
ar
X

iv
:2

10
8.

13
77

4v
1 

 [
m

at
h.

R
A

] 
 3

1 
A

ug
 2

02
1

Noname manuscript No.
(will be inserted by the editor)

Orthomodular posets are algebras over bounded posets
with involution

Gejza Jenča
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1 Introduction

Effect algebras were introduced in Foulis and Bennett

(1994) as (at that point in time) the most general ver-

sion of quantum logics. The motivating example was the
set of all Hilbert space effects, a notion that plays an

important role in quantum mechanics Ludwig (1983);

Busch et al. (1996). An equivalent definition was given

independently in Kôpka and Chovanec (1994). Later it

turned out that both groups of authors rediscovered
the definition given already in Giuntini and Greuling

(1989).

In Kalmbach (1977) the following theorem was proved.

Theorem 1.1 Every bounded lattice L can be embed-

ded into an orthomodular lattice K(L).

The proof of the theorem is constructive,K(L) is known

under the name Kalmbach extension or Kalmbach em-

bedding. In Mayet and Navara (1995), authors proved

that Theorem 1.1 can be generalized: every bounded

poset P can be embedded in an orthomodular poset
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K(P ). In fact, by Harding (2004), thisK is then left ad-
joint to the forgetful functor from orthomodular posets

to bounded posets. This adjunction gives rise to a monad

on the category of bounded posets, which we call the

Kalmbach monad.

For every monad (T, η, µ) on a category C, there is

an Eilenberg-Moore category CT (sometimes called the

category of algebras over T or the category of modules
over T ). The category CT comes equipped with a canon-

ical adjunction between C and CT and this adjunction

gives rise to the original monad T on C. A functor equiv-

alent to a right adjoint CT → C is called monadic.

It was proved in Jenča (2015) that the Eilenberg-

Moore category for the Kalmbach monad is isomor-

phic to the category of effect algebras. In other words,
the forgetful functor from the category of effect alge-

bras to the category of bounded posets is monadic.

Later, it was proved in Jenča (2020) that the forget-

ful functor from the category of pseudo-effect algebras

(see Dvurečenskij and Vetterlein (2001)) to the cate-
gory of bounded posets is monadic. Recently, it was

proved in van de Wetering (2021) that both ω-complete

effect algebras and ω-complete effect monoids can be

represented as categories of algebras over the category
of bounded posets.

On the other hand, it clearly follows from Jenča
(2015) that the right adjoint functor from the cate-

gory of orthomodular posets to the category of bounded

posets is not monadic. Indeed, this right adjoint gives

rise to the Kalmbach monad and the Eilenberg-Moore

category for the Kalmbach monad is the category of
effect algebras which is clearly not equivalent to the

category of orthomodular posets.

This leads to a natural question: is the category of

orthomodular posets equivalent to a category of alge-

bras for some nontrivial monad? In the present paper,

http://arxiv.org/abs/2108.13774v1
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we answer this question in the positive. We prove that

the forgetful functor from the category of orthomodu-

lar posets to the category of bounded posets equipped

with involution is monadic.

2 Preliminaries

We assume familiarity with basics of category theory,
see MacLane (1971); Awodey (2006); Riehl (2016) for

reference.

2.1 Posets and bounded posets

Pos is the usual category of posets equipped with iso-

tone maps. A bounded poset is a structure (P,≤, 0, 1)

such that ≤ is a partial order on P and 0, 1 ∈ P are the

bottom and top elements of (P,≤), respectively.

Let P1, P2 be bounded posets. A map f : P1 → P2 is

a morphism of bounded posets if and only if it satisfies

the following conditions.

– f is isotone.

– f(1) = 1 and f(0) = 0.

The category of bounded posets is denoted byBPos.

2.2 Bounded posets with involution

An involution on a poset P is mapping ′ : P → P sat-

isfying the following conditions.

– For all x, y ∈ P , x ≤ y if and only if y′ ≤ x′.
– For all x ∈ P , x′′ = x.

Note that every bounded poset with involution (P,≤

,′ , 0, 1) satisfies 0′ = 1. Indeed, for every x ∈ P , 0 ≤ x′

implies x′′ = x ≤ 0′, so 0′ is the greatest element of P .

Two elements x, y of a bounded poset with involu-

tion are said to be orthogonal (in symbols x ⊥ y), if

x ≤ y′. Note that ⊥ is a symmetric relation and that

for all x ∈ P , x ⊥ 0.

The objects of the category BPosInv are bounded

posets with involution (sometimes called involutive boun-

ded posets). A mapping f : P → Q between two bounded

posets with involution is a morphism inBPosInv if and
only if the following conditions are satisfied.

– f is a morphism of bounded posets.

– For all x ∈ P , f(x′) = (f(x))′.

2.3 Effect algebras

An effect algebra is a partial algebra (E,+, 0, 1) with a

binary partial operation + and two nullary operations

0, 1 satisfying the following conditions.

(E1) If a+b is defined, then b+a is defined and a+b =

b+ a.

(E2) If a+ b and (a+ b)+ c are defined, then b+ c and

a+(b+c) are defined and (a+b)+c = a+(b+c).

(E3) For every a ∈ E there is a unique a′ ∈ E such
that a+ a′ exists and a+ a′ = 1.

(E4) If a+ 1 is defined, then a = 0.

In an effect algebra E, we write a ≤ b if and only if
there is c ∈ E such that a+c = b. It is easy to check that

for every effect algebra (E,≤,′ , 0, 1) is a bounded poset

with involution. Moreover, it is possible to introduce a

new partial operation −; b − a is defined if and only if
a ≤ b and then a+ (b − a) = b. It can be proved that,

in an effect algebra, a+ b is defined if and only if a ⊥ b.

Let E1, E2 be effect algebras. A map f : E1 → E2

is called a morphism of effect algebras if and only if it

satisfies the following conditions.

– f(1) = 1.

– If a+b exists, then f(a)+f(b) exists and f(a+b) =

f(a) + f(b).

The category of effect algebras is denoted by EA.

We note that every morphism of effect algebras is
isotone and preserves 0, 1 and the involution, hence

every morphism of effect algebras is a morphism of the

underlying bounded posets with involution. Moreover,

every morphism of effect algebras preserves the partial

operation −.

2.4 Orthomodular posets

An orthomodular poset is a bounded poset with invo-

lution (A,≤,′ , 0, 1) satisfying the following conditions,
for all x, y ∈ A.

(OMP1) x ∧ x′ = 0.

(OMP2) If x ⊥ y, then x ∨ y exists.
(OMP3) If x ≤ y, then x ∨ (x ∨ y′)′ = y.

Let A1, A2 be orthomodular posets. A map f : A1 →

A2 is called a morphism of orthomodular posets if and
only if it is a morphism of bounded posets with invo-

lution such that for all x ⊥ y in A1, f(x) ⊥ f(y) and

f(x ∨ y) = f(x) ∨ f(y).

Let A be an orthomodular poset. A subset B ⊆ A

is a subalgebra of A if and only if 0, 1 ∈ B, B is closed

with respect to ′ and for all x, y ∈ B such that x ⊥ y,

x ∨ y ∈ B.
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The category of orthomodular posets is denoted by

OMP. If A is an orthomodular poset, then we may

introduce a partial + operation on A by the following

rule: x+ y exists if and only if x ⊥ y and then x+ y :=

x ∨ y. The resulting structure is then an effect algebra.
This gives us the object part of an evident full and

faithful functor OMP → EA.

Proposition 2.1 The category OMP is small-complete.

Proof It is easy to check that a product of every family

of orthomodular posets can be constructed as a product

of underlying bounded posets, the involution ′ is defined

pointwise. For a parallel pair of morphisms f, g : A → B

in OMP, their equalizer is the inclusion of a subalgebra

E = {x ∈ A : f(x) = g(x)} into A. Since the category

OMP has all products and all equalizers, it has all

small limits.

The following functors will be used in what follows.

2.5 The functor U : BPosInv → Pos

U is just the forgetful functor that takes every object

of BPosInv to its underlying poset.

2.6 The functor ⊥ : BPosInv → Pos

The orthogonality relation on the objects of BPosInv

can be exhibited as a functor from BPos to Pos, as
follows. For every bounded poset with involution P ,

⊥(P ) is the order ideal in the poset U(P )×U(P ) given

by the rule

⊥(P ) = {(x, y) ∈ U(P )× U(P ) | x ≤ y′}.

For a morphism f : P → Q inBPosInv,⊥(f) : ⊥(P ) →

⊥(Q) is given by ⊥(f)(x, y) = (f(x), f(y)).

2.7 The functor ‚ : BPosInv → Pos

For every bounded poset with involution P , ‚(P ) is

the order ideal in the poset U(P )×U(P )×U(P ) given

by the rule

‚(P ) = {(x, y, z) ∈ U(P )× U(P )× U(P ) |

x ⊥ y and x ⊥ z and y ⊥ z}.

On morphisms, ‚ is defined coordinatewise, simi-

larly as we did for ⊥.

2.8 The functor I : Pos → Pos

For every poset P , let us write I(P ) for the set of

comparable pairs {(a, b) ∈ P × P : a ≤ b} and par-

tially order I(P ) by the rule (a, b) ≤ (c, d) if and only

if c ≤ a ≤ b ≤ d. Note that the elements of I(P )

can be identified with closed intervals of P , ordered by
inclusion. We shall write [a ≤ b] or [b ≥ a] for the

element (a, b) of I(P ). The construction P 7→ I(P )

can be made into a functor Pos → Pos by the rule

I(f)([a ≤ b]) = [f(a) ≤ f(b)].

2.9 General adjoint functor theorem

Adjoint functor theorems give conditions under which

a continuous functor G has a left adjoint F . This al-

lows us to avoid construction of the functor F , which

is sometimes a difficult endeavor.

Theorem 2.1 (MacLane, 1971, Theorem V.6.2) Freyd
(1964) Given a locally small, small-complete category

D, a functor G : D → C is a right adjoint if and only if

G preserves small limits and satisfies the following

Solution Set Condition: for each object X of C there
is a set I and an I-indexed family of arrows hi : X →

G(Ai) such that every arrow h : X → G(A) can be writ-

ten as a composite h = G(j) ◦ hi for some j : Aj → A.

2.10 Beck’s monadicity theorem

A functor G : D → C is monadic if and only if it is
equivalent to the forgetful functor from the category of

algebras CT to C for a monad T on C. A colimit (or

a limit) in a category C is absolute if and only if it is

preserved by every functor with domain C.

Theorem 2.2 (MacLane, 1971, Theorem VI.7.1) Beck

(1967) A functor

G : D → C

is monadic if and only if G is a right adjoint and G

creates coequalizers for those parallel pairs f, g : A → B

in D, for which

G(A)
G(f)

//

G(g)
// G(B)

has an absolute coequalizer in C.

Beck’s monadicity theorem is a device that allows us

to prove that a functor is monadic without having to
explicitly describe the monad T on C arising from the

adjunction, describe its category of algebras CT and to

prove that CT is equivalent to D.
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3 The result

The aim of this paper is to prove that the obviously

defined forgetful functor from OMP to BPosInv is

a monadic right adjoint. To do this, we need to char-

acterize orthomodular posets as bounded posets with

involution equipped with an additional structure.

Proposition 3.1 Let A be a bounded poset with in-

volution equipped with two partial operations + and −
such that

– x+ y is defined if and only if x ⊥ y and

– y − x is defined if and only if x ≤ y.

Suppose that the mappings

+: ⊥(A) → U(A)

and

− : IU(A) → U(A)

corresponding to these partial operations are isotone

and that the following conditions are satisfied.

(A0) For all a ∈ A, a ⊥ 0 and a+ 0 = a.

(A1) For all a, b ∈ A, a ⊥ b implies that b ⊥ a and

then a+ b = b+ a

(A2) For all a, b, c ∈ A, if a ⊥ b and b ⊥ c and a ⊥ c,

then a ⊥ (b+ c) and (a+ b) ⊥ c and a+(b+ c) =
(a+ b) + c.

(A3) For all a, b ∈ A such that a ⊥ b, a + b ≥ a and

(a+ b)− a = b.

(A4) For all a ∈ A, a+ a′ = 1.

Then A is an orthomodular poset with x ∨ y = x + y,

for all x ⊥ y.

Moreover, for every orthomodular poset A, putting

x+y = x∨y and x−y = x∧y′ gives us a pair of partial
operations satisfying these conditions.

Proof The fact that every orthomodular poset satisfies
these conditions is well known. By (Foulis and Bennett,

1994, Theorem 5.3), an effect algebra is an orthomod-

ular poset with a ∨ b = a + b if and only if it satisfies

(A2). So it remains to prove that A is an effect alge-
bra. The conditions (E1) and (A1) are the same. To

prove (E2), suppose that a, b, c ∈ A are such that a ⊥ b

and (a + b) ⊥ c, that means a + b ≤ c′. From (A0)

and the fact that + is isotone we obtain a = (a+ 0) ≤

(a+b) ≤ c′, hence a ⊥ c and (similarly) b ⊥ c. By (A3),
a ⊥ (b+ c) and (a+ b) + c = a+ (b+ c). The existence

part of (E3) is exactly (A4). To prove the uniqueness

part of (E3), suppose that 1 = a+b1 = a+b2. By (A3),

it then follows that

b1 = (a+ b1)− a = 1− a = (a+ b2)− a = b2.

To prove (E4), note that a+1 defined means that a ⊥ 1,

which means a ≤ 1′ = 0 and hence a = 0.

Since every orthomodular poset is a bounded poset

with involution and we defined a morphism of ortho-

modular poset as a special type of morphism of the un-

derlying bounded posets with involution, there is an ob-

viously defined forgetful functorG : OMP → BPosInv.

The main result of the present paper follows.

Theorem 3.1 The forgetful functor

G : OMP → BPosInv

is monadic.

Proof Let us apply Theorem 2.1 to prove that G is

a right adjoint functor. By Proposition 2.1, OMP is

small-complete. It is easy to check that G preserves all

small limits. Let us check the Solution Set Condition.
Let P be a bounded poset with involution. Let WP be

a set of bounded posets with involution such that for

every bounded poset with involution V with card(P ) ≤

card(V ) ≤ max(card(P ),ℵ0), there is a W ∈ WP such

that W is isomorphic to V . Consider the family HP =
{hi}i∈I of all BPosInv-morphisms hi : P → G(Ai),

where Ai is an orthomodular poset and G(Ai) ∈ WP .

For every BPosInv-morphism h : P → G(A), the car-

dinality of the subalgebra B of A that is generated by
the range of h is bounded below by card(P ) and above

by max(card(P ),ℵ0). Write j : B → A for the embed-

ding of the subalgebra B into A. Clearly, h = G(j) ◦ hi

for some hi ∈ HP . Since G preserves small limits and

the Solution Set Condition is satisfied, G is a right ad-
joint.

We have proved that G is a right adjoint, so we may

apply Theorem 2.2. Let A,B be orthomodular posets,

let f, g : A → B be morphisms of orthomodular posets.

Suppose that

G(A)
G(f)

//

G(g)
// G(B)

q
// Q (3.1)

is an absolute coequalizer. Assuming this, we need to

prove that there is a unique morphism of orthomodular
posets q̂ : B → Q̂ such that

A
f

//
g

// B
q̂

// Q̂ (3.2)

is a coequalizer in OMP and Q = G(Q̂), q = G(q̂). Let
us prove that such q̂ exists. We use the fact that (3.1)

is an absolute coequalizer to equip the bounded poset

with involution Q with a structure of an orthomodular

poset, in the sense of Proposition 3.1. Then we prove
that q comes from a morphism of orthomodular posets.

Finally, we prove that this morphism of orthomodular

posets is a coequalizer of f, g in OMP.
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Let A be an orthomodular poset. Consider Propo-

sition 3.1; the partial operation +A on A is defined for

pairs a, b ∈ A with a ⊥ b, so we may represent it as an

isotone mapping (in other words, a morphism in Pos)

from the poset ⊥G(A) to the poset UG(A). Similarly,
the partial operation −A on A can be represented by

an Pos-morphism −A : IUG(A) → UG(A). Moreover,

every morphism h : X → Y of orthomodular posets pre-

serves the partial operations + and −, that means that
the diagrams

⊥G(X)
⊥G(h)

//

+X

��

⊥G(Y )

+Y

��
UG(X)

UG(h)
// UG(Y )

(3.3)

IUG(X)
IUG(h)

//

−X

��

IUG(Y )

−Y

��
UG(X)

UG(h)
// UG(Y )

(3.4)

commute. Hence + and − are natural transformations

in the category of functors [OMP,Pos].

Consider the diagram

⊥G(A)
⊥G(f)

//

⊥G(g)
//

+A

��

⊥G(B)
⊥(q)

//

+B

��

⊥(Q)

⊞

��
UG(A)

UG(f)
//

UG(g)
// UG(B)

U(q)
// U(Q)

(3.5)

Since f and g are morphisms of orthomodular posets,

the naturality of + implies that both f and g left-hand

squares in (3.5) commute. From this and from the fact

that the bottom row is a coequalizer, it follows that the
morphism +B ◦U(q) coequalizes the top pair of parallel

arrows. Indeed,

U(q) ◦+B ◦ ⊥G(f) = U(q) ◦ UG(f) ◦+A

= U(q) ◦ UG(g) ◦+A

= U(q) ◦+B ◦ ⊥G(g).

Since (3.1) is an absolute coequalizer, the top row in

(3.5) is a coequalizer. Since the top row in (3.5) is a

coequalizer, there is a unique arrow ⊞ : ⊥(Q) → U(Q)

making the right-hand square of (3.5) commute. This
way, we equipped the involutive bounded poset Q with

a partial binary operation ⊞, defined for all orthogonal

pairs of elements of Q.

In an analogous way, we may the use the diagram

IUG(A)
IUG(f)

//

IUG(g)
//

−A

��

IUG(B)
IU(q)

//

−B

��

IU(Q)

⊟

��
UG(A)

UG(f)
//

UG(g)
// UG(B)

U(q)
// U(Q)

(3.6)

to define a partial operation ⊟ : IU(Q) → U(Q) on Q.

Let us prove that these partial operations on Q sat-
isfy the conditions of Proposition 3.1. We will proceed

as follows: we will show that the fact thatX is an ortho-

modular poset can be expressed by encoding the con-

ditions (A0)–(A4) by means of functors and natural
transformations. For (A0), we will then give a detailed

proof that Q satisfies (A0). After that, we will observe

that the proof for the remaining conditions can be given

in a similar way.

(A0) For every bounded poset P with involution, there

is an isotone mapping

(0, )P : U(P ) → ⊥(P )

that maps every a ∈ U(P ) to the pair (0, a) ∈

⊥(P ). This ob(BPosInv) indexed family of ar-
rows forms a natural transformation from U to

⊥. The (A0) property means that for every or-

thomodular poset X , the diagram

UG(X)
(0, )G(X)

//

id
''❖❖

❖❖
❖❖

❖❖
❖❖

❖
⊥G(X)

+X

��
UG(X)

(3.7)

commutes. Therefore, + ◦ ((0, )G) = idUG in the

category of functors [OMP,Pos]. Equivalently,
the diagram

UG
(0, )G

//

id
&&▼

▼▼
▼▼

▼▼
▼▼

▼▼
⊥G

+

��
UG

(3.8)

in the category [OMP,Pos] commutes.

(A1) For every bounded poset with involution P , there
is a poset automorphism sP : ⊥(P ) → ⊥(P ) given

by the rule sP (a, b) = (b, a). Moreover, the fam-

ily of morphisms s indexed by the objects of

BPosInv forms a natural transformation

s : ⊥ → ⊥

in the category of functors [OMP,Pos].
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The axiom (A1) means, that for every orthomod-

ular poset X , the diagram

⊥G(X)
sG(X)

//

+X
&&▼

▼▼
▼▼

▼▼
▼▼

▼
⊥G(X)

+X

��
UG(X)

(3.9)

commutes. This implies that + ◦ (sG) = + in the
category of functors [OMP,Pos].

(A2) For every orthomodular poset X , there are iso-

tone mappings

rX , lX : ‚G(X) → ⊥G(X)

given by the rules

rX(a, b, c) = (a, b+ c) lX(a, b, c) = (a+ b, c)

The families of Pos-morphisms r and l indexed

by objects of OMP form a pair of natural trans-

formations

r, l : ‚G → ⊥G

in the category of functors [OMP,Pos]. The prop-

erty (A3) then means that for every orthomodular
poset X , the diagram

‚G(X)
rX //

lX

��

⊥G(X)

+X

��
⊥G(X)

+X

// UG(X)

(3.10)

commutes, so + ◦ r = + ◦ l in the category of
functors [OMP,Pos].

(A3) For every orthomodular poset X , there is a map-

ping pX : ⊥G(X) → IUG(X) given by the rule

pX(a, b) = (a+ b, a)

Let πX : ⊥G(X) → UG(X) be the projection

to the first entry, given by the rule π(a, b) = a.

Again, the families p and π indexed by objects
of OMP are natural transformations in the cat-

egory of functors [OMP,Pos].

By (A3), the diagram

⊥G(X)
pX

//

πX
%%▲

▲▲
▲▲

▲▲
▲▲

▲
IUG(X)

−X

��
UG(X)

commutes, meaning that −◦p = π in the category

[OMP,Pos].

(A4) To express this property using functors and nat-

ural transformations, we need to change the tar-

get category of our functors from Pos to Set.

This appears to necessary because the mapping

a 7→ (a, a′) is not isotone.
Write S : Pos → Set for the straightforwardly de-

fined functor that takes every poset to its underly-

ing set. For every orthomodular poset X , there is

an morphism of sets cX : SUG(X) → S⊥G(X)
given by the rule cX(a) = (a, a′). The property

(A4) then means that the diagram

SUG(X)
cX

//

1
&&▼

▼▼
▼▼

▼▼
▼▼

▼
S⊥G(X)

S+X

��
SUG(X)

commutes; here, 1 : SUG(X) → SG(X) denotes
the constant mapping with value 1 ∈ SG(X).

Therefore, c◦(S+) = 1 in the category of functors

[OMP,Set].

Let us prove in detail that the partial operation ⊞

on Q satisfies (A0). Consider the diagram

UG(A)
UG(f)

//

UG(g)
//

(0, )G(A)

��

UG(B)
U(q)

//

(0, )G(B)

��

U(Q)

(0, )Q

��
⊥G(A)

⊥G(f)
//

⊥G(g)
//

+A

��

⊥G(B)
IU(q)

//

+B

��

⊥(Q)

⊞

��
UG(A)

UG(f)
//

UG(g)
// UG(B)

U(q)
// U(Q)

(3.11)

Since (3.7) commutes, both left and middle verticals of

(3.11) compose to identity, therefore

UG(A)
UG(f)

//

UG(g)
//

id

��

UG(B)
U(q)

//

id

��

U(Q)

⊞◦(0, )Q

��
UG(A)

UG(f)
//

UG(g)
// UG(B)

U(q)
// U(Q)

(3.12)

commutes. Note that if we replace the rightmost arrow
in (3.12) by id, the diagram still commutes. However,

by an analogous argument that we used to define +

on Q, the rightmost vertical arrow in (3.12) is unique,

meaning that the diagram

U(Q)
(0, )Q

//

id
&&▼

▼▼
▼▼

▼▼
▼▼

▼
⊥(Q)

⊞

��
U(Q)

(3.13)
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commutes. Therefore, ⊞ ◦ (0, )Q = idU(Q) or, in other

words, for all x ∈ Q, 0 ⊞ x is defined and 0 ⊞ x = x.

Thus, the partial operation ⊞ on Q satisfies the condi-

tion (A0).

The reader should now observe that the essence of
our proof that ⊞ satisfies the contition (A0) lies in the

fact that we can represent the condition (A0) by the

commutative diagram (3.8) containing functors of the

type ◦G : OMP → Pos and natural transformations

among them. A routine argument then allows us to use
the fact that the orthomodular posets A and B sat-

isfy (A0) to show that (3.13) commutes, hence the par-

tial operation ⊞ on Q satisfies the condition (A0). In

the previous part of the proof we have demonstrated
that it is possible to express the remaining conditions

(A1)–(A4) by a commutative diagram in [OMP,Pos]

or [OMP,Set]. We may thus prove in an analogous

way that the partial operations ⊞ and ⊟ on Q satisfy

the conditions (A1)–(A4) so we skip the this part of the
proof.

We know that the partial operations ⊞ and ⊟ we

defined on Q satisfy the conditions (A0)–(A4). In other

words, there is a orthomodular poset Q̂ such that Q =

G(Q̂). Moreover, the BPosInv-morphism q : G(B) →
Q = G(Q̂) satisfies q(x + y) = q(x) ⊞ q(y), for all

x ⊥ y in B, because the right-hand square of (3.5)

commutes. That means, there is a morphism of ortho-

modular posets q̂ : B → Q̂ such that q = G(q̂). With
this fact in mind, we may now observe that the dia-

gram (3.5) means that q̂ ◦ f = q̂ ◦ g in OMP and since

the orthomodular poset structure on Q arising from

the diagrams (3.5) and (3.6) is unique, we see that Q̂ is

unique. Uniqueness of the morphism q̂ follows from the
fact that G is a faithful functor.

Let us prove that q̂ is a coequalizer of the pair f, g in

OMP. Let h : B → C be a morphism of orthomodular

posets such that h◦f = h◦g. Since the diagram (3.1) is a
coequalizer in BPosInv, there is a unique morphism of

bounded posets with involution e : G(Q̂) → G(C) such

that e ◦ G(q̂) = e ◦ q = G(h). It remains to prove that

this e preserves the partial operation ⊞ on Q. Consider

the following diagram:

⊥G(B)

⊥(q) ''◆◆
◆◆

◆◆
◆

+B

��

⊥G(h)
// ⊥G(C)

+C

��

⊥(Q)

⊞
��

⊥(e)

77♣♣♣♣♣♣♣

U(Q)
U(e)

''◆◆
◆◆

◆◆
◆

UG(B)

U(q) 77♣♣♣♣♣♣♣

UG(h)
// UG(C)

(3.14)

We need to prove that the right-hand square in (3.14)

commutes. By the commutativity of the diagram (3.5),

we already know that the left hand square in (3.14)

commutes. moreover, as G(h) = e ◦G(q̂) we see that

⊥G(h) = ⊥(e ◦G(q̂)) = ⊥(e) ◦ ⊥G(q̂) = ⊥(e) ◦ ⊥(q)

so the top triangle in (3.14) commutes. Similarly, we
can prove

UG(h) = U(e) ◦ U(q)

so the bottom triangle in (3.14) commutes. Since h is

a morphism of orthomodular posets, the outer square

of (3.14) commutes. Therefore,

+C ◦⊥(e) ◦ ⊥(q) = +C ◦ ⊥G(h) =

UG(h) ◦+B = U(e) ◦ U(q) ◦+B = U(e) ◦⊞ ◦ ⊥(q)

(3.15)

Since the top row in (3.5) is a coequalizer, ⊥(q) is
a coequalizing arrow and thus an epimorphism. There-

fore, (3.15) implies that +C ◦ ⊥(e) = U(e) ◦ ⊞ and we

see that the right-hand square of (3.14) commutes.

4 Further research

Sice G is a right adjoint, there is a functor

F : BPosInv → OMP

left adoint to G. It would be interesting to describe this

functor, in an explicit way.
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