Example 

Consider a set of kinematic chains with twelve links  (Madan 2014; Kamesh, Rao, and Rao 2017; Ding and 

Huang 2007). It is shown in Fig. 7. 

The AMs of kinematic chains in Fig. 7(a), Fig. 7(b), and Fig. 7(c) are represented by AMa, AMb, and 

AMc respectively. 
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 (a)                                                (b)                                                   (c) 

Fig. 7 The kinematic chain with twelve links 



 

 

0 0 0 0 1 0 0 0 0 0 1 0

0 0 0 0 1 0 0 0 0 0 0 1

0 0 0 0 0 1 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 1 1

1 1 0 0 0 1 0 0 0 0 0 0

0 0 1 0 1 0 1 0 0 0 0 0

0 0 0 0 0 1 0 1 1 0 0 0

0 0 0 0 0 0 1 0 0 1 1 0

0 0 0 0 0 0 1 0 0 1 0 1

0 0 1 0 0 0 0 1 1 0 0 0

1 0 0 1 0 0 0 1 0 0 0 0

0 1 0 1 0 0 0 0 1 0 0 0

aAM

 
 
 
 
 
 
 
 
 =  
 
 
 
 
 
 
 
  

 

0 0 0 0 0 0 1 0 0 1 0 0

0 0 0 0 0 0 0 0 1 1 0 0

0 0 0 0 0 0 0 1 0 0 0 1

0 0 0 0 1 0 0 0 0 1 0 0

0 0 0 1 0 1 0 0 0 0 1 0

0 0 0 0 1 0 1 0 0 0 0 1

1 0 0 0 0 1 0 1 0 0 0 0

0 0 1 0 0 0 1 0 1 0 0 0

0 1 0 0 0 0 0 1 0 0 1 0

1 1 0 1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 1 0 0 1

0 0 1 0 0 1 0 0 0 0 1 0

bAM

 
 
 
 
 
 
 
 
 =  
 
 
 
 
 
 
 
  

 

0 0 0 0 0 0 0 1 0 1 0 0

0 0 1 0 0 0 1 0 0 0 1 0

0 1 0 1 0 1 0 0 0 0 0 0

0 0 1 0 1 0 0 0 0 0 0 1

0 0 0 1 0 1 0 1 0 0 0 0

0 0 1 0 1 0 0 0 1 0 0 0

0 1 0 0 0 0 0 1 1 0 0 0

1 0 0 0 1 0 1 0 0 0 0 0

0 0 0 0 0 1 1 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 1 1

0 1 0 0 0 0 0 0 0 1 0 0

0 0 0 1 0 0 0 0 0 1 0 0

cAM

 
 
 
 
 
 
 
 
 =  
 
 
 
 
 
 
 
  

 

After the procedures in section 3.2 are executed, PILs in Fig. 7 are shown in Table 4, Table 5, and 

Table 6. Based on the discriminant criterion, the two kinematic chains in Fig. 7(a) and Fig. 7(b) are not 

isomorphic. However, the two kinematic chains in Fig. 7(b) and Fig. 7(c) are isomorphic. 

Table 4. PILs of the kinematic chains in Fig. 7(a) 

No. PILs PILs in the form of the link degree 

1 (1, 5, 2, 12, 4, 11, 1) (2, 3, 2, 3, 2, 3, 2) 

2 (1, 5, 6, 3, 10, 9, 7, 8, 11, 1) (2, 3, 3, 2, 3, 3, 3, 3, 3, 2) 

3 (1, 5, 6, 7, 8, 11, 1) (2, 3, 3, 3, 3, 3, 2) 

4 (1, 5, 2, 12, 9, 10, 3, 6, 7, 8, 11, 1) (2, 3, 2, 3, 3, 3, 2, 3, 3, 3, 3, 2) 

5 (1, 5, 6, 3, 10, 8, 11, 1) (2, 3, 3, 2, 3, 3, 3, 2) 

6 (1, 5, 2, 12, 9, 7, 6, 3, 10, 8, 11, 1) (2, 3, 2, 3, 3, 3, 3, 2, 3, 3, 3, 2) 

7 (1, 5, 6, 7, 9, 12, 4, 11, 1) (2, 3, 3, 3, 3, 3, 2, 3, 2) 

8 (1, 5, 6, 7, 9, 10, 8, 11, 1) (2, 3, 3, 3, 3, 3, 3, 3, 2) 

9 (1, 5, 2, 12, 9, 7, 8, 11, 1) (2, 3, 2, 3, 3, 3, 3, 3, 2) 

10 (1, 5, 6, 3, 10, 9, 12, 4, 11, 1) (2, 3, 3, 2, 3, 3, 3, 2, 3, 2) 

11 (1, 5, 2, 12, 9, 10, 8, 11, 1) (2, 3, 2, 3, 3, 3, 3, 3, 2) 

12 (1, 5, 6, 3, 10, 8, 7, 9, 12, 4, 11, 1) (2, 3, 3, 2, 3, 3, 3, 3, 3, 2, 3, 2) 

13 (1, 5, 6, 7, 8, 10, 9, 12, 4, 11, 1) (2, 3, 3, 3, 3, 3, 3, 3, 2, 3, 2) 



 

 

Table 5. PILs of the kinematic chains in Fig. 7(b) 

No. PILs PILs in the form of the link degree 

1 (1, 7, 6, 5, 4, 10, 1) (2, 3, 3, 3, 2, 3, 2) 

2 (1, 7, 8, 9, 2, 10, 1) (2, 3, 3, 3, 2, 3, 2) 

3 (1, 7, 8, 3, 12, 6, 5, 4, 10, 1) (2, 3, 3, 2, 3, 3, 3, 2, 3, 2) 

4 (1, 7, 8, 3, 12, 11, 5, 4, 10, 1) (2, 3, 3, 2, 3, 3, 3, 2, 3, 2) 

5 (1, 7, 6, 5, 11, 9, 2, 10, 1) (2, 3, 3, 3, 3, 3, 2, 3, 2) 

6 (1, 7, 8, 3, 12, 11, 9, 2, 10, 1) (2, 3, 3, 2, 3, 3, 3, 2, 3, 2) 

7 (1, 7, 6, 12, 11, 5, 4, 10, 1) (2, 3, 3, 3, 3, 3, 2, 3, 2) 

8 (1, 7, 6, 12, 3, 8, 9, 11, 5, 4, 10, 1) (2, 3, 3, 3, 2, 3, 3, 3, 3, 2, 3, 2) 

9 (1, 7, 8, 3, 12, 6, 5, 11, 9, 2, 10, 1) (2, 3, 3, 2, 3, 3, 3, 3, 3, 2, 3, 2) 

10 (1, 7, 8, 9, 11, 5, 4, 10, 1) (2, 3, 3, 3, 3, 3, 2, 3, 2) 

11 (1, 7, 6, 12, 11, 9, 2, 10, 1) (2, 3, 3, 3, 3, 3, 2, 3, 2) 

12 (1, 7, 6, 12, 3, 8, 9, 2, 10, 1) (2, 3, 3, 3, 2, 3, 3, 2, 3, 2) 

13 (1, 7, 6, 5, 11, 12, 3, 8, 9, 2, 10, 1) (2, 3, 3, 3, 3, 3, 2, 3, 3, 2, 3, 2) 

14 (1, 7, 8, 9, 11, 12, 6, 5, 4, 10, 1) (2, 3, 3, 3, 3, 3, 3, 3, 2, 3, 2) 

Table 6. PILs of the kinematic chains in Fig. 7(c) 

No. PILs PILs in the form of the link degree 

1 (1, 8, 7, 2, 11, 10, 1) (2, 3, 3, 3, 2, 3, 2) 

2 (1, 8, 7, 2, 3, 6, 5, 4, 12, 10, 1) (2, 3, 3, 3, 3, 3, 3, 3, 2, 3, 2) 

3 (1, 8, 5, 6, 3, 4, 12, 10, 1) (2, 3, 3, 3, 3, 3, 2, 3, 2) 

4 (1, 8, 7, 9, 6, 5, 4, 3, 2, 11, 10, 1) (2, 3, 3, 2, 3, 3, 3, 3, 3, 2, 3, 2) 

5 (1, 8, 5, 4, 3, 6, 9, 7, 2, 11, 10, 1) (2, 3, 3, 3, 3, 3, 2, 3, 3, 2, 3, 2) 

6 (1, 8, 5, 4, 12, 10, 1) (2, 3, 3, 3, 2, 3, 2) 

7 (1, 8, 7, 2, 3, 4, 12, 10, 1) (2, 3, 3, 3, 3, 3, 2, 3, 2) 

8 (1, 8, 7, 9, 6, 3, 2, 11, 10, 1) (2, 3, 3, 2, 3, 3, 3, 2, 3, 2) 

9 (1, 8, 5, 4, 3, 2, 11, 10, 1) (2, 3, 3, 3, 3, 3, 2, 3, 2) 

10 (1, 8, 5, 6, 9, 7, 2, 3, 4, 12, 10, 1) (2, 3, 3, 3, 2, 3, 3, 3, 3, 2, 3, 2) 

11 (1, 8, 5, 6, 3, 2, 11, 10, 1) (2, 3, 3, 3, 3, 3, 2, 3, 2) 

12 (1, 8, 7, 9, 6, 5, 4, 12, 10, 1) (2, 3, 3, 2, 3, 3, 3, 2, 3, 2) 

13 (1, 8, 7, 9, 6, 3, 4, 12, 10, 1) (2, 3, 3, 2, 3, 3, 3, 2, 3, 2) 

14 (1, 8, 5, 6, 9, 7, 2, 11, 10, 1) (2, 3, 3, 3, 2, 3, 3, 2, 3, 2) 

4.5 Example 

For the topology graph, vertices of the graph denote the links of the kinematic chain, and edges of the graph 

denote the joints of the kinematic chain. Consider a set of topology graphs with fifteen vertices (He, Zhang, 

and Li 2005; Ding and Huang 2007; Gloria, Enrique, and Domingo 2007). It is shown in Fig. 9. 

The AMs of topology graphs in Fig. 8(a) and Fig. 8(b) are represented by AMa and AMb respectively. 
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(a)                                         (b) 

Fig. 8 The topology graphs with fifteen vertices 

0 1 1 1 0 0 0 0 1 0 0 0 0 0 0

1 0 1 0 1 0 0 1 0 0 0 0 0 0 0

1 1 0 0 0 1 1 0 0 0 0 0 0 0 0

1 0 0 0 1 1 1 0 0 1 0 0 0 0 1

0 1 0 1 0 1 0 0 1 0 0 1 1 0 0

0 0 1 1 1 0 0 1 0 0 1 0 0 1 0

0 0 1 1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 1 0 0 0 0 0 0 0 0 0

1 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 1 1 0 1 0

0 0 0 0 0 1 0 0 0 1 0 1 1 0 0

0 0 0 0 1 0 0 0 0 1 1 0 0 0 1

0 0 0 0 1 0 0 0 0 0 1 0 0 0 0

0

a
AM =

0 0 0 0 1 0 0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 1 0 0 0

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 

0 1 1 1 0 0 1 0 0 0 0 0 0 0 0

1 0 1 0 1 0 0 0 1 0 0 0 0 0 0

1 1 0 0 0 1 0 1 0 0 0 0 0 0 0

1 0 0 0 1 1 0 0 1 1 0 0 0 0 1

0 1 0 1 0 1 0 1 0 0 0 1 1 0 0

0 0 1 1 1 0 1 0 0 0 1 0 0 1 0

1 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 1 0 1 0 0 0 0 0 0 0 0 0 0

0 1 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 1 1 0 1 0

0 0 0 0 0 1 0 0 0 1 0 1 1 0 0

0 0 0 0 1 0 0 0 0 1 1 0 0 0 1

0 0 0 0 1 0 0 0 0 0 1 0 0 0 0

0

b
AM =

0 0 0 0 1 0 0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 1 0 0 0

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 



 

 

 

(a) Excerpt of the 490 PILs in the form of link degree in Fig. 8(a) 

 

(b) Excerpt of the 490 PILs in the form of link degree in Fig. 8(b) 

Fig. 9 Excerpt of the 490 PILs in the form of link degree in Fig. 8 

The number of PILs in Fig. 8(a) and Fig. 8(b) are both 490. However, the two topology graphs in Fig. 

8 are not isomorphic because PILs in the form of the link degree are not one-to-one correspondences. 

4.6 Example  

Consider a set of kinematic chains with multiple joints (Zou and He 2016). It is shown in Fig. 10. 

The AMs of kinematic chains in Fig. 10(a) and Fig. 10(b) are represented by AMa and AMb respectively. 
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(a)                                (b) 

Fig. 10 Two11-link kinematic chains with multiple joints 

  

(a) PILs in the form of link degree in Fig. 10(a)   (b) PILs in the form of link degree in Fig. 10(b) 

Fig. 11 PILs in the form of link degree in Fig. 10 



 

 

0 1 0 0 1 1 0 0 0 1 0

1 0 1 0 0 0 1 0 0 0 0

0 1 0 1 0 0 0 1 1 0 0

0 0 1 0 1 0 0 0 0 0 0

1 0 0 1 0 0 0 0 1 0 0

1 0 0 0 0 0 1 0 0 0 0

0 1 0 0 0 1 0 1 0 0 1

0 0 1 0 0 0 1 0 0 0 1

0 0 1 0 1 0 0 0 0 1 1

1 0 0 0 0 0 0 0 1 0 1

0 0 0 0 0 0 1 1 1 1 0

a
AM

 
 
 
 
 
 
 
 

=  
 
 
 
 
 
 
 
 

0 1 0 0 1 1 0 0 1 0 0

1 0 1 0 0 0 0 0 0 0 0

0 1 0 1 0 1 1 0 0 0 0

0 0 1 0 1 0 1 1 0 0 0

1 0 0 1 0 0 0 1 0 0 0

1 0 1 0 0 0 0 0 0 0 1

0 0 1 1 0 0 0 0 0 0 1

0 0 0 1 1 0 0 0 1 0 1

1 0 0 0 0 0 0 1 0 1 0

0 0 0 0 0 0 0 0 1 0 1

0 0 0 0 0 1 1 1 0 1 0

b
AM

 
 
 
 
 
 
 
 

=  
 
 
 
 
 
 
 
 

 

The number of PILs in Fig. 10(a) and Fig. 10(b) are both 36. Two kinematic chains in Fig. 10 are 

isomorphic because PILs in the form of the link degree in Fig. 11 are one-to-one correspondences. 

5. Discussion 

The proposed method is very easy to be implemented, although it seems more complex at first sight. It’s 

necessary to verify the correctness of the proposed method by comparing it with previous methods 

mentioned in the references. 

(1) Kinematic chains in Fig. 1, Fig. 4, and Fig. 5 are isomorphic respectively. Because PILs in the 

form of the link degree in the kinematic chains are one-to-one correspondences. Results of isomorphism 

identification in Fig. 1 are consistent with that by visual inspection. The result of isomorphism identification 

in Fig. 4 is consistent with that by the kinematic chain label (Madan 2014) and graph theory (Kamesh, Rao, 

and Rao 2017). The result of isomorphism identification in Fig. 5 is consistent with that by graph theory 

(Kamesh, Rao, and Rao 2017) and a method based on the flow path matrices of kinematic chains (Dargar, 

Hasan, and Khan 2011). 

 (2) For 11-link kinematic chains, PILs in the form of the link degree in Fig. 6(a) and Fig. 6(b) are not 

one-to-one correspondences. Two kinematic chains are not isomorphic. The result is consistent with that 

by binary code (Rai and Punjabi 2018). For the fractionated kinematic chains, it’s essential to select link 1 

as the home link in Fig. 6. Otherwise, the result of isomorphism identification is not convincing. For 

example, if link 3 is selected as the home link, the loop will not contain link 7 to link 11. Under this 

circumstance, the result is wrong. Therefore, it’s important to select the home link for fractioned kinematic 

chains. 

(3) For 12-link kinematic chains, the number of PILs in Fig. 7(a) is less than that in Fig. 7(b) or Fig. 

7(c). PILs in the form of the link degree in Fig. 7(b) and Fig. 7(c) are one-to-one correspondences. So 

kinematic chains in Fig. 7(a) and Fig. 7(b) or Fig. 7(c) are not isomorphic. Kinematic chains in Fig. 7(b) 

and Fig. 7(c) are isomorphic but labeled differently. Results are consistent with that by kinematic chain 

label (Madan 2014), graph theory (Kamesh, Rao, and Rao 2017) and the canonical perimeter topological 

graph (Ding and Huang 2007). To some extent, the example confirms that the labeled numbers of links 

don’t alter the results of isomorphism identification. 

(4) The number of PILs in topology graphs with fifteen vertices in Fig. 8(a) and Fig. 8(b) are equal. 

However, PILs in the form of the link degree are not one-to-one correspondences. They are not isomorphic. 



 

 

The result is consistent with that by the eigensystem approach (He, Zhang, and Li 2005), the canonical 

perimeter topological graph (Ding and Huang 2007), and improving neural networks (Gloria, Enrique, and 

Domingo 2007). Besides, the example illustrates that the proposed method is also suitable for isomorphism 

identification in the topology graphs. 

(5) There are two 11-link kinematic chains with multiple joints in Fig. 9. PILs in the form of link 

degree in Fig. 9(a) and Fig. 9(b) are one-to-one correspondences. Kinematic chains in Fig. 9 are isomorphic. 

The result is consistent with that by the algorithm based on the weighted-double-colour-contracted-graph 

(Zou and He 2016). Therefore, the proposed method in this paper is also applicable to kinematic chains 

with multiple joints. 

6 Conclusions 

This paper proposes a new method to solve the isomorphism problem in the kinematic chains. The proposed 

method is very simple and efficient. It can be easily implemented on the computer. A program is written in 

MATLAB to obtain all PILs and justify whether kinematic chains are isomorphic. Compared with previous 

methods, the proposed method has been proven very effective and efficient in isomorphism identification. 

And it applies to kinematic chains and topological graphs. 

The proposed method focuses on the basic features of kinematic chains, such as link assortment and 

the relative relation among links and vertices, to establish a connection from PIL to isomorphism 

identification. It relies on the selection of the home link, rather than the direction and sequence of labeled 

links. It can be considered the general method for isomorphism identification in the planar kinematic chains.  
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