
OPTIMIZATION

GPU-Accelerated implementation of a genetically optimized image
encryption algorithm

Brijgopal Bharadwaj1 • J. Saira Banu1 • M. Madiajagan1 • Muhammad Rukunuddin Ghalib1 •

Oscar Castillo2 • Achyut Shankar3

Accepted: 30 August 2021 / Published online: 30 September 2021
� The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract
This paper presents a GPU-accelerated implementation of an image encryption algorithm. The algorithm uses the concepts

of a modified XOR cipher to encrypt and decrypt the images, with an encryption pad, generated using the shared secret key

and some initialization vectors. It uses a genetically optimized pseudo-random generator that outputs a stream of random

bytes of the specified length. The proposed algorithm is subjected to a number of theoretical, experimental, and mathe-

matical analyses, to examine its performance and security against a number of possible attacks, using the following metrics

- histogram analysis, correlation analysis, information entropy analysis, NPCR and UACI. The performance analysis

carried out shows an average speedup-ratio of 3.489 for encryption, and 4.055 for decryption operation, between the serial

and parallel implementations using GPU. The algorithm aims to provide better performance benchmarks, which can

significantly improve the experience in the relevant use-cases, like real-time media applications.

Keywords Pseudo-random generator � GPU � CUDA programming � Symmetric key � Image encryption �
Genetic optimization

1 Introduction

Cryptography has been an integral part of the human

communication process, since old ages. It serves the vital

need of exchanging ideas and information with only a

certain group of people, via the usage of ingenious ways to

filter out the common people from this subset of peers. But

the field has been forced to evolve constantly, as the

cryptanalysis methods become more sophisticated and

efficient at breaking the ciphers used for encryption. This

has especially been true, since the internet revolution that

came around in the 1960s, and the world was made aware

about the wonders a computing device could do.

(D’agapeyeff 2016; Davies 1997) The evolution of com-

puters and E-services has been the pivotal point in the rapid

development of both, cryptography and cryptanalysis, as it

allows the computations on the scales that were deemed

infeasible in the pre-computer era. (Altigani et al. 2019;

Armin et al. 2016; Riek and Böhme 2018).

In the modern world, there has been a significant growth

in the applications of the field of cryptography, as the

world collectively produces astronomical amounts of data

& Achyut Shankar

ashankar1@amity.edu

Brijgopal Bharadwaj

brijgopalbharadwaj1999@gmail.com

J. Saira Banu

jsairabanu@vit.ac.in

M. Madiajagan

madiajagan.m@vit.ac.in

Muhammad Rukunuddin Ghalib

ruk.ghalib@ieee.org

Oscar Castillo

ocastillo@tectijuana.mx

1 School of Computer Science Engineering, Vellore Institute of

Technology, Vellore, India

2 Division of Graduate Studies and Research, Tijuana Institute

of Technology, Tijuana, Mexico

3 Department of Computer Science & Engineering, ASET,

Amity University, Noida, India

123

Soft Computing (2021) 25:14413–14428
https://doi.org/10.1007/s00500-021-06225-y(0123456789().,-volV)(0123456789().,-volV)

http://orcid.org/0000-0003-3165-3293
http://crossmark.crossref.org/dialog/?doi=10.1007/s00500-021-06225-y&domain=pdf
https://doi.org/10.1007/s00500-021-06225-y

on a regular basis. The use-cases for such algorithms span

across various domains, like military, social-media, finan-

cial sector, IoT, and cloud-based services. (Boritz and No

2005; Stergiou et al. 2018; Kalra and Sood 2015) Partic-

ularly in the instances where the data being dealt with is of

image/video domain, cryptography and security are one of

the first concerns raised by the people, governments, and

law authorities alike. The shear amount of data involved in

these cases also makes it prudent to have an efficient and

secure algorithm for real-time applications. Thus, it suf-

fices to say that there is always scope of improvement.

(D’agapeyeff 2016; Davies 1997; Boritz and No 2005)

Many applications and algorithms have been developed to

address these needs, and this paper also follows suite.

In this paper, a GPU-accelerated image encryption

algorithm has been proposed, that draws from the concepts

of the traditional XOR cipher. It uses a genetically-opti-

mized pseudo-random number generator (PRNG) to gen-

erate identical encryption and decryption pad on both the

ends of the communication, via the usage of a shared secret

key and a unique encryption/decryption vector. To achieve

this, the algorithm proposes the architecture of a specially

designed helical lattice structure, to incorporate crypto-

graphic convolutions in the mathematics involved, in order

to guarantee unidirectional attributes. The involvement of

GPU in the algorithm allows it to make use of the parallel-

computing architecture. This improves the performance of

the paradigm’s parts that follow the SIMD structure, with

respect to the traditional approaches that have been

employed to solve the same problem. (Antwerpen 2011;

Zafar et al. 2010) The paper also presents a genetic opti-

mization exercise in detail, that was performed to enhance

the security metrics of the PRNG, by the process of hyper-

parameter tuning. The proposed algorithm aims to provide

better performance benchmarks than the compared coun-

terparts, to present a smoother and a much-more seamless

experience for the users of the application.

The contributions of this paper are listed in Sect. 2.

Section 3 presents a brief summary of the currently avail-

able literature pertinent to the field of research of this

paper, and also describes the notable contributions that

were referred to during the process of research. Section 4

provides a detailed description of the algorithm being

proposed here, and Sect. 5 provides the algorithm followed

to optimize the latter, using the concepts of genetic evo-

lution. Section 6 provides the experimental analysis carried

out to quantify the effectiveness and efficiency of the

proposed algorithm, followed by a detailed security anal-

ysis in Sect. 7. Section 8 concludes the presented work,

followed by the relevant references.

2 Contributions

This paper extends upon the ideas introduced by the

encryption paradigm proposed in Bharadwaj and Sairabanu

(2020) by incorporating the SIMD computing architecture

into it, for achieving superior efficiency benchmarks. It

also presents a genetic optimization of the hyper-parame-

ters involved in the PRNG unit, to maximize the security

measures of the proposed algorithm. A comparative anal-

ysis is also included with some of the previously proposed

algorithms, and using quantifiable mathematical metrics,

demonstrates the performance enhancements. The

improvements introduced in this paper make the proposed

algorithm a lot more suitable for modern-day high-speed

applications, without compromising on security parame-

ters. The possible applications include high-speed trans-

mission in video-conferencing and streaming applications,

IoT infrastructure, media-major social-media platforms,

speed-sensitive financial applications, etc.

3 Literature survey

The encryption ciphers have been a subject of active

research, since the internet revolution came around. Many

such ciphers rely on pseudo-random number generators to

operate, in one way or another. Thus, it is essential that the

PRNG being used by the system, is cryptographically

secure and efficient. Mishra et al. (Mishra and Mankar

2015) propose algorithms for the encryption and decryption

of textual data, using pseudo-random generator, and linear

congruential generator. They also analyse its performance

using various security metrics, and also show the algorithm

in action, by considering instances of popular attacks on

ciphers. Almalkawi et al. (Almalkawi et al. 2019) present

an image encryption algorithm, that is designed to be

useful for the wireless network applications, that require

the PRNG to be lightweight and efficient. They make use

of the hybrid chaotic systems in the design of the PRNG to

induce the required levels of randomness in the system.

Similarly, the algorithm proposed by Ramesh et al.

(Ramesh and Jain 2015) uses a two-stage methodology for

transforming the images in their encrypted counterparts, by

the usage of Altered Sophie Germain Prime (ASGP) based

pseudo-random number generator, and the Lehmer Ran-

dom Number Generator (LRNG), whose outputs are used

to perform an XOR and a mapped-swapping transformation

for encryption. Bharadwaj et al. (Bharadwaj and Sairabanu

2020; Bharadwaj et al. 2018) propose a symmetric key

encryption scheme that uses a pseudo-random generator

(PRNG) to encrypt images, using a derivative of the tra-

ditional XOR cipher, that tends to its shortcomings via the

14414 B. Bharadwaj et al.

123

application of a one-time-pad architecture, along with a

custom one-way function. These algorithms are used as the

foundation for the presented algorithm. Zhang et al. (Zhang

et al. 2017) provide a fast implementation of the traditional

AES algorithm, specifically configured to encrypt and

decrypt images, by permuting the first block of plain image

with an initial vector, followed by an AES’ block-chaining

mode implementation to encrypt each image block of 128

bits. The vector and cipher image are transmitted to the

other end, where the secret key and the vector are used in

conjunction to decrypt the cipher. (Ramesh and Jain 2015;

Bharadwaj and Sairabanu 2020) and (Zhang et al. 2017),

are used for performing comparative analysis with the

proposed algorithm, to obtain better insights regarding

performance and security parameters.

The graphics processing unit (GPU) is a massively

multi-threaded architecture, containing a number of pro-

cessing elements. An NVIDIA GPU is composed of a

number of threads, which are grouped into blocks, which

themselves are grouped into grids, as shown in Fig. 1. Each

block can have a maximum number of threads, whose

exact number depends on the GPU version. For the modern

GPUs, each block is composed of 1024 threads. These

threads can be accessed via a 1D, 2D or 3D indexing

scheme, where the programmer is free to choose the

scheme that shows most natural relationship with the

problem at hand. Similarly, all the blocks in a grid can be

accessed via a 1D, 2D, or 3D indexing scheme, the choice

of which is up to the programmer. (Buck 2007; NVIDIA

2020; Zeller 2011).

Until recently, the use-cases of GPU were related to just

graphics and rendering related operations. But the intro-

duction of the general-purpose GPUs (GPGPUs) opened up

new frontiers for the compute-intensive problems, that

have inherent parallelism in their architecture. They can

leverage the power of GPUs to perform non-graphics

related operations. One of the most popular frameworks to

allow the usage of GPUs as a set of compute engines is the

CUDA environment, provided by NVIDIA’s CUDA-en-

abled GPUs. CUDA C ? ? is an augmented version of

the traditional C ? ? environment, which allows the

definition of special functions, often referred to as the

kernels, which are executed in parallel by a user-defined

number of threads.

The NVCC compiler is used to compile the CUDA

programs, which separates the source code into device and

host components, where the host components are executed

by the standard C ? ? compilers like GCC, CL, etc. A

number of algorithms, utilizing the computational effi-

ciency of GPUs, have been previously proposed. W. K. Lee

et al. (Lee et al. 2016) examine the implementation of the

block ciphers like AES, CAST, Blowfish, etc., and present

techniques to accelerate this process. Manssen et al.

(Manssen et al. 2012) provide a review of the existing

CUDA-based random-number generators, in the context of

the massively parallel simulations, like the Monte Carlo

and molecular dynamics simulations. Riesinger et al.

(Riesinger et al. 2018) review the non-standard PRNGs for

normally distributed random numbers in the context of

GPU implementation. These were used as the sources of

inspiration, while implementing the SIMD architecture in

the proposed algorithm, and were used in analysis and

comparison, in order to arrive at the best approach to

perform the considered task, and achieve satisfactory

results effectively.

Inampudi et al. (Inampudi et al. 2018) present an

implementation of the AES algorithm on the GPGPU,

using the OpenCL API, via the usage of data decomposi-

tion technique, where they divide the workload between the

256 concurrently executing threads of the GPU, and com-

pare their implementation to the serial version of the same

algorithm. Sheshadrinathan et al. (Seshadrinathan and

Dempski 2008) presented another implementation for AES

using the NVIDIA architecture, and their results are used

for comparison with the proposed algorithm.

Genetic algorithms are also a field of study, which has

often been integrated with other disciplines, such as the

encryption systems and pseudo-random generators to

obtain better performance and security metrics. KösemenFig. 1 Indexing in GPU, taken from (NVIDIA 2020)

GPU-Accelerated implementation of a genetically optimized image encryption algorithm 14415

123

et al. (Kösemen et al. 2018) present a pseudo-random

generator based on genetic programming to be used in

wireless identification platforms. Abdullah et al. (Abdullah

et al. 2012) make use of the genetic algorithms in the

process of image encryption process, via a chaotic function

logistic map. Dutta et al. (Dutta et al. 2014) propose a

genetic algorithm based secret key encryption method, that

uses genetic mutation along with the Blum Blum Shub

PRNG function to induce randomness in the output. Sen

et al. (Sen et al. 2017) propose an algorithm that uses the

genetic algorithm to generate an intermediate key, which is

unique for each encryption, which is used to impart a

stochastic nature to the encryption process to increase its

level of security. Affenzeller et al. (Affenzeller et al. 2009)

describe the general architecture of genetic algorithms,

which can be used for the purpose of optimization of a

given function.

4 Proposed algorithm

Figure 2 presents a schematic diagram of all the involved

modules and components, to facilitate the understanding of

all the interactions and connections between them.

4.1 Randomization transform

The randomization transform (RT) is a function, repre-

sented by f: R2 ? R2, that accepts two 64-bit variables,

Rprev and Sprev. They are subjected to the operations

described in (1.1–1.4), to obtain the output values, Rnew and

Snew. It should be noted that the constants A, B, C, and D

are hyper-parameters that need to be tuned, in order to

obtain optimal results from the considered algorithm, and L

is defined to be the last digit obtained from the decimal

representation of Rprev. The implementation of the RT is

presented in Algorithm 1.

RT Rprev; Sprev

� �
¼ Rnew; Snewð Þ ð1:1Þ

Fig. 2 Schematic diagram of the proposed image encryption algorithm

14416 B. Bharadwaj et al.

123

T ¼ Sprev%A
� �

� B ð1:2Þ

Snew ¼ T � 2L
� �

%C ð1:3Þ

Rnew ¼ Rprev � Snew

� �
%D ð1:4Þ

4.2 Pseudo-random number generator

The crux of the entire encryption-decryption routine pro-

posed in this paper is the PRNG module, which is

responsible for providing a cryptographically-secure set of

random-bytes in an efficient way. These bytes are gener-

ated such that the same random-bytes can be replicated on

the other end of the communication, only when the cor-

responding correct inputs are provided to it. In order to

motivate the internal workings of the PRNG module, a

discussion about the underlying geometric structure used

for the computation of these random bytes is mandatory.

The structure in question can be visualized as a cylin-

drical unit comprised of a number of rings stacked on top

of each other, where each ring itself is made of cubical

computation units. A 3D visualization of the same can be

found in Fig. 3. As can be seen, there are two separate

family of connections between all the cubical units present

in the structure. One family of the connections has an anti-

clockwise rotation, associated with each ring it encounters.

The other family travels vertically down the structure, in a

straight line.

The shape of the considered structure is defined by a set

of two parameters: nSeeds and nRings, which control the

number of cubical units per ring, and the total number of

rings, respectively. Each cubical unit represents an instance

of RT, and the two family of connections described above

represent the stream of two inputs and outputs, consumed

and produced by each instance of RT, respectively. These

connections, visually signify that the Snew values produced

by the previous ring, are passed to the Sprev input of the

next ring of the structure. Also, the Rnew values are shifted

by one position in the anti-clockwise direction, before

passing on to the Rprev inputs of the next ring.

This convolution operation is performed, in order to

ensure that, even if the attacker somehow discovers the

output stream of random bytes for any given process of

encryption/decryption, he/she is still unable to compute the

values of the initial seed values and the common secret key

used for the computation, without resolving to the brute-

force approach of trial and error. By extension, the future

seed values are also secure, as they can’t be obtained from

the decoded seeds without the secret key. However, this

applies an upper-bound on the degree of parallelism that

can be achieved in the involved computations, which can

be addressed in future.

The PRNG module expects an input of three parameters:

initKey, initVal, and N. N signifies the required number of

random bytes, and the values of initKey and initVal are

Fig. 3 Value propagation in the PRNG for a Rprev values and b Seeds

GPU-Accelerated implementation of a genetically optimized image encryption algorithm 14417

123

used to initialize the units of the first ring of the specified

structure, using the following approach:

1. The value of nSeeds, which controls the number of RT

units per ring, is computed using (2).

nSeeds ¼ ceil
initKey:lengthðÞ

64

� �
ð2Þ

2. The value of nRings is initialized using (3), to set the

number of rings in the given structure.

nRings ¼ ceil
N

nSeeds � 7

� �
ð3Þ

3. The given initKey was padded with leading zeroes to

make its length a multiple of 64. Then it was divided

into ‘nSeeds’ number of 64-bit binary strings, to be

used as the seeds for initializing the Sprev values of the

first ring’s input.

4. The 64-bit value received as initVal is used to initialize

the Rprev inputs of the first ring.

Once the structure is fully defined and instantiated,

the process of computation is initiated for each ring

sequentially. When a given ring receives the inputs

from its parent ring, the values are consumed by the

RTs to compute the new value-pair. Also, for each RT

unit, the obtained value of Rnew is sampled-out, before

passing it on to the next ring. These values are stored in

a 2D-array called Helix. Once all the RT units present

in the structure have been sampled in a similar fashion,

the algorithm sequentially iterates over all the values

recorded in Helix. It extracts random bytes from each

value, by repeatedly taking a modulus with 255, adding

1, and storing the results obtained in randBytes. It

should be noted that this operation results in no random

byte being 0, thus further ensuring that no pattern-

recognition algorithms, such as SVMs and neural-

networks can be used to acquire anchor-points for a

known-plaintext attack. Using this operation, seven

random bytes can be extracted from each 64-bit value

present in the Helix data-structure. After iterating

through all the values, the entire randBytes array is

returned as the output stream of random bytes. The

implementation of the PRNG is presented in Algorithm

2.

4.3 Encryption module

To encrypt a group of images, run the following sequence

of commands on each one to get the encrypted equivalents

as the output. The following operations assume that the

input image is in a single-channel grayscale format,

although the same techniques can be used to encrypt multi-

channel coloured images as well, by treating each channel

separately. The implementation is presented in Algorithm

3.

1. Receive the input image P, its bit-depth bitDeph, along

with an initial key IK and initialization vector IV to be

used in the process of encryption.

14418 B. Bharadwaj et al.

123

2. The maximum possible pixel-intensity value MAX with

the given bit-depth is computed using (4), and stored

for future use.

MAX ¼ 2bitDepth � 1 ð4Þ

3. The number of random-bytes required to perform

encryption of each pixel, referred to as the group-size

G of the input image is calculated using (5), and is also

stored for future use.

G ¼ ceil
bitDepth

8

� �
ð5Þ

4. The total number of random-bytes needed to encrypt

the entire image N are computed in accordance with (6)

and recorded.

N ¼ rows Pð Þ � cols Pð Þ � G ð6Þ

5. The encryption-vector EV is calculated using (7), by

performing a bitwise XOR operation between the value

of IV and the one’s complement of the sum of the pixel

intensity-values of P.

EV ¼ IV � sum Pð Þ
0

ð7Þ

6. Another pixel-matrix C is initialized to record the

encrypted output for the image P, and to be presented

as the final output of the image encryption module.

7. A call is made to the pseudo-random number generator

PRNG to get back the required number of random

bytes, by passing on the values of IK as initKey, the

value of EV as initVal, and the number of pixels

required N. The received random bytes are stored as

the encryption key K.

8. The values computed for K, N, G, and MAX, along with

P are used to place a call to the GPU_wrapper module,

which returns the encrypted image C.

9. C is finally transmitted on the insecure channel as the

output of the entire process, along with EV, to be

treated as the encrypted counterpart of input image P.

For a secure and successful operation of the encryption

module, the algorithm assumes that the two parties

involved in this operation, have mutually agreed upon a

common value of IK. IK is assumed to be secret throughout

the working span of the presented algorithm. In order to

achieve this, a number of existing algorithms, like EC-

DHA, RSA, etc. can be utilized. It is also essential that the

value of IV is unique for each and every run, which ensures

that even if the same data is encrypted repeatedly, along

with the same key, the obtained encryption outputs C1, C2,

C3, etc. are still different. For the purpose of implemen-

tation, the value of IV was taken to be the number of

nanoseconds elapsed, since the Unix epoch. Also note that

the value of IV and EV is not secret, and can be transmitted

as plain-text over an insecure channel, along with the

encrypted image C.

4.4 Decryption module

The encrypted image C, along with the value of EV can be

broadcasted by the sender over an insecure channel, for the

receivers who have a copy of IK. These users can process

C using the following steps, and reproduce the plain-image

P.

1. Receive the encrypted image C, its bit-depth bitDeph,

along with the initial key IK and value of EV as the

decryption vector DV.

2. The maximum possible pixel-intensity value MAX with

the given bit-depth is computed using (4), and stored

for future use.

3. The number of random-bytes required to perform

decryption of each pixel, referred to as the group-size

G of the input image is calculated using (5), and is also

stored for future use.

4. The total number of random-bytes needed to decrypt

the entire image, N, are computed in accordance with

(6) by replacing P with C, and recorded.

5. Another pixel-matrix P is initialized to record the

decrypted output for the image C, and to be presented

as the final output of the image decryption module.

6. A call is made to the pseudo-random number generator

PRNG to get back the required number of random bytes,

by passing on the values of IK as initKey, the value of

DV, and the number of pixels required N. The received

random bytes are stored as the encryption key K.

7. The values computed for K, N, G, and MAX, along with

C are used to place a call to the GPU_wrapper module,

which returns the encrypted image C.

8. P is finally returned as the output of the entire process,

to be treated as the decrypted counterpart of the

received image C.

GPU-Accelerated implementation of a genetically optimized image encryption algorithm 14419

123

The application of the above-mentioned algorithm,

effectively nullifies the modifications introduced by the

encryption process, thus providing the receiver with the

exact copy of the initially encrypted image. Algorithm 4

presents the implementation of the decryption module.

4.5 GPU_wrapper

This module is an assistant module to the next one presented

below, and is intended to perform the low-level operations

like memory management and computations to define the

structure of the calls to the GPU hardware. It accepts the

input of the image img, secret-key K, N, grpSz, and MAX. As

discussed previously, the GPU has two parameters associ-

ated with each kernel call, the number of threads per block,

and the number of blocks per grid. For the GPU used in the

testing of the presented algorithm, each block can have a

maximumof 1024 active threads, and that is the value we use

for each block. As for the number of blocks to be used, we

calculate that using (8), after which the process of preparing

the GPU to perform the required computation is initiated.

Blocks
Per Grid

¼ ceil
N

grpSz � Threads
Per Block

0

BB@

1

CCA ð8Þ

First, we reserve the memory for the last four variables

accepted from the parent function, by making corresponding

calls to the cudaMallocmethod of theCUDA interface. After

that, we copy the actual contents of these variables to the

newly allocated space within the GPU environment, via the

cudaMemcpy method. We upload the input image to an

object of the OpenCV’s GpuMat class, the mat equivalent in

the GPU environment, by the upload method. All the vari-

ables instantiated in GPU are passed on to the kernel, where

the actual computation takes place, after which we extract

the transformed image using the download method of the

GpuMat class. Finally, all the allocated memory in the GPU

is systematically freed up, and the transformed image is

returned implicitly, by the img reference. Algorithm 5 pre-

sents the discussed operations in detail.

4.6 GPU Kernel

The kernel is the piece of the algorithm, which is executed

within the GPU environment. It is responsible for per-

forming a pixel-wise XOR operation between the pixels of

the input image, and the pad generated from the ‘grpSz’

number of random bytes, referred to as the key. As inputs,

it accepts the key K, the pixel-data of the image as src, the

number of rows and columns as rows and cols respectively,

the distance between successive rows in bytes as step,

grpSz and MAX. It is executed by all the threads, running

parallel to each other in all the blocks activated by the

GPU_wrapper. Using kernel’s instructions, each thread

starts off by initializing the pad to be 0. After that, each

thread determines the coordinates of the image-pixel it is

supposed to be operating on, using (9.1–9.3). It should be

noted that blockIdx, blockDim, and threadIdx are built-in

vectors offered by the GPU environment, to allow easy-

access to the structure of the computing environment and

the identity of the thread in question.

idx ¼ blockIdx:x � blockDim:x þ threadIdx:x ð9:1Þ

x ¼ floor
idx

cols

� �
ð9:2Þ

y ¼ idx � x � colsð Þ ð9:3Þ

14420 B. Bharadwaj et al.

123

GPU_Kernel’s implementation is discussed in Algo-

rithm 6. It computes the pad, by appending the consecutive

‘grpSz’ number of bytes together. This pad is then sub-

jected to a bitwise AND operation with MAX, to make its

bit-length comparable to the pixel value. It is then XORed

to the output of the previous operation to obtain the

transformed pixel-value. GPU_Kernel does not explicitly

return any parameter, as all the necessary parameters were

passed referentially, and hence retain their desired values

after execution of any considered GPU_Kernel module.

Once all the threads in GPU complete their execution, the

control is transferred back to the GPU_wrapper.

5 Genetic optimization

As described in the previous section, the operation of the

Randomization Transform (RT) depends upon the value of

four hyper-parameters, namely A, B, C, and D. In order to

optimize the performance of RT, so that it produces a more

uniform frequency distribution of the random-bytes being

generated by the PRNG, we adopted the process of genetic

mutation to obtain the corresponding values for a better,

more uniform distribution of the random values. In order to

allow the required experimentation, the structure of RT was

modified in such a way that it accepts another input

parameter, params, that is a vector with four 64-bit ele-

ments. Each member of params stores the value supplied

for the corresponding hyper-parameter. Similar modifica-

tions were made to the PRNG module, so that it can also

receive the params vector, and pass it on to RT. In addition

to this, some methods for defining the structure of the

genetic algorithm were also created. The overall structure

and ordering of the used genetic algorithm is described in

Algorithm 7.1–7.5.

The cal_population_fitness_ method was defined to

accept a given population, make a call to the PRNG with

each offspring’s genes as the value for the params vector,

and return a corresponding fitness vector, describing how

desirable is each chromosome in a given population. In

order to calculate the fitness of a given chromosome, the

frequency distribution of the returned sequence of N ran-

dom numbers is considered, and its coefficient of variation

(COV) is used as the fitness metric.

The select_mating_pool method selects ‘num_parents’

number of chromosomes from the population, with the

lowest COV values to be the parents for the next genera-

tion, as these present the best chance of resulting in a

uniform frequency distribution. The crossover method

produces a set of offsprings by randomly choosing a cross-

over point, and interchanging all the genes lying after it

with those of the cyclically next parent.

The mutation method receives the offsprings produced by

the crossover method, along with the maximum number of

mutations that can be induced in the offsprings. It iterates

over all the chromosomes, and for each of them, generates a

vector of random numbers between 0 and 1. If the obtained

number for a given gene is greater than 0.75, we modify the

gene by assigning a random value of similar upper bound to

it. Considering the structure of RT, the lower and upper

bounds of the members of the params vector, were set

accordingly. Once all the chromosomes are subjected to the

same process, the obtained offsprings are returned as output.

GPU-Accelerated implementation of a genetically optimized image encryption algorithm 14421

123

6 Experimental results

To visually observe the results obtained on performing the

operation of encryption and decryption using the proposed

algorithm, we encrypted and decrypted the standard test

images as shown in Fig. 4. The values of IV and IK used

for this process are listed in Tables 1 and 2 respectively. As

can be seen, there has been no loss of visual information in

the entire encryption-decryption process.

The genetic algorithm described in Algorithm 7 was run

multiple times, and the obtained best values for the params

vector, along with their improvement graphs can be seen in

Table 3 and Fig. 5 respectively. The COV value obtained

for the best output of the genetic algorithm was observed to

be 0.018369, which is much better than the COV value

obtained for the algorithm proposed in Bharadwaj and

Sairabanu (2020), which was observed to be 0.069726.

This difference results in a smoother histogram for the

proposed algorithm, and hence a higher security standard.

The configurations of the Google cloud VM instance

used for the simulation of the given algorithm are: n1-

standard-2 type (2 vCPUs, 7.5 GB RAM), located in the

us-west1-b zone, with an NVIDIA Tesla-K80 GPU, and

Ubuntu 18.04LTS operating system. The program was

designed using the C ? ? language, and was compiled

with the NVCC compiler, along with OpenCV version

4.1.1, and with CUDA version 10.1. The algorithm was

14422 B. Bharadwaj et al.

123

designed to take the test images as input, and perform

encryption and decryption operation 500 times on them,

using the parameters specified in the previous sections. The

obtained time-durations for the corresponding operations

were averaged, and the obtained values were used to

compute the average speeds of encryption and decryption

respectively, as presented in Table 4. Table 5 compares the

average encryption and decryption speeds of the proposed

algorithm, and the ones proposed in Failed (2015);

Bharadwaj and Sairabanu 2020; Zhang et al. 2017) and

(Seshadrinathan and Dempski 2008) respectively. It can be

seen that the performance achieved using the proposed

algorithm, is far better than the other schemes.

To calculate the speedup ratio between the serial (from

Bharadwaj and Sairabanu (2020)) and parallel (with GPU)

implementations of the proposed algorithm, the execution

speeds were considered from Table 5. These values were

used in (10), where (Tserial, Tparallel) represent the execution

times, and (Vserial, Vparallel) represents execution speeds of

the respective algorithms. The obtained values of the

speedup ratio were 3.489 for encryption, and 4.055 for

decryption, respectively.

Speedup; S ¼ Tserial

Tparallel

¼ Vparallel

Vserial

ð10Þ

7 Security analysis

7.1 Key space

The presented algorithm is capable of functioning with a

key of arbitrary length. It’s only constrained by the system-

specific parameters, such as the available memory, pro-

cessing power, required level of security, etc. In spite of

this, it is recommended to use at least a 256-bit long key, to

obtain a respectable level of security. In general, the key-

space will be 2n for an n-bit key.

7.2 Analysis against various attacks

When the presented algorithm is subjected to a known-

plaintext or chosen-plaintext attack, the attacker cannot

decipher the seed values, without knowing the initial secret

Table 2 Initial secret key

38 33 3B 61 F1 2C F9 7B

59 FC B2 17 09 29 C3 15

B9 28 8A FD 3E ED 1E 4C

22 51 0C 02 A6 3E 0D D0

Table 3 Values of hyper-parameters corresponding to the best output

of the genetic algorithm

Hyper-parameter Value

A 10,000,000,000,000,000,000

B 126,501

C 6,507,463,502,728,333,312

D 13,787,056,135,999,930,368

Fig. 5 Multiple runs of the genetic algorithm

Fig. 4 Application of the proposed algorithm to the a–d All-black,

Lena, Mandrill, and All-white test images, to obtain the e–h
encrypted images, and their i–l decrypted counterparts

Table 1 Initialization vector values

All-black 15 CB 22 F8 09 C4 57 D4

Lena 15 CB 22 F8 0C FA FD 7C

Mandrill 15 CB 22 F8 10 41 7C F4

All-white 15 CB 22 F8 13 73 48 6C

GPU-Accelerated implementation of a genetically optimized image encryption algorithm 14423

123

key (assumed secure for smooth operation). Moreover, re-

iterating the same plaintext would also not help, due to the

uniqueness of the IV parameter.

For a Man-In-The-Middle (MITM) attack, as long as the

key-exchange mechanism ensures that the authenticity of

the parties involved in the communication is verified before

transmission, and the key-space is of recommended size (or

more), the algorithm is deemed secure. It is so, because of

the uni-directional nature of the involved computations,

which make it mathematically impossible to replicate the

seed values, by back-tracking the values in the algorithm.

The algorithm does not explicitly provide a means to

combat a Denial-of-Service (DoS) attack, for which suit-

able arrangements must be performed by the user, during

the development of the system in consideration.

7.3 Histogram analysis

The pixel values of the input images, and their respective

encrypted counterparts were subjected to a frequency

analysis, and the obtained frequency distribution was

plotted on a 2D plot to obtain the histogram of each image.

The intensity values were plotted on the X-axis, and fre-

quency on Y-axis. Upon examining these plots through

Fig. 6, it was observed that even though some contextual

information was visible from the histograms of the input

images, there was no such feature visible in the same for

the encrypted images.

7.4 Correlation analysis

The correlation analysis was performed on the input and

encrypted images, by taking n random samples of pairs of

pixels in the horizontal, vertical, and diagonal directions,

respectively for each image. Each ordered pair of pixels is

represented by (ui,vi). The correlation coefficient for the

drawn samples can be calculated using (11). (Ye et al.

2018)(Vihari and Mishra 2012).

ruv ¼
Pn

i¼1 ui � uð Þ vi � vð Þ
ffiPn

i¼1 ui � uð Þ2
q ffiPn

i¼1 vi � vð Þ2
q ð11Þ

Following this approach, the correlation coefficients

obtained for a sample size of n = 5000, corresponding to

each considered image, can be found in Table 6. The Fig. 7

plots the (ui,vi) pairs in horizontal direction on the two

axes. It can be clearly seen that considerable levels of

correlations are detected for the input images, whereas the

same is in a close proximity to zero, for the encrypted

images. This signifies a negligible degree of correlation.

Figure 8 presents the comparison of the results of proposed

and the previous algorithms. As can be seen, the proposed

algorithm has comparable results to Bharadwaj and Saira-

banu (2020), and outperforms (Failed 2015) and (Zhang

et al. 2017).

7.5 Information entropy

In order to quantify the amount of information that is

contained within a given binary data, the measure called

information entropy is used. In the context of 8-bit grays-

cale images, its value is limited in the range [0,8]. It is

defined in such a manner that for an 8-bit truly random

image Ir, the information entropy H(Ir) has the maximum

possible value, i.e. 8. The value of information entropy is

computed using (12) for the test images and their encrypted

counterparts, and the results are presented in Table 7. (Ye

et al. 2018).

H ¼ �
X255

i¼0

p ið Þ log2 p ið Þ½ � ð12Þ

It is quite clear from Table 7 that the entropy values

obtained for the test images, are having a significant

deviation from the desired value, i.e. 8. But, for the

encrypted images, the entropy values are at par with the

expected values. Also, when the obtained values were

compared with the algorithms proposed in Failed (2015);

Bharadwaj and Sairabanu 2020), and (Zhang et al. 2017) in

Fig. 9, we can see that the values are in a close agreement

to those of Bharadwaj and Sairabanu (2020), but are quite

closer to the desired value of 8, in comparison to the same

values obtained using the algorithms from Failed (2015)

and (Zhang et al. 2017), indicating better entropy levels for

our algorithm.

Table 4 Speeds of execution for proposed algorithm

Image Image size (pixels) Image size on disk Encryption Speed (Mbps) Decryption speed (Mbps)

Black 512 9 512 4 KB 575.135 845.843

Lena 512 9 512 312 KB 329.422 396.858

Mandrill 512 9 512 314 KB 329.531 393.998

White 512 9 512 4 KB 656.123 999.816

14424 B. Bharadwaj et al.

123

7.6 Differential analysis/sensitivity analysis

The differential attack is a process of obtaining two or

more pairs of plaintexts and their corresponding cipher-

texts, and using these to deduce information, pertaining to

the encryption key used to generate them, and/or to reduce

the time needed to deduce the encryption key. In order to

secure any given cipher from any such analytical approa-

ches, it is essential that two key properties called confusion

and diffusion, first identified by Shannon (1949), be

incorporated into it. This can be done by using certain

mathematical transformations, or changing the structure of

operation of the cipher.

In order to mathematically quantify the confusion and

diffusion capacity of a given image encryption algorithm,

two parameters are used extensively in the literature,

namely number of pixel change rate (NPCR) and unified

average changing intensity (UACI). NPCR indicates how

many pixels changed their value, when the cipher operated

upon the given input image. The UACI measures the

average difference between the values of pixels that

Table 5 Comparative analysis

of the encryption and decryption

speeds

Algorithm Encryption speed (Mbps) Decryption speed (Mbps)

Proposed Alg 472.553 659.129

Ref. (Ramesh and Jain 2015) 11.6099* 11.6121*

Ref. (Zhang et al. 2017) 48.7710 44.6203

Ref. (Bharadwaj and Sairabanu 2020) 135.413 162.524

Ref. (Seshadrinathan and Dempski 2008) 402 (approx.) 402 (approx.)

*Computed from the provided execution time

Fig. 6 Histogram analyses to the a–h original and i–p encrypted

images in horizontal direction

Table 6 Correlation coefficients

Image Horizontal Vertical Diagonal

All-back Figure 7a Undefined Undefined Undefined

Figure 7i - 0.001081 - 0.001576 - 0.001240

Lena Figure 7b 0.966180 0.984140 0.951990

Figure 7j - 0.000652 0.004573 - 0.001306

Mand-rill Figure 7c 0.932240 0.909501 0.860810

Figure 7k 0.000167 - 0.007593 - 0.001755

All-white Figure 7d Undefined Undefined Undefined

Figure 7l - 0.001057 - 0.001824 0.000371

Fig. 7 Correlation analyses to the a–h original and i–p encrypted

images in horizontal direction

GPU-Accelerated implementation of a genetically optimized image encryption algorithm 14425

123

changed their values, with respect to their counterparts in

the plaintext images.

For two images I1 and I2 of same dimensions M 9 N,

their NPCR and UACI values are calculated using (13.1–

13.2) and (14), respectively. Here, L represents the number

of levels present in the given images’ gray values.

NPCR ¼ 1

M � N

XM

i¼0

XN

j¼0

D i; jð Þ � 100% ð13:1Þ

D i; jð Þ ¼ 0; ifI1 i; jð Þ ¼ I2 i; jð Þ
1; ifI1 i; jð Þ 6¼ I2 i; jð Þ

�
ð13:2Þ

UACI ¼ 1

M � N

XM

i¼0

XN

j¼0

I1 i; jð Þ � I2 i; jð Þj j
L � 1

� 100% ð14Þ

In order to further investigate the sensitivity of the

presented algorithm to changes in the input image and the

encryption key, and to see the confusion and diffusion

processes in action, two sets of NPCR and UACI values

were computed for each image. For the first set of values,

the encryption operation was performed two times: first

using the inputs in their presented form, and the second

time by flipping the first bit of the encryption key used for

encryption of the image, to measure the key-sensitivity.

Also, for the next set, the encryption operation was per-

formed by only changing the value of the top-right pixel of

the test image, to observe the plain-block sensitivity.

It should be noted that for a truly random image, the

expected NPCR and UACI values are 99.6094% and

33.4653%, respectively. These values, along with the val-

ues obtained after performing the described analysis on the

test images, are presented in Table 8. The NPCR and UACI

values computed for the considered test images using this

approach, and the ones reported in Ramesh and Jain

(2015); Bharadwaj and Sairabanu 2020), and (Zhang et al.

2017) are presented in Fig. 10. It is quite clear that the

proposed algorithm is performing at-par with (Bharadwaj

and Sairabanu 2020), and better than (Ramesh and Jain

2015) and (Zhang et al. 2017), for NPCR values. With

respect to UACI values, it can be observed that the pro-

posed algorithm works at-par with (Ramesh and Jain 2015)

Fig. 8 Comparative analysis of correlation Coefficients

Table 7 Results of information entropy analysis

Image All-black Lena Mandrill All-white

Plain 0 7.445061 7.292549 0

Encrypted 7.993687 7.999443 7.999451 7,993,643

Fig. 9 Comparative analysis of Information Entropy

Table 8 Key and plain block sensitivities

Encrypted image Key sensitivity (%) Plain block sensitivity (%)

NPCR UACI NPCR UACI

Theoretical 99.6094 33.4635 99.6094 33.4635

All-black 99.6033 33.4651 99.6189 33.4383

Lena 99.5983 33.3972 99.5955 33.4725

Mandrill 99.5972 33.4856 99.5976 33.4762

All-white 99.5895 33.4176 99.5640 33.4799

14426 B. Bharadwaj et al.

123

and (Bharadwaj and Sairabanu 2020), and has better results

than (Zhang et al. 2017).

8 Conclusion

This paper presents a symmetric-key image encryption

algorithm, that accepts certain input parameters along with

a shared secret key, to perform the process of encryption

and decryption. The encryption and decryption processes

make use of a GPU-accelerated encryption paradigm, that

utilizes the concepts of an XOR cipher, along with a

genetically-optimized pseudo random generator, to gener-

ate a stream of random bytes that are used to obtain the

encryption pad, needed to encrypt the pixel-values. The

presented algorithm was subjected to a series of mathe-

matical analyses, to categorically prove its security against

a number of possible attacks. The performance of the

algorithm was compared with that of other algorithms of

the same problem-domain, and similar implementations, to

quantify the performance enhancements and derive the

speed-up ratio.

In future, the presented algorithm can be experimentally

compared against the previously used algorithms, to gather

insights related to the relative benchmarking in a produc-

tion environment. The structure of the helical structure

involved in the corresponding computations can also be

reviewed in future, to further increase the scope of paral-

lelism, in comparison to the same of the current version.

Also, if a video stream is considered as a collection of

individual frames, the same algorithm can be used to

encrypt a video stream with suitable modifications. Such an

application will prove to have an extensive use-case rele-

vance to video-sharing features, implemented in the virtual

meeting and video-conferencing platforms, that have

recently gained traction, due to the COVID-19 pandemic.

Declarations

Conflict of interest All authors certify that they have no affiliations

with or involvement in any organization or entity with any financial

interest or non-financial interest in the subject matter or materials

discussed in this manuscript.

References

Abdullah AH, Enayatifar R, Lee M (2012) A hybrid genetic algorithm

and chaotic function model for image encryption. AEU-Int J

Electron Commun 66(10):806–816

Affenzeller M, Wagner S, Winkler S, Beham A (2009) Genetic

algorithms and genetic programming: modern concepts and

practical applications. CRC Press, Florida

Almalkawi IT, Halloush R, Alsarhan A, Al-Dubai A, Al-karaki JN

(2019) A lightweight and efficient digital image encryption using

hybrid chaotic systems for wireless network applications. J Inf

Secur Appl 49:102384

Altigani A, Hasan S, Shamsuddin SM, Barry B (2019) A multi-shape

hybrid symmetric encryption algorithm to thwart attacks based

on the knowledge of the used cryptographic suite. J Inf Secur

Appl 46:210–221

Antwerpen DV (2011) Improving SIMD efficiency for parallel Monte

Carlo light transport on the GPU. In Proceedings of the ACM

SIGGRAPH Symposium on High Performance Graphics (HPG

’11). Association for Computing Machinery (ACM), New York,

NY, USA, pp 41–50.

Armin J, Thompson B, Kijewski P (2016) Cybercrime economic

costs: No measure no solution. Combatting cybercrime and

cyberterrorism. Springer, Cham, pp 135–155

Bharadwaj B, and Sairabanu J (2020) Image encryption using a

Modified Pseudo-Random Generator. In 2020 International

Fig. 10 Comparative analysis of a NPCR and b UACI values

GPU-Accelerated implementation of a genetically optimized image encryption algorithm 14427

123

Conference on Emerging Trends in Information Technology and

Engineering (ic-ETITE) pp 1–6. IEEE.

Bharadwaj B, Shukla S, Shalini L (2018) Symmetric key encryption

using a simple pseudo-random generator to provide more secure

communication. Int J Tech Res Appl 6(2):76–81

Boritz JE, No WG (2005) Security in XML-based financial reporting

services on the Internet. J Account Public Policy 24(1):11–35

Buck I (2007) GPU computing with NVIDIA CUDA. In ACM

SIGGRAPH 2007 courses (SIGGRAPH ’07). Association for

Computing Machinery, New York, NY, USA, 6–es.

D’agapeyeff A (2016) Codes and ciphers-A history of cryptography.

Read Books Ltd., Redditch

Davies D (1997) A brief history of cryptography. Inf Secur Tech Rep

2(2):14–17

Dutta S, Das T, Jash S, Patra D, and Paul P (2014) A cryptography

algorithm using the operations of genetic algorithm & pseudo

random sequence generating functions. International Journal,

3(5).

Inampudi GR, Shyamala K, and Ramachandram S (2018) Parallel

implementation of cryptographic algorithm: AES using OpenCL

on GPUs. 2nd International Conference on Inventive Systems

and Control (ICISC), Coimbatore, pp 984–988.

Kalra S, Sood SK (2015) Secure authentication scheme for IoT and

cloud servers. Pervasive Mob Comput 24:210–223

Kösemen C, Dalkiliç G, Aydin Ö (2018) Genetic programming-based

pseudorandom number generator for wireless identification and

sensing platform. Turk J Electr Eng Comput Sci

26(5):2500–2511

Lee WK, Cheong HS, Phan RCW, Goi BM (2016) Fast implemen-

tation of block ciphers and PRNGs in Maxwell GPU architec-

ture. Clust Comput 19(1):335–347

Manssen M, Weigel M, Hartmann AK (2012) Random number

generators for massively parallel simulations on GPU. Eur Phys

J Special Topics 210(1):53–71

Mishra M, and Mankar VH (2015) Text encryption algorithms based

on pseudo random number generator. International Journal of

Computer Applications, 111(2).

NVIDIA Corporation (2020) CUDA C?? Programming Guide.

NVIDIA Docs. https://docs.nvidia.com/cuda/pdf/CUDA_C_Pro

gramming_Guide.pdf

Ramesh A, and Jain A (2015) Hybrid image encryption using Pseudo

random number generators, and transposition and substitution

techniques. 2015 International Conference on Trends in

Automation, Communications and Computing Technology (I-

TACT-15), Bangalore, pp. 1–6

Riek M, Böhme R (2018) The costs of consumer-facing cybercrime:

An empirical exploration of measurement issues and estimates.

J Cybersecur 4(1):tyy004

Riesinger C, Neckel T, Rupp F (2018) Non-standard pseudo random

number generators revisited for GPUs. Futur Gener Comput Syst

82:482–492

Sen A, Ghosh A, and Nath A (2017) Bit level symmetric key

cryptography using genetic algorithm. In 2017 7th International

Conference on Communication Systems and Network Tech-

nologies (CSNT) (pp. 193–199). IEEE.

Seshadrinathan M, and Dempski KL (2008) Implementation of

advanced encryption standard for encryption and decryption of

images and text on a GPU. IEEE Computer Society Conference

on Computer Vision and Pattern Recognition Workshops,

Anchorage, AK, pp 1–6.

Shannon CE (1949) Communication theory of secrecy systems. Bell

Syst Tech J 28(4):656–715

Stergiou C, Psannis KE, Kim BG, Gupta B (2018) Secure integration

of IoT and cloud computing. Futur Gener Comput Syst

78:964–975

Vihari PLV, and Mishra M (2012) Chaotic image encryption on GPU.

In Proceedings of the CUBE International Information Technol-

ogy Conference (CUBE ’12). Association for Computing

Machinery, New York, NY, USA, 753–758.

Ye R, Li Y, and Li Y (2018) An image encryption scheme based on

fractal interpolation. In Proceedings of the 3rd International

Conference on Multimedia and Image Processing (ICMIP 2018).

Association for Computing Machinery, New York, NY, USA,

52–56.

Zafar F, Olano M, and Curtis A (2010) GPU random numbers via the

tiny encryption algorithm. In Proceedings of the Conference on

High Performance Graphics (HPG ’10). Eurographics Associa-

tion, Goslar, DEU, pp 133–141.

Zeller C (2011) Cuda c/c?? basics. NVIDIA Coporation, California

Zhang Y, Li X, and Hou W (2017) A fast image encryption

scheme based on AES, 2nd International Conference on Image,

Vision and Computing (ICIVC), Chengdu, pp 624–628.

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

14428 B. Bharadwaj et al.

123

https://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
https://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf

	GPU-Accelerated implementation of a genetically optimized image encryption algorithm
	Abstract
	Introduction
	Contributions
	Literature survey
	Proposed algorithm
	Randomization transform
	Pseudo-random number generator
	Encryption module
	Decryption module
	GPU_wrapper
	GPU Kernel

	Genetic optimization
	Experimental results
	Security analysis
	Key space
	Analysis against various attacks
	Histogram analysis
	Correlation analysis
	Information entropy
	Differential analysis/sensitivity analysis

	Conclusion
	References

