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Abstract

The problem of quantification of emotions in the choice between alternatives is consid-

ered. The alternatives are evaluated in a dual manner. From one side, they are characterized

by rational features defining the utility of each alternative. From the other side, the choice

is affected by emotions labeling the alternatives as attractive or repulsive, pleasant or un-

pleasant. A decision maker needs to make a choice taking into account both these features,

the utility of alternatives and their attractiveness. The notion of utility is based on rational

grounds, while the notion of attractiveness is vague and rather is based on irrational feel-

ings. A general method, allowing for the quantification of the choice combining rational and

emotional features is described. Despite that emotions seem to avoid precise quantification,

their quantitative evaluation is possible at the aggregate level. The analysis of a series of

empirical data demonstrates the efficiency of the approach, including the realistic behavioral

problems that cannot be treated by the standard expected utility theory.
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1 Introduction

The problem of making a choice between alternatives is a core of decision theory and its numerous
applications in economics, finances, and the operation of intelligence, whether artificial or human.
The most well developed procedure of decision making is based on the expected utility theory
formalized by von Neumann and Morgenstern (1953). However, as is well known, it is rather a rare
occasion when decisions are made on the basis of purely rational grounds estimating the alternative
utility. Almost always the choice is essentially affected by emotions, and humans do not strictly
follow the prescriptions of the expected utility theory, which results in numerous paradoxes and
often does not allow even for qualitative predictions. To take into account behavioral effects related
to the influence of emotions and other subjective biases, various so-called non-expected utility
theories were suggested by replacing the expected utility with specially constructed functionals
invented for the purpose of a posteriori interpretation of one or just a few phenomena. A list of
such non-expected utility theories can be found in the review by Machina (2008).

However, non-expected utility theories are descriptive requiring fitting of several parameters
from particular experimental data. In addition, spoiling the structure of the expected utility leads
to the appearance of inconsistences and new paradoxes producing more problems than it resolves
(Safra and Segal 2008; Birnbaum 2008; Al Najjar and Weinstein 2009, 2009).

The major problem in describing real-life decision making is caused by the difficulty of quan-
tifying such behavioral phenomena as emotions. This is because subjective emotions are not
precisely defined in explicit mathematical terms, contrary to such a crisp notion as utility that
can be evaluated on rational grounds. Therefore emotions increase the uncertainty that always
exists in any choice, when decision makers evaluate the features of the given alternatives (Scherer
and Moors 2019). When analyzing alternatives, decision makers experience different feelings, emo-
tions, and subconscious intuitive movements (Kahneman 1982; Picard 1997; Minsky 2006; Plessner
et al 2008). This is why, even choosing between seemingly well formulated lotteries, humans of-
ten do not obey the normative prescriptions of utility theory, but make decisions qualitatively
contradicting the latter (Kahneman and Tversky 1979).

It is important to differentiate two sides in the problem of emotion quantification. One side is
the assessment of emotions experienced by a subject as reactions on external events, e.g. hearing
voice or looking at pictures. The arising emotions can include happiness, anger, pleasure, disgust,
fear, sadness, astonishment, pain, and so on. The severity or intensity of such emotions can
be estimated by studying the expressive forms manifesting themselves in motor reactions, such
as facial expressions, pantomime, and general motor activity, and by measuring physiological
reactions, such as the activity of the sympathetic and parasympathetic parts of the autonomic
nervous system, as well as the activity of the endocrine glands. Vegetative manifestations of
emotions can be noticed by studying changes in the electrical resistance of the skin, the frequency
and strength of heart contractions, blood pressure, skin temperature, hormonal and chemical
composition of the blood, and like that. Several methods of appraising particular emotions in
separate setups have been considered (Amjadzadeh and Ansari-Asl 2017; Vartanov and Vartanova
2018; Scherer and Moors 2019; Vartanov et al. 2020, Wang et al. 2021).

The other, principally different, side of emotion evaluation concerns the study of the influence
of emotions on taking decisions by subjects. It is generally accepted that human decisions are not
purely rational, but emotions do play a great role in decision making. However the quantitative
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influence of emotions on the process of decision making remains yet an unsolved problem.
The present paper studies the second problem: How it would be possible to assess the influence

of emotions on decisions taken by humans? We do not consider the somatic or physiological effects
produced by emotions, but we aim at analyzing how subjective emotions, arising in the process
of decision making, influence the resulting decisions.

Subjectivity in decision making arises because of uncertainty in the suggested choice. This un-
certainty can be of dual nature. From one side, there is the usual probabilistic uncertainty based
on deliberations related to the alternative utility. From the other side, there is an uncertainty in
the choice due to the subjective feelings that are not regulated by rational rules. Emotions can
be separated into three classes. One class contains, loosely speaking, positive, features, such as
”good”, ”pleasant”, ”attractive” and like that. The second class is composed of negative char-
acterizations, such as ”bad”, ”unpleasant”, ”repulsive” etc. And the third class is intermediate,
comprising neutral definitions expressing indifference with respect to the alternatives under con-
sideration.

Despite the subjectiveness of emotions, their influence in the choice between alternatives some-
times can be quantified. Of course, this looks to be impossible for a particular decision maker
and for each separate choice procedure. Yet, it turns out that quantification is admissible at
the aggregate level for a typical decision maker representing the average characteristics of a large
group of decision makers.

The formulation of explicit mathematical rules allowing for the selection of an optimal alter-
native under vague uncertainty due to the influence of emotions, is not merely useful for charac-
terizing human decision making, but it is compulsory for the realization of affective computing
(Picard 1997) and for overcoming the challenge of creating artificial intelligence (Russel and Norvig
2016; Poole and Mackworth 2017; Neapolitan and Jiang 2018). The achievement of human-level
machine intelligence is a principal goal of artificial intelligence since its inception.

The process of decision making, actually, consists of two sides that can conditionally be named
rational and irrational. The rational side describes the comparative usefulness of the considered
alternatives, while the irrational side is due to emotions making the decision process less pre-
dictable. It is the rational-irrational duality that makes the quantification of the decision-making
process so difficult.

The distinction between rational and irrational has been extensively discussed in the literature
on dual processes (Sun 2002; Paivio 2007; Evans 2007; Stanovich 2011; Kahneman 2011) according
to which the procedure of taking decisions in human brains can be treated as a result of two
different processes that can be called rational (logical, controlled, regulated, deterministic, slow,
defined by clear rules) and irrational (intuitive, uncontrolled, emotional, random, fast, defined in
a fuzzy manner). These processes may proceed in parallel or in turn, but in any case they act
differently (Milner and Goodale 2008; Kahneman 2011).

It is important to stress that the differentiation of mental processes onto rational and irrational
has the meaning for the moment of taking a decision (Ariely 2008). It is a psychological distinction
but not a philosophical one. It is clear that giving a specially invented philosophical definition
it is straightforward to include afterwards all intuitive and emotional effects into the rank of
rational just giving a definition that rational is all what leads to the desired goal. Then illogical
uncontrolled feelings that occasionally lead to the goal should be termed rational, and vice versa
logical conclusions that occasionally miss the goal should be named irrational (Searle 2001; Julmi
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2019). The philosophical definition of rational has the meaning only afterwards, when the goal
has been reached. Only then it becomes clear what was leading to the goal and what was not.

Moreover, the philosophical definition of rational as what leads to the goal is ambiguous. For
instance, assume that your goal is to become rich. The easiest way to become rich is to steal.
Hence to steal is rational. But then you are caught by police and put into jail. To be jailed was
not your goal. Hence to steal is not rational. So it is not clear, is it rational or not, while from
the psychological point of view there is no ambiguity. An action that is logically and explicitly
formulated is psychologically rational. The psychological definition is based on real physiological
processes in the brain, while the philosophical definition is not uniquely defined and depends on
interpretations.

In what follows, we distinguish rational from irrational as it is accepted in decision making,
where rational is what can be explicitly formulated, based on clear rules, deterministic, logical,
prescriptive, normative, while irrational is the opposite to rational (Ariely 2008; Zafirovski 2012),
being intuitive, uncontrolled, emotional, random, defined in a fuzzy way.

The dual nature of decision making, comprising the rational-irrational duality, suggests that
this duality could be mathematically represented by a theory that naturally includes some kind of
duality in its basis. The proper candidate for this could be quantum theory, with its particle-wave
duality. A consistent approach realizing this analogy, by treating decision making as the procedure
of quantum measurements, is the recently developed Quantum Decision Theory (Yukalov and
Sornette 2008, 2009, 2011, 2014, 2016, 2018; Yukalov 2020, 2021).

However, mathematical techniques of quantum theory are not customary for the majority of
people. Therefore it would be desirable to develop a theory that could incorporate the achieve-
ments of quantum decision theory at the same time avoiding mathematical complications of quan-
tum techniques and the language of quantum theory so unfamiliar for the majority of researchers.
The development of such an approach and its farther elaboration is the goal of the present paper.
Specifically, the new results of the present article are as follows.

(i) The axiomatic formulation of dual decision theory, taking account of cognition-emotion
duality, that is rational-irrational duality in decision making, and comprising the main points of
quantum decision theory, but without involving any quantum formulae.

(ii) The derivation, without appealing to quantum theory, of the non-informative prior estimate
for attraction factor measuring the typical influence of emotions on the process of decision making.

(iii) Illustration of a simple rule for distinguishing emotionally attractive and repulsive charac-
teristics of the considered alternatives in the case of highly uncertain lotteries of the Kahneman-
Tversky type.

(iv) Analysis of empirical data confirming that the typical influence of emotions in decision
making composes 25%.

The plan of the paper is as follows. The approach to be formulated possesses two major
features. First, it is probabilistic, which requires to define the corresponding probability measure.
Second, it is dual, aiming at taking into consideration rational as well as irrational characteristics
of alternatives. In Sec. 2, the rules for defining the rational probabilistic choice, describing the
utility of the alternatives, is formulated. In Sec. 3, it is shown how it is possible to characterize the
emotional attractiveness of alternatives. In Sec. 4, the behavioral probability is defined, combining
the rational utility measure and the irrational emotional characteristic, called attraction factor.
The properties of the attraction factor are considered in Sec. 5, where the typical value of the
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attraction factor is found to be 1/4, which is called the quarter law. This value allows for the
estimation of non-informative priors for the attraction factors describing the influence of emotions
at the aggregate level. Section 6 shows how the attraction factors for multiple alternatives can
be estimated. Section 7, by the example of binary decision tasks, illustrates that the definition
of attraction factors, generally speaking, is contextual. This is because the attraction factors can
contain parameters whose values need to be adjusted for describing a particular set of decision
problems, which limits their use for other sets of decision tasks. In Sec. 8, the method of defining
the attraction factor structure in the case of two alternatives with equal or very close utilities is
described. Section 9 considers difficult choice tasks in the case of the Kahneman-Tversky lotteries,
whose utilities are either exactly equal or very close to each other, so that the standard utility
theory is not applicable. A method is suggested estimating the quality of the lotteries and their
attractiveness and giving good quantitative predictions at the aggregate level. In Sec. 10, the
analysis of a large set of lotteries is given demonstrating the validity of the quarter law at the
aggregate level. Section 11 concludes.

2 Probabilistic uncertainty

The main task of decision theory is to describe the process of choice between a given set of
alternatives

A = {An : n = 1, 2, . . . , NA} . (1)

Each alternative can be characterized from two sides, from the rational point of view of its use-
fulness and, from the other side, following irrational feelings and emotions.

In this and the following sections, we describe a new approach to decision making, taking into
account the rational reasoning by estimating the utility of the considered alternatives as well as
the presence of irrational emotions accompanying the choice.

Even when there exist rational logical arguments explaining the utility of the given alternatives,
not all subjects incline to prefer a single alternative, but always an alternative An, with a clearly
defined utility, is selected only by a fraction f(An) of decision makers (Slovic and Tversky 1974),
which can be termed rational fraction.

In the present section, the definition of the rational fraction is formulated and its properties
are described.

Definition 1. A rational fraction f(An) is the fraction of decision makers that would choose
the alternative An provided their decisions would be based solely on rational grounds. The rational
fraction is semi-positive and normalized,

NA
∑

n=1

f(An) = 1 , 0 ≤ f(An) ≤ 1 . (2)

The rational fraction represents the classical probability, with its standard properties, including
the additivity with respect to mutually exclusive alternatives,

f

(

⋃

n

An

)

=
∑

n

f(An) . (3)
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Definition 2. An alternative A1 is called more useful than A2 if and only if

f(A1) > f(A2) . (4)

Two alternatives, A1 and A2, are equally useful if and only if

f(A1) = f(A2) . (5)

The rational fraction f(An) shows how useful the alternative is, because of which it can be called
the utility fraction.

The ideas of decision theory ate typically illustrated by the choice between lotteries. Let the
alternatives be represented by the lotteries

An = {xi, pn(xi) : i = 1, 2, . . . , Nn} , (6)

which are the probability distributions over payoffs xi, with pn(xi) being the payoff probabilities
that can be either objective (von Neumannn and Morgenstern 1953) or subjective (Savage 1954).
The lottery utility is quantified by the expected utility

U(An) =
∑

i

u(xi)pn(xi) , (7)

where u(x) is a utility function. More generally, it is possible to introduce a utility functional

U(An) =
∑

i

u(xi)w(pn(xi)) ,

with w(pn(xi)) being a postulated weighting function (Kahneman and Tversky 1979).
The rational fraction, associated with the expected utility, should satisfy the limiting conditions

f(An) → 1 , U(An) → ∞ ,

f(An) → 0 , U(An) → −∞ , (8)

whose meaning is clear. An explicit form of the rational fraction can be done by the Luce rule
(Luce 1959; Luce and Raiffa 1989) according to which, if an alternative An is characterized by an
attribute an, then the weight of this alternative can be defined as

f(An) =
an

∑NA

n=1 an
(an ≥ 0) . (9)

When the expected utilities of all lotteries are semi-positive, the attribute values can be defined
by these utilities

an = U(An) , U(An) ≥ 0 , (10)

while when the expected utilities are negative, the attribute values are defined by the inverse
quantities

an =
1

| U(An) |
, U(An) < 0 . (11)
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In the case of mixed utility signs, it is straightforward to shift the utilities by a minimal available
wealth making these utilities semi-positive.

Definition 3. When alternatives are represented by lotteries, the rational fractions can be
defined as

f(An) =
U(An)

∑NA

n=1 U(An)
(U(An) ≥ 0) (12)

for semi-positive utilities and as

f(An) =
| U(An) |

−1

∑NA

n=1 | U(An) |−1
(U(An) < 0) (13)

for negative utilities.

Generally speaking, as the utility U(An), one can imply either the standard expected utility
(von Neumannn and Morgenstern 1953), or a utility functional, for instance as is used in the
prospect theory (Kahneman and Tversky 1979). It is also possible to define the rational fraction
as the minimizer of an information functional, as has been done for resolving the St. Petersburg
paradox (Yukalov 2021).

The so-defined rational fraction quantifies the fraction of decision makers choosing an alter-
native being based only on rational arguments of the alternative utility. In other words, it is
the probability that an alternative would be chosen by decision makers, provided they are purely
rational.

3 Emotional uncertainty

In addition to the probabilistic uncertainty that can be quantified by the rational fraction, there
exists an emotional uncertainty ascribing to the alternatives such vague emotional characteristics
that do not seem to allow for a quantification. In the simplest case, these characteristics can be
separated into three classes of different quality. One quality class includes such specifications as
”positive”, ”good”, ”pleasant”, and ”attractive”, while the other is composed of such depictions
as ”negative”, ”bad”, ”unpleasant”, and ”repulsive”. The third, intermediate class qualifies the
related alternatives as ”neutral” or ”indifferent” with respect to their attractiveness. The principal
question is how it would be possible to describe in mathematical terms and quantify these classes
of emotional uncertainty?

We shall denote the set of alternatives pertaining to the positive quality class as A+, while the
set of alternatives pertaining to the negative quality class, as A

−
. The set of alternatives from

the neutral quality class is denoted by A0. Let the emotional attractiveness of an alternative An

be represented by an attraction factor q(An). For a positive, attractive alternative, the attraction
factor is positive, for a negative, repulsive alternative, it is negative, and for a neutral alternative,
it is zero. The absolute value of the attraction factor is limited by one.

Definition 4. The attraction factor pertaining to a positive, negative or neutral quality class,
respectively, varies in the intervals

0 < q(An) ≤ 1 (An ∈ A+) ,
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−1 ≤ q(An) < 0 (An ∈ A
−
) ,

q(An) = 0 (An ∈ A0) . (14)

Definition 5. An alternative A1 is more attractive than A2 if and only if

q(A1) > q(A2) . (15)

Conversely, an alternative A2 is more repulsive than A1. Two alternatives are said to be equally
attractive, or equally repulsive, if and only if

q(A1) = q(A2) . (16)

Recall that quality, or attractiveness, is a vague subjective notion which can be interpreted
as that the attraction factor is a random quantity varying in the frame of its quality class. The
qualities ”attractive” or ”repulsive” are subjective, being associated with concrete decision makers.
Moreover, they can change for the same decision maker taking decisions at different moments of
time or under different circumstances, hence they are contextual (Helland 2018).

4 Behavioral probability

In real life, humans make decisions taking into account rational arguments, at the same time be-
ing influenced by irrational feelings and emotions. This implies that both quantities, the rational
fraction and attraction factor define the probability p(An) of choosing alternatives by decision
makers. Thus the probability p(An) of choosing an alternative An embodies both a rational evalu-
ation of the alternative utility as well as reflects the emotional attitude of decision makers towards
the considered alternatives. This rational-irrational duality is typical for the behavior of real-life
decision makers, because of which the probability p(An) can be called behavioral probability.

When looking for the form of this probability, it is necessary to keep in mind that the rational
decision making has to be a particular case of the more general process encompassing both rational
and irrational sides of decision making. That is, when irrational effects become not important,
the choice becomes purely rational. This requirement can be written as a limiting condition.

Correspondence principle. Rational decision making is a particular case of behavioral
decision making, when irrational effects play no role:

p(An) → f(An) , q(An) → 0 . (17)

The behavior of decision makers reflects the superposition of rational and irrational sides of
consciousness. In other words, the real-life behavior is a superposition of cognition and emotions.
This suggests the following axiom.

Axiom 1. Behavioral probability is the sum of a rational fraction and of an attraction factor:

p(An) = f(An) + q(An) , (18)
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with p(An) being semi-positive and normalized,

NA
∑

n=1

p(An) = 1 , 0 ≤ p(An) ≤ 1 . (19)

The condition of additivity is not required, so that, in general, the probability measure {p(An)}
is not necessarily additive.

The rational part of the behavioral probability is explicitly defined by the rational fraction,
while the irrational part is characterized by a quantity represented by the attraction factor. The
behavioral probability, being a superposition of two terms, reflects the existence in life of rational-
irrational duality, or cognition-emotion duality, or utility-attractiveness duality. When dealing
with empirical data, the probability p(An) describes the total fraction of decision makers preferring
the given alternative.

The alternatives An from the set A acquire the following properties understood as the corre-
sponding relations between their probabilities.

(i) Ordering: For any two alternatives A1 and A2, one of the relations necessarily holds: either
A1 ≺ A2, in the sense that p(A1) < p(A2), or A1 � A2, when p(A1) ≤ p(A2), or A1 ≻ A2, if
p(A1) > p(A2), or A1 � A2, when p(A1) ≥ p(A2), or A1 ∼ A2, if p(A1) = p(A2).

(ii) Linearity: The relation A1 � A2, implying p(A1) ≤ p(A2), means that A2 � A1, in the sense
that p(A2) ≥ p(A1).

(iii) Transitivity: For any three alternatives, such that A1 � A2, with p(A1) ≤ p(A2), and
A2 � A3, when p(A2) ≤ p(A3), it follows that A1 � A3, in the sense that p(A1) ≤ p(A3).

(iv) Completeness: The set of alternatives A contains a minimal Amin and a maximal Amax

elements, for which p(Amin) = minn p(An) and, respectively, p(Amax) = maxn p(An). The
ordered set of these alternatives is called a complete lattice.

Relations between behavioral probabilities determine preference relations between the alter-
natives.

Definition 6. An alternative A1 is called preferable to A2 if and only if

p(A1) > p(A2) (A1 ≻ A2) . (20)

Two alternatives A1 and A2 are indifferent if and only if

p(A1) = p(A2) (A1 ∼ A2) . (21)

Definition 7. The alternative Aopt is called optimal if and only if it corresponds to the
maximal behavioral probability,

p(Aopt) = max
n

p(An) . (22)
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It is clear that an alternative can be more useful but not preferable, since its behavioral
probability consists of a rational fraction and an irrational attraction factor. An alternative A1 is
preferable to A2, implying that p(A1) > p(A2), then and only then when

f(A1)− f(A2) > q(A2)− q(A1) . (23)

Both quantities, the rational fraction and attraction factor are important in the process of taking
decisions.

5 Attraction factor

Although the attraction factor is a random quantity, it possesses, on average, some general prop-
erties that, because of their importance, are formulated as theorems.

Theorem 1. The attraction factor q(An) varies in the interval

− f(An) ≤ q(An) ≤ 1− f(An) (24)

and satisfies the alternation law
NA
∑

n=1

q(An) = 0 . (25)

Proof. These properties follow directly from the definition of the behavioral probability (18),
its semi-definiteness and normalization (19), and from the semi-definiteness and normalization of
the rational fraction (2). �

Irrational feelings and emotions, playing a very important role in decision making, are charac-
terized by the attraction factor. Strictly speaking, the attraction factor q(An) is a random quantity
that varies for different people and different conditions. Despite that it is random, it enjoys some
specific features that can be used for estimating the non-informative priors quantifying this factor.

Recall that being random does not prevent the quantity from possessing well defined properties
on average. In decision making this means that, although the attraction factor is difficult to define
for a single decision maker and a single choice, but it may enjoy quite explicit properties at the
aggregate level as an average for a large group of decision makers and over several choices. Such
averages, playing the role of non-informative priors, could allow us to evaluate typical attraction
factors, even having no detailed information on each of the separate decision makers.

Definition 8. If a quantity y is given on an interval [a, b], the average of y is defined as the
arithmetic average

y ≡
a+ b

2
. (26)

In the case when the boundaries a and b themselves are the quantities given on the intervals [a1, a2]
and, respectively, [b1, b2], the non-informative prior for y is the arithmetic average

y ≡
a + b

2

(

a ≡
a1 + a2

2
, b ≡

b1 + b2
2

)

. (27)
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Theorem 2. Quarter Law. The average value for the attraction factor q(An) in the positive
quality class is

q(An) =
1

4
(An ∈ A+) (28)

and in the negative quality class, it is

q(An) = −
1

4
(An ∈ A

−
) . (29)

Proof. According to Theorem 1, the attraction factor is defined on the interval [−f(An), 1 −
f(An)]. Hence for the positive quality class it is given on the interval [0, 1 − f(An)] and for the
negative quality class, on the interval [−f(An), 0]. By the definition of the averages, we have for
the positive quality class

q(An) =
1− f(An)

2
(An ∈ A+) , (30)

while for the negative quality class

q(An) = −
f(An)

2
(An ∈ A

−
) . (31)

Since f(An) is defined on the interval [0, 1], its non-informative prior is the average f̄(An) = 1/2.
This gives the averages (28) and (29). �

In this way, the average behavioral probability of choosing an alternative An by a group of
decision makers can be estimated by the expression

p(An) = f(An)± 0.25 , (32)

provided the probability properties (18) are preserved.

The attraction factor, being a random quantity, varies for different agents as well as for the
same decision maker at different moments of time. Therefore the same decision task, with the
same utility factors, even for the same pool of subjects may be accompanied by different behavioral
probabilities (Murphy and Fu 2018), hence different attraction factors. Such variations is a kind
of random noise. Numerous empirical data show that these variations lead to statistical errors of
about 0.1 (Murphy and ten Brincke 2018). This implies that if the difference p(An) − f(An) is
smaller than 0.1, then the attractiveness of the alternative pertains to the neutral class and the
attraction factor can be set to zero.

6 Multiple alternatives

The estimate for the non-informative prior of the attraction factor, derived above, is especially
useful for the case of choosing between two alternatives. In the case, where there are many
alternatives in the set A, it is possible to more precisely estimate typical attraction factors, playing
the role of non-informative priors.

11



Suppose NA alternatives can be classified according to the level of their attractiveness, so that

q(An) > q(An+1) (n = 1, 2, . . . , NA − 1) . (33)

Let the nearest to each other attraction factors q(An) and q(An+1) be separated by a typical gap

∆ ≡ q(An)− q(An+1) . (34)

And let us accept that the average over the set A absolute value of the attraction factor can be
estimated by the non-informative prior q = 1/4, so that

q ≡
1

NA

NA
∑

n=1

| q(An) | =
1

4
. (35)

Theorem 3. For a set A of NA alternatives, under conditions (33), (34), and (35), the
non-informative priors for the attraction factors are

q(An) =
NA − 2n+ 1

2NA

(NA even) ,

q(An) =
NA(NA − 2n+ 1)

2(N2
A − 1)

(NA odd) , (36)

depending on whether NA is even or odd.

Proof. In accordance with conditions (33), (34), and (35), we can write

q(An) = q(A1)− (n− 1)∆ . (37)

From the alternation law (25), it follows

q(A1) =
NA − 1

2
∆ . (38)

Using the definition of the average q in equation (35) gives the gap

∆ =

{

4q/NA, NA even
4qNA/(N

2
A − 1), NA odd

, (39)

depending on whether the number of alternatives NA is even or odd. Then expression (38) becomes

q(A1) =

{

2q(NA − 1)/NA, NA even
2qNA/(NA + 1), NA odd

. (40)

Using (37), we get

q(An) =

{

2q(NA + 1− 2n)/NA, NA even
2qNA(NA + 1− 2n)/(N2

A − 1), NA odd
, (41)
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In view of equality (35), we have q̄ = 1/4. Then expression (40) leads to

q(A1) =

{

(NA − 1)/2NA, NA even
NA/2(NA + 1), NA odd

. (42)

And finally, equation (41) results in the answer (36). �

As applications of the above theorem, let us give some examples. Thus for a set of two
alternatives, we have the already known values of the non-informative priors for the attraction
factors

{q(An) : n = 1, 2} =

{

1

4
, −

1

4

}

. (43)

For three alternatives, we find

{q(An) : n = 1, 2, 3} =

{

3

8
, 0 , −

3

8

}

. (44)

Respectively, for the set of four alternatives, we obtain the quality factors

{q(An) : n = 1, 2, 3, 4} =

{

3

8
,
1

8
, −

1

8
, −

3

8

}

. (45)

7 Binary alternatives

The case of binary alternatives is, probably, the most often considered in applications, being
a typical choice problem. In previous sections, a method of evaluating the average value of the
attraction factors is described. As is shown, the typical attraction factor can be estimated, despite
that, in general, attractiveness seems to be a vague notion. The natural question arises whether
it would be feasible to give a more detailed assessment of attractiveness. This problem has been
discussed for the case of two alternatives, when it has been necessary to choose between two
lotteries (Favre et al. 2016; Vincent et al. 2016; Ferro et al. 2021, Zhang and Kjellström 2021).

Let us consider the choice between two lotteries, A and B, whose utilities are U(A) and U(B),
respectively. These quantities can represent either the standard expected utility (von Neumann
and Morgenstern 1953) or other utility functionals employed in decision theory, e.g. the utility
functional of prospect theory (Kahneman and Tversky 1979; Tversky and Kahneman 1992). The
attraction factor in the form

q(A) = min{ϕ(A), ϕ(B)} tanh{a[ U(A)− U(B) ]} , q(B) = −q(A) , (46)

has been considered (Vincent et al. 2016; Ferro et al. 2021), where

ϕ(A) =
1

Z
eβU(A) , ϕ(B) =

1

Z
eβU(B) , Z = eβU(A) + eβU(B) .

It has been used for characterizing the series of 91 binary decision tasks (lotteries), where the
choice is made by the pool of 142 subjects (Murphy and ten Brincke 2018). The parameters of
the attraction factor are fitted so that to optimally agree with the given experimental data. It is
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shown (Vincent et al. 2016; Ferro et al. 2021) that the decision theory with this attraction factor
better describes the empirical data than the stochastic cumulative prospect theory (Tversky and
Kahneman 1992) and than the stochastic rank-dependent utility theory (Quiggin 1982).

As is clear, the parameters calibrated so that to optimally describe a given set of lotteries may
be not appropriate for another set of lotteries. In that sense, each combination of parameters is
contextual, being suitable for a particular set of decision tasks, but not necessarily adequate for
other groups of decision problems. This can be easily understood noticing that the attraction
factor (46) becomes zero, when the utilities U(A) and U(B) coincide, or it becomes negligible
when these utilities are close to each other. At the same time very close, or equal utilities often
correspond to high uncertainty in the choice, which results in large attraction factors. A typical
example of such a situation has been illustrated by Kahneman and Tversky (1979) for a set of
lotteries with close or coinciding expected utilities.

The choice between two alternatives with equal or close utilities is a kind of the ”Buridan’s
donkey problem” (Kane 2005) that can be solved only considering emotions.

8 Buridan’s donkey problem

Emotions are characterized by attraction factors. Hence to quantify emotions means the necessity
of evaluating the values of the attraction factors for the considered alternatives. As is explained
in Sec. 5, the first step in this estimation is the formulation of the quarter law stating that the
non-informative prior for the magnitude of the attraction factor for either positive or negative
quality classes is ±0.25. However we need to define how the actual classification could be realized,
so that each alternative would be associated with the corresponding quality class, either positive
or negative. This problem is typical for the research area known as soft computing aspiring to
find methods that tolerate imprecision and uncertainty of fuzzy notions to achieve tractability and
robustness allowing for quantitative conclusions (Clocksin 2003; de Silva 2003; Jamshidi 2003).

Below we suggest an algorithm that is applicable to that situation of close utilities of lotteries,
whether with gains or with losses. This algorithm can be justified on the basis of studies in
experimental neuroscience, which have discovered that, when making a choice, the main and
foremost attention of decision makers is directed towards the payoff probabilities (Kim, Seligman
and Kable 2012). This implies that subjects evaluate higher the probabilities than the related
payoffs (Yukalov and Sornette 2014, 2018). In mathematical terms, this can be formulated as
the existence of different types of scaling for the alternative quality with respect to payoff utility
and payoff probability. Say, the payoff utility is scaled linearly, while the payoff probability,
exponentially.

To be explicit, let us consider a simple case of two alternatives, one lottery

A1 = {u, p | 0, 1− p} , (47)

with a payoff utility u and a related probability p, and the other lottery

A2 =
{

λu,
p

λ
| 0, 1−

p

λ

}

, (48)

whose payoff utility and probability are scaled in such a way that the expected utilities of both
lotteries are equal,

U(A1) = U(A2) = up .
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Then the corresponding rational fractions coincide, f(A1) = f(A2) = 1/2, and one cannot choose
a preferable alternative being based on rational arguments. This is a typical example of a series of
lotteries considered by Kahneman and Tversky (1979). However, empirical studies show that sub-
jects do make clear preferences between the lotteries, depending on their payoffs and probabilities.
This implies that subjects are able to intuitively classify the lotteries into positive (attractive) or
negative (repulsive).

Since ”quality” or ”attractiveness” are vague notions, it would be tempting to accomplish the
quality classification by means of words. For instance, we could accept that between two lotteries
that one is of better quality, or more attractive, that yields a more certain gain or less certain
loss. Often this is a reasonable way of classification, although not always.

Suppose the lottery A1 is quite certain, which implies that the payoff probability is in the
interval 1/2 < p ≤ 1. Hence the average probability is p = 3/4, which is appreciated by people
as highly certain (Hillson 2003, 2019). Let the scaling with λ > 1 be such that the payoff utility
increases, while its probability diminishes. When λ is not large, subjects do prefer the more certain
lottery A1. However strongly increasing the payoff utility may attract more people, despite a small
payoff probability, as has been confirmed by real-life lotteries (Rabin 2000).

In order to describe the method of classification of alternatives into positive (attractive) or
negative (repulsive) quality classes, let us introduce the quality functional Q(An). The fact that
decision makers in their choice pay the main and foremost attention to the payoff probabilities
(Kim, Seligman and Kable 2012) is formalized by a linear dependence of the quality functional
with respect to the payoff utility and by an exponential dependence with respect to the payoff
probability. For the case of the lotteries (47) and (48), this implies the quality functionals

Q(A1) = ubp , Q(A2) = λubp/λ .

When the scaling λ is of order one and A1 is more certain, subjects consider the more certain
lottery as more attractive, which means that Q(A1) is larger than Q(A2). But if the payoff
probability is diminished by an order, which assumes λ = 10, while the payoff utility increases by
an order, then the lottery A1 can become less attractive than A2, so that Q(A1) becomes smaller
than Q(A2). The change of attractiveness occurs where Q(A1) = Q(A2). The latter equality gives
the expression for the base b that for p = 3/4 and λ = 10 yields

b = λλ/(λ−1)p = 30 . (49)

The above arguments give a clue allowing us to define the quality functional for any lottery.

Definition 9. The quality functional of an arbitrary lottery is

Q(An) =
∑

i

u(xi)30
pn(xi) . (50)

Comparing the quality functionals of different lotteries, we can meet the case, where these
functionals are equal, but the lotteries differ from each other by the gain-loss number difference

N(An) = N+(An)−N
−
(An) (51)
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between the number of admissible gains N+(An) and the number of possible losses N
−
(An). A

typical example is the comparison of the lottery A1 defined in (47) and the lottery

A3 = {u1, p | u2, p | 0, 1− 2p} , (52)

in which u1 + u2 = u. Then the related quality functionals are equal

Q(A3) = u1b
p + u2b

p = ubp = Q(A1) ,

where b = 30. If un > 0, then the lottery A1 possesses only one admissible gain and no losses,
while the lottery A3, two gains and also no losses. Hence N(A1) = 1 and N(A3) = 2. Since N(A3)
is larger than N(A1), the lottery A3 is treated as more attractive. Similarly, for the lotteries
with losses, where un < 0, and quality functionals are equal, the gain-loss number difference
N(A1) = −1 is larger than N(A3) = −2, so that the lottery A1 with a smaller number of losses is
more attractive.

Definition 10. A lottery A1 is of better quality, or more attractive, than A2, so that q(A1) >
q(A2), if either

Q(A1) > Q(A2) , (53)

or if
Q(A1) = Q(A2) , N(A1) > N(A2) . (54)

If some lotteries A1 and A2 cannot be classified as more or less attractive, they are said to
be of equal quality, or equally attractive, so that q(A1) = q(A2). If there are only two of these
lotteries, then the alternation law q(A1) + q(A2) = 0 implies q(A1) = q(A2) = 0. In that case, the
lotteries are in the neutral quality class.

If the alternative A1 is more attractive than A2, then the related behavioral probabilities can
be estimated as

p(A1) = f(A1) + 0.25 , p(A2) = f(A2)− 0.25 , (55)

where f(An) are rational fractions. Here the inequality 0 ≤ p(An) ≤ 1 is assumed, which can be
formalized by the definition

p(An) = Ret[0,1]{f(An)± 0.25} ,

where the retract function is defined as

Ret[0,1]z =







0, z < 0
z, 0 ≤ z ≤ 1
1, z > 1

.

Recall that the above expressions estimate the aggregate fractions of decision makers averaged
over many subjects and a set of choices. For a single decision maker, the attraction factor is a
random quantity. However, the average attraction factor and, respectively, the average behavioral
probability can be estimated according to rules (55). The rational fraction f(An) shows the fraction
(frequentist probability) of decision makers that would choose the corresponding alternative on
the basis of only rational rules. While the behavioral probability p(An) defines the real total
fraction of decision makers actually choosing An, taking into account both the rational utility as
well as the irrational emotional attractiveness of the alternatives.
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9 Kahneman-Tversky lotteries

By a number of examples, Kahneman and Tversky (1979) have shown that the expected utility
theory in many cases does not work at all, so that decision makers do not decide according
to utility theory, because of the very close lottery utilities, and even choose the alternatives that
should be neglected according to the utility theory prescriptions. In their experiments, the number
of participants was about 100. The typical statistical error was close to ±0.1. Payoffs below are
given in monetary units, whose measures are of no importance when using dimensionless rational
fractions.

Below, we show that the method described above correctly predicts the aggregate choice,
giving good quantitative estimates for behavioral probabilities. Rational fractions are calculated
by formulas of Sec. 2. For simplicity, the linear utility function u(x) is accepted. The attraction
factor is represented by its non-informative prior, with the sign prescribed by the lottery quality
functional defined in Sec. 8. For brevity, we use the notation Q(An) ≡ Qn.

For the convenience of the reader, we summarize the formulae that are used below in charac-
terizing the lotteries. The rational utility fraction is calculated according to the definition in Sec.
2 as

f(Ln) =
U(Ln)

∑

n U(Ln)
(U(Ln) ≥ 0)

for semi-positive expected utilities and as

f(Ln) =
| U(Ln) |

−1

∑

n | U(Ln) |−1
(U(Ln) < 0)

for negative expected utilities, where the latter are given by the expression

U(Ln) =
∑

i

xipn(xi) .

The quality functional Qn = Q(Ln) is defined in (50).

Choice 1. Consider two lotteries

L1 = {2.5, 0.33 | 2.4, 0.66 | 0, 0.01} , L2 = {2.4, 1} .

The rational fractions are f(L1) = 0.501 and f(L2) = 0.499, so that the first lottery should
be chosen on the rational grounds. However, the lottery quality functionals Q1 = 30.3 and
Q2 = 72 show that the second lottery, being more certain, is more attractive, since Q2 > Q1.
Hence q(L2) > q(L1), and involving the non-informative prior, we have q(L1) = −0.25, while
q(L2) = 0.25. This gives the behavioral probabilities

p(L1) = 0.25 , p(L2) = 0.75 ,

according to which the second lottery is optimal. This is in agreement with the empirical results

pexp(L1) = 0.18 , pexp(L2) = 0.82 .

The more certain, but less useful lottery is chosen.
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Choice 2. One chooses between the lotteries

L1 = {2.5, 0.33 | 0, 0.67} , L2 = {2.4, 0.34 | 0, 0.66} .

The rational fractions are close to each other, f(L1) = 0.503 and f(L2) = 0.497. At the first
glance, it is difficult to say which of the lotteries is more attractive, since the first lottery has a
slightly larger payoff, while the second is a little more certain. But the lottery qualities Q1 = 7.68
and Q2 = 7.63 show that the first lottery is a bit more attractive. Hence q(L1) = 0.25 and
q(L2) = −0.25. Then the behavioral probabilities are

p(L1) = 0.75 , p(L2) = 0.25

which is well comparable with the experimental data

pexp(L1) = 0.83 , pexp(L2) = 0.17 .

This is an example, where the majority prefer a less certain, but more useful lottery.

Choice 3. Considering the lotteries

L1 = {4, 0.8 | 0, 0.2} , L2 = {3, 1} ,

one sees that the first lottery, although being less certain, is more useful, having a larger rational
fraction f(L1) = 0.516 while f(L2) = 0.484. But its quality is lower than that of the second
lottery, Q1 = 60.8, while Q2 = 90. This means that the second lottery is more attractive, because
of which q(L1) = −0.25 and q(L2) = 0.25. As a result, the behavioral probabilities are

p(L1) = 0.27 , p(L2) = 0.73 ,

being close to the experimentally observed

pexp(L1) = 0.20 , pexp(L2) = 0.80 .

Here the more certain, although less useful lottery is chosen.

Choice 4. For the lotteries

L1 = {4, 0.20 | 0, 0.80} , L2 = {3, 0.25 | 0, 0.75} ,

the rational fractions are again close to each other, as in the previous case, f(L1) = 0.516 and
f(L2) = 0.484. But the quality of the first lottery is higher than that of the second, Q1 = 7.9, but
Q2 = 7.02. This makes the first lottery more attractive, with q(L1) = 0.25 and q(L2) = −0.25.
And the choice reverses, as compared to the previous case,

p(L1) = 0.77 , p(L2) = 0.23 ,

in agreement with the empirical results

pexp(L1) = 0.65 , pexp(L2) = 0.35 .
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Again, a less certain, although more useful, lottery is chosen.

Choice 5. Between the lotteries

L1 = {6, 0.45 | 0, 0.55} , L2 = {3, 0.9 | 0, 0.10} ,

it is difficult to choose which is better. The first lottery suggests a twice larger payoff, while the
second, twice higher payoff probability. The utility of both the lotteries is the same, with the same
rational fractions f(L1) = f(L2) = 0.5. However, the lottery qualities are different, Q1 = 27.7,
while Q2 = 64.1, showing that the second lottery is more attractive, which gives q(L1) = −0.25
and q(L2) = 0.25. Therefore the behavioral probabilities become

p(L1) = 0.25 , p(L2) = 0.75 .

And the empirical data are

pexp(L1) = 0.14 , pexp(L2) = 0.86 .

More certain lottery is chosen.

Choice 6. The lotteries

L1 = {6, 0.001 | 0, 0.999} , L2 = {3, 0.002 | 0, 0.998} ,

have the same rational fractions f(L1) = f(L2) = 0.5. But the quality of the first lottery is higher
than that of the second, Q1 = 6.02, while Q2 = 3.02. That is, the first lottery is more attractive,
so that q(L1) = 0.25 and q(L2) = −0.25. This yields the behavioral probabilities

p(L1) = 0.75 , p(L2) = 0.25 ,

practically coinciding with the experimental data

pexp(L1) = 0.73 , pexp(L2) = 0.27 .

Between two equally useful lotteries, the less certain is chosen.

Choice 7. For the lotteries

L1 = {6, 0.25 | 0, 0.75} , L2 = {4, 0.25 | 2, 0.25 | 0, 0.5} ,

the rational fractions are again the same, which does not make it possible to choose on the basis
of utility, f(L1) = f(L2) = 0.5. Although the lottery qualities are equal, Q1 = Q2 = 14, but the
second lottery suggests a larger choice of gains, N(L2) = 2 > N(L1) = 1, which makes it more
attractive, with q(L1) = −0.25 and q(L2) = 0.25. As a result, the behavioral probabilities read as

p(L1) = 0.25 , p(L2) = 0.75 .

The empirical data are
pexp(L1) = 0.18 , pexp(L2) = 0.82 .
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Among seemingly equally useful lotteries, the choice is made under the influence of the attraction
factor.

Choice 8. Considering the lotteries

L1 = {5, 0.001 | 0, 0.999} , L2 = {0.005, 1} ,

we see that they are of equal utility, with the rational fractions f(L1) = f(L2) = 0.5. But the
lottery qualities are essentially different, Q1 = 5.02 and Q2 = 0.15, which defines the attraction
factors q(L1) = 0.25 and q(L2) = −0.25. Then the behavioral probabilities are

p(L1) = 0.75 , p(L2) = 0.25 .

This is very close to the empirical data

pexp(L1) = 0.72 , pexp(L2) = 0.28 .

Again, this is an example, when a less certain lottery is chosen among two equally useful lotteries.

Choice 9. The lotteries

L1 = {10, 0.5 | 0, 0.5} , L2 = {5, 1}

have equal utilities, with the rational fractions f(L1) = f(L2) = 0.5. The lottery qualities
Q1 = 54.8 and Q2 = 150 show that the second lottery is more attractive, hence q(L1) = −0.25
and q(L2) = 0.25. Therefore the behavioral probabilities become

p(L1) = 0.25 , p(L2) = 0.75 .

The empirical probabilities are

pexp(L1) = 0.16 , pexp(L2) = 0.84 .

The second lottery is more certain, although has a smaller payoff.

Choice 10. For the lotteries

L1 = {2, 0.5 | 1, 0.5} , L2 = {1.5, 1} ,

rational fractions are equal, f(L1) = f(L2) = 0.5. The lottery qualities are Q1 = 16.4 and
Q2 = 45. Hence the second lottery is more attractive, which means that q(L1) = −0.25 and
q(L2) = 0.25. Then the behavioral probabilities are

p(L1) = 0.25 , p(L2) = 0.75 .

This is very close to the experimentally found probabilities

pexp(L1) = 0.20 , pexp(L2) = 0.80 ,

actually coinciding with them within the accuracy of experiments.

20



Choice 11. The previous lotteries dealt with gains. Now we shall treat the lotteries with losses,
which implies that the subject has to pay, that is to loose, the amount of monetary units marked
as negative. Consider the lotteries

L1 = {−4, 0.8 | 0, 0.2} , L2 = {−3, 1} .

The rational fraction of the second lottery is larger, f(L1) = 0.484, while f(L2) = 0.516. However,
the first lottery is more attractive, since its quality is higher, Q1 = −60.8, while Q2 = −90. This
tells us that q(L1) = 0.25 and q(L2) = −0.25, which leads to the behavioral probabilities

p(L1) = 0.73 , p(L2) = 0.27 .

In experiments, the majority also choose the first lottery,

pexp(L1) = 0.92 , pexp(L2) = 0.08 .

The situation is opposite to the case of gains. Now a lottery with a less certain loss is preferable.

Choice 12. For the lotteries

L1 = {−4, 0.2 | 0, 0.8} , L2 = {−3, 0.25 | 0, 0.75} ,

the rational fractions are f(L1) = 0.484 and f(L2) = 0.516. The related lottery qualities read as
Q1 = −7.9 and Q2 = −7.02, showing that the second lottery is more attractive, with q(L1) =
−0.25 and q(L2) = 0.25. Then we find the behavioral probabilities

p(L1) = 0.23 , p(L2) = 0.77 .

Now the majority of decision makers choose the second lottery,

pexp(L1) = 0.42 , pexp(L2) = 0.58 ,

although it suggests a more certain loss.

Choice 13. The lotteries

L1 = {−3, 0.9 | 0, 0.1} , L2 = {−6, 0.45 | 0, 0.55}

possess equal utility, hence equal rational fractions f(L1) = f(L2) = 0.5. But the second lottery
is more attractive, since its quality is higher, Q1 = −64.1, while Q2 = −27.7. Therefore q(L1) =
−0.25 and q(L2) = 0.25. The behavioral probabilities

p(L1) = 0.25 , p(L2) = 0.75

show that the second lottery is optimal, in agreement with the empirical observations,

pexp(L1) = 0.08 , pexp(L2) = 0.92 .

The second lottery is preferred, although its loss is higher, but the loss is less certain.
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Choice 14. For the lotteries

L1 = {−3, 0.002 | 0, 0.998} , L2 = {−6, 0.001 | 0, 0.999}

rational fractions are equal, f(L1) = f(L2) = 0.5. However, the lottery qualities Q1 = −3.02
and Q2 = −6.02 demonstrate that the first lottery is more attractive, so that q(L1) = 0.25 and
q(L2) = −0.25. This results in the behavioral probabilities

p(L1) = 0.75 , p(L2) = 0.25

that are very close to the experimentally found,

pexp(L1) = 0.70 , pexp(L2) = 0.30 .

Now, between two equally useful lotteries, the lottery suggesting a more certain loss is chosen.

Choice 15. The lotteries

L1 = {−1, 0.5 | 0, 0.5} , L2 = {−0.5, 1}

also have equal rational fractions, f(L1) = f(L2) = 0.5. But the quality of the first lottery is
higher, Q1 = −5.48, while Q2 = −15. Hence the first lottery is more attractive, with q(L1) = 0.25,
but q(L2) = −0.25. The resulting behavioral probabilities

p(L1) = 0.75 , p(L2) = 0.25

are in good agreement with the experimental data

pexp(L1) = 0.69 , pexp(L2) = 0.31 .

The first lottery is preferred, although its loss is larger.

Choice 16. Among the lotteries

L1 = {−6, 0.25 | 0, 0.75} , L2 = {−4, 0.25 | − 2, 0.25 | 0, 0.5} ,

that look similar, having the same rational fractions f(L1) = f(L2) = 0.5, and equal qualities
Q1 = Q2 = −14, the second is less attractive, exhibiting a larger number of losses, N(L1) = −1 >
N(L2) = −2. Therefore q(L1) = 0.25 and q(L2) = −0.25. This yields the behavioral probabilities

p(L1) = 0.75 , p(L2) = 0.25 ,

practically coinciding with the empirical data

pexp(L1) = 0.70 , pexp(L2) = 0.30 ,

within the accuracy of experiments.

Choice 17. The lotteries

L1 = {−5, 0.001 | 0, 0.999} , L2 = {−0.005, 1}
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have the same utility, with equal rational fractions f(L1) = f(L2) = 0.5. But their qualities
Q1 = −5.02 and Q2 = −0.15 show that the second lottery is more attractive, having a much
larger quality. Hence q(L1) = −0.25 and q(L2) = 0.25. The behavioral probabilities are

p(L1) = 0.25 , p(L2) = 0.75 ,

as compared with the experimental data

pexp(L1) = 0.17 , pexp(L2) = 0.83 .

Surprisingly, the lottery with certain loss is chosen, which is explained by its higher quality.

Choice 18. For the lotteries

L1 = {−10, 0.5 | 0, 0.5} , L2 = {−5, 1} ,

the rational fractions are equal, f(L1) = f(L2) = 0.5. But for the lottery qualities, we have
Q1 = −54.8 and Q2 = −150. Thus the first lottery is more attractive, hence q(L1) = 0.25 and
q(L2) = −0.25. This gives the behavioral probabilities

p(L1) = 0.75 , p(L2) = 0.25 ,

in agreement with empirical data

pexp(L1) = 0.69 , pexp(L2) = 0.31 .

Now the lottery with a larger, but less certain loss is chosen.

The results for all 18 choices between the Kahneman-Tversky lotteries are summarized in
Table 1 showing which of the lotteries is optimal, that is, having the largest predicted behavioral
probability

p(Lopt) ≡ max
n

p(Ln) (56)

over the given lattice of alternatives. Also shown are the rational fractions for the optimal lottery,
f(Lopt), experimental probabilities of the optimal lottery, defined as the fractions of decision
makers choosing the optimal lottery pexp(Lopt), and the related empirical attraction factors

qexp(Lopt) = pexp(Lopt)− f(Lopt) . (57)

The results, corresponding to the non-optimal lotteries, can be easily found from the normalization
conditions

p(L1) + p(L2) = 1 , f(L1) + f(L2) = 1 , q(L1) + q(L2) = 0 . (58)

At the bottom of Table 1, the average values over all 18 cases are given for the rational fraction
f(Lopt) = 0.5, predicted behavioral probability p(Lopt) = 0.75, experimentally observed probability
pexp(Lopt) = 0.77, and the experimentally observed average absolute value of the attraction factor

qexp = pexp(Lopt)− f(Lopt) = 0.27 . (59)
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Within the accuracy of the experiment, the predicted average behavioral probability of choosing
an optimal lottery, 0.75, equals the empirical average fraction of decision makers 0.77, and the
average attraction factor 0.27 practically coincides with the theoretical estimate of 0.25.

As the analysis of this set of choices demonstrates, it is not possible to predict the behavioral
decision making of humans by considering separately either lottery utilities, payoffs, or payoff
probabilities. But reliable predictions can be made by defining behavioral probabilities, including
the estimates of both, rational fractions as well as attraction factors. On the aggregate level, such
predictions are not merely qualitative, but provide good quantitative agreement with empirical
data, involving no fitting parameters.

At the same time, the expected utility theory is not applicable to the Kahneman-Tversky
lotteries, since the lottery with a higher utility is preferred only twice among 18 lotteries, that is
only in the 1/9 part of the lotteries. Also, it is important to notice that the formula (46) here is
not valid, as far as for the coinciding utilities it gives zero attraction factor, while the aggregate
experimental data give for the attraction factor 0.27.

10 Quarter law

In the previous sections, it has been shown that the average influence of emotions in decision
making can be quantified by the typical value of attraction factor, which turns out to be close to
0.25, which is termed quarter law and which follows from the non-informative prior estimate of
Sec. 5. Thus in the set of Kahneman-Tversky lotteries of Sec. 9 the experimentally measured
average attraction factor is 0.27, which, within the typical statistical error of 0.1, coincides with
the predicted attraction factor 0.25.

In the present section, we verify the quarter law on the basis of a large set of binary lotteries
studied recently (Murphy and ten Brincke 2018). In the analyzed experiment, 142 subjects were
suggested a set of binary decision tasks (lotteries). The same experiment was repeated after two
weeks, with randomly changing the order of the pairs of lotteries. The experiments at these two
different times are referred as session 1 and session 2. There are three types of lotteries: lotteries
containing only gains (all payoffs are positive), lotteries with only losses (all payoffs are negative),
and mixed lotteries containing gains as well as losses. As usual, a loss implies the necessity to pay
the designed amount of money. Keeping in mind the estimation of attraction factors in positive
and negative quality classes, we consider the related lotteries, where the difference between the
rational utility factors and the empirical choice probabilities, at least in one of the sessions, are
larger than the value of the typical statistical error of 0.1 corresponding to random noise. On the
basis of these lotteries, we calculate the quantities of interest and summarize the results in several
tables.

Table 2 presents the results for the optimal lotteries with only gains and Table 3 shows the
results for the optimal lotteries with only losses. Recall that a lottery L1 is called optimal, as
compared to a lottery L2 if and only if the corresponding probability p(L1) is larger than p(L2). In
both the cases, of either the lotteries with only gains or the lotteries with only losses, an optimal
lottery is always a lottery from the positive quality class, in which q(Lopt) > 0. The situation can
be different for the mixed lotteries, containing gains as well as losses. In these cases, an optimal
lottery can occasionally pertain to a negative quality class. Table 4 summarizes the results for the
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mixed lotteries containing both gains and losses. Among these lotteries, the first sixteen examples
in Table 4 are the lotteries from the positive quality class, which at the same time are the optimal
lotteries. The last five cases are the lotteries that are not optimal, however being from the positive
quality class.

As is seen, the value of the attraction factor in the positive or negative quality classes is
±0.22, which is in very good agreement with the predicted non-informative priors ±0.25. Thus
the quarter law provides a rather accurate estimate of the attraction factor at the aggregate level.

11 Conclusion

An approach is developed allowing for the quantification of emotions in decision making. The
approach takes into account the duality of decision making, including both rational and irrational
sides of decision process. The rational evaluation of alternatives is based on logical clearly pre-
scribed rules defining a rational fraction representing the probability of choosing alternatives on
the basis of rational principles.

The irrational side of decision processes is due to subconscious feelings, emotions, and intuition
that cannot be exactly measured for a given subject at a given moment of time, thus inducing
emotional uncertainty in the process of decision making. Irrational processes are superimposed on
the rational evaluation of the considered alternatives and define for each alternative a correction
term called attraction factor. Since irrational processes cannot be exactly quantified, the attraction
factor is a random quantity. The attraction factor can be described by linguistic characteristics
that can be classified into three quality classes, briefly speaking, positive, negative, and neutral.
The positive quality class includes such specifications as attractive, pleasant, good and like that.
The negative quality class comprises the features like repulsive, unpleasant, bad, and so on. The
neutral quality class is intermediate, being neither positive nor negative.

The attraction factor is a variable randomly varying for different decision makers and even
for the same decision maker at different moments of time. Nevertheless, being random, does not
preclude this quantity to have a well defined average value inside each of the quality classes. A
theorem is proved defining the average values of the quality factor inside the positive class as 1/4
and inside the negative class as −1/4. For alternatives represented by lotteries with equal or close
utilities, a method is suggested ascribing each lottery to the appropriate quality class.

Being able to determine the belonging of alternatives to the related quality classes and knowing
the average values of attraction factors allows us to find the average behavioral probabilities
associated with the typical fractions of decision makers choosing this or that alternative.

The method is illustrated by a series of lotteries with a difficult choice, when the standard
expected utility theory is not applicable, or its prescriptions contradict the choice of real hu-
mans. The empirical data confirm that the non-informative prior for attraction factors provides
an accurate quantification of emotions at the aggregate level.

Summarizing, the main points of the suggested approach can be formulated as follows.

(i) Decision making is treated as a probabilistic process that can be characterized by behavioral
probabilities defining the portions of decision makers choosing this or that alternative from
the given set of alternatives.
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(ii) The behavioral probability, taking into account the rational-irrational or cognition-emotion
duality of decision processes, describes decision making affected by emotions. The superpo-
sition of utility and attractiveness is represented as a sum of two terms, a rational fraction
and an attraction factor.

(iii) The rational fraction, having the properties of the standard additive probability, describes
the fraction of decision makers that would make their choice being based solely on rational
grounds, following prescribed rational rules. The rational fraction quantifies the utility of
the choice.

(iv) The attraction factor takes into account irrational effects influencing the choice, such as feel-
ings, emotions, and biases. The attraction factor characterizes subconscious attractiveness
of the considered alternatives, because of which it is called attraction factor. The attraction
factor is a random quantity, varying for different subjects, different choices, and different
times.

(v) Despite being random, the attraction factor possesses well defined average features. The
average values of the attraction factor for positive or negative quality classes can be defined
by non-informative priors.

(vi) The approach makes it possible to give quantitative predictions in the choice between the
lotteries with emotional uncertainty, where the expected utility theory does not work. The
aggregate predictions, averaged over decision makers and choices, are in good quantitative
agreement with empirical data.

(vii) Empirical data confirm the quarter law providing, at the aggregate level, an accurate eval-
uation of typical influence of emotions in decision making.

(viii) The appealing feature of the approach is its straightforward axiomatic formulation employing
rather simple mathematics. Although the structure of the approach is implicitly influenced
by quantum theory, but it completely avoids borrowed from physics complicated quantum
techniques.
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Table 1: Optimal lotteries Lopt from the Kahneman-Tversky set, the rational fractions for the op-
timal lotteries, f(Lopt), predicted behavioral probabilities p(Lopt), experimentally observed prob-
abilities pexp(Lopt), defined as the fractions of the participants choosing the optimal lottery Lopt,
and the experimental attraction factors qexp(Lopt) corresponding to the optimal lotteries. At the
bottom, the average values are shown.

Lopt f(Lopt) p(Lopt) pexp(Lopt) qexp(Lopt)

1 L2 0.50 0.75 0.82 0.32

2 L1 0.50 0.75 0.83 0.33

3 L2 0.48 0.73 0.80 0.32

4 L1 0.52 0.77 0.65 0.13

5 L2 0.50 0.75 0.86 0.36

6 L1 0.50 0.75 0.73 0.23

7 L2 0.50 0.75 0.82 0.32

8 L1 0.50 0.75 0.72 0.22

9 L2 0.50 0.75 0.84 0.34

10 L2 0.50 0.75 0.80 0.30

11 L1 0.48 0.73 0.92 0.44

12 L2 0.52 0.77 0.58 0.06

13 L2 0.50 0.75 0.92 0.42

14 L1 0.50 0.75 0.70 0.20

15 L1 0.50 0.75 0.69 0.19

16 L1 0.50 0.75 0.70 0.20

17 L2 0.50 0.75 0.83 0.33

18 L1 0.50 0.75 0.69 0.19

0.50 0.75 0.77 0.27
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Table 2: Optimal lotteries with gains. The rational fraction f(Lopt) of the optimal lottery, fractions
of subjects (frequentist probabilities) pi(Lopt) choosing the optimal lottery in the session i = 1, 2,
and the attraction factors qi(Lopt) of the optimal lottery in the session i. At the bottom, the
average values for the related quantities.

f(Lopt) p1(Lopt) p2(Lopt) q1(Lopt) q2(Lopt)

1 0.55 0.86 0.89 0.31 0.34

2 0.48 0.66 0.69 0.18 0.21

3 0.51 0.68 0.62 0.17 0.11

4 0.59 0.80 0.75 0.22 0.17

5 0.63 0.89 0.90 0.26 0.27

6 0.66 0.96 0.95 0.30 0.29

7 0.51 0.79 0.81 0.28 0.30

8 0.48 0.60 0.63 0.12 0.15

9 0.63 0.88 0.92 0.26 0.30

10 0.56 0.89 0.82 0.33 0.26

11 0.63 0.77 0.73 0.14 0.10

12 0.51 0.72 0.73 0.21 0.21

13 0.61 0.87 0.85 0.26 0.24

14 0.63 0.93 0.93 0.30 0.30

15 0.64 0.85 0.87 0.21 0.23

16 0.64 0.80 0.80 0.16 0.16

17 0.64 0.89 0.89 0.25 0.25

18 0.48 0.65 0.70 0.17 0.22

19 0.65 0.87 0.93 0.22 0.28

20 0.66 0.86 0.82 0.20 0.16

21 0.58 0.84 0.80 0.26 0.22

22 0.52 0.75 0.74 0.23 0.22

23 0.48 0.64 0.65 0.16 0.17

24 0.44 0.60 0.53 0.16 0.10

25 0.62 0.73 0.79 0.11 0.17

26 0.64 0.81 0.90 0.17 0.26

27 0.66 0.93 0.96 0.27 0.30

0.58 0.80 0.80 0.22 0.22
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Table 3: Optimal lotteries with losses. The rational fraction f(Lopt) of the optimal lottery, fractions
of subjects (frequentist probabilities) pi(Lopt) choosing the optimal lottery in the session i = 1, 2,
and the attraction factors qi(Lopt) of the optimal lottery in the session i. At the bottom, the
average values for the related quantities.

f(Lopt) p1(Lopt) p2(Lopt) q1(Lopt) q2(Lopt)

1 0.52 0.77 0.75 0.25 0.23

2 0.60 0.85 0.83 0.25 0.23

3 0.53 0.72 0.71 0.19 0.18

4 0.64 0.96 0.92 0.32 0.28

5 0.55 0.70 0.68 0.15 0.13

6 0.54 0.73 0.72 0.20 0.19

7 0.63 0.79 0.84 0.16 0.21

8 0.54 0.66 0.63 0.12 0.09

9 0.56 0.80 0.89 0.24 0.33

10 0.58 0.89 0.92 0.31 0.34

11 0.49 0.66 0.71 0.17 0.22

12 0.62 0.87 0.93 0.25 0.31

13 0.55 0.79 0.74 0.24 0.19

14 0.54 0.82 0.77 0.29 0.24

15 0.53 0.65 0.70 0.12 0.17

16 0.51 0.59 0.62 0.08 0.11

17 0.56 0.79 0.86 0.23 0.30

18 0.58 0.89 0.90 0.31 0.32

19 0.61 0.76 0.74 0.15 0.13

0.56 0.77 0.78 0.21 0.22
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Table 4: Mixed lotteries, containing gains and losses, from the positive quality class. The rational
fraction f(L+) of the lottery, fractions of subjects pi(L+) choosing the corresponding lottery in the
session i = 1, 2, and the attraction factors qi(L+) of the lottery in that session i. At the bottom,
the average values of the related quantities.

f(L+) p1(L+) p2(L+) q1(L+) q2(L+)

1 0.40 0.69 0.66 0.29 0.26

2 0.62 0.85 0.85 0.23 0.23

3 0.67 0.87 0.82 0.20 0.15

4 0.44 0.62 0.61 0.18 0.17

5 0.50 0.64 0.54 0.15 0.05

6 0.59 0.71 0.65 0.12 0.06

7 0.54 0.69 0.63 0.16 0.10

8 0.49 0.66 0.60 0.18 0.16

9 0.57 0.87 0.85 0.30 0.28

10 0.65 0.75 0.77 0.10 0.12

11 0.52 0.77 0.70 0.26 0.19

12 0.49 0.58 0.63 0.09 0.14

13 0.55 0.87 0.92 0.32 0.37

14 0.52 0.61 0.67 0.09 0.15

15 0.53 0.80 0.83 0.27 0.30

16 0.56 0.67 0.63 0.11 0.07

17 0.00 0.27 0.27 0.27 0.27

18 0.00 0.29 0.36 0.29 0.36

19 0.00 0.30 0.45 0.30 0.45

20 0.00 0.39 0.38 0.39 0.38

21 0.00 0.37 0.35 0.37 0.35

0.41 0.63 0.63 0.22 0.22
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