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Abstract We explore the existence of rational-valued ap-

proximation processes by continuous functions of two vari-

ables, such that the output continuously depends of the im-

posed error-bound. To this sake we prove that the theory

of densely ordered sets with generic predicates is ℵ0-ca-

tegorical. A model of the theory and a particular contin-

uous choice-function are constructed. This function trans-

fers to all other models by the respective isomorphisms. If

some common-sense conditions are fulfilled, the processes

are computable. As a byproduct, other functions with sur-

prising properties can be constructed.

Keywords choice · densely ordered sets · order topology ·
continuous functions · roots · algebraic and transcendental

numbers · ℵ0-categorical theories.

1 Introduction

All sciences, including mathematics and computer science,

and most of their practical applications, are supported by nu-

meric computations. The computed numbers mostly express

quantities. The numbers expressible with a finite amount of

digits are rational numbers, and so they can only approxi-

mate the exact values of continuously varying quantities.

Digital expressions can exactly represent only a subset

of the rational numbers, as for example the rational num-

ber 1/3 = 0.333 . . . needs already an infinity of digits to be
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exactly represented. That is why we choose to focus on ex-

actly represented rational numbers only. They are expres-

sions m/n where m is an integer and n is a strictly posi-

tive integer. As every rational number has an infinity of such

representations, we choose to always refer to the shortest of

them, which satisfies the condition gcd(m,n) = 1. Such a

representation is an irreducible fraction. Of course, an irre-

ducible fraction can be always approximated by a decimal

expression up to the desired error.

This paper deals with the delicate problem of approxi-

mating continuous quantities by rational numbers. Approx-

imation is a subject that lies in the focus of this Journal.

When both measurement and input are fuzzy, the approxi-

mation is the only truth we are dealing with. Various meth-

ods, borrowed and adapted from all areas, numeric analy-

sis and algebra to functional analysis and differential equa-

tions, are put to work - see for example (Coroianu & all,

2019), (Dawaz, 2008), (Ishibuchi & all, 2006) and (Wang,

Li, 2019). But remarkably, most methods used to achieve

good approximations are based essentially on the continuum

of the real numbers and, as I believe, do not use enough the

intimate properties of the rational numbers.

The set of rational numbers Q builds an ordered field,

which is enumerable and lies densely in the set R of real

numbers. Information obtained by measurements, as like the

digital signals sent by us in order to control a process, are

essentially rational numbers. Of course, instead of the ra-

tionals, one can use other rings, like that consisting of the

numbers m/2k, where m is an integer and k is a natural num-

ber. This ring is also dense in R, has the advantage that all

elements are expressed by finitely many digits in the bases

10 or 2, but does not build a field. The choice of the set used

for approximations and numeric computations depends fi-

nally of the practical scope. We keep Q in focus, but as it

will turn out, we are interested specially in the fact that the

set is dense and countable.
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2 Mihai Prunescu

In this article we deal with the problem of finding ap-

proximation processes with rational values, which are con-

tinuous as function of their error bound. Consider the fol-

lowing usual problem of numeric computation:

Find a good rational approximation of
√

3.7.

The term good is meaning-less without a specification.

In fact one may consider as good an approximation whose

square is no farther than 0.1 from the target value, and can

ask precisely:

Find z ∈ Q such that 3.6 < z2 < 3.8, or may pretend

a better approximation, whose square is no farther as 0.01

from the target value, and can ask precisely:

Find z ∈Q such that 3.69 < z2 < 3.79.

In general we are interested of a process to get rational

numbers as follows:

For every ε ∈Q with ε > 0, find z(ε)∈Q such that 3.7−
ε < z(ε)2 < 3.7+ ε .

So far we formulated the request to find a process to pro-

duce good approximations. Such processes are well-known,

as every algorithm computing approximations of
√

u for u ∈
Q is an answer. But now, we supplementary ask for the func-

tion z(ε) to be continuous in ε . This condition is motivated

by practical reasons, as follows.

Suppose that some device controls a process that has as

goal to reach some target. The target is a specific value,

and as the time goes by, the approximation error must be-

come smaller. The process can be the flight of a rocket to a

physical target, filling a recipient with a fluid, accelerating

or slowing down a moving train to a given speed, or any-

thing else. The function to be computed can be considered

to be algebraic or analytic and to depend of several parame-

ters, which can be constant or can vary continuously during

the process. Most important, the error bound of the approx-

imation is one of the parameters. The physical nature of the

process, as also practical considerations depending on the

resistance and the endurance of material devices, or condi-

tions given by applications in connection with human users,

request the computed value z(. . . ,ε, . . .) to continuously de-

pend on the error bound ε .

Now we come back to the square root example.

Consider ordered fields K that satisfy the statement:

∀x,y 0 < x < y → ∃z x < z2 < y. (1)

The statement is true in the field of real numbers R and

in the field of rational numbers Q. It turns out that not all or-

dered fields have this property. For the sake of completeness,

a counterexample is displayed in the Appendix.

Recall that an ordered field has a canonical order topol-

ogy τ1, defined such that the open intervals build a basis for

the open sets. The affine space Kn gets the product topology

τn generated by τ1. Here the open boxes I1 × I2 × . . .× In

produce a basis for the open sets. Every Ik is an open in-

terval in K. Let K+ be the set of strictly positive elements

of K. For an ordered set (A,<), let I(A) denote the open set

{(x,y)∈A2 |x< y}. We look for continuous functions z(x,y)
defined as z : I(K+)→ K+ such that:

∀x,y 0 < x < y → x < z(x,y)2 < y. (2)

In R there are plenty of such continuous functions. For

every α ∈ (0,1) the following functions are examples:

z(x,y) =
√

αx+(1−α)y,

z(x,y) = α
√

x+(1−α)
√

y,

z(x,y) =
√

xα y1−α , etc.

Question 1: Is there any continuous z : I(Q+) → Q+

satisfying the condition (2)?

Question 2: If the Question 1 has a positive answer, is

there any algorithm to compute a continuous function z :

I(Q+)→Q+ satisfying the condition (2)?

Both questions are given positive answers in this pa-

per. Moreover, instead of z ❀ z2 we may consider any con-

tinuous (computable) function z ❀ f (z) which is strictly

monotone on some interval and eventually has a computable

inverse. Technically, we consider dense and co-dense sets

of values that might be assumed by the function. So, as a

byproduct, our approach leads also to some strange contin-

uous functions, as a function that continuously associates to

any open interval (x,y) whose endpoints are algebraic num-

bers, a rational inner point z(x,y).

None of the algorithms used so far to produce rational

approximations for square roots, does satisfy any uniformity

property as the continuity in Q coupled with the condition

(2).

The algorithm presented here to positively answer Ques-

tion 2 is too slow for applications, being slightly over-expo-

nential. This is not surprising, as the technique used is to

tame a countable version of the Axiom of Choice.

However, the fact that both questions have positive an-

swers shares a new light on the possibility to get smooth

control of a process while executing only classical compu-

tations with integers and rational numbers. It turns out that

the dense countable sets, without being the continuum, are

rich enough to enable us a smooth control of processes.

2 Prerequisites

First we will introduce the general notion of Skolem func-

tion, which is usually used in Logic and Model Theory, and

we will argue that some natural approximation problems are

in fact the quest for continuous Skolem functions associated

with some formal statements.

Definition 1 Let L be a set of function symbols, relation

symbols and individual constant symbols, and let M be an
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algebraic structure interpreting these symbols. Suppose that

M satisfies an L-statement of the form:

A = ∀x1, . . . ,xn ∃y ϕ(x1, . . . ,xn,y),

where ϕ(x1, . . . ,xn,y) is a formula containing symbols from

L, logical connectives, parentheses, the individual variables

x1, . . . ,xn,y, but no other individual variables and no quan-

tifiers. A function f : Mn → M such that the structure M

satisfies the statement:

∀x1, . . . ,xn ϕ(x1, . . . ,xn, f (x1, . . . ,xn)),

is called a Skolem function associated with the given state-

ment.

A Skolem function is the result of a choice-process. As

for given x1, . . . ,xn ∈ M, by the truth of the statement A, the

set:

Fx1,...,xn = {y ∈ M |ϕ(x1, . . . ,xn,y) is true in M} 6= /0,

it is enough to arbitrarily choose f (x1, . . . ,xn) ∈ Fx1,...,xn . In

this sense, every Skolem function is a choice-function, and

its existence is assured by the Axiom of Choice. It is also

remarkable that in countable structures, the full Axiom of

Choice is not needed, as one always can put the hand on the

smaller index of an element satisfying some condition, if it

is sure that such elements do exist.

We go further and we suppose that the set M is endowed

not only with an algebraic L-structure, but also with a topo-

logical structure (M,τ1). There is always a product topology

induced by the topology τn on Mn, the topology generated

by the cartesian products of open sets. A natural condition

is to produce not only a choice-function, but a continuous

choice-function f : Mn → M for the statement A.

The problem presented in the Introduction is a problem

of this kind. Indeed, the ordered fields in question satisfy the

condition (1):

∀(x,y) ∈ I(K+) ∃z x < z2 < y. (3)

We ask for a continuous function z : I(K+)→ K+ satisfying

condition (2):

∀(x,y) ∈ I(K+) x < z(x,y)2 < y. (4)

How do we define continuity? Let (S,<) be a totally or-

dered set. A typical neighborhood of some element x is an

open interval (x1,x2) = {t |x1 < t < x2} defined by two ele-

ments x1 and x2 such that x ∈ (x1,x2). For the product topol-

ogy on S2 = S× S the fundamental open sets are the open

rectangles (x1,x2)× (y1,y2). If D ⊆ S2 is an open set and

z : D → S is some function, we say that z is continuous on D

if and only if:

∀(x,y) ∈ D ∀z1,z2 ∈ S z1 < z(x,y)< z2 →

→∃x1,x2,y1,y2 {x1 < x < x2 ∧ y1 < y < y2∧

∧∀(x′,y′) ∈ D [x1 < x′ < x2 ∧ y1 < y′ < y2 →

→ z1 < z(x′,y′)< z2 ]}.

Finally, we recall the basic facts about the dense total or-

ders without endpoints. For the whole Model Theory below

we refer to the book (Prestel, 1986). The language L = {<}
consists of a binary relation < only. Let T be the deductive

closure of the following axioms:

1. ∀x ¬(x < x).

2. ∀x,y x < y ∨ x = y ∨ y < x.
3. ∀x,y,z x < y ∧ y < z → x < z.

4. ∀x ∃y,z y < x ∧ x < z.

5. ∀x,y ∃z x < y → x < z < y.

The first three axioms say that < is a total transitive order,

the fourth axiom is the absence of endpoints and the fifth

axiom is the density.

Definition 2 Let the language L be finite or countable. An

L-theory T is called complete if for every L-statement ϕ , the

statement ϕ or its negation ¬ϕ belongs to T . T is called

consistent if for no formal statement ϕ , both ϕ and ¬ϕ be-

long to T . T is called ℵ0-categorical if every two models A

and B of cardinal ≤ ℵ0 of T , are isomorphic.

Lemma 1 Let the language L be finite or countable, and let

T be a consistent L-theory that has only infinite models. If T

is ℵ0-categorical, then T is complete.

Proof: If T is not compete, there is a statement ϕ such

that none of ϕ and Negϕ belongs to T . As T is consis-

tent and deductively closed, both theories T1 = T ∪{ϕ} and

T2 = T ∪{¬ϕ} are consistent. By the Löwenheim-Skolem

Theorem, both theories have models of cardinal ≤ ℵ0, A

and respectively B. As models of T , A and B are isomorphic.

But this is impossible, because there is a formal statement ϕ

which is true in A and false in B. ⊓⊔

Theorem 1 Let L = {<} and let T be the theory of dense

total orders without endpoints. Then T is consistent, ℵ0-

categorical and complete.

Proof: T is consistent, because it has models, like the

structure (Q,<). According to any of the axioms 4 or 5, T

has no finite models. So it is sufficient to show that T is ℵ0-

categorical and the completeness will follow.

In order to show that any two countable models (A,<)

and (B,<) are isomorphic, one applies a classical method

called back and forth procedure. The method will be applied

also in the next sections and is essential for this article, so

it will be exposed here with details. The total dense orders

without endpoints are maybe the least difficult context to

explain it.

Let a : N→ A and b : N→ B be arbitrary bijective enu-

merations of those countable sets. An isomorphism ι : A→B
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4 Mihai Prunescu

is a one-to-one mapping from A onto B that respects or-

der, such that for all a′,a′′ ∈ A, ι(a′) < ι(a′′) if and only

if a′ < a′′. The isomorphism ι is constructed by induction as

follows:

Step 0: We define ι(a(0)) = b(0).

Step 1: Consider the element b(1). If b(1) > b(0), find

the least k ∈ N such that a(k) > a(0) and define ι(a(k)) =

b(1). If b(1) < b(0), find the least k ∈ N such that a(k) <
a(0) and define ι(a(k)) = b(1).

Take n ≥ 1.

Step 2n: We suppose that 2n− 1 pairs (ai,bi) ∈ A×B

have been already found, such that a0 < a1 < .. . < a2n−2,

b0 < b1 < .. . < b2n−2 and a partial isomorphism have been

constructed so far, such that ι(ai) = bi for i = 0, . . . ,2n−2.

Let k′ be the least natural number such that b(k′) 6= bi for all

i = 0, . . . ,2n− 2. The element b(k′) belongs to exactly one

of the following intervals: J0 = (−∞,b0), J1 = (b0,b1), . . .,

J2n−1 = (b2n−2,+∞) of B. Consider the corresponding inter-

vals I0 = (−∞,a0), I1 = (a0,a1), . . ., I2n−1 = (a2n−2,+∞) of

A. If b(k′) belongs to the interval Jm, take k to be the least

natural number such that a(k) ∈ Im and define ι(a(k)) =
b(k′).

Step 2n+ 1: We suppose that 2n pairs (ai,bi) ∈ A×B

have been already found, such that a0 < a1 < .. . < a2n−1,

b0 < b1 < .. . < b2n−1 and a partial isomorphism have been

constructed so far, such that ι(ai) = bi for i = 0, . . . ,2n−1.

Let k be the least natural number such that a(k) 6= ai for all

i = 0, . . . ,2n− 1. The element a(k) belongs to exactly one

of the following intervals: I0 = (−∞,a0), I1 = (a0,a1), . . .,

I2n = (b2n−1,+∞) of A. Consider the corresponding inter-

vals J0 = (−∞,b0), J1 = (b0,b1), . . ., J2n = (b2n−1,+∞) of

B. If a(k) belongs to the interval Im, take k′ to be the least

natural number such that b(k′) ∈ Im and define ι(a(k)) =

b(k′).
⊓⊔

3 Generic predicates in countable dense orderings

Definition 3 Let (A,<) be a totally ordered set. A subset

P ⊂ A is called a generic predicate if P is dense in A and

A\P is dense in A. Instead of A\P dense in A we may also

say that P is codense in A.

Lemma 2 Let Q+ = {x ∈ Q |x > 0}, and let P be the set

{x ∈ Q |∃y ∈ Q, x = y2}. Then (Q+,<) is a dense count-

able ordered set without endpoints and P ⊂Q+ is a generic

predicate.

Proof: Q+ is countable and is of course a model of the

theory T of dense ordered sets without endpoints. All ax-

ioms are easily verified.

For rational numbers 0< x< y, there is some B such that

B2 > 2y. For w,δ ∈Q with 0 < δ < 1 and 0 < w < B,

(w+δ )2 −w2 < (2B+1)δ .

If y−x = d, take δ < d/(2B+1). The sequence xk = kδ for

k = 0, . . . , [B/δ ]−1 has the property that x2
k+1 − x2

k < d. So

at least one x2
k lies between x and y. It follows that P is dense

in Q+.

Also Q+ \P is dense in Q+: Let a ∈Q. For every k ∈N,

k ≥ 2, the rational numbers uk and vk defined as:

uk =
k−1

k
a2 < a2 < vk =

k+1

k
a2,

are not squares. For big values of k, the numbers uk and vk

come arbitrarily close to a2. ⊓⊔

Remark 1 The proof uses only the fact that Q is a densely

ordered archimedean ring. One can take δ = 2−M to be small

enough, in order to show that the squares are dense, and the

subsequence u2k instead of uk in order to show that the non-

squares are dense. So the result is true also for the ring T=
{m/2k |k ≥ 0,m = 2s+1 ∈ Z} instead of Q.

Definition 4 For an ordered set (A,<), denote with I(A) the

set {(x,y) ∈ A2 |x < y}. This set can be identified with the

set of open intervals in A.

Lemma 3 There is a continuous function z : I(Q+) → Q+

such that:

∀(x,y) ∈ I(Q+) x < z(x,y)2 < y, (5)

if and only if there is a continuous function Z : I(Q+)→ P

such that:

∀(x,y) ∈ I(Q+) x < Z(x,y)< y.

Proof: If the function z(x,y) is continuous, so will be

also the function Z(x,y) = z(x,y)2. All the values taken by

the function Z(x,y) are squares by definition. On the other

hand if the function Z(x,y) is continuous and takes only

squares as values, the function z(x,y) =
√

Z(x,y) is well de-

fined and continuous. ⊓⊔
It turns out that the densely ordered sets with generic

predicates and without endpoints have a complete theory,

which is introduced below:

Definition 5 Let L = {P,<} be the formal language con-

sisting of a unary predicate P(x) and a binary relation <.

Let Tg be the deductive closure of the following first order

statements:

1. ∀x ¬(x < x).

2. ∀x,y x < y ∨ x = y ∨ y < x.

3. ∀x,y,z x < y ∧ y < z → x < z.
4. ∀x ∃y,z y < x ∧ x < z.

5. ∀x,y ∃z x < y → x < z < y ∧ P(z).
6. ∀x,y ∃z x < y → x < z < y ∧ ¬P(z).

The theory is given by the axioms of the densely ordered set

without endpoints, excepting the axiom of density, which

is replaced by two new axioms stating the density and the

codensity of the generic predicate P.
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Smooth approximations by continuous choice-functions 5

Theorem 2 The theory Tg is consistent and does not have

finite models. Moreover, every two countable models of Tg

are isomorphic (Tg is ℵ0-categorical). Consequently, Tg is

complete.

Proof: As the structure (Q+,<,P) is a model of Tg by

Lemma 2, Tg is consistent. If we forget the predicate P, the

axioms say that every model is a densely ordered set without

endpoints, so the theory has only infinite models.

The proof that every two countable models are isomor-

phic works similarly with the proof of Theorem 1. The step

0 is to see if one has P(a(0)) or ¬P(a(0)) and to take for

f (a(0)) the element b(k′) of smallest index, which satisfies

the same condition. For the step 1, one looks for the element

b(k′) of smallest index, which is different of f (a(0)). This

element is bigger or smaller than f (a(0)), and satisfies or

does not satisfy P. One finds the element of smaller index

a(k) which respects the same conditions relatively to a(0)
and relatively to P and defines f (a(k)) = b(k′).

For the general even step, after defining f (u1) < f (u2)

< .. . < f (um) for finitely many elements u1 < u2 < .. . < um,

one takes the element u of smallest index in the domain of

f for which f has not been defined yet, and one verifies if

u < u1, or there is an i with ui < u < ui+1, or um < u and

also if P(u) or if ¬P(u) is true. Then one defines f (u) to be

the element of smallest index in the co-domain of f which

satisfies the same conditions. The axioms of Tg assure the

existence of such an element. The odd step is similar. ⊓⊔

Remark 2 The theory of densely ordered sets with no first

and last element and with n generic predicates P1, . . . ,Pn has

the same properties. To write it down, replace the last two

axioms with 2n axioms of the form:

∀x,y ∃z x < y → x < z < y ∧
n
∧

i=1

εiPi(z)

for every ε ∈ {0,1}n. Here εk = 1 means that Pk occurs not

negated, while εk = 0 means that Pk occurs negated.

Definition 6 Let (A,<,P) be a model of Tg. Let I(A) =

{(x,y) ∈ A2 |x < y}. A admits a continuous choice function

if there is a continuous function Z : I(A)→ P such that:

(A,<,P,Z) |= ∀(x,y) ∈ I(A) x < Z(x,y)< y.

Theorem 3 There is a countable model of Tg that admits a

continuous choice-function if and only if all countable mod-

els admit continuous choice-functions.

Proof: Suppose that the model (B,<,P) admits the con-

tinuous choice-function Z : I(B)→ PB and consider a model

A of Tg. Let f : A → B be the isomorphism constructed in the

proof of Theorem 2. Then f−1(I(B)) = I(A) and Z′(x,y) =
f−1(Z( f (x), f (y))) is a continuous choice-function on A.

Observe that the isomorphism f is also a homeomorphism

between the two topological spaces defined by the orders.

⊓⊔
It turns out that in cardinal 2ℵ0 there are models of Tg

which do not admit continuous choice-functions for generic

predicates.

Theorem 4 Let (R,<,P) where < is the usual order in the

real numbers and P is some generic predicate in the reals.

(R,<,P) does not admit continuous choice-functions.

Proof: A continuous function Z : I(R) → R has a con-

nected image. But Z(I(R))⊂P (totally disconnected), so the

function Z is constant. Let c be this constant value. We take

x,y ∈ R with c < x < y. It follows that c < x < Z(x,y) = c,

which is a contradiction. ⊓⊔

4 Continuous choice-functions

In this section a particular countable dense ordering with

generic predicate is constructed, together with a continuous

choice-function. According to the Theorem 3, we will con-

clude that all countable dense orderings with generic predi-

cates admit continuous choice-functions.

Lemma 4 There is a subset D ⊂R with the following prop-

erties:

1. D is countable.

2. D is dense in R.

3. D is linearly independent over Q.

Proof: Let (pn)n∈N be a bijective enumeration of the

prime natural numbers, and let (Un)n∈N be a bijective enu-

meration of the open intervals (a,b) with rational ends. The

family (log2 pn)n∈N is linear independent over Q. We take

dn = cn log2 pn where for every n ∈ N we choose and fix a

cn ∈Q\{0} such that dn ∈Un. Then D = {dn |n ∈ N}. ⊓⊔

Definition 7 Let C ⊂ R be the smallest set such that:

1. D ⊂C.

2. For all x,y ∈C with x < y,

Z(x,y) =
x+ y

2
∈C.

Let P =C \D. The order < on C is the order induced by R.

Lemma 5 The structure (C,<,P = C \ D) is a countable

model of Tg.

Proof: We associate to every d ∈ D a symbol d. The set

Λ of all Z-terms over D is inductively defined as follows:

1. For every d ∈ D, the symbol d ∈ Λ .

2. For all t1, t2 ∈ Λ , Z(t1, t2) ∈ Λ .
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6 Mihai Prunescu

The set Λ is countable. As every element in C has at least a

name in Λ , C is countable as well.

D ⊂C ⊂ D = R so C is densely ordered and D is dense

in C.

P =C \D is dense in C as well. Indeed, let x,y ∈C with

x < y. D is dense in R so there is u ∈ D with x < u < y. Also,

there is a v∈D such that x < u< v< y. But this implies that:

x < Z(u,v)< y,

and w = Z(u,v) 6∈ D because this would imply a non-trivial

relation of Q-linear dependence 2w−u− v = 0 between el-

ements of D. ⊓⊔

Lemma 6 The structure (C,<,P =C \D) admits a contin-

uous choice-function.

Proof: The function Z : R2 →R given by Z(x,y) = (x+

y)/2 is continuous and satisfies x < Z(x,y)< y if x < y. We

consider the restriction Z : I(C) → C. This function is well

defined, continuous and Z(I(C))⊆ P.

Indeed, if x,y ∈C, then:

x = ∑
d∈D

xdd, y = ∑
d∈D

ydd,

are both linear combinations of elements of D with rational

coefficients. Only finitely many of the coefficients xd ,yd are

not 0. The coefficients which are not 0, are strictly positive.

Moreover, if xNot ∈ D then at least two of the coefficients

xd are 6= 0, and the same is true for y. It follows that:

Z(x,y) =
1

2
∑

d∈D

xdd +
1

2
∑

d∈D

ydd = ∑
d∈D

Z(xd ,yd)d

is a linear combination containing at least two different el-

ements u,v ∈ D. If Z(x,y) = w ∈ D, this implies the exis-

tence of some Q-linear relation of dependence with coeffi-

cients in Q between at least three elements of D. This is a

contradiction with the linear independence of D over Q. So

Z(x,y) ∈C \D = P.

In conclusion:

∀(x,y) ∈ I(C) x < Z(x,y)< y ∧ P(Z(x,y)).

⊓⊔

Theorem 5 All countable models of Tg admit continuous

choice-functions for the generic predicate P.

Proof: This is a direct consequence of the Theorem 3

and of Lemmas 5 and 6. ⊓⊔
As interesting densely ordered sets with generic pred-

icates, we mention: the rational 2n-powers in the positive

rationals (Q+,{x2n |x ∈Q+}) for some fixed n, the rational

2n+1-powers in the rationals (Q,{x2n+1 |x ∈Q}) for some

fixed n, the set Op of rational numbers that do not contain

the prime p in their denominator (Q,Op), the set mp of ra-

tional numbers that contain p in their numerator (Q,mp),

the rationals in some irrational field-extension (Q(ϑ),Q),

the rationals in the real algebraic numbers (A,Q). All these

pairs admit continuous choice-functions.

For example, there is a continuous function Z : I(A)→Q

such that:

∀ (x,y) ∈ I(A) x < Z(x,y)< y.

But more interesting are maybe the applications announced

in the Introduction:

Corollary 1 There is a continuous function z : I(Q+)→Q+

such that for all x < y,

x < z(x,y)2 < y.

Proof: As shown in the Lemma 3, the continuous func-

tion with the property x < z(x,y)2 < y exists if the structure

(Q+,<,P) admits a continuous choice-function, where P is

the set of perfect rational squares. But this has been proven

in Theorem 5. ⊓⊔
This can be immediately generalized as follows:

Corollary 2 Let f : Q → Q be a continuous function and

J = (a,b) ⊂ Q a (possibly unbounded) interval, such that

f |J is strictly monotone. Then there is a continuous function

z : I(J)→ J such that for all x < y,

x < f (z(x,y))< y.

Proof: The proof works identical with the case f (x) =

x2, provided that for J = (a,b) ⊂ Q, the set f (J) is generic

in ( f (a), f (b))∩Q. The set f (J) is dense in ( f (a), f (b))∩
Q by the continuity of f but is not necessarily codense.

In the case that f (J) is not codense in ( f (a), f (b)) ∩Q,

we consider some generic predicate P in J, and we apply

the construction for the predicate f (P) which is generic in

( f (a), f (b))∩Q. The predicate P might be O2 or may con-

sist of the cubes of rational numbers. Also, the inverse of

f , defined on the image of f , is a continuous function be-

cause f is continuous and monotone. This can be proved

by considering the extension of f by continuity, which is a

strictly monotone continuous function f̃ : (a,b) ⊂ R → R

with f̃ |Q= f . ⊓⊔
If instead of Q we consider the ring T, the whole con-

struction works: T is a dense ordering without endpoints,

the squares build a generic predicate in T+, the cubes build

a generic predicate in T, and both Corollaries 1 and 2 work

with T instead of Q. T has the advantage that all elements

have a finite binary or decimal expansion, but has of course

a smaller power of expression than Q.

Corollary 3 The continuous choice-function on

(C,<,P =C \D)

has the property that:

∀u [P(u)→∃x,y x < y ∧ u = Z(x,y)].

So all choice-functions obtained by transfer on other models

of Tg have this property as well. Moreover, the set of pairs

(x,y) with Z(x,y) = u contains at most one element.
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Smooth approximations by continuous choice-functions 7

5 Effective computability

For the following considerations we fix a computable bijec-

tion c : N → Q of the rational numbers. Examples can be

easily derived from (Calkin, Wilf, 2000).

Lemma 7 There is a computable function that enumerates

bijectively the set (Un)n∈N of all intervals with rational ends.

Proof: The function lists the intervals (a,b) with a,b ∈
Q. For j < k let us denote with I jk the interval

(min(c( j),c(k)),max(c( j),c(k))).

The first interval on the list is I0,1, followed by I0,2 and I1,2.

After writing down all intervals I j,k with 0 ≤ j < k ≤ n, the

function lists the intervals I0,n+1, . . ., In,n+1. ⊓⊔

Lemma 8 There is a computable function that enumerates

bijectively a set D which is dense in R and linearly indepen-

dent over Q.

Proof: The function lists the elements of D writing down

expressions:

i

j
log2 p

where i ∈Z, j, p ∈N, gcd(i, j) = 1 and p is a prime number.

In order to compute the element xn, let Un = (an,bn) be the

corresponding open interval with rational ends and let pn be

the n-th prime number. For all rational numbers c= c(u) one

checks if:

an < c(u) log2 pn < bn.

As Q is dense in R, this will finally happen for some first

u ∈ N. In this case one takes xn = c(u) log2 pn. The inequal-

ities are effectively decidable because by multiplying with a

common denominator they are equivalent with:

An <C log2 pn < Bn

where An,C,Bn ∈ Z, which is true if and only if:

2An < pC
n < 2Bn .

This is solved by direct computation. ⊓⊔

Lemma 9 There is a computable function that enumerates

bijectively the set of terms Λ generated by a set of constant

symbols D representing the elements of D and by a binary

function symbol Z(x,y).

Proof: This list of terms can be inductively generated as

follows. We start with d0 and continue with Z(d0,d0). The

third term is d1. Now all combinations with already done

terms are done using the function Z, but every new candidate

is compared with already written down terms and is written

down only if it is not in the list. The process continues by

adding a new constant term and repeating the generation of

new terms. ⊓⊔

Lemma 10 Let C be the smallest set of real numbers con-

taining D and closed to the operation z(x,y) = (x+ y)/2.

Then there is a computable function that enumerates bijec-

tively the set C.

Proof: Let λ : N→ Λ the function that bijectively enu-

merates Λ , whose existence was proven in Lemma 9 and

let d : N → D be the computable bijective enumeration of

D given by Lemma 8. We list bijectively the elements of C

in the following way. The function λ lists the terms. Every

constant symbol dk is replaced by the expression d(k). After

the substitution, one checks if the term represents a already

listed element. If it represents a new element, then it is is

brought in the normed form:

m1

n1
log2 pi1 + . . .+

mk

nk

log2 pik ,

where m j ∈ Z, n j, pi j
∈ N, gcd(mi,ni) = 1 and all pi j

are

pairwise different primes, written in increasing order. In this

form, the new element is written down on the list.

The comparisons can be done effectively, as they reduce

to decide the truth of equalities of the form:

m1

n1
log2 pi1 + . . .+

mk

nk

log2 pik =

=
r1

s1
log2 q j1 + . . .+

rl

sl

log2 q jl .

Such equations are ultimately equivalent with equations of

the shape p
M1
i1

. . . p
Mk
ik

= q
R1
j1
. . .q

Rl
jl

, easily checked by the

unicity of prime number decomposition in natural numbers.

⊓⊔

Lemma 11 Let (A1,P1,<1) and (A2,P2,<2) be two count-

able models of Tg such that there are computable bijective

enumerations of A1 and A2 and such that the predicates P1

and P2, as like the order relations <1 and <2, are effectively

decidable. Then there is a computable isomorphism f : A1 →
A2 between the structures (A1,P1,<1) and (A2,P2,<2).

Proof: It is obvious that under these assumptions the

back and forth proof method used for the proof of Theo-

rem 1 and Theorem 2 leads to an effective procedure. ⊓⊔

Theorem 6 Let (A,P,<) be a countable model of Tg such

that there is computable bijective enumeration of A and the

predicate P, as like the order relation < is effectively de-

cidable. Then the structure A has an effectively computable

continuous choice-function Z : H(A)→ A.

Proof: The structure (A,P,<) satisfies the conditions of

Lemma 11 and it is easy to check that the structure (C,C \
D,<) satisfies those conditions as well. The set C has a com-

putable bijective enumeration by Lemma 10. The predicate

C \D is decidable by the fact that the elements of C are ex-

pressible by unique normed expressions and they belong to
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8 Mihai Prunescu

D if and only if just one log2 p appears in the corresponding

expression. The order can be decided because:

m1

n1
log2 pi1 + . . .+

mk

nk

log2 pik <

<
r1

s1
log2 q j1 + . . .+

rl

sl

log2 q jl

is ultimately equivalent with p
M1
i1

. . . p
Mk
ik

< q
R1
j1
. . .q

Rl
jl

with

powers in Mi,R j ∈ Z and this can be decided by direct com-

putation.

By Lemma 11 there is a computable isomorphism f :

A →C between (A,P,<) and (C,C \D,<). It follows that

Z(a,b) = f−1(Z( f (a), f (b)))

is a computable continuous choice-function in A. The point

is that in order to compute Z(a,b) we do not need the whole

isomorphism f . Its list of values must be computed until

f (a) and f (b) are known, and then only until

f−1(Z( f (a), f (b)))

is known. ⊓⊔
In conclusion, all structures mentioned in Section 4 ad-

mit computable continuous choice-functions. Also, there are

smooth approximation functions satisfying the Corollary 1.

Also, assuming that the function f from Corollary 2 is com-

putable and has a computable inverse, there is a smooth ap-

proximation function satisfying the Corollary 2. Moreover,

as the ring T of rational numbers with powers of 2 as denom-

inators admits computable bijective enumerations, all the re-

sults work again with T instead of Q. Remarkable, a lot of

approximation methods, like Newton’s Method, do not work

on T because T is not a field.

6 Suounitnoc functions

In this section we show another application of the method,

to illustrate how one can use this method to construct a lot

of examples in Analysis.

Edward Nelson defined in (Nelson, 1977) the notion of

suounitnoc function by reversing the roles of ε and δ in the

definition of the continuous function. Nelson shown that a

function f : R→ R is suounitnoc in one point if and only if

it is suounitnoc everywhere. He also shown that a function

f : R→ R is suounitnoc if and only if the function, seen as

standard object in a model of its axiom system called IST,

has limited values for all limited arguments. This is equiva-

lent with the standard statement that the images of bounded

sets are bounded.

We translate here the definitions of continuity and su-

ounitnocity in the language containing only the order rela-

tion symbol and a symbol for the one-variable function f .

Definition 8 Let (A,<) be an ordered set. The function f :

A → A is called continuous in x if (A,<, f ) fulfills the state-

ment:

C(x) : ∀ f1, f2 f1 < f (x)< f2 →∃x1,x2[x1 < x < x2∧

∀x′ {x1 < x′ < x2 → f1 < f (x′)< f2}].

It is called continuous if ∀x C(x).

Definition 9 Let (A,<) be an ordered set. The function f :

A → A is called suounitnoc in x if (A,<, f ) fulfills the state-

ment:

S(x) : ∀x1,x2 x1 < x < x2 →∃ f1, f2[ f1 < f (x)< f2∧

∧∀x′ {x1 < x′ < x2 → f1 < f (x′)< f2}].

One observes from the beginning that after the existential

quantifier, f1 < f (x)< f2 becomes superfluous, and the for-

mula becomes:

S(x) : ∀x1,x2 x1 < x < x2 →∃ f1, f2 ∀x′ (x1 < x′ < x2 →

→ f1 < f (x′)< f2).

The function is called suounitnoc if ∀x C(x).

The following generalization of Nelsons results is im-

mediate:

Theorem 7 Let A be an ordered set without endpoints.

1. If a function f : A → A is suounitnoc in a point x, then it

is suounitnoc in every x.

2. f : A → A is suounitnoc if and only if every bounded

interval has a bounded image.

Proof: For (1), take some x′ 6= x and x′1 < x′ < x′2. Choose

x′′1 and x′′2 such that all points x, x′, x′1 and x′2 are bounded by

them, and apply the hypothesis. The proof of (2) becomes

trivial. ⊓⊔
We recall that:

R |= ( f continuous → f suounitnoc ).

Indeed, in R continuous functions lead compact sets to

compact sets. As every bounded interval has a compact clo-

sure by the Heine-Borel Theorem, its image must be also

bounded, and so the continuous function is suounitnoc. ⊓⊔
We will show now that we cannot get the implication

( f continuous → f suounitnoc ) without using the second

order fact that R is a complete ordered field. Consider the

language of ordered fields expanded with one unary function

symbol f . It is L f = {+,−, ·,0,1,<, f (·)}.

Definition 10 Let OFf be the deductive closure of the ax-

ioms of ordered fields in the language L f . Let RCFf the de-

ductive closure of the axioms of the real closed fields in the

language L f .
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Smooth approximations by continuous choice-functions 9

As the symbol f does not occur in any of the axioms of OFf

or RCFf , it is not to expect that any of these theories was

complete.

Theorem 8 The theory OFf does not prove the statement

( f continuous → f suounitnoc ).

Proof: Consider the structure

(Q,+,−, ·,0,1,<, f (·))

with f : Q→Q defined by:

f (x) =
1

x3 −2
.

The function f is continuous on Q because it is continuous

on R, excepting in x = 3
√

2. But
3
√

2 is an irrational number.

The function f is not suounitnoc because if a,b ∈ Q such

that a < 3
√

2 < b then f ((a,b)) is unbounded. ⊓⊔

Theorem 9 The theory RCFf does not prove the statement

( f continuous → f suounitnoc ).

Proof: Consider the ordered sets (Q,<) and (A,<). A is

the field of all real algebraic numbers. These sets are count-

able densely ordered sets without endpoints, so there is an

order isomorphism h : Q → A. Now consider the function

f1 :A→A given by f1(x)= h( f (h−1(x))), where f has been

defined in the proof of the Theorem 8. As both properties

( f continuous ) and ( f suounitnoc ) are definable using only

the order, and h is an isomorphism of ordered sets, it follows

that f1 is continuous on A but not suounitnoc on A. ⊓⊔

7 Conclusions

1. Only values of countable dense sets can be expressed

and communicated in digital processes.

2. There are practical reasons to look for approximation

processes whose results depend continuously of the in-

tended error bound.

3. As the values of a process of approximation belong al-

ways to a dense countable set, it is natural to study the

continuity of a process of approximation, considered as

function with values in a dense countable set.

4. We proved that such functions exist. With some natural

restrictions, these functions are also computable.

5. Countable densely ordered sets, like the rational num-

bers or the rational numbers whose denominator is a

power of 2, are a good support for algorithms of con-

tinuous approximation.

6. The fact that all countable dense orderings with generic

predicate are isomorphic allows us a structural approach

to this problem. A special continuous choice-function is

sufficient for solving a wide class of problems.

7. The algorithms displayed here are significant only as an

existence proof. They are not fast enough for practical

applications.

8. The set of real numbers does not allow any continuous

choice-function.

8 Appendix

Not all ordered fields satisfy the statement:

∀x,y∃z 0 < x < y → x < z2 < y.

For example in the field of rational functions with ratio-

nal coefficients Q(T ), ordered such that T > Q, there is no

square between x = T and y = 2T . Indeed, if:

T <
f 2(T )

g2(T )
< 2T,

for some polynomials f ,g ∈ Z[T ], then:

1 <
f 2(T )

T g2(T )
< 2,

must be fulfilled. We may let T → ∞. As the numerator and

the denominator have different degrees, we get 1 ≤ 0 or ∞ ≤
2, which are both contradictions.
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