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Abstract. A generalized form of union and intersection on FFS can be formulated from
a generalized t-norm (TN) and t-conorm (TCN). Hamacher operations such as Hamacher
product and Hamacher sum, are good alternatives to produce such product and sum. The
Hamacher operations can generate more �exible and more accurate results in decision making
process due to the working parameter involved in these operations. The intuitionistic fuzzy
set, brifely as; IFS and its extension involving Pythagorean fuzzy set (PFS) and Fermatean
fuzzy set (FFS), are all e¤ective tools to express uncertain and incomplete cognitive infor-
mation with membership, nonmembership and hesitancy degrees. The Fermatean fuzzy set
(FF-set) carries out uncertain and imprecise information smartly in exercising decision-making
than IFS and PFS. By adjusting the prioritization of attributes in FF-environment, in this
course of this article, we �rst device new operations on FF information using prioritized at-
tributes and by employing HTN and HTCN, we discuss the basic operations. Induced by the
Hamacher operations and FF-set, we propose FF Hamacher arithmetic and also geometric ag-
gregation operators (AOs). In the �rst section, we introduce the concepts of an FF Hamacher
prioritized AO, and FF Hamacher prioritized weighted AO. In the second part, we develop
FF Hamacher prioritized geometric operator (GO), and FF Hamacher prioritized weighted
GO. We study essential properties and a few special cases of our newly proposed operators.
Then, we make use of these proposed operators in developing tools which are key factors in
solving the FF multi-attribute decision-making situations with prioritization. The university
selection phenomena is considered as a direct application for analysis and to demonstrate
the practicality and e¢ cacy of our proposed model. The working parameter considered in
these AOs is analyzed in di¤erent existing and proposed AOs. Further, comparison analysis
is conducted for the authenticity of proposed & existing operators.
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1 Introduction

Pythagorean fuzzy sets (PFSs) [21, 22], an augmentation of intuitionistic fuzzy sets (IFSs),
tremendously have attracted many potential researchers in recent times. Yager [23] was the
�rst researcher who built a helpful decision technique which based on the Pythagorean fuzzy
information operators to administer with MCDM situatoins involving Pythagorean fuzzy in-
formation. In [27], Yager and Abbasov treated the Pythagorean membership grades (PMGs)
and they found it identical with PFSs. Their work also showed the relation between the
PMGs and the complex numbers. Reformat and Yager [23] exerted PFNs to build a system
for dealing with collaborative based recommender. Gou et al. [5] studied Pythagorean fuzzy
mappings and investigated fundamental properties called derivability, continuity, and di¤er-
entiability. Zeng et al. [29] introduced an aggregation procedure involving PFS and applied
its notion in solving MADM. Zhang [30] proposed an approach to MCDM problems in terms
of the idea of similarity measure for Pythagorean fuzzy sets. PFSs have been successfully
introduced in di¤erent research area, in particular, Garg used PFSs in investment decision
process (see Garg, [4]; Peng and Yang, [11]), utilized PFSs in the candidate selection proce-
dure for Asian Infrastructure Investment Bank (Ren et al., [13]) and the service excellence of
national airlines (Zhang and Xu, [31]). Senapati and Yager [14,15] discussed a numerical case
to validate the rationality of the concept of FFS: when one desires to show his inclination
for the degree of an alternative xi under certain criterion Cj, e.g., one may allow the degree
to the extent in a way that the alternative xi satis�es the criterion Cj as 0:8, and similarly
when the alternative xi dissatis�es the criterion Cj as 0:7. We can precisely get 0:8+ 0:7 > 1,
and consequently, the boundary condition of an IFS is not satis�ed. Also, for the case when
(0:8)2 + (0:7)2 = 0:64 + 0:49 = 1:13 > 1, which does not carry out the boundary condition
of a PFS. However, it clear to see (0:8)3 + (0:7)3 = 0:512 + 0:343 = 0:855 < 1, which is an
appropriate reason for the introduction of a new division of fuzzy set, called Fermatean fuzzy
set. It is also important to mention that the class of this type of fuzzy set has more ability to
capture the uncertainties as compared to IFSs and PFSs, and are quali�ed to handle higher
degree of vagueness. MADM has been extensively used in many area of sciences, for example,
(Xu & Xia; Xu & Chen; Xu [24�26]) introduced the intuitionistic fuzzy weighted averaging
(IFWA) operator, intuitionistic fuzzy ordered weighted averaging (IFOWA) operator and the
intuitionistic fuzzy hybrid aggregation (IFHA) operator.

The fuzzy information aggregation operators are necessarily appealing and signi�cant re-
search topics and are given profound regard among the researchers. Various forms of gen-
eralizations of T-norms and T-conorms exist in text, such as Archimedean T-norms and T-
conorms, Hamacher T-norms and T-conorms, Algebraic T-norms and T-conorms, Einstein T-
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norms and T-conorms, Frank T-norms and T-conorms and Dombi T-norms and T-conorms.
Liu [8] used Hamacher aggregation operators in interval valued intuitionistic fuzzy numbers
(IVIFNs) and discussed MAGDM techniques. Zhao and Wei [32] initiated Einstein hybrid ag-
gregation operators for IFNs and applied it to multi-attribute decision-making method. Wei
et al. [33] studied multi-attribute decision-making problems by proposing the bipolar fuzzy
Hamacher arithmetic and geometric aggregation operators and discussed the basic properties
of these proposed operators. Hamacher T-conorm and T -norm, which are the generaliza-
tion of algebraic and Einstein T-conorm and T-norm [3], are more universal and adaptable.
The importance of aggregation operators research based on Hamacher operations and their
application to MADM problems is considerable signi�cant. Xiao [20] gave induced interval-
valued intuitionistic fuzzy Hamacher ordered weighted geometric (IIVIFHOWG) operator.
Li [7] studied interval-valued intuitionistic fuzzy sets with various operations, known as the
Hamacher sum and the Hamacher product, and introduced the interval-valued intuitionistic
fuzzy Hamacher correlated averaging (IVIFHCA) operator. Tan et al. [17] developed hesitant
fuzzy Hamacher aggregation operators for multi-attribute decision-making.

Senapati and Yager [34] introduced four new types of weighted aggregation operators for
FFS, namely, Fermatean fuzzy weighted average (FFWA) operator, Fermatean fuzzy weighted
geometric (FFWG) operator, Fermatean fuzzy weighted power average (FFWPA) operator,
and Fermatean fuzzy weighted power geometric (FFWPG) operator. Recently, in a paper [42],
of Aydemir & Gunduz discussed TOPSIS method in terms of Dombi aggregation operators
based on FF-sets and gave a complete overview of FF-sets in the frame-work of Dombi oper-
ations. In [43], the authors have extended FF-set into Hamacher operations and investigated
the basic properties of FF-sets in Hamacher operations. Some practical examples of real world
scenario were discussed as practical example for the validation of the theory. Keeping in view
the work on FF-set, we intend to extend the work of [43] and propose a set of new aggre-
gation operators in Fermatean fuzzy environment based upon the Hamacher operations with
the prioritization of attributes. The organization and novel contributions of this article are
mentioned as:

B The FF-set has more potential than the traditional IFS and PFS for decision makers to
study the uncertain situation in the real world problems.

B The �exibility parameter involved in Hamacher operations has the ability to produce
more accurate results in a decision process.

B The proposed model can be applied in situations where the traditional models of IFS
and PFS are failed.

B The prioritization factor of attributes make the proposed operators more advanced in
modern decision process.

The remaining parts of the paper are organized in the following lines.

The second section, in brief, recalls basic knowledge of the IFS, PFSs, and FFSs and the
elemntary operational laws of FFSs. In Sect. 3, we develop Fermatean fuzzy Hamacher priori-
tized average (FFHPA) operator, and Fermatean fuzzy Hamacher prioritized weighted average
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(FFHPWA) operator, Fermatean fuzzy Hamacher prioritized geometric (FFHPG) operator,
and Fermatean fuzzy Hamacher prioritized weighted geometric (FFHPWG) operator. In Sect.
4, we make a use of these operators to develop tools that are handy in solving the Fermatean
fuzzy multi-attribute decision-making problems. A case study example of the university selec-
tion committee is analyzed in Sect. 5, and some comparison of proposed operators are studied.
The comparison of proposed and existing operators is studied and some future directions are
given at the end of the paper.

2 Preliminaries and basic results

In this section, we sum up requisite knowledge associated with IFS, PFS and FFS along with
corresponding operations and related properties. We will consider more familiarized ideas,
which are useful in the sequential analysis.

De�nition 2.1. [1,2] For a universe X; intuitionistic fuzzy set (IFS) eA is an expression of the
form eA = fx; e� eA(x); e� eA(x) : x 2 Xg
where e� eA(x) 2 [0; 1] is known as the �degree of membership of eA�, and e� eA(x) 2 [0, 1] is

called the �degree of non-membership of eA�, and e� eA(x); e� eA(x) satisfy the following condition:
0 � e� eA(x)+ e� eA(x) � 1; for all x 2 X. Apparently, when e� eA(x) = 1� e� eA(x); for all x 2 X; eA
turns to be a fuzzy set.

De�nition 2.2. [4] A Pythagorean fuzzy set (PFS) P on the universal X is an object of the
form

P = fx; �P (x); �P (x) : x 2 Xg

where �P : X �! [0; 1] is termed as the �degree of membership of P �, and �P :
X �! [0, 1] is called the �degree of non-membership of P�, and �P (x); �P (x) satis�es
the condition: 0 � (�P (x))

2 + (�P (x))
2 � 1 for all x 2 X. For PFS, P and x 2 X,

�(x) =
q
1� (�P (x))2 � (�P (x))

2 is the indeterminacy of x to P:

De�nition 2.3. [14] A Fermatean fuzzy set (FFS) de�ned on a nonempty set X is a structure
of the form given as

F = fhx; �F (x) ; �F (x)i : x 2 Xg

where �F : X �! [0; 1]; and �F : X �! [0; 1]; respectively are the degree of mem-
bership and non-membership of every element x 2 X for the set F : The condition 0 �
(�F (x))

3 + (�F (x))
3 � 1; holds for all x 2 X. For an FFS, F and x 2 X, the function

�(x) =
q
1� (�F (x))3 � (�F (x))

3 is the indeterminacy of x to F :
For simplicity, we use F = (�; �) for an FFS fhhx; �F (x) ; �F (x)i : x 2 Xig and call it a
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Fermatean fuzzy element (FFE) or Fermatean fuzzy number (FFN):

Hierarchy of fuzzy numbers

We shall notice that the Fermatean membership grades (FMGs) is greater than the Pythagorean
membership grades (PMGs) and intuitionistic membership grades (IMGs), respectively.

Theorem 2.4. [14] The set of FMGs is larger than the set of PMGs and IMGs.

De�nition 2.5. [14] Let F = (�; �) ; F 1 = (�1; �1) ; and F 2 = (�2; �2) ; be any three FFNs,
then their set operations are de�ned as in the following:

(i) F 1 \ F 2 = (min f�1; �2g ;max f�1; �2g) ;
(ii) F 1 [ F 2 = (max f�1; �2g ;max f�1; �2g) ;
(iii) F 1 � F 2 if and only if �1 � �2; and �1 � �2;
(iv) F c = (�; �) :

De�nition 2.6. [19]. Let F = (�; �) ; F 1 = (�1; �1) ; and F 2 = (�2; �2) ; be any three FFEs,
and � > 0; then the following operations hold true.

(i) F 1 � F 2 =
�

3
p
�31 + �

3
2 � �31�32; �1�2

�
;

(ii) F 1 
 F 2 =
�
�1�2;

3
p
�31 + �

3
2 � �31�32

�
;

(iii) � (F ) =
�

3

q
1� (1� �3)�; ��

�
;

(iv) (F )� =
�
��; 3

q
1� (1� �3)�

�
:
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Theorem 2.7. [19]. For three FFEs F = (�; �) ; F 1 = (�1; �1) ; and F 2 = (�2; �2) ; the
following properties are valid:

(i) F 1 � F 2 = F 2 � F 1;

(ii) F 1 
 F 2 = F 2 
 F 1;

(iii) � (F 1 � F 2) = � F 1 � �F 2; � > 0;

(iv) (�1 + �2)F=�1F � �2F ; �1; �2 > 0;
(v) (F 1 
 F 2)

� = F �
1 
 F

�
2; � > 0;

(vi) F �1 � F �2 = F �1+�2 ; �1; �2 > 0:

In order to grade FFEs, the rating function (brie�y as rt) for FFEs is de�ned as:

De�nition 2.8. [19] For FFE, F = (�; �) ; the rating function of F can be de�ned as follows:

rt (F ) =
1 + �3 � �3

2
:

In particular rt(F ) =

(
1; if F=(1; 0)

�1; if F=(0; 1) :

In the following, we examine a comparison relation for Fermatean fuzzy elements.

De�nition 2.9. [19] Let F 1 = (�1; �1) ; and F 2 = (�2; �2) ; be any two FFEs and let rt(F 1)
and rt(F 2) be the respective ratings of F 1 and F 2; then

(i) rt(F 1) >rt(F 2) ; then F 1 is superior than F 2 and denoted by F 1 � F 2;

(ii) rt(F 1) =rt(F 2) ; then F 1 and F 2 are equivalent, denoted by F1 � F2:

De�nition 2.10. [19] Let F = (�; �) ; be a FFE. The accuracy function of F can be de�ned
as follows:

Acc (F ) = �3 + �3 2 [0; 1]:

Using the analogy of rating function (brie�y as; rt) and accuracy function (brie�y as; Acc),
we give a complete criterion for the ranking of FFEs in the following.

De�nition 2.11. [19] Let F 1 = (�1; �1) ; and F 2 = (�2; �2) ; be any two FFEs and let rt(F i)
and Acc(F i) (i = 1; 2) be the respective ratings and accuracies of F 1 and F 2; then

(I) rt(F 1) <rt(F 2) =) F 1 � F 2;

(II) rt(F 1) >rt(F 2) =) F 1 � F 2;

(III) If rt(F 1) =rt(F 2) ; then

(i) Acc(F 1) <Acc(F2) =) F 1 < F 2;

(ii) Acc(F 1) >Acc(F 2) =) F 1 > F 2;

(iii) Acc(F 1) =Acc(F 2) =) F 1 � F 2:
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2.1 Hamacher operations

Hamacher proposed generalized form of T-norm as well as T-conorm, called Hamacher op-
erations, which consists of Hamacher product and Hamacher sum. These are the respective
blueprints of the well known T-norm and T -conorm, mentioned in the de�nition below.

De�nition 2.12. [6] Assume a1; b1; a2; b2 2 R: Then, Hamacher T-norms (HT-norms) and
Hamacher T-conorms (HT-conorms) are expressed as:

T (a1; b1) = a1 
 b1 =
a1b1

�+ (1� �) (a1 + b1 � a1b1)
; � > 0 (1)

T � (a2; b2) = a2 � b2 =
a2 + b2 � a2b2 � (1� �)a2b2

1� (1� �) a2b2
; � > 0 (2)

Particularly, for � = 1; HT-norm and HT-conorm take the following forms:

T (a1; b1) = a1 
 b1 = a1b1 (3)

T � (a2; b2) = a2 � b2 = a2 + b2 � a2b2 (4)

and these are algebraically equivalent. When � = 2;

T (a1; b1) = a1 
 b1 =
a1b1

1 + (1� a1) (1� b1)
(5)

T � (a2; b2) = a2 � b2 =
a2 + b2
1 + a2b2

(6)

Eqs. (5) and (6), respectively are known as the Einstein T-norm and Einstein T-conorm.

3 FF Hamacher operators

In this section, utilizing the notion of HTN and HTCN, we explain Hamacher operations with
respect to FFEs. We propose the Hamacher arithmetic AOs with FFEs. In this regard, the
operation rules for FF Hamacher operation are recalled in the following de�nition.

De�nition 3.1. Let F j =
�
�j; �j

�
(j = 1; 2) be a array of FFEs, � > 0; � > 0; then, the

fundamental Hamacher operations for FFEs are introduced as:

(i) F 1 � F 2 =

�
3

r
�31+(�2)

3�(�1)3�32�(1��)�31�32
1�(1��)�31�32

; �1�2
3
q
�+(1��)(�31+�32��31�32)

�
;

(ii) F 1 
 F 2 =

�
�1�2

3
q
�+(1��)((�1)3+(�2)3�(�1)3(�2)3)

; 3

q
(�1)

3+(�2)
3�(�1)3(�2)3�(1��)(�1)3(�2)3

1�(1��)(�1)3(�2)3

�
;
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(iii) � (F 1) =

�
3

r
[1+(��1)(�1)3]

��(1�(�1)3)
�

[1+(��1)(�1)3]
�
+(��1)(1�(�1)3)

� ;
3p
���1

3
q
[1+(��1)(1�(�1)3)]

�
+( ��1)(�1)3�

�
;

(iv) (F 1)
� =

�
3p
�(�1)

�

3
q
[1+( ��1)(1�(�1)3)]

�
+(��1)(�31)

� ;
3

r
[1+(��1)(�1)3]

��(1�(�1)3)
�

[1+(��1)(�1)3]
�
+(��1)(1�(�1)3)

�

�
:

3.1 Fermatean fuzzy Hamacher prioritized aggregation operators

3.1.1 Fermatean fuzzy Hamacher prioritized arithmetic aggregation operators

Let us denote by$ the set of all non-empty FFNs i.e., $ := f(!;$)j(!;$) 2 [0; 1]2; 0 � !3 +$3 � 1g
with the partial order �$ de�ned by (!1; $1) �$ (!2; $2) () !1 � !2 and $1 � $2. The
top and bottom elements of $ are de�ned by 1$ = (1; 0) and 0$ = (0; 1): Then $ becomes
a lattice with the partial order �$ : If F 1 and F 2 are two FFNs, then F 1 �$ F 2 implies
F 1 � F 2:

The concept of Prioritized Average (PA) was �rst introduced by Yager [39] in 2008 and
was de�ned as follows:

De�nition 3.2. (Yager [39]) Assume that C = fC1;C2; :::;Cng is a collection of criteria with
the prioritization among the criteria de�ned by the linear ordering as C1 � C2 � ::: � Cn;
where criteria Cj has a higher priority than Ck for j < k and n 2 N. The real number
Cj(x) 2 [0; 1] is the performance of any alternative x under the criteria Cj and

PA(Ci) =
nX
j=1

�jCj(x);

where �j =
Tj
nX
j=1

Tj

; Tj =

j�1Y
r=1

Ck(x) (j = 2; :::; n) ; T1 = 1: Then PA is called the prioritized

average (PA) operator.

The PA operators are used in the situations where the input arguments are exact values.
By combining the Hamacher operations with prioritized inputs based on FF-sets, develop pri-
oritized arithmetic aggregation operators with Fermatean fuzzy numbers based on Hamacher
operations. Let F r = (�r; �r) (r = 1; :::; p) be a family of FFEs. We de�ne Fermatean fuzzy
Hamacher prioritized arithmetic aggregation operator as follows:

De�nition 3.3. The Fermatean fuzzy Hamacher prioritized averaging (FFHPA) operator is
a mapping FFHPA: F p �! F such that

FFHPA (F 1;F 2; :::;F p) = �pr=1
�

TrPp
r=1 Tr

F r

�
(7)

=
T1Pp
r=1 Tr

F 1 �
T2Pp
r=1 Tr

F 2 � :::�
TpPp
r=1 Tr

F p
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where Tr =
r�1Y
k=1

rt (F r) (r = 2; 3; :::; p) ; T1 = 1 and rt (F r) represent the score value of F r

(r = 1; 2; :::; p) :

In the following theorem we use the mathematical induction and operational rule of FFEs
to prove that the aggregation value of a family of FFEs by using FFHPA operator is again
an FFE.

Theorem 3.4. Let F r = (�r; �r) (r = 1; :::; p) be a family of FFEs, then the aggregation value
of this family by the FFHPA operator is also a FFE, and

FFHPA
�
F 1; F 2; :::; F p

�
= �pr=1

�
TrPp
r=1 Tr

F r

�
(8)

=
T1Pp
r=1 Tr

F 1 �
T2Pp
r=1 Tr

F 2 � :::�
TpPp
r=1 Tr

F p (9)

=

0BBBBBB@
3

vuut Qp
r=1(1+(��1)(�r)

3)
TrPp
r=1 Tr �

Qp
r=1(1�(�r)

3)
TrPp
r=1 Tr

Qp
r=1(1+(��1)(�r)

3)
TrPp
r=1 Tr +(��1)

Qp
r=1(1�(�r)3)

TrPp
r=1 Tr

;

3p
�
Qp
r=1(�r)

TrPp
r=1 Tr

3

sQp
r=1(1+(��1)(1�(�r)

3))
TrPp
r=1 Tr +(��1)

Qp
r=1(�

3
r)

TrPp
r=1 Tr

1CCCCCCA

where Tr =
r�1Y
k=1

rt (F r) (r = 2; 3; :::; p) ; T1 = 1 and rt (F r) represent score value of F r

(r = 1; 2; :::; p) :

Example 1. Let F 1 = (0:8; 0:5) ; F 2 = (0:8; 0:7) ; F 3 = (0:7; 0:8) and F 4 = (0:6; 0:7) be four
FFEs, T1P4

r=1 Tr
= 0:3180 T2P4

r=1 Tr
= 0:3098 T3P4

r=1 Tr
= 0:1287 T4P4

r=1 Tr
= 0:0561:

Suppose � = 3; then

FFHPA (F 1; F 2; F 3; F 4) = �4r=1

 
TrP4
r=1 Tr

F r

!

=

0BBBBBB@
3

vuut Q4
r=1(1+(��1)(�r)

3)
TrP4
r=1 Tr �

Q4
r=1(1�(�r)

3)
TrP4
r=1 Tr

Q4
r=1(1+(��1)(�r)

3)
TrP4
r=1 Tr +(��1)

Q4
r=1(1�(�r)

3)
TrP4
r=1 Tr

;

3p3
Q4
r=1(�r)

TrP4
r=1 Tr

3

sQ4
r=1(1+(��1)(1�(�r)

3))
TrP4
r=1 Tr +(��1)

Q4
r=1(�

3
r)

TrP4
r=1 Tr

1CCCCCCA
= (0:7254; 0:7424) :

The working parameter in FFHPA operator has two special types which are discussed in
the following:
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(1) If � = 1; then FFHPA is equivalent to the Fermatean fuzzy prioritized average (FFPA)
operator:

FFPA
�
F 1; F 2; :::; F p

�
= �pr=1

�
TrPp
r=1 Tr

F r

�
(10)

=

0@ 3

vuut1� pY
r=1

�
1� (�r)

3� TrPp
r=1 Tr ;

pY
r=1

(�r)
TrPp
r=1 Tr

1A :
(2) If � = 2; then FFHPA becomes the Fermatean fuzzy Einstein prioritized average

(FFEPA) operator:

FFEPA
�
F 1; F 2; :::; F p

�
= �pr=1

�
TrPp
r=1 Tr

Fr

�
(11)

=

0BBBBBB@
3

vuutQp
r=1(1+(�r)

3)
TrPp
r=1 Tr �

Qp
r=1(1�(�r)

3)
TrPp
r=1 Tr

Qp
r=1(1+(�r)

3)
TrPp
r=1 Tr +

Qp
r=1(1�(�r)

3)
TrPp
r=1 Tr

;

3p2
Qp
r=1(�r)

TrPp
r=1 Tr

3

sQp
r=1(1+(�r)

3)
TrPp
r=1 Tr +

Qp
r=1(�

3
r)

TrPp
r=1 Tr

1CCCCCCA :

If we consider the weights � = (�1;�2; :::;�p)
T of FF-set F r (r = 1; 2; :::; p) such that �r >

0 and
Pp

r=1�r = 1: Then we de�ne FF Hamacher prioritized weighted average (FFHPWA)
operator as follows:

De�nition 3.5. Let F r = (�r; �r) (r = 1; :::; p) be a family of FFEs. A Fermatean fuzzy
Hamacher prioritized weighted average (FFHPWA) operator of a dimension p is a mapping
FFHPWA: F p �! F with the corresponding weighting vector � = (�1;�2; :::;�p)

T such that
�r > 0; and

Pp
r=1�r = 1: Then

FFHPWA�
�
F 1; F 2; :::; F p

�
= �pr=1

�
�rTrPp
r=1�rTr

F r

�

where Tr =
r�1Y
k=1

rt (F r) (r = 2; 3; :::; p) ; T1 = 1 and rt (F r) represent the rating value of F r

(r = 1; 2; :::; p)

As a consequence of De�nition 3:5; we have the theorem stated below.

Theorem 3.6. A Fermatean fuzzy Hamacher prioritized weighted average (FFHPWA) oper-
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ator of a dimension p returns a FF-set and

FFHPWA�
�
F 1; F 2; :::; F p

�
= �pr=1

�
�rTrPp
r=1�rTr

F r

�
(12)

=

0BBBBBB@
3

vuut Qp
r=1(1+(��1)(�r)

3)
�rTrPp
r=1 �rTr �

Qp
r=1(1�(�r)

3)
�rTrPp
r=1 �rTr

Qp
r=1(1+(��1)(�r)

3)
�rTrPp
r=1 �rTr +(��1)

Qp
r=1(1�(�r)

3)
�rTrPp
r=1 �rTr

;

3p
�
Qp
r=1 �

�rTrPp
r=1 �rTr

r

3

sQp
r=1(1+( ��1)(1�(�r)

3))
�rTrPp
r=1 �rTr +(��1)

Qp
r=1(�

3
r)

�rTrPp
r=1 �rTr

1CCCCCCA

where where Tr =
r�1Y
k=1

rt (F r) (r = 2; 3; :::; p) ; T1 = 1 and rt (F r) represent the rating value

of F r (r = 1; 2; :::; p) and � = (�1;�2; :::;�p)
T is the weight vector such that �r > 0; andPp

r=1�r = 1:

In the following we discuss two special case of FFHPWA operator for the working parameter
�:

(1) For � = 1; the (FFHPWA) reduces to Fermatean fuzzy prioritized weighted average
(FFPWA) operator:

FFPWA�
�
F 1; F 2; :::; F p

�
= 
pr=1

�
�rTrPp
r=1�rTr

F r

�

=

0@ 3

vuut1� pY
r=1

�
1� (�r)

3� �rTrPp
r=1 �rTr ;

pY
r=1

(�r)
�rTrPp
r=1 �rTr

1A :
(2) For � = 2; FFHPWA reduces to Fermatean fuzzy Einstein prioritized weighted average

(FFEPWA) operator:

FFEPWA�
�
F 1; F 2; :::; F p

�
= �pr=1

�
�rTrPp
r=1�rTr

F r

�

=

0BBBBBB@
3

vuutQp
r=1(1+(�r)

3)
�rTrPp
r=1 �rTr �

Qp
r=1

�
1�(��(r))

3
� �rTrPp

r=1 �rTr

Qp
r=1(1+(�r)

3)
�rTrPp
r=1 �rTr +

Qp
r=1(1�(�r)

3)
�rTrPp
r=1 �rTr

;

3p2
Qp
r=1(�r)

�rTrPp
r=1 �rTr

3

sQp
r=1(2�(�r)

3)
�rTrPp
r=1 �rTr +

Qp
r=1(�

3
r)

�rTrPp
r=1 �rTr

1CCCCCCA :

Example 2. Let F 1 = (0:6; 0:4) ; F 2 = (0:7; 0:6) ; F 3 = (0:8; 0:5) ; and F 4 = (0:5; 0:8) be
four FFEs and � = (0:2; 0:1; 0:3; 0:4)T be the weighting vector. Then
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�1T1P4
r=1 �rTr

= 0:4747 �2T2P4
r=1 �rTr

= 0:1336 �3T3P4
r=1 �rTr

= 0:2781 �4T4P4
r=1 �rTr

=

0:1134 and the aggregation value of FFEs for (� = 3) and by using de�nition of FFHPWA
operator we get

CFHPWA� (F 1;F 2;F 3;F 4) = �4r=1

 
�rTrP4
r=1�rTr

F r

!

=

0BBBBBB@
3

vuut Q4
r=1(1+(��1)(�r)

3)
�rTrP4
r=1 �rTr �

Q4
r=1(1�(�r)

3)
�rTrP4
r=1 �rTr

Q4
r=1(1+(��1)(�r)

3)
�rTrP4
r=1 �rTr +(��1)

Q4
r=1(1�(�r)

3)
�rTrP4
r=1 �rTr

;

3p3
Q4
r=1(�r)

�rTrP4
r=1 �rTr

3

sQp
r=1(1+(��1)(1�(�r)

3))
�rTrP4
r=1 �rTr +(��1)

Qp
r=1(�

3
r)

�rTrP4
r=1 �rTr

1CCCCCCA
= (0:6752; 0:4902) :

4 Fermatean fuzzy Hamacher prioritized geometric ag-
gregation operators

Let F r = (�r; �r) (r = 1; :::; p) be a family of FFEs. We de�ne Fermatean fuzzy Hamacher
prioritized geometric aggregation operator as follows:

De�nition 4.1. The Fermatean fuzzy Hamacher prioritized averaging (FFHPG) operator is
a mapping FFHPG: F p �! F such that

FFHPA (F 1;F 2; :::;F p) = 
pr=1 (F r)
TrPp
r=1 Tr (13)

= (F 1)
T1Pp
r=1 Tr 
 (F 2)

T2Pp
r=1 Tr 
 :::
 (F p)

TpPp
r=1 Tr

where Tr =
r�1Y
k=1

rt (F r) (r = 2; 3; :::; p) ; T1 = 1 and rt (F r) represent score value of F r

(r = 1; 2; :::; p) :

In the following theorem we use the mathematical induction and operational rule of FFEs
to prove that the aggregation value of a family of FFEs by using FFHPG operator is again
an FFE.

Theorem 4.2. Let F r = (�r; �r) (r = 1; :::; p) be a family of FFEs, then the aggregation value

12



of this family by the FFHPG operator is also a FFE, and

FFHPG
�
F 1; F 2; :::; F p

�
= 
pr=1 (F r)

TrPp
r=1 Tr (14)

= (F 1)
T1Pp
r=1 Tr 
 (F 2)

T2Pp
r=1 Tr 
 :::
 (F p)

TpPp
r=1 Tr (15)

=

0BBBBBB@
3p
�
Qp
r=1(�r)

TrPp
r=1 Tr

3

sQp
r=1(1+(��1)(1�(�r)

3))
TrPp
r=1 Tr +(��1)

Qp
r=1(�

3
r)

TrPp
r=1 Tr

;

3

vuut Qp
r=1(1+(��1)(�r)

3)
TrPp
r=1 Tr �

Qp
r=1(1�(�r)

3)
TrPp
r=1 Tr

Qp
r=1(1+(��1)(�r)

3)
TrPp
r=1 Tr +(��1)

Qp
r=1(1�(�r)3)

TrPp
r=1 Tr

1CCCCCCA

where Tr =
r�1Y
k=1

rt (F r) (r = 2; 3; :::; p) ; T1 = 1 and rt (F r) represent score value of F r

(r = 1; 2; :::; p) :

Example 3. Let F 1 = (0:8; 0:5) ; F 2 = (0:8; 0:7) ; F 3 = (0:7; 0:8) and F 4 = (0:6; 0:7) be four
FFEs, T1P4

r=1 Tr
= 0:3180 T2P4

r=1 Tr
= 0:3098 T3P4

r=1 Tr
= 0:1287 T4P4

r=1 Tr
= 0:0561:

Suppose � = 3; then

FFHPA (F 1; F 2; F 3; F 4) = 
4r=1 (F r)
TrP4
r=1 Tr

=

0BBBBBB@
3p3
Q4
r=1(�r)

TrP4
r=1 Tr

3

sQ4
r=1(1+(��1)(1�(�r)

3))
TrP4
r=1 Tr +(��1)

Q4
r=1(�

3
r)

TrP4
r=1 Tr

;

3

vuut Q4
r=1(1+(��1)(�r)

3)
TrP4
r=1 Tr �

Q4
r=1(1�(�r)

3)
TrP4
r=1 Tr

Q4
r=1(1+(��1)(�r)

3)
TrP4
r=1 Tr +(��1)

Q4
r=1(1�(�r)

3)
TrP4
r=1 Tr

1CCCCCCA
= (0:8886; 0:6132) :

Further, we o¤er two special cases of FFHPG operator:

(1) For � = 1; FFHPG becomes the Fermatean fuzzy prioritized geometric (FFPG) oper-
ator:

FFPG
�
F 1; F 2; :::; F p

�
= 
pr=1 (F r)

TrPr
r=1 Tr

=

0@ pY
r=1

(�r)
TrPr
r=1 Tr ; 3

vuut1� pY
r=1

�
1� (�r)3

� TrPr
r=1 Tr

1A :
(2) For � = 2; FFHPG reduces to Fermatean fuzzy Einstein prioritized geometric (FFEPG)

13



operator:

FFEPG
�
F 1; F 2; :::; F p

�
= 
pr=1 (F r)

TrPr
r=1 Tr (16)

=

0B@ 3
p
2
Qp
r=1 (�r)

TrPr
r=1 Tr

3

qQp
r=1

�
2� (�r)

3� TrPr
r=1 Tr +

Qp
r=1

; 3

vuuutQp
r=1

�
1� (�r)3

� TrPr
r=1 Tr �

Qp
r=1

�
1� (�r)3

� TrPr
r=1 TrQp

r=1

�
1� (�r)3

� TrPr
r=1 Tr +

Qp
r=1

�
1� (�r)3

� TrPr
r=1 Tr

1CA :
In the following we introduce FFHPWG operator.

De�nition 4.3. Let F r = (�r; �r) (r = 1; 2; :::; p) be a family of FFEs. The FFHPWG is a
mapping from F p to F such that

FFHPWG�
�
F 1; F 2; :::; F p

�
= 
pr=1 (F r)

�rTrPr
r=1 �rTr

where Tr =
r�1Y
k=1

rt (F r) (r = 2; 3; :::; p) ; T1 = 1 and rt (F r) represent the score value of F r

and � = (�1;�2; :::;�p)
T is the weighting vector of F r (r = 1; 2; :::; p) such that �r > 0 andPp

r=1�r = 1.

Using FFHPWG operator, and the operational rules of De�nition 3.1; we can prove the
following subsequent theorem easily.

Theorem 4.4. Let F r = (�r; �r) (r = 1; 2; :::; p) be a family of FFEs. The FFHPWG operator
is a mapping F p �! F such that

FFHPWG�
�
F 1; F 2; :::; F p

�
= 
pr=1 (F r)

�rTrPr
r=1 �rTr (17)

=

0BBBBBB@
3p
�
Qp
r=1(�r)

�rTrPr
r=1 �rTr

3

sQp
r=1(1+(��1)(1�(�r)

3))
�rTrPr
r=1 �rTr +(��1)

Qp
r=1(�

3
r)

�rTrPr
r=1 �rTr

;

3

vuut Qp
r=1(1+(��1)(�r)

3)
�rTrPr
r=1 �rTr �

Qp
r=1(1�(�r)

3)
�rTrPr
r=1 �rTrQp

r=1

�
1+(��1)(��(r))

3
� �rTrPr

r=1 �rTr +(��1)
Qp
r=1

�
1�(��(r))

3
� �rTrPr

r=1 �rTr

1CCCCCCA

where Tr =
r�1Y
k=1

rt (F r) (r = 2; 3; :::; p) ; T1 = 1 and rt (F r) represent score value of F r

(r = 1; 2; :::; p) and � = (�1;�2; :::;�p)
T is the weighting vector of F r (r = 1; 2; :::; p) such

that �r > 0 and
Pp

r=1�r = 1.

We investigate two special cases of FFHPWG operator in the following:

(1) For � = 1; FFHPWG minimizes to Fermatean fuzzy prioritized weighted geometric
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(FFPWG) operator:

FFPWG� (F 1; F 2; :::; F r) = 
pr=1 (F r)
�rTrPr
r=1 �rTr (18)

=

0@ pY
r=1

(�r)
�rTrPr
r=1 �rTr ; 3

vuut1� pY
r=1

�
1� (�r)3

� �rTrPr
r=1 �rTr

1A :
(2) For � = 2; FFHPWG minimizes to Fermatean fuzzy Einstein prioritized weighted

geometric (FFEPWG) operator:

FFEPWG� (F 1; F 2; :::; F r) = 
pr=1 (F r)
�rTrPr
r=1 �rTr (19)

=

0BBBBBBBBB@

3p2
Qp
r=1(�r)F

�rTrPr
r=1 �rTr

r

3

vuutQp
r=1(2�(�r)

3)
(F r)

�rTrPr
r=1 �rTr

+
Qp
r=1(�r)

3(F r)

�rTrPr
r=1 �rTr

;

3

vuuuut Qp
r=1(1�(�r)

3)
(F r)

�rTrPr
r=1 �rTr

�
Qp
r=1(1�(�r)

3)
(F r)

�rTrPr
r=1 �rTr

Qp
r=1

�
1�(��(r))

3
�(F r) �rTrPr

r=1 �rTr

+
Qp
r=1

�
1�(��(r))

3
�(F r) �rTrPr

r=1 �rTr

1CCCCCCCCCA
:

5 Fuzzy Modeling of MADM: The case of Fermatean
Fuzzy Information

We shall apply FF-Dombi prioritized AOs constructed in the previous sections to solve
a MADM problem with FF information. Denote a discr¼ete set of alternatives by A =
fA1;A2; :::;Amg; we also denote by G = fG1;G2; :::;Grg; the set of attributes, we assume
that there is a prioritization among these attributes and let the prioritization be a linear or-
dering G1 � G2 � ::: � Gr indicating that the attribute G� has a higher priority than G� if
� < �. Let ? = f?1;?2; :::;?rg be the weight vector for the attributes G� (� = 1; 2; 3; :::; r)

such that ?� > 0 and
rX
�=1

?� = 1: Suppose that M =
�
F c/�

�
m�n

=
�
�c/�; �c/�

�
m�n

is the FF

decision matrix, where �c/� represents the degree of membership, that the alternative A� 2 A
satis�es the alternative G� and �c/� denotes the degree of non-mebmb¼ership that the alter-
native A� 2 A does not satis�es the attribute G� considered by the decision makers such
that �3c/� + �

3

c/� � 1 and �c/�; �c/� � [0; 1]; (c/ = 1; 2; :::;m) and (� = 1; 2; :::; n) that the DMs

proposed for the attributes G�: To follow the above discussion we utilize the methods devel-
oped in previous section and design an algorithm to solve multiple attribute decision-making
problem based on FF-environment.

Algorithm

15



Step 1. Calculate the value of Tc/� (c/ = 1; 2; :::;m; � = 1; 2; :::; r) using the formula as
follows by

Tc/� =
��1Y
k=1

Score
�
F c/k

�
(c/ = 1; 2; :::;m; � = 1; 2; :::; r; k = 2; 3; :::;m) (20)

and

Tc/1 = 1; (c/ = 1; 2; :::;m) : (21)

Step 2. Apply the operator FFHPWA on the decision matrix M where

F c/ = FFHPWA
�
F c/1; F c/2; :::; F c/r

�
(22)

=
rM
�=1

 ?�Tc/�Pr
�=1?�Tc/�

F c/�

!

=
?1Tc/1Pr
�=1?�Tc/�

F 1 �
?2Tc/2Pr
�=1?�Tc/�

F 2 � :::�
?rTc/rPr
�=1?�Tc/�

F r

=

0BBBBBBBB@
3

vuuut1� 1

1+

8>><>>:
Pr
�=1

?�Tc/�Pr
�=1

?�Tc/�

0B@ �3

c/�
1��3
c/�

1CA
<9>>=>>;

< ;

1

3

vuuuuut1+
8>><>>:
Pr
�=1

?�Tc/�Pr
�=1

?�Tc/�

0B@ 1��3
c/�

�3

c/�

1CA
<9>>=>>;

<

1CCCCCCCCA
or apply FFHPWG operator

F c/ = FFHPWG
�
F c/1; F c/2; :::; F c/r

�
(23)

=

rO
�=1

�
F c/�

� ?�Tc/�Pr
�=1

?�Tc/�

= (F 1)

?1Tc/1Pr
�=1

?�Tc/� 
 (F 2)

?2Tc/2Pr
�=1

?�Tc/� 
 :::
 (F r)

?rTc/rPr
�=1

?�Tc/�

=

0BBBBBBBB@

1

3

vuuuuut1+
8>><>>:
Pr
�=1

?�Tc/�Pr
�=1

?�Tc/�

0B@ 1��3
c/�

�3

c/�

1CA
<9>>=>>;

< ;

3

vuuut1� 1

1+

8>><>>:
Pr
�=1

?�Tc/�Pr
�=1

?�Tc/�

0B@ �3

c/�
1��3
c/�

1CA
<9>>=>>;

<

1CCCCCCCCA
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to get the aggregated values of F c/ (c/ = 1; 2; :::;m) of the alternatives Ac/.

Step 3. Calculate the values of the score function Score
�
F c/

�
(c/ = 1; 2; :::;m) of all

the aggregated FFNs F c/ (c/ = 1; 2; :::;m) obtained in Step 2. If the value of score functions

Score
�
F c/

�
and Score (F �) are not di¤erent then apply the accuracy function acc

�
F c/

�
and

acc(F �) for the ranking order of alternatives Ac/ (c/ = 1; 2; :::;m) :

Step 5. End

6 Experimental example and comparative discussion

6.1 Example description

We discuss the selection process of teaching sta¤ of our university. To promote the education
system of Abdul Wali Khan University, the Department of Mathematics want to recruit over-
seas outstanding educationists. After some important meetings in the Department an expert
team is selected to complete the process of selection of outstanding teachers. The panel of
experts consists on university vice chancellor (VC), dean of physical and numerical sciences
(P&NS) and human resource development o¢ cer. This team of expert will analyses a set
of �ve candidates Ac/ (c/ = 1; 2; 3; 4; 5) following the four attributes G1: Quali�cation, G2:
Teaching ability, G3: Research expertise and G4: Quality research publications: University
VC has absolute priority in decision-making, dean of P&NS comes next. Further they will
be strict in their principle of combine ability and will not in�uence by any political integrity.
The prioritization criteria is de�ned as G1 � G2 � G3 � G4; where the symbol � is used
to represents prefer than relation. The team will use FFNs in the evaluation of candidates Ac/
(c/ = 1; 2; 3; 4; 5) : The attribute weight vector in the selection process is? = (0:2; 0:2; 0:3; 0:3)T

and the decision matrix for this model is F =
�
Fc/�

�
4�5

which is represented in Table 1, where

Fc/� are FFNs.

Table 1. Fermatean fuzzy decision matrix

A1 A2 A3 A4 A5

G1 (:4; :6) (:8; :2) (:5; :5) (:7; :3) (:4; :8)
G2 (:8; :6) (:7; :4) (:4; :5) (:5; :8) (:5; :6)
G3 (:8; :1) (:7; :5) (:6; :4) (:9; :6) (:3; :9)
G4 (:8; :3) (:5; :3) (:7; :2) (:6; :7) (:3; :7)

In order to select the most desirable candidate Ac/ (c/ = 1; 2; 3; 4; 5) ; we apply FFHPWA
and FFHPWG operators in the following Steps of algorithm
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6.1.1 FFHPWA operator

Step 1. Apply Equs. (7) and (8) to compute the values of Tc/� (c/ = 1; 2; :::;m; � = 1; 2; :::; r)
which are given in the following matrix

Tc/� =

2664
1:000 :4240 :3188 :1594 :1048
1:000 :6480 :4143 :1945 :0596
1:000 :7555 :4600 :2649 :2003
1:000 :7425 :4076 :2720 :1187

3775
Step 2. For � = 1; we apply FFHPWA operator to aggregate the over all preference

values of FFNs Fc/ of the candidates Ac/ (c/ = 1; 2; 3; 4; 5) ; we get

F1 = (0:8389; 0:1640) ; F2 = (0:7027; 0:3188) ; F3 = (0:5097; 0:5226) ; F4 = (0:5654; 0:8165) ;
F5 = (0:2163; 0:9519) :

Step 3. Calculate the score value using score
�
Fc/
�
function of the FFNsFc/ (c/ = 1; 2; 3; 4; 5) ;

we get:

score(F1) = 0:7929; score(F2) = 0:6572; score(F3) = 0:4948; score(F4) = 0:3182; score(F5) =
0:0737:

Step 4. Rank all the candidates Ac/ (c/ = 1; 2; 3; 4; 5) ; according to the values of score

function score
�
Fc/
�
(c/ = 1; 2; 3; 4; 5) ; of the candidates as A1 > A2 > A3 > A4 > A5:

Step 5. A1 is selected as the best candidate.

6.1.2 FFHPWG operator

If we utilize the FFHPWG operator, then the procedure is similar as above

Step 1. For � = 1; we apply FFHPWG operator to aggregate the over all preference
values of FFNs Fc/ of the candidates Ac/ (c/ = 1; 2; 3; 4; 5) ; we get

F1 = (0:4848; 0:5956) ; F2 = (0:6377; 0:3993) ; F3 = (0:6580; 0:3826) ; F4 = (0:8594; 0:4974) ;
F5 = (0:8094; 0:5293) :

Step 2. Calculate the score value using score
�
Fc/
�
function of the FFNsFc/ (c/ = 1; 2; 3; 4; 5) ;

we get:

score(F1) = 0:4513; score(F2) = 0:5978; score(F3) = 0:6144; score(F4) = 0:7558; score(F5) =
0:6909:

Step 3. Rank all the candidates Ac/ (c/ = 1; 2; 3; 4; 5) ; according to the values of score

function, score
�
Fc/
�
(c/ = 1; 2; 3; 4; 5) ; of the candidates as A4 > A5 > A3 > A2 > A1:

Step 4. A4 is selected as the best candidate for the post.
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From above discussion, we observe that the overall ranking orders of all the candidates
are di¤erent by utilizing the two operators, in FFHPWA operator A1 is the most suitable
candidate for the post while by applying FFHPWG operator, the most desirable candidate is
A4.

6.2 Comparison of proposed and existing operators

From Table 2, we observe that the ranking order of alternative by using di¤erent methods
are di¤erent. But the best alternatives of the same type of aggregation operator are same,
e.g., the best alternative in FFWA, FFWG, FFWPA and FFWPG operators is A3. The best
alternatives for the methods FFHWA operator is A5 and for FFHWG operator is A4. This
means that the FFHWA and FFHWG operators have a rare �uctuations in ranking order.
FFHOWA and FFHOWG operators have same ranking for best alternative i.e., A5. The other
methods FFHPA, FFHPG, FFHPWA and FFHPWG operators have similar �uctuations in
the ranking order as in case of FFHWA and FFHWG operators.

Table 2. Proposed and existing aggregation methods

Methods S(F1) S(F2) S(F3) S(F4) S(F5) Ranking order

FFWA �1:305 �1:175 �0:429 �1:477 �0:498 A3 � A5 � A2 � A1 � A4
FFWG �1:271 �1:176 �0:406 �1:351 �1:181 A3 � A2 � A5 � A1 � A4
FFWPA �0:799 �0:879 �0:376 �1:237 �0:736 A3 � A5 � A1 � A2 � A4
FFWPG �0:533 �0:705 �0:338 �1:080 �0:586 A3 � A1 � A5 � A2 � A4
FFHWA 0:0996 0:2004 0:0110 0:1646 0:2061 A5 � A2 � A4 � A1 � A3
FFHWG �0:0472 0:0904 �0:0008 0:1497 0:1427 A4 � A5 � A2 � A3 � A1
FFHOWA 0:1506 0:1959 0:0026 0:1609 0:2170 A5 � A2 � A4 � A1 � A3
FFHOWG 0:0261 0:0796 �0:0066 0:1435 0:1742 A5 � A2 � A4 � A1 � A3
FFHPA 0:7929 0:6573 0:4949 0:3184 0:1063 A1 � A2 � A3 � A4 � A5
FFHPG 0:4513 0:5977 0:6142 0:7557 0:6905 A4 � A5 � A3 � A2 � A1
FFHPWA 0:7929 0:6572 0:4948 0:3182 0:0737 A1 � A2 � A3 � A4 � A5
FFHPWG 0:4513 0:5978 0:6144 0:7558 0:6909 A4 � A5 � A3 � A2 � A1

The graphical views of these ranking orders are shown in Fig 1.
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Fig 1. Proposed and existing operators. Line x-axis represents alternatives

and y-axis represents score values of alternatives

From Fig 1, we observe that the ranking orders of all the alternatives using several exist-
ing and proposed operators are di¤erent. We observe that the graphs of existing operators
(FFWA (green line), FFWG (brown line), FFWPA (yellow line), and FFWPG (aqua line)) are
monotonically increasing & decreasing between the alternatives A1 to A5, and we can�t observe
stability in these operators. On the other hand, the graphs of proposed operators (FFHWA
(purple line), FFHWG (red line), FFHOWA (teal line), and FFHWG (black line)) are more
stable and their graphs have very rare �uctuations. Therefore, the proposed operators are
seems to be more stable.

6.2.1 E¤ect of prioritizations of attributes

In Table 3, the score values and their ranking orders of alternatives in FFHPA, FFHPG,
FFHPWA and FFHPWG operators are given.
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Table 3. Ranking order in proposed operators

Alternatives FFHPA FFHPG
A1 0:7929 0:4513
A2 0:6573 0:5977
A3 0:4949 0:6142
A4 0:3184 0:7557
A5 0:1063 0:6905

Ranking A1 � A2 � A3 � A4 � A5 A4 � A5 � A3 � A2 � A1

Alternatives FFHPWA FFHPWG
A1
A2
A3
A4
A5

Ranking

0:7929
0:6572
0:4948
0:3184
0:0737

A1 � A2 � A3 � A4 � A5

0:4513
0:5978
0:6144
0:7558
0:6909

A4 � A5 � A3 � A2 � A1

From Table 3, we observe that the ranking order of alternatives in FFHPA and FFHPWA
operators have very rare �uctuations. Similarly, the ranking orders in FFHPG and FFHPWG
operator have very small changes. It is concluded that the weights of alternatives in prioritized
aggregation operators of FF-sets have a very low e¤ect on the order of alternatives based on
Hamacher operations.

Fig 2. Comparison of proposed operators. x-axis represents alternatives

y-axis represents score values

From Fig 2, it is clear that the ranking order of alternatives in (FFHPA) (green line) and
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(FFHPWA) (doted line) are approximately parallel. While the ranking order in (FFHPG) (yel-
low line) and (FFHPWG) (dotted line) are apparently parallel. This means that the weights
in Fermatean fuzzy Hamacher (prioritized) weighted avaeraging and (prioritized) weighted
geometric operators have very small e¤ect on the ranking order of alternatives. It is also ob-
served that the ranking order is monotonically increasing in FFHPA and FFHPWA operators
while monotonically decreasing in FFHPG and FFHPWG operators.

To compare our proposed operators with the results obtained by applying Pythagorean
fuzzy aggregation operators with and without prioritization of weights of attributes, we con-
sider the methods proposed in [19] and [29].

In [19], Pythagorean fuzzy Hamacher weighted averaging and geometric agrregation opera-
tors have been applied, if we consider the attribute weight of alternatives as� = (0:1; 0:2; 0:3; 0:4)T ,
then the score values of alternative are given in the following table.

Table 4. Score values of alternatives using PFHWA and PFHWG operator

Alternatives PFHWA PFHWG
A1 0:2323 0:0071
A2 0:0161 �0:2471
A3 0:3704 0:1563
A4 0:2438 0:0108
A5 0:0062 �0:3125

Ranking A3 � A4 � A1 � A2 � A5 A3 � A4 � A1 � A2 � A5

On the other hand, if we consider the prioritization of attributes and use PFHPWA and
PFHPWG operators, then the score values and their corresponding ranking orders are shown
in Table 5.

Table 5. Score values of alternatives using PFHPWA and PFHPWG operator

Alternatives PFHPWA PFHPWG
A1 0:6522 0:5496
A2 0:4816 0:3618
A3 0:6228 0:4888
A4 0:5964 0:4918
A5 0:4648 0:3568

Ranking A1 � A3 � A4 � A2 � A5 A1 � A4 � A3 � A2 � A5

Ranking order of alternatives using PFHPWA and PFHPWG operators and proposed
operators with weighted prioritization are shown in Tables 6 & 7.
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Table 6. Score values of alternatives using PFHPWA and FFHPWG operator

Alternatives PFHPWA
A1 0:6522
A2 0:4816
A3 0:6228
A4 0:5964
A5 0:4648

Ranking A1 � A3 � A4 � A2 � A5

FFHPWA
0:7929
0:6572
0:4948
0:3184
0:0737

A1 � A2 � A3 � A4 � A5

Table 7. Score values of alternatives using PFHPWG and FFHPWG operator

Alternatives PFHPWG FFHPWG
A1 0:5496 0:4513
A2 0:3618 0:5978
A3 0:4888 0:6144
A4 0:4918 0:7558
A5 0:3568 0:6909

Ranking A1 � A4 � A3 � A2 � A5 A4 � A5 � A3 � A2 � A1

In the following �gures, we compare our proposed operators with the existing operators
of Pythagorean fuzzy Hamacher averaging and geometric operators with prioritization of at-
tributes.

Fig 3. Comparison of PFHPWA and FFHPWA operator. Alternatives are

represented by x-axis and score values are represented by y-axis
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Fig 4. Comparison graphs of PFHPWG and FFHPWG operators. Alternatives are

represented by x-axis and score values are represented by y-axis.

From Fig 3, the ranking order of alternatives using PFHPWA operator (green line) smoothly
decreasing, while the ranking of alternatives using FFHPWA operator (brown line) are strictly
decreasing.

In Fig 4, the ranking order of alternatives in PFHPWG operator (green line) are smoothly
decreasing while the ranking order of alternatives in FFHPWG operator (brown line) are
smoothly increasing.

7 Concluding remarks

In this paper, we have examined a MADM phenomena for Fermatean fuzzy information us-
ing Hamacher operations with prioritization of attributes. We presented here arithmetic and
geometric operations to initiate some Fermatean fuzzy Hamacher prioritized aggregation op-
erators from the rationale of Hamacher operations as Fermatean fuzzy Hamacher prioritized
average (FFHPA) operator, Fermatean fuzzy Hamacher prioritized weighted average (FFH-
PWA) operator, Fermatean fuzzy Hamacher prioritized geometric (FFHPG) operator, and
Fermatean fuzzy Hamacher prioritized weighted geometric (FFHPWG) operator. Several new
aspects of these recommended operators are considered. As a fact check, we have applied
these operators to look into strategies remedying MADM situations. Eventually, a genuine
example for cyclone disasters is considered to develop a strategy and usefulness about the
presented method. The new operators are compared with Pythagorean fuzzy Hamacher ag-
gregation operators which gave the reliability of these operators. In future, we will consider
decision-making theory, risk theory and other areas under uncertain conditions for the pro-
posed Fermatean fuzzy sets models.
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