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Abstract
Biosignals are nowadays important subjects for scientific researches from both theory, and applications, especially, with the
appearance of new pandemics threatening the humanity such as the new coronavirus. One aim in the present work is to prove
that wavelets may be a successful machinery to understand such phenomena by applying a step forward extension of wavelets
to multi-wavelets. We proposed in a first step to improve multi-wavelet notion by constructing more general families using
independent components for multi-scaling and multi-wavelet mother functions. A special multi-wavelet is then introduced,
continuous, and discrete multi-wavelet transforms are associated, as well as new filters, and algorithms of decomposition, and
reconstruction. Applied breakthroughs of the paper may be summarized in three aims. In a first direction, an approximation
(reconstruction) of a classical (stationary, periodic) example dealing with Fourier modes has been conducted in order to
confirm the efficiency of the HSch multi-wavelets in approximating such signals and in providing fast algorithms. The second
experimentation is concerned with the decomposition and reconstruction application of the HSch multi-wavelet on an ECG
signal. The last experimentation is concerned with a de-noising application on a strain of coronavirus signal permitting to
localize approximately the transmembrane segments of such a series as neighborhoods of the local maxima of an numerized
version of the strain. Accuracy of the method has been evaluated by means of error estimates and statistical tests.
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1 Introduction andmotivations

Signal/image processing studies digital signals/images, and
their transformations,with the aimof improving their quality,
extracting information, description, analyzing, and inter-
preting, control, filtering, compression, and transmission of
data, de-noising, prediction, identification, and classification.
These aims are met in many fields such as medicine, sound,
geography, town planning, photography.

In theory, image/signal processing is a domain of science
that is not recent, but in contrast, it is developed till the early
discovery of Fourier analysis, and generally, linear transfor-
mations. See for example Bacchelli et al. (2002), Kotas and
Moron (2017), Mallat (2008), and Wang et al. (2016).

It consists of a box of techniques, and/or methods, mathe-
matical, and/or physical, theoretical, and/or applied that aims
to modify or to convert a signal/image in another form in
order to improve it, and/or to extract information (See Kotas
and Moron 2017; Mallat 2008; Wang et al. 2016).
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One of the important types of signals/images that attract
researchers are biomedical ones. It is, for example, wor-
thy to recall the pandemics, which appear in many periods
somehow suddenly, and which cause a real threatening for
humanity. Corona-type pandemics are one of them. They
therefore need to be understood, such as SARS, H2N2, and
the new coronavirus COVID-19.

One of the powerful tools in such topics is wavelet theory,
which has been proved to be challenging since its discov-
ery. Recently, a step forward has been also conducted to
extend wavelets to multi-wavelets (another face of wavelets)
to improve the theme of wavelet theory and its applications
such as in signal processing. One of our aims in the present
work is to improve multi-wavelet notion by adopting more
general families of explicit multi-wavelets constructed using
independent components for scaling functions. Readers may
also consult (Arfaoui et al. 2020a, b; Ben Mabrouk et al.
2008b; Jallouli et al. 2019a, b, c, d; Zemni et al. 2019a) for
more applications of the concepts of wavelets, and multi-
wavelets, especially, on bio-signals.

Multimedia documents constitute also a category of
applications in signal/image processing. They also present
essential tools in the fields of biomedical, satellite, and
astronomical imagery, film production, cryptography, water-
marking, steganography, etc. In watermarking, for example,
some methods operate in the spatial or transformed domain,
and others use hybrid techniques. Concerning the frequency
transform, the insertion of the mark in the low frequencies
generally provides good robustness but induces distortions
in the time domain. On the other hand, the insertion in
the high-frequency components does not keep the quality,
and moreover it makes the mark fragile to the attacks. This
was a motivation for researchers to develop and ensure a
compromise between the robustness, and invisibility of the
transform. See Arfaoui et al. (2017), Bacchelli et al. (2002),
Kotas and Moron (2017), Mallat (2008) and Wang et al.
(2016).

Over the past few years, there has been a renewed interest
in wavelet/multi-wavelet multi-resolution methods. When it
is sought to analyze an image, it is very common to establish,
explicitly or implicitly, a time-frequency representation of it.
The Fourier transform is not the appropriate tool to carry out
this analysis since it masks the temporal evolution of the sig-
nal. Wavelet theory has been proved to be a powerful tool in
signal/image processing. Indeed, most of the signals of the
real world are not stationary, and it is just in the evolution
of their characteristics (statistics, frequency, temporal, spa-
tial) that resides the essential information. In this context,
wavelet transforms provide information about the frequency
content, while preserving the localization in time in order to
obtain a time-frequency representation or a space-scale of the
signal. Unlike the Fourier transform, the wavelet transform
provides interesting solutions in this context. Approxima-

tions of signals are obtained as results of a convolution with
a scaling function (a low-pass filter), and a wavelet function,
and then reducing the number of points used in the process.
The principle idea is to iterate this process and transform the
current approximation into a new one with fewer points for
the representation. We obtain a temporal as well as a fre-
quency decomposition of the source object. It is well known
that the frequency decomposition of a signal is interesting
for the analysis of the different levels of detail present in the
signal. It also applies to filtering, compression, and progres-
sive transmission. See Arfaoui et al. (2017), Bacchelli et al.
(2002), Daubechies (1992), Kotas andMoron (2017), Mallat
(2008) and Wang et al. (2016).

Multi-wavelets are introduced to generalize wavelets to
more flexible systems. In the original constructions, multi-
wavelets start by exploiting the 2-scale relation due to the
scaling function of a single multi-resolution analysis, by tak-
ing the well-known 2-scale relation in a vector form. Each
component is a translated copy of the single source scaling
function appearing in the 2-scale relation. More precisely,
let ϕ be a scaling function satisfying an associated 2-scale
relation, with filter length L . The associated multi-scaling
function is Φ(·) = (ϕ(·), ϕ(· − 1), . . . , ϕ(· − L + 1)).
Original multi-wavelets look like a system of L surveil-
lance systems in each direction, but which are identical or
having the same mechanism in all directions. However, it
will be best, and more efficient to install different mecha-
nisms’ cameras, and thus get a whole system of surveillance
Φ(·) = (ϕ1, ϕ2, . . . , ϕK ), with a number of directional-
wise cameraswith different filters, independent, andworking
simultaneously to compose a whole image. In the present
work, one of our aims is to apply the last mechanism of mul-
tiple different mechanisms.

Multi-wavelets are in fact another face of wavelets,
looking like the multi-surveillance systems. They are vector-
valuedwavelets, satisfyingmore flexibility as singlewavelets
by involving matrix theory rather than scalars. This makes
an important advantage, as it permits to obtain multi-wavelet
bases possessing several properties at the same time. Matrix
theory may help in obtaining an appropriate matrix prod-
uct filter, spectral factorization, and in the improvement of
the accuracy of the computed factors. The main properties
are resumed essentially in orthogonality, symmetry, short
support, high number of vanishing moments. The crucial
point that may be raised in multi-wavelet coefficients may
be the choice of a good prefilter which can provide a good
approximation of the true initial coefficient sequences, when
applied to the input data (See for instance (Cotronei et al.
1998; Cotronei and Puccio 1997; Geronimo et al. 1994;
Ho 2002; Xia et al. 1996). The number of high-amplitude
wavelet coefficients created by a brutal transition like an
edge is proportional to the width of the supports of the filters.
For a more accurate localization of singularities, the number
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of high-amplitude wavelet coefficients produced should be
as small as possible. So, the supports of the filters should
be as short as possible. Moreover, the more the vanishing
moments, the smaller the coefficients can be produced over
smooth regions at fine scales. Therefore, the multi-wavelet
coefficients that belong to the noise component can be more
easily distinguished at fine scales. The support size increases
proportionally to the number of vanishing moments, and
multi-wavelets can provide a better trade-off of this.

Geronimo, Hardin, and Massopust applied fractal inter-
polation to constructed multi-wavelets, that have shown next
good characteristics, and have been applied widely. These
multi-wavelets have a principal common point with ours, in
the fact that they have independent components, and did not
re-exploit the same translations of a single wavelet/scaling
function to obtain a multi-case. See Geronimo et al. (1994),
Ho (2002) and Xia et al. (1996).

In the present work, we propose to serve from explicit
multi-wavelets already introduced in Zemni et al. (2019a),
and next applied in Zemni et al. (2019b) to improve firstly
the theoretical findings, and in modeling biomedical signals.
The existing idea consists in a simple change in the well-
known 2-scale relation by writing it in a vector form. This
makes almost all existing constructions of multi-wavelets
to look-like as modified representations of the same origi-
nal wavelets. See AlMahamdya and Riley (2014), Alramahi
et al. (2018), Alwan (2014), Attakitmongcol et al. (2001),
Massopust et al. (1996), Rieder et al. (1996) and Turcajova
(1999). In our work, based on the well-known wavelets of
Haar, and Faber–Schauder we developed a simple variant of
multi-wavelets that are not issued fromone source, as in exist-
ing works. Haar, and Schauder explicit functions are applied
in our case. This choice permits exact computations of neces-
sary coefficients applied in the processing. They also permit
to reduce the number of such coefficients and obtain the next
generations recursively. However, we recall that other exam-
ples of multi-wavelets may be also obtained even explicitly
by applying other scaling functions, and/or wavelet mothers
different from the present case. Some interesting cases may
be found in Arfaoui et al. (2020a, b). See also Bui and Chen
(1998), Huang and Li (2011), Iyer (2001), Kessler (2009),
Liang et al. (1996), Ruedin (2002), Selesnick (1998, 1999,
2000), Tham et al. (2000), Vehel and Aldroubi (1997), Xia
(1998), Xia and Jiang (1999) and Xia et al. (1996) for more
methods, and applications.

Next, to show the performance of our extension, some
experimentation will be developed. A first one deals with
the development of a Fourier type mode to show how fast
are algorithms based on the new variant of multi-wavelets.
A second experimentation will be concerned with the well-
known ECG signals. A de-noising step has to be conducted
using our newmulti-wavelets to lead next to a good analysis.

SeeAlMahamdya andRiley (2014), Kotas andMoron (2017)
and Wang et al. (2016) for some existing methods.

The last experimentation is concerned with the processing
of a coronavirus strain for an associated membrane protein
signal. We propose to develop a wavelet analysis of an iso-
lated or purified strain of human coronavirus associated with
SARS already recorded, and studied in VanDerWerf (2010).
Precisely, we intend to conduct a decomposition process, and
to localize the transmembrane helices (TMHs) of the strain
based on the hydrophobic character of the amino acids con-
stituting the proteins’ series associated to such a strain, and
issued from the well-known Kyte–Doolittle method (Kyte
and Doolittle 1982). The idea lies in the topic of molecu-
lar or cellular communication and its modeling by means of
signals. Recall that the functioning of our body, as well as
its interaction with exterior factors such as viruses is in fact
a kind of molecular communication. For example, viruses
respond to signallingmolecules secreted to discover the exte-
rior space. This is the simplestway to describe themechanism
of an attack. In neuronal system, electrical impulses and
neurotransmitters are jointly used by neuron cells to com-
municate with target cells. The question resides on how the
communication is conducted. Recall that viruses are infec-
tious agents, that may not replicate solely, and in contrast,
they need a hosting living cell to assure the replication inside
it. Some of them have an own protein cover, and all of them
develop proteins inside the host cell. This is necessary to
assure and to permit the communication with other cells. We
know that the communication is assured by means of mem-
brane proteins. More precisely, transmembrane proteins are
the main factors or parts in the body that permit the commu-
nication between cells. Our idea here has twomeanings, aims
or interpretations. In the first, the transmembrane proteins of
the virus may be used by the virus itself to attack other cells,
and in the same time, they may be considered in an inverse
problem as weak parts, and open doors in the protein cover
of the virus to receive itself exterior attacks such as those
due to the body immune system, and those due to vaccines.
So, in our opinion, all the problem resides in localizing these
strong attackers, and/or these weak defenders. The first work
applying wavelets as part of proteins modeling is due to Fis-
cher et al. (2003), where a WAVPRED prediction algorithm
of transmembrane segments as maximum points in a numer-
ical series converted from Kyte–Doolittle scales, and which
consists of mathematical and biochemical filtering by taking
empirically determined filtering thresholds.

The present paper is organized as follows. The next sec-
tion is devoted to the review of wavelet theory. Section 3
is devoted to the development of multi-wavelets in order to
provide a Haar–Schauder multi-wavelet, and its associated
filters. Recall that the original simple way to introduce multi-
wavelets is to consider multi-wavelet scaling function as the
vector composed of the translated copies of the same single
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scaling function appearing in the 2-scale relation. Here, a
different concept of multi-wavelet scaling functions is intro-
duced based on finitely many possibly independent scaling
functions components. The multi-scaling function and its
multi-wavelet mother will be vectors whose components are
not issued from the same single scaling function or scaling
wavelet. It looks like a system of many cameras working
simultaneously, and independently to provide a complete
surveillance system. In Sect. 4, some experiments have been
developed to show the performance ofmulti-wavelets against
wavelets for both the rapidity of algorithms and bio-signals
processing.AnECGsignal, and a proteins’ strain issued from
a coronavirus case are considered.

2 Signal processing techniques review

Signal processing techniques are resumed in the various
transformations, especially those based on mathematical
concepts, and which are implemented using numerical,
and/or digital techniques. They permit to characterize sys-
tems’ processes in a quantifiedway, to reveal hidden informa-
tion about the process, and account for the system behavior,
and also it allows us to predict this behavior when the sys-
tem’s condition changes.

The complexity of bio-physical processes such as ECG,
DNA, and proteins needs a quantified way that relies on
the use of mathematical, and physical models and laws to
understand them.However, there are no universal techniques,
which may be appropriate for all applications and also, it is
not practically possible to express all signal processingmeth-
ods for various applications.

There are in the literature many techniques, such as the
entropy, filtering, frequency analysis, time series analysis
and models, such as auto regressive, and autoregressive
moving average, spectral methods, like power spectral den-
sity, wavelets, thresholding, denoising, Fourier transform,
Hilbert–Huang transform, uncertainty principle, support vec-
tor machine, adaptive noise cancellation used to enhance the
signal-to-noise ratio.

Signal denoising has been conducted also via the empir-
ical mode decomposition, which is based on a local and
adaptive method in the frequency-time analysis. Some others
are based on statistical model such as the so-called deep-
learning-based autoencoder models. These models consist
in regenerating a clean version of the analyzed signal from
a corrupted version based on an optimization process of a
suitable objective function. In the same category, Bayesian
filters based models such as the extended Kalman filter, the
extended Kalman smoother, and the unscented Kalman Fil-
ter are also known in bio-signals processing. Fuzzy models
are also applied widely, and also combined with neural net-
works for signal processing. Besides, we may also mention

the hybrid methods developed by combining theses ones.
See Abhijith et al. (2016), AlMahamdya and Riley (2014)
and Babatunde (2012)

Support vector machines, for example, are used in signal
processing to separate different patterns by means of pattern
recognition. The technique is based on statistical learning
theory made by learning from the collected set of data. This
method is also combined with wavelets to yield the wavelet
support vector machine, which has been widely applied. See
for instance (Abhijith et al. 2016; AlMahamdya and Riley
2014; Alwan 2014; Babatunde 2012; Ben Mabrouk et al.
2008a; Ho 2002; Mallat 2008; Xia and Suter 1996; Zemni
et al. 2019a, b).

Heisenberg’s uncertainty principle, for example, states
that it is not possible to know what specific frequency exists
at a particular instance of time but it is only possible to
know what frequency bands exist at what time interval. The
problem of time and frequency resolution which is the result
of the Heisenberg uncertainty principle constitutes a major
challenge in the analysis of non-stationary signals. The use
of wavelets in such a principle is nowadays a very well-
known fact. Time series models, linear and nonlinear, are
also applied in signal processing as approximate mathemat-
ical model based on sets of inputs–outputs measurements.

Wavelet transform, which is the main technique related
to the present work, is applied to signals to obtain fur-
ther information that is not readily obtainable in the raw
signal. Most signals in practice are time-domain signal in
their raw format. Moreover, almost all biological signals
are non-stationary signals. Wavelet transform is capable of
simultaneously providing both the time and frequency infor-
mation. The frequency spectrum represents the frequency
components of a signal. Fourier transform is used to find
the frequency-amplitude representation of a signal. How-
ever, many signals such as ECG and proteins need more than
the Fourier transform theorems, due to their frequency con-
tents which may change in time. Wavelet analysis is capable
of revealing aspects of data that other signal analysis tech-
niques cannot, e.g., trends, breakdown points, discontinuities
in higher derivatives and self-similarity.

Wavelet methods start firstly by decomposing the sig-
nal, deciding the type of thresholding and reconstructing
the signal. Recently, wavelets have been extended to multi-
wavelets, which have shown some performance compared to
existingmethods.Methodsbasedonwavelets/multi-wavelets
include themathematical theory of irregular functions to con-
duct signal processing, such as the estimation of Lipschitz
exponent by means of wavelet/multi-wavelet coefficients or
transform, which performs the singularity detection, and
thus yields signal denoising algorithms using the singular-
ity detection. A thresholding process permits to de-noise
the signal, and reconstruct the denoised version by simply
applying the inverse multi-wavelet transform. In this direc-
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tion, Geronimo, Hardin and Massopust proposed a method
for constructing translation and dilation invariant function
spaces using fractal functions defined by a certain class of
iterated function systems (Geronimo et al. 1994). Xia and
collaborators (Xia 1998; Xia and Jiang 1999; Xia et al.
1996; Xia and Suter 1996) improved such multi-wavelets
by constructing a prefilter design method dealing with all
decomposition steps for the discretemulti-wavelet transform,
and appoximating a signalwith the lowpass property. See also
Attakitmongcol et al. (2001), Bacchelli et al. (2002), Bui and
Chen (1998), Cotronei et al. (1998); Cotronei and Puccio
(1997), Cotronei and Sissouno (2017), Efromovich (2001),
Hardin and Roach (1998), Ho (2002), Ho et al. (2003), John-
son (2000), Kotas and Moron (2017), Strela et al. (1999),
Wang et al. (2016) and Yoganand and Mohan (2018).

3 Wavelets/multi-wavelets for signal
processing

3.1 Wavelet methods review

A wavelet may be defined simply as a short wave func-
tion, and which has major difference from Fourier sine, and
cosine by its ability of being localized in time-frequency,
and/or time-space. Wavelet analysis of signals is based on
the so-called wavelet transform which is a convolution of
the analyzed signal with copies of a source function called
mother wavelet. Wavelets, differently from Fourier modes,
are not necessarily periodic, theymay be also compactly sup-
ported.

In mathematics, a mother waveletψ is a square-integrable
function with enough vanishing moments (oscillating) with
necessary zero mean. Such a mother wavelet has to satisfy
some admissibility assumption, stating that

Aψ =
∫
R

|ψ̂(ξ)|2
|ξ | dξ < ∞. (1)

(SeeArfaoui et al. 2017;Daubechies 1992;Mallat 2008). The
copies applied next in the signal analysis are issued from the
mother wavelet by translation, and dilation parameters.More
precisely, the wavelet processing of signals is based on their
wavelet transform. Given a finite energy signal F , a > 0
known as the scale, and b ∈ R known as the position, the
continuous wavelet transform (CWT) of F is at the scale a,
and the position b is

CF (a, b) =
∫ +∞

−∞
F(t)ψa,b(t)dt, (2)

where

ψa,b(x) = 1√
a

ψ

(
x − b

a

)
. (3)

The analyzed signal F may be reconstructed using the
inverse transform as

F(t) = 1

Aψ

∫ +∞

−∞
CF (a, b)ψa,b(t)

dadb

a2
, (4)

where Aψ is the admissibility constant due to the mother
waveletψ definedby (1). (SeeArfaoui et al. 2017;Daubechies
1992; Mallat 2008).

A restrictive version of the CWT is the so-called discrete
wavelet transform (DWT) called also wavelet coefficient,
evaluated by the restriction to discrete grids for the scale, and
the position parameters. In fact there is no essential differ-
ence between the discrete grids used. The most commonly
used one is the dyadic grid constituted by a = 2− j , and
b = k2− j , j, k ∈ Z. The copy ψa,b becomes is this case

ψ j,k(t) = 2 j/2ψ(2 j t − k) (5)

and the discretewavelet transform (DWT), called sometimes,
the wavelet coefficient, will be

d j,k(F) =
∫ +∞

−∞
F(t)ψ j,k(t)dt . (6)

These coefficients are also known in wavelet theory as
the detail coefficients at the level j , and the position k. It
holds also in wavelet theory that (ψ j,k) j,k∈Z constitutes an
orthonormal basis of L2(R), and consequently any element
F may be decomposed in a series

F =
∑
j,k

d j,k(F)ψ j,k (7)

known as the wavelet series of F , and which replaces the
reconstruction formula (4) in the discrete form.

This decomposition into an orthogonal-wise components
series leads to a functional framework associated to the
mother wavelet ψ known as the multi-resolution analysis
(MRA). Indeed, let for j ∈ Z, Wj = spann(ψ j,k; k ∈ Z)

known as the detail spaces, and Vj = ⊕l≤ jWl called approx-
imation spaces. There exists a source function ϕ known as
the scaling function or the father wavelet satisfying Vj =
spann(ϕ j,k; k ∈ Z), where the ϕ j,k’s are defined similarly
to the ψ j,k . The father, and mother wavelets are related by
the so-called 2-scale relation stating that

ϕ =
∑
k∈Z

hkϕ1,k, and ψ =
∑
k∈Z

gkϕ1,k, (8)
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where

hk =
∫ +∞

−∞
ϕ(t)ϕ1,k(t)dt, and gk = (−1)kh1−k . (9)

See Daubechies (1992) and Mallat (2008) for more details.
These relations permit to compute the wavelet coefficients
from level to level. Indeed, denote

a j,k(F) =
∫ +∞

−∞
F(t)ϕ j,k(t)dt,

known as the approximation or the scaling coefficient of F
at the level j , and the position k, we have

a j,k(F) =
∑
l∈Z

hla j+1,l+2k(F), (10)

and

d j,k(F) =
∑
l∈Z

gla j+1,l+2k(F). (11)

This means that the decomposition at the level j may
be deduced from the level ( j + 1) by means of the filters
H = (hk)k (discrete wavelet low-pass filter), and G = (gk)k
(discrete wavelet high-pass filter). Similarly, we have an
inverse scheme stating that

a j+1,k(F) =
∑
l

hl−2ka j,l(F) +
∑
l

gl−2kd j,l(F). (12)

For backgrounds on wavelet filters, the readers may refer to
Arfaoui et al. (2017), Daubechies (1992) and Mallat (2008).

In wavelet theory, the series (7) may be decomposed into
two parts,

F =
∑
j≤J0,k

d j,k(F)ψ j,k +
∑
j>J0,k

d j,k(F)ψ j,k, (13)

where J ∈ Z. Due to the properties of the multi-resolution
analysis, the first part above belongs in fact to the so-
called approximation space of level J denote usually VJ =
spann(ϕJ ,k, k), and consequently may be expressed by
means of the ϕJ ,k’s as

AJ0(F) =
∑
j≤J0,k

d j,k(F)ψ j,k =
∑
k

aJ0,k(F)ϕ j,k, (14)

where the aJ ,k(F) are the approximation coefficients of F
introduced above. AJ0(F) is effectively called the approxi-
mation of F at the level J0, which is also the projection of

F on VJ0 . The second part is a superposition of orthogonal
components

Dj (F) =
∑
k

d j,k(F)ψ j,k (15)

in the so-called detail space Wj = spann(ψJ ,k, k) of the
multiresolution analysis. Dj (F) is effectively called the
detail component of F at the level j , which is also the pro-
jection of F on Wj . In other words, we may write

F = AJ0(F) + DJ0+1(F) + DJ0+2(F) + · · · · (16)

It is composed of a first part describing the global behavior
or the shape of F , and a second part reflecting the higher fre-
quency oscillations or the fine scale deviations of the series
near its trend. In practice, we cannot obviously compute
infinitely many parts, but we fix a maximal level of decom-
position J > J0, and consider

FJ = AJ0(F) +
∑

J0< j≤J

D j (F). (17)

There is no theoretical method for the exact choice of the
parameters J0 and J . However, the minimal parameter J0
does not have an important effect on the total decomposition
and usually chosen to be 0. But, the choice of J is always
critical. One selects J related to the error estimates.

3.2 Multi-wavelet processing

Multi-wavelets have been introduced since the early 1990s
as another view of wavelets permitting to re-write wavelet
analysis in a vector form to reduce may be mathematical
formulations. It resembles in some sense to the reduction
of higher-order differential equations into first order ones
by considering the vector X = (y, y′, y′′, . . . , y(n)) where
n ∈ N is an integer constituting the order of the original
differential equation in y, and where y′, y′′, . . . , y(n) are the
derivatives of y to such an order.

The major existing multi-wavelet constructions consider
the vectorΦ = (ϕ(·), ϕ(·−1), . . . , ϕ(·−N )), where N is the
length of the filters H , andG. This view of wavelets has even
though some advantages, such as short supports, smooth-
ness, accuracy, symmetry, and orthogonality. Moreover, as
noticed in Zemni et al. (2019a, b), discrete multi-wavelets
may require pre-processing, andpost-processing steps. These
facts themselves constituted main motivations behind the
study developed in Zemni et al. (2019a, b), and continued
in the present paper.

Some original developments of multi-wavelets have been
already addressed by many authors, mainly (Geronimo et al.
1994). Geromino et al abbreviated in the literature as GHM
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scaling functions have four remarkable properties showing
that multi-wavelets can combine more useful features than
scalar wavelets: both scaling functions have short supports.
The system has second order of approximation. The trans-
lates of the scaling functions and wavelets are orthogonal.
Both scaling functions and the wavelets are symmetric. The
GHMmultiscaling andmulti-wavelet functions are also quite
smooth, and precisely, almost differentiable.

Xia (1998) proposed a prefilter design by combining the
ideas of the conventional wavelet transforms and multi-
wavelet transforms. The prefilters are orthogonal but non-
maximally decimated. The author stated that one benefit of
such construction is that the energy compaction ratio with
the GHMmulti-wavelets compared to Daubechies wavelets.
See also Cotronei et al. (1998); Cotronei and Puccio (1997),
Xia (1998), Xia and Jiang (1999) and Xia et al. (1996).

More about mutiwavelets and their applications may be
found in Efromovich (2001), Fowler and Hua (2002), John-
son (2000), Lebrun and Vetterli (1998), Lebrun and Vetterli
(2001), Ruedin (2003), Shen and Tan (2001), Stacey and
Blyth (2008), Strela et al. (1999), Yoganand and Mohan
(2018).

In the present paper, we propose to continue in exploit-
ing more the construction of multi-wavelets as noticed in
Zemni et al. (2019a, b) by considering a vector-valued scal-
ing function Φ = (ϕ1, ϕ2, . . . , ϕN )T (T is the transpose),
N ∈ N fixed, where the components ϕi , i = 1, 2, . . . , N are
not translations of the same function as in the most existing
cases. This leads to a matrix-vector 2-scale relation

Φ =
∑
k

HkΦ1,k, (18)

where in this way the Hk’s are (N , N )-matrices, Hk =(
hi, j

)
1≤i, j≤N . Similarly, the mother multi-wavelet will sat-

isfy a scale relation of the form

Ψ =
∑
k

GkΦ1,k, (19)

where the coefficients Gk’s are also (N , N )-matrices, Gk =(
gi, j

)
1≤i, j≤N .

Definition 1 (Zemni et al. 2019a) The sequences of matrices
H = (Hk)k , and G = (Gk)k are called the discrete high
pass, and discrete low pass multi-filters, respectively.

In the literature reviewonmulti-wavelets, there are fewdevel-
opments. So, complete, and full exposition of multi-wavelets
theory still needs to be developed. Only few references in this
direction are known such as Cotronei et al. (1998); Cotronei
and Puccio (1997), Keinert (2004), Xia (1998), Xia and Jiang
(1999) and Xia et al. (1996). This is one motivation among
previous ones letting us to develop the present work. The

choice of mother multi-wavelets is also strongly related to
the ability, and flexibility in conducting experiments. Read-
ers may refer to Attakitmongcol et al. (2001), Brazile (2009),
Hardin and Roach (1998), Keinert (2004), Stankovic and
Falkowski (2003), Zhang et al. (2001) andWang et al. (2016)

In the sequel, we fix the multi-wavelet order N = 2. Let
ϕ1(x) = χ[0,1[(x) be the Haar scaling function, and ϕ2(x) =
(1−|x |)χ[−1,1[(x) be the Schauder scaling function. Denote
next Φ = (ϕ1, ϕ2)

T . Simple calculus yield that Hk = 0
whenever |k| ≥ 2, and

Φ = H−1Φ1,−1 + H0Φ1,0 + H1Φ1,1 (20)

where

H−1 = H1 = 1√
2

(
0 0
0 1/2

)
,

H0 = 1√
2

(
1 0
0 1

)
. (21)

Thus, the mother multi-wavelet is

Ψ =
∑
l

GlΦ1,l , Gl = (−1)l H1−l . (22)

The Haar–Schauder multi-wavelet processing (decomposi-
tion/reconstruction) of a signal F consists as in all wavelet
processing in estimating the corresponding coefficients of the
signal bymeans of themulti-wavelet copies. So, consider, for
r ∈ N fixed, known as the order or the dimension of the sig-
nal, a signal F = (F1, F2, . . . , Fr )T . Denote also A j,k(F),
and Dj,k(F) the approximation, and the detail coefficients
of F , relatively, to the Haar–Schauder multi-wavelets at the
level j , and the position k. The signal F may be decomposed
as a sum

F = A0 + D0

where F0 is

A0 =
∑
l

A0,l(F)Φ0,l (23)

and

D0 =
∑
l

D0,l(F)Ψ0,l . (24)

The components A0, and D0 are known as the approximation,
and the detail components of F at the level 0. The coefficients
A0,l(F), and D0,l(F) are (r , 2)-matrices. As in the case of
single wavelet theory, we obtain here a MRA associated to
the multi-wavelet by considering as approximation space V0
the closure of vector space spanned by the Φ0,l , and as detail
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space at the level 0 the one spanned by Ψ0,l , l ∈ Z. As
a consequence, we obtain multi-wavelet algorithms stating
that

A1,s(F) =
∑
l

[
A0,l(F)Hs−2l + D0,l(F)Gs−2l

]
, (25)

A0,s(F) =
∑
l

Hl+2s A1,l(F) (26)

and

D0,s(F) =
∑
l

Gl+2s A1,l(F). (27)

In general, as in the case of single wavelet theory, we get here
a multi-wavelet decomposition of the signal F at the level J
(J0 being chosen to be equal to 0.) as

F J = ASJ +
J∑

j=0

DSj . (28)

To resume, the new general concept will cover some dis-
advantages of many existing multi-wavelets theory where
the scaling multi-wavelet function is constructed by taking
the well-known 2-scale relation in single wavelet theory, and
introducing the multi-wavelet scaling function as the vector
composed of the translated copies of the single source scaling
function appearing in the 2-scale relation.

3.3 Wavelets/multi-wavelets brief comparison

Compared to single wavelets, multi-wavelets have many
advantages due to these characteristics. Owingmore than one
scaling functions, multi-wavelets permit to use correct sten-
cils, and to identify the low and high frequency efficiently.
The property of vanishing moments maintains convergence
of higher order upto boundaries. Moreover, multi-wavelets
permit the reduction of computational overhead. The use of a
set of short support filters in multi-wavelet leads to dual ben-
efits over scalar wavelets. The first one is that multi-wavelet
with a given support can achieve the smoothness offered by
scalar wavelets with larger support. The second benefit is
that multi-wavelet provides better compaction than the scalar
wavelets. Furthermore, multi-wavelets have the advantage
that the user can optimize the multi-wavelet system for any
application.

In fact, many techniques have been developed for biomed-
ical signals. We may mention the data compression, such
as amplitude-zone-time epoch coding, the coordinate reduc-
tion time coding system, turning point technique, predic-
tion, modulation, and also transformational methods such
as Fourier, Walsh, Karhunen-Loeve, Wavelet and multi-
wavelets.

Wavelet transformhas been shown to be an efficient tool in
signal processing aimed at compressing ECG signals, detec-
tion of QRS complex, analysis of ventricular late potential,
localizing knots in DNA and proteins’ series, prediction of
anomalies, etc. See Ben Mabrouk and Ibrahim Mahmoud
(2013), Fischer et al. (2003) and Ibrahim Mahmoud et al.
(2016)

Wavelets/multi-wavelets are also applied for noise elimi-
nation by adopting singularity detection for example. Ho et
al in Ho et al. (2003) proposed a multi-wavelet method for
singularity detection for regularity scalable image coding.
See also Ho (2002).

Finally, based on the literature and ideas above, finding
a suitable multi-wavelet(s) for bio-signals processing is of
interest. Haar, and Faber–Schauder, when combined yield a
multi-wavelet that possesses the majority of properties for
multi-wavelets. They also permit to well approximate simul-
taneously piece-wise, and linear cases.

4 Experimentation

In this section, the wavelet/multi-wavelet method will be
applied for processing three examples. In the first part, a
simple example consisting of a Fourier mode estimation will
be provided. Next, an ECG signal will be considered. Finally,
a special example dealing with a coronavirus modeling will
be developed.

The idea consists in using the HSch multi-wavelet for the
ECG signal processing as a type of simultaneous loops to
guarantee the maximum information carried in such a signal.
The first loop consists in applying a filtering of the signal by
means of one of the components of the HSch multi-wavelet
(Haar for example), and next apply the second one to de-
noise more the obtained filtered sub-signal. This raises an
interesting question about the use of independent compo-
nents in the definition of the multi-wavelet analysis source
functions Φ, and Ψ . This filtering concept could not be real-
ized by using multi-wavelets with non-separable variables,
and/or dependent components. So, the idea is a double (mul-
tiple in general) surveillance cameras system that is used to
detect best the strange objects.

We now explain mathematically the principle of HSch
multi-wavelet processing. So, denote ϕ, and ϕ̃ the Haar,
and Faber–Schauder scaling functions, respectively, and the
associated mother wavelets ψ , and ψ̃ . For a level J denote
aJ , and ãJ the approximations at the level J due to Haar,
and Faber–Schauder MRA, respectively, and similarly dJ ,
and d̃J the projections on the detail spaces due to Haar,
and Faber–Schauder MRA, respectively. We get the multi-
wavelet decomposition of the ECG signal at the level J as
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AJ = aJ + ãJ +
J∑
j

d j +
J∑
j

d̃ j .

Using the independence between the components of the
multi-wavelet, the principle applied here means that the
final decomposition is a superposition of two decomposi-
tions on two approximation spaces, and two detail spaces for
each level included in the modeling. In this case, the risk
of losing the information decreases compared with classi-
cal wavelet processing. The reconstruction by multi-wavelet
will be more efficient. Moreover, it is worth to recall here
that there is no essential difference between being simulta-
neous or consecutive the application of the two components
of the multi-wavelet. Such a problem may be of great impor-
tance when the components are dependent or depending on
non-separable variables.

The following diagram in Fig. 2 illustrates more the
decomposition steps of signals using theHschmulti-wavelet.
Besides, Fig. 1 illustrates the principle of the multi-wavelet
decomposition, and reconstruction of signals, as well as the
computation of the error of approximation of the signal by
wavelets. Algorithm 1 shows the headlines of the computer
code for such decomposition/reconstruction.

Algorithm 1 ECG Reconstruction
Require: OriginalECG
Ensure: Reconst ECG
NQ1 ← 1
NQ2 ← 0
J ← 1
N ← 1
while N 
= 0 do

[HDetail, H App, SchDetail, SchApp] ←
HSCH − decomposi tionJ (OriginalECG)

Reconst ECG ← HSCHReconstructionJ
(HDetail, H App, SchDetail, SchApp)

NQ2 ← N AQE(ECGReconst)
if NQ2 > NQ1 then

N ← 0
else

J ← J + 1
NQ1 ← NQ2

end if
end while

Finally, to illustrate the closeness of the wavelet/multi-
wavelet method approximation, we propose to compute the
Normalized Average Quadratic Error (NAQE) to show the
performance of the approximation computed on a grid of N
points ti in the time domain of the time series X , as

NAQE(X , Xa) =

N∑
i=1

(X(ti ) − Xa(ti ))
2

N∑
i=1

(X(ti ))
2

, (29)

where Xa is the corresponding approximation of X relative
to the method used.

4.1 Development of a Fourier mode

In this section, we aim to develop the multi-wavelet anal-
ysis of a simple example of signals consisting of the well
known 2π -periodic Fouriermode F(t) = sin(t), t ∈ [0, 2π ].
The purpose is essentially to provide a simple example that
may be re-conducted by readers, and to show based on this
example the performance , and the superiority of multi-
wavelets in the processing, especially, the multi-wavelets
composed of different components that are not translations
of the same single scaling function or mother wavelet. This
example is essentially characterized by being periodic, with
no singularity. These characteristicsmakes its approximation
(reconstruction) to be well conducted by multi-wavelets as
in the case of the coincidence between the Fourier series and
the analyzed function when all the well assumption of the
Dirichlet theorem are satisfied. Recall that the decomposi-
tion de F at the level J ∈ N is expressed as

F =
∑
k

AJ ,k(F)ϕJ ,k +
∑
j≥J

∑
k

D j,k(F)ψ j,k . (30)

For a choice of J = 1, the approximation part becomes

A1 =
∑
k

A1,k(F)ϕ1,k . (31)

Recall now that

A1,k(F) =
∫ (k+1)/2

(k−1)/2
sin(t)ϕ1,k(t)χ[0,2π [(t)dt . (32)

We now compute the values of the position parameter k for
which the intersection of supports [ k−1

2 , k+1
2 [∩[0, 2π [
= ∅

which yields that 0 ≤ k ≤ [4π ].
Wenext compute theNormalizedAverageQuadraticError

(NAQE) to show the performance of the approximation com-
puted on a grid of N points ti in [0, 2π ],

NAQEJ ,N (A1, F) =

N∑
i=1

(AJ (ti ) − F(ti ))
2

N∑
i=1

(F(ti ))
2

. (33)

For a number N = 50, and J = 1, we get an error

NAQE = 0.0012.

The following figure (Fig. 3) illustrates the signal F , and its
approximation A1.
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Fig. 1 The HSch multi-wavelet
principle

The original signal

Project on VJ Project on WJ Project on ˜VJ Project on ˜WJ

aJ dJ ãJ ˜dJ

The reconstructed signal

Fig. 2 Schematic illustration of
the HSch multi-wavelet
principle

Next, to show the role of the projections of the signal F
on the detail spaces we compute the DWT of F already with
J = 1. This will illustrate the dynamics of F . Similarly to the
approximation case, it remains for the position parameter k
the values−1, 0, 1, . . . , 13. Recall that the support ofψ1,k is[
k−1/2

2 ,
k+1/2

2

]
. Thus, to get the detail component D1 of the

signal F in the detail spaceW1 we have to compute D1,k(F)

for k ∈ {−1, 0, 1, . . . , 13}.
Next, denote F1 = A1 + D1. To illustrate the closeness

of F1 to the original signal F , we compute as previously the

NAQE on a grid of N points ti in [0, 2π ],

NAQEN (F1, F) =

N∑
i=1

(F1(ti ) − F(ti ))
2

N∑
i=1

(F(ti ))
2

. (34)

For a number N = 50, we get an error

NAQE = 0.00118.

123



Toward newmulti-wavelets: associated filters and algorithms… 14069

Fig. 3 F (red), and its approximation A1 (blue) (color figure online)

Fig. 4 F (red), and F1 (green) (color figure online)

Table 1 Error estimates

The method Corresponding error

Method 1 (Ref. Brazile 2009) 12.10−3

Bi-filters J = 1 11,8.10−3

Bi-filters J = 2 2.10−5

Bi-filters J = 3 2,4.10−6

The following figure (Fig. 4) illustrates the signal F , and its
approximation F1.

Similarly, we may compute for J ∈ N the approximation

FJ = AJ + D1 + D2 + · · · + DJ . (35)

To illustrate the closeness of these approximations to the orig-
inal signal F , we compute theNormalizedAverageQuadratic
Error (NAQE) on a grid of N points ti in [0, 2π ]. For a num-
ber N = 50, and J = 1, we get the following error estimates
(Table 1).

Table 1 summarizes the results of comparisons with the
existing method developed in Brazile (2009), and the bi-
filters based method developed here. We found that NAQE
obtained by bi-filters is smaller than the existing one. On the
other hand, it is remarkable that the greater J increases the
error decreases.

Table 2 Time execution

The method NAQE Running time

Schauder wavelet 0.0086 123.2 s

Schauder filters 0.0092 73.03å,s

HSch multiwavelet 0.0033 32.97 s

HSch multi-wavelet filters 0.0003 16.6 s

Next, in order to show more the performance of the new
method we proposed to evaluate the running time of algo-
rithms due to each method. We thus provided a comparison
relatively to the time execution algorithms for the methods
applied for the same Fourier mode signal. For N = 10, and
J = 1, we obtained the following table (Table 2).

Table 2 shows a comparison for both the NAQE error, and
the execution time between the approximation obtained by
the use of the Schauderwavelet, Schauder filters,HSchmulti-
wavelet, and HSch multi-wavelet filters. First, by comparing
the NAQE, and the execution time for the methods based on
the single Schauder wavelet, and Schauder filters we noticed
that the NAQE relative to both of them are not enough dif-
ferent. Besides, the second one yields a faster convergent
algorithm. Next, applying HSch multi-wavelets results in
more efficient approach. Similarly to the single case, the
new HSch multi-wavelet filters result in a best error, and
a best running time. This shows the performance of the new
multi-wavelet approach. Finally, our work proves among the
efficiency of multi-wavelet approaches, that using different
wavelet cells in the multi-wavelet black boxes is more per-
formant than applying the classical approach. Recall that this
latter is based on re-writing the 2-scale relation, and thus re-
writing the whole signal in a different way by decomposing
it in different multi-signals, which may affect the originality
of the signal processed.

4.2 ECG signal processing

ECG signals are graphical representations of the heart elec-
trical activity due to the variations of electric potential of
the specialized cells in the contraction (myocytes), and spe-
cialized cells in the automatism, and the conduction of the
influxes. ECG can highlight various cardiac abnormalities,
and has an important place in cardiology diagnostic tests, as
for coronary heart disease.We refer to theMIT-BIHArrhyth-
mia data basis for the application developed in this part.

Similarly to the last example, an estimation of the original
ECG signal with its J -imation FJ defined by Eq. (35) is
provided. The HSch multi-wavelet of the ECG signal may
be written as

ECGJ = AJ (ECG) + D1(ECG) + · · · + DJ (ECG), (36)
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Table 3 Relative NAQE estimates for ECG signal

NAQE H-W Sch-W HSch MW

J = 1 0.0012 0.0014 9.8 10−4

J = 2 8.7 10−4 8.95 10−4 7.4 10−4

J = 3 5.46 10−4 6.18 10−4 4.37 10−4

J = 4 5.01 10−4 3.7 10−4 1.09 10−4

where AJ (ECG) is the approximation at the level J of the
ECG signal due to the Hsch multi-wavelet obtained by pro-
jection the original signal ECG on the J -level approximation
space VJ due to the HSch multi-wavelet multi-resolution.
The Dj (ECG), 1 ≤ j ≤ J are, respectively, the detail com-
ponents of the ECG signal at the corresponding levels j ,
obtained as usual by projecting the original signal ECG on
the corresponding detail spaces Wj , 1 ≤ j ≤ J , due to the
HSch multi-wavelet multi-resolution. The closeness of the
approximation ECGJ to the original signal ECG is evaluated
via the NAQE error

NAQEN (ECG, J ) =

N∑
i=1

(ECGJ (t) − ECG(i))2

N∑
i=1

(ECG(i))2

(37)

estimated on the time interval of the ECG signal. The present
ECG signal processing by means of the HSch multi-wavelet
yields for each level of decomposition J ≥ 1 a discrete posi-
tions’ grid, 0 ≤ k ≤ 10.2J .

Table 3 resumes the accuracy of the present method
against previous ones by means of the so-called Normalized
Average Quadratic Error (NAQE) in (37).

This type of signals is one of the most complex cases
in signal processing due to their high volatility (fluctua-
tion), point-wise irregular from the mathematical point of
view. These bad characteristics make their modeling and/or
approximation to be delicate. In the present work, one aim
is to show the performance of the multi-wavelet machine in
overcoming this ambiguity by providing best estimation of
these signals in few time of execution. We notice easily from
Table 3 that the HSch multi-wavelet processing results in
more accurate error of closeness NAQE obtained for the best
estimates at a level of decomposition J = 4. This proves
also that the multi-wavelet processing did not necessitate a
higher order of decomposition to reach a good error. Besides,
Figs. 5, 6, and 7 illustrate the processing of the ECG signal
using Haar wavelet (H-W), Schauder wavelet (Sch-W), and
HSchmulti-wavelets (HSch-MW), and confirmmore the effi-
ciency, and the performance of the multi-wavelet principle.

To finish with the ECGmulti-wavelet processing, we plot-
ted in Fig. 8 the evolution of the normalized quadratic error
with the level of resolution J , for Haar wavelet, Schauder
wavelet, and HSch multi-wavelets. The graph shows easily
the efficiency ofwavelet processing in general, andmore effi-
ciently the dominance of the new multi-wavelet against the
single wavelets.

4.3 A case of coronavirus signal

We consider in this work a strain of coronavirus associated
withSARS, froma sample originally recorded inHanoi,Viet-
nam since 2002–2003, See Van Der Werf (2010). Recall that
the coronavirus is not indeed new, except that, it appears
each time in a new form or a new state. It is for example
enveloped, and includes, on its surface, peplomeric struc-
tures called spicules. It may, and precisely always includes
proteins of unknown encoded function. Such proteins have
several categories. Some are, for example, membrane glyco-
proteins in the form of spicules emerging from the surface
of the viral envelope. They are responsible for attaching the
virus to receptors in the host cell, and for inducing fusion of
the viral envelope with the cell membrane. Other proteins of
even small variable sizes are transmembrane proteins. They
play a crucial role in the budding process of coronaviruses
which occurs at the level of the intermediate compartment in
the endoplasmic reticulum, and the Golgi apparatus.

This makes the localization of transmembrane segments
of great importance, and this is in fact the main purpose of
this part of the paper; how to localize or detect these segments
for the case of Coronavirus?

Indeed, the localization of such segments is important
for the comprehension of the virus functioning, and mech-
anism, as transmembrane segments are the main attackers,
which permit, and/or which are responsible of the exchange
between the virus and the exterior space, such as the human
body cells, and receptors.

Moreover, the localization, the comprehension of the
placement of these segments on the whole strain, and their
composition with proteins, will permit to practitioners such
as doctors, and drug makers to best prepare their attacks
against the virus.

Membrane proteins constitute more than the quarter of
proteins in currently sequenced complete genomes. They
have a very important role in cellular processes such as the
transportation ofmolecules, and the communication between
cells. Moreover, they are directly, and strongly related to
drugs. More than the half of such proteins are targeted by
a drug each one. Inside the membrane, the transmembrane
segments may take the form of an alpha helix or the beta
strand form. Generally, the size of the TM segments is of the
order of 15–30 amino acids with a very large hydrophobic
region.
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Fig. 5 Reconstruction of the ECG signal by Schauder wavelet

When infecting a host cell, the reading frame of the viral
genome is translated into a polyprotein which is cleaved
by viral proteases, and then releases several non-structural
proteins such as RNA polymerase, and ATPase helicase.
These two proteins are involved in the replication of the viral
genome as well as in the generation of transcripts which are
used in the synthesis of viral proteins.

With the help of proteins, the virus migrates through the
Golgi complex, and leaves the cell, and thus attaches to exter-
nal bodies causing hard damages. Indeed, coronaviruses are
responsible for humans, and animals, for colds, respiratory,
and digestive infections by inducing antibodies.

The coronavirus appeared in several forms such as SARS
which spread to different countries in 2002–2003. Very
recently a new type of the same category of epidemics
appeared originally in Hanoi, China, and presents until now
a challenge for humanity. The severity of these diseases is
the rate or the growth of mortality in the first place, and the
auto-internal change of the virus although its external form
appears the similar. Determining the causative agent of the
new category is now the challenge for all of humanity. More
information, and ideas on such type of viruses may be found
in Anand et al. (2002), Bonnin (2018), Desjardins (2010), Li

(2016), Liu et al. (2006), McBride et al. (2014), Talbot and
Jouvenne (1992) and Xu et al. (2016).

The purpose of this work is to apply a wavelet/multi-
wavelet analysis of an isolated or purified strain of human
coronavirus associated with SARS already recorded, and
studied in Van Der Werf (2010).

Recall that proteins’ sequences are biological series sim-
ilar, and also related to DNA as they are characters’ series,
and which also may be generated fromDNA ones. The ques-
tion of why preferring proteins, and not DNA as others do is
already discussed in Zemni et al. (2019a). One main cause
is due to the fact that proteins’ sequences are more volatile.
On the other hand, sequences of DNA are always issued from
proteins’ ones as for the example applied here. Moreover, the
communication between living cells such as virus ones are
always done by the intermediary of membrane, and precisely
transmembrane proteins. The regions of anomalies, and com-
munication constitute some type of helices which correspond
to the singular, and optimum points in the numerical series
issued from the biological ones. See Arfaoui et al. (2020a),
Fischer et al. (2003), Ibrahim Mahmoud et al. (2016) and
Zemni et al. (2019a) for more details.
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Fig. 6 Reconstruction of the ECG signal by Haar wavelet

Now, a natural question is how to state out the role of the
prefiltering and theHSchmulti-wavelet and their relationship
with the improved performance, especially when compared
with the existing methods.

It is well known that many functions may be well approx-
imated by means of special types of approximators such as
the ones expressed by the projections on the multi-resolution
spaces associated to precise wavelets.

The oldest systems may be the Fourier one and next the
Haar system. Although the Fourier decomposition leads to
good results in many cases, some disadvantages are inher-
ent such as the loss of the information concerning the space
behavior of the signal. A discontinuity or a localized high
variation of the frequency will not be well described by
the Fourier representation. The underlying reason lies in the
nature of complex exponential functions used as bases func-
tions. They all cover the entire real line and differ only with
respect to frequency. They are not suitable for representing
the behavior of a discontinuous function or a signal with high
localized oscillations.

For a Haar basis the approximation at a level J is piece-
wise constant. However, piecewise constant approximators

of smooth functions are far fromoptimal.A simple step ahead
may be done by using piecewise linear approximators such
as Faber–Schauder ones for approximating such functions.

One of the most close signals to piecewise constant and
piecewise linear functions may be those obtained from the
numerization methods due to biological series such as DNA
and proteins. The obtained numerical time series are com-
binations of these two types of functions. One of the most
commonly used methods in this field is the interpretation
of hydropathy profiles of protein series investigated in our
work. This method was first introduced by Kyte and Doolit-
tle (Babatunde 2012) who used a window of 19 residues to
smooth the hydropathy data, to enable the detection of poten-
tial transmembrane helices as peaks in a two-dimensional
plot. Recall that a well-known problem in protein modeling
is the prediction of the position of transmembrane helices
(HTMs) in protein sequences. The window size is set to be
19 residues, due to the fact that most transmembrane ele-
ments are α-helices about 18 residues long (Scarlata, http://
www.biophysics.org/btol/Scarlata.html).

In the present work, one aim is to continue to explore
wavelet methods to the prediction of transmembrane helices
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Fig. 7 Reconstruction of the ECG signal by the HSch multi-wavelet

using hydrophobicity scales. The main purpose is to improve
the wavelet methods by multi-wavelet ones, and by applying
precisely the closest multi-wavelets to the analysed series.
This is the main reason of applying the HSch multi-wavelet.

Indeed, the study and characterization of membrane pro-
teins experimentally is a long, expensive method which
requires advanced and well-specified equipment, which is
why it is first necessary to extract the transmembrane pro-
teins from their membrane environment. Also, it is essential
to maintain them in their native functional and soluble form
by reconstituting a host medium in aqueous solution sim-
ilar a to that of the biological membrane. The extraction
of these proteins is done using surfactants called membrane
detergents, compounds capable of isolating, solubilizing and
manipulating membrane proteins (Dauvergne 2010) as well
as their crystallization,NMRspectroscopy,X-ray diffraction,
etc. This is whywe are trying to find a reliable method for the
prediction of transmembrane helices based on mathematical
and computer processing.

In this experimental part, a multi-wavelet process is devel-
oped to localize the transmembrane helices of the strain of
the SARS-associated coronavirus based on the hydrophobic
character of the amino acids developed in Kyte and Doolittle
(1982). This permitted to convert proteins into time (numeri-
cal) series allowing their processing usingmathematical tools

Fig. 8 Error estimates relatively to the decomposition level J for ECG
signal

to be possible (See Ben Mabrouk and Ibrahim Mahmoud
2013; Ben Mabrouk et al. 2015; Ibrahim Mahmoud et al.
2016). The numerical conversions due to Kyte–Doolittle in
Kyte and Doolittle (1982) are resumed in Table 4.
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Table 4 Hydrophobicity scale of Kyte-Doolittle

Amino acid The scale Category

Isoleucine: Ile(I) +4.5 Hydrophobic

Valine: Val(V) +4.2 Hydrophobic

Leucine: Leu(L) +3.8 Hydrophobic

Phenylalanine: Phe(F) +2.8 Hydrophobic

Cysteine: CySH(C) +2.5 Hydrophobic

Methionine: Met(M) +1.9 Hydrophobic

Alanine: Ala(A) +1.8 Hydrophobic

Glycine: Gly(G) −0.4 Neutral

Threonine: Thr(T) −0.7 Neutral

Serine: Ser(S) −0.8 Neutral

Tryptophan: Try(W) −0.9 Neutral

Tyrosine: Tyr(Y) −1.3 Neutral

Proline: Pro(P) −1.6 Neutral

Histidine: His(H) −3.2 Hydrophilic

Glutamine: Gln(Q) −3.5 Hydrophilic

Asparagine: Asn(N) −3.5 Hydrophilic

Glutamic Acid: Glu(E) −3.5 Hydrophilic

Aspartic Acid: Asp(D) −3.5 Hydrophilic

Lysine: Lys(K) −3.9 Hydrophilic

Arginine: Arg(R) −4.0 Hydrophilic

The protein strain is provided in Appendix 6. The multi-
wavelet filtering acts as for the single wavelet case (or also
the Fourier analysis) on the multi-wavelet (multi-scaling)
coefficients of the analyzed signal by exploiting the 2-scale
relation due to the HSch multi-scaling function (18) or (19).
Let for J fixed AJ be the vector composed of all multi-
scaling approximation coefficients AJ ,k . For example, for
J = 0, the approximation A0 will be observed as the vec-
tor A0 = (A0,0, A0,1, ,̇A0,K A

0
), obtained by the matrix form

A0 = MΦ
0 X , where MΦ

0 is the matrix whom coefficients
are the blocks Φ(i − j), 0 ≤ i ≤ K A

0 , 1 ≤ j ≤ N , where
N is the size of the original series X . Similarly, the vector
D0 = (D0,0, D0,1, ,̇D0,K D

0
) is evaluated by D0 = MΨ

0 X ,

where MΨ
0 is the matrix whom coefficients are the blocks

Ψ (i − j), 0 ≤ i ≤ K D
0 , 1 ≤ j ≤ N . Theoretically speak-

ing the dimensions K A
0 , and K D

0 of the approximation vector
A0 and the detail D0 are different (or generally, the dimen-
sions K A

J , and K D
J of the approximation vector AJ and the

detail DJ ). However, to avoid the problem of dimension,
we complete these vectors with zero coefficients to use one
dimension. Now, for a level J fixed, the vector AJ and DJ

will be divided into odd and even parts, for which we have

AJ ,2n = AJ−1,nH0 + AJ−1,n−1G2 + AJ−1,nG0,

AJ ,2n+1 = AJ−1,nH1 + AJ−1,n+1H−1 + DJ−1,nG1,

Table 5 NAQE estimates for
the coronavirus signal using
HSch multi-wavelet

J NAQEJ

1 3.5108 10−12

2 4.3631 10−12

3 4.9646 10−12

4 5.2140 10−12

5 5.380 10−12

6 4.3631 10−12

Fig. 9 Thedecomposition of the numerized coronavirus proteins’ series
with HSch multi-wavelet at the level J = 6

and similarly, the matrix form of the reconstruction will be
expressed by means of the relations

AJ−1,n = H−1AJ ,2n−1 + H0AJ ,2n + H1AJ ,2n+1,

and

DJ−1,n = G0DJ ,2n + G1DJ ,2n+1 + G2DJ ,2n+2.

To illustrate the closeness of the reconstructed signal to
the original one, we computed as usual the NAQE. We get
the estimates provided in Table 5.

Table 5 shows an optimal reconstruction reached at the
level J = 6. Such optimality is explained by the fact that
such a level is the minimum one from which the number of
eventual transmembrane segments is stabilized at the number
8 segments. Next, Fig. 9 illustrates graphically the decom-
position of the numerized coronavirus proteins’ series at the
level J = 6 using HSch multi-wavelet. This shows in some
part the efficiency of using multi-wavelets instead of single
wavelets.

Next, as it is now well known that wavelets, and multi-
wavelets are powerful tools to detect the transmembrane
segments in proteins’ series (Arfaoui et al. 2020a; Ben
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Fig. 10 Kyte–Doolittle hydropathy signal for the coronavirus series

Table 6 The TMHs Segments for HSch filtering of the coronavirus
signal

TMHs HSch multi-wavelet localized segments

1 120–134

2 233–253

3 359–373

4 505–523

5 678–699

6 824–842

7 1056–1069

8 1199–1212

Mabrouk and Ibrahim Mahmoud 2013; Ben Mabrouk et al.
2015; Ibrahim Mahmoud et al. 2016; Zemni et al. 2019a),
and in order to prove the applicability, and thus the useful
aspect of our multi-wavelet we proposed to focus on the
possible detection, and/or prediction of alpha-helices in the
considered protein. We subsequently propose to predict the
locations of these regions by statistical processing apply-
ing the HSch multi-wavelet. The optima with scores greater
than 1.8 (horizontal line in Fig. 10) indicate possible trans-
membrane regions. The window position values shown on
the x-axis of the graph reflect the average hydropathy of
the entire window, with the corresponding amino acid as the
middle element of that window. Eight helices (local maxima)
appear clearly.

To show the efficiency of the present method, we apply
next the new explicit HSchmulti-wavelet filtering at the opti-
mal level J = 6. Table 6 illustrates the findings, and shows
8 segments. Next, we illustrated graphically such prediction
in Fig. 11 which illustrates the predicted results due to the
’new’ HSch multi-wavelet at the level J = 6. It shows also
8 localized transmembrane helices.

Fig. 11 TMHsprediction usingHSchmulti-wavelet for the coronavirus
signal

There are several statistical methods that may be applied
to check the performance, accuracy and efficiency of the
proposed methods and models investigated (Millett 2005).
Generally, in the existing studies, it is stated that the predicted
transmembrane helices are considered admissible if at least
a half of them coincide with the observed (real) ones. The
accuracy of the model/method is usually evaluated via the
percentage index Qp defined by Ben Mabrouk and Ibrahim
Mahmoud (2013); BenMabrouk et al. (2015), Bin and Zhang
(2013), Ibrahim Mahmoud et al. (2016) and Zemni et al.
(2019a)

Qp = Ncor√
NobsNprd

× 100%,

where Ncor is the number of correctly predicted TMHs, Nobs

is the number of observedTMHs, and Nprd is the total number
of predicted TMHs. However, this statistical measure needs
the availability in advance of the real (observed) helices,
which is not the case in our work. Nevertheless, this has been
applied in Zemni et al. (2019a), where the presentmethod has
been applied to a well-known example where the observed
TMHs are known, and leads there to a Qp = 100%.

Another statisticalmeasure is applied inBenMabrouk and
Ibrahim Mahmoud (2013), Ben Mabrouk et al. (2015), Bin
andZhang (2013), IbrahimMahmoudet al. (2016) andZemni
et al. (2019a) consisting in a prediction certainty evaluation
based on the computation of a type of an absolute deviation
via the difference between the first residue observed and the
first predicted residue.More precisely, we call mean absolute
error (MAE) the quantity

MAE =
K∑
i=1

|aobsi − aprdi | + |bobsi − bprdi |,
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where [aobsi , bobsi ], are the observed (real) TMHs segments,

[aprdi , bprdi ], are the predicted TMHs segments, and K the
total number of segments (real or observed). The MAE
should be as small as possible. Remark that this measure
requires also the real segments to be available.

Nevertheless, in the present paper, we proposed to check
the accuracy of our method by applying a different statistical
measure based on the so-called Jack-Knife test (Calvo et al.
2005; Rezaei et al. 2008) according to the same criterion
used in the previous existing works consisting in the number
of the segments predicted, or equivalently to the number of
maximum peaks.

The basic idea of the Jack-knife tests consists in recur-
sively deleting a single observation from the sample, and
compute the estimation until there are n estimates for a sam-
ple size of n. In our case, we will consider a modified version
of such a test, in which, we consider for each level J the data
points NJ designating the number of predicted peaks (seg-
ments) for the approximation component AJ of the numerical
series associated to the protein strain. We thus compute the
estimator J times, for:

– Ni , 1 ≤ i ≤ J ,
– Ni , 2 ≤ i ≤ J ,
– . . . ,
– NJ−1, NJ ,
– NJ .

Once, the J estimates N̂1, N̂2, . . . , N̂J , are obtained, the stan-
dard error is calculated as

SeJackknife(J ) =
√√√√ J − 1

J

J∑
i=1

(
N̂i − N̂()̇

)2
,

where N̂()̇ is the arithmetic mean of the vector (N̂i )1≤i≤J .
Such a test is estimated approximately to 95.6% reflecting a
goodperformance of themethod, and thus a good localization
of the desired segments.

Notice that the example studied here is an important case
that may be considered as a model to be applied to the new
case of the coronavirus COVID-19 when a database is avail-
able which is not the case for us. We also mention that the
wavelet/multi-wavelet theory are proved to be effective in
discovering, and identifying abnormalities, and special facts
in biological strings such as helices, knots,.... Thus, with no
laboratory study available on the chain used here, and its
equivalents in the new COVID-19, we intend that the current
study may be applied to identify such abnormalities, and
other characteristics for the new virus COVID-19 chains as
well as other cases. A step forward in the application of the
present method has been conducted in Zemni et al. (2019a)
where the statistical measures evoked above has been applied

on amore detailed example of biological serieswith observed
segments already available. This permitted to compute the
index Qp and the error MAE discussed above.

Transmembrane proteins are generally composed of more
than 18 amino acids, sometimes 30. Therefore, our method is
mainly to detect the approximate locations of these segments
around the spikes. This will be important for practitioners as
it tells them the approximate location of the anomaly, if any,
before starting any experimental trial. This will be confirmed
by comparison with the segments observed experimentally
when possible, as in Zemni et al. (2019a) for the case of
HSch entropy measure, or also (Ben Mabrouk and Ibrahim
Mahmoud 2013; Ben Mabrouk et al. 2015; Fischer et al.
2003; Ibrahim Mahmoud et al. 2016) in the case of single
wavelets.

5 Conclusion

In this paper, multi-wavelet procedure has been developed
extending the well known wavelet algorithms applied in
image, and signal analysis. By improving the existing ideas
on multi-wavelets, we constructed new ones, and proved that
multi-filters may be associated, and applied in signal analy-
sis with more efficient results compared to the classical ones.
Error estimates as well as fast algorithms have been proved,
and applied on ECG signals, and a coronavirus case. Among
the theoretical findings of the paper whichmay be resumed in
the construction of the HSchmulti-wavelet, its filters, as well
as their matrix representation, the experimental findings may
be resumed in three directions. In a first experimentation,
an approximation (reconstruction) of a classical example
dealing with Fourier modes has been conducted. Such as
example may be seen as a universal model for periodic and
stationary signals which are generally well approximated
(reconstructed) even with classical methods such as Fourier
one. The present methods has lead to suitable error esti-
mates as well as fast algorithms. The second experimentation
has been concerned with the HSch multi-wavelet de-noising
and reconstruction of a benchmark (highly volatile, non sta-
tionary) signal due to an ECG case. Our method has been
proved here also to be efficient in approximating such sig-
nals. The last experimentation is concerned with a denoising
case applied on a strain of coronavirus signal due to the Cov-
2 (SARS). The idea has turned around the localization of the
transmembrane segments of such a series as local maxima
of an numerized version of the strain obtained by Kyte–
Doolittle method (Kyte and Doolittle 1982). Accuracy of the
method has been evaluated by means of error estimates and
statistical tests. The present method has been already applied
onmore examples wheremore statistical tests and errorsmay
be applied (Zemni et al. 2019a).We intend finally to continue
exploring wavelet and multi-wavelet method in investigating
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Fig. 12 The coronavirus proteins’ series strain

complex cases such as COVID-19 cases by testing many
cases of wavelets multi-wavelets and more statistical tests,
and also more complicated cases of molecular/cellular com-
munications signals. Recall that, even from the theoretical
point of view, the choice of the model, the estimating, and/or
the analyzing bases is always and already the most hard task.
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6 Appendix: The coronavirus proteins’ series
strain

We found difficulties in obtaining the strain protein in hand.
For this reason, we provided it in this appendix manually to
be in the disposition of readers, and researchers (Fig. 12).
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