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Abstract
With the purpose of improving the PDP (policy decision point) evaluation performance, a novel and efficient evaluation

engine, namely XDNNEngine, based on neural networks and an SGDK-means (stochastic gradient descent K-means)

algorithm is proposed. We divide a policy set into different clusters, distinguish different rules based on their own features

and label them for the training of neural networks by using the K-means algorithm and an asynchronous SGDK-means

algorithm. Then, we utilize neural networks to search for the applicable rule. A quantitative neural network is introduced to

reduce a server’s computational cost. By simulating the arrival of requests, XDNNEngine is compared with the Sun PDP,

XEngine and SBA-XACML. Experimental results show that 1) if the number of requests reaches 10,000, the evaluation

time of XDNNEngine on the large-scale policy set with 10,000 rules is approximately 2.5 ms, and 2) in the same condition

as 1), the evaluation time of XDNNEngine is reduced by 98.27%, 90.36% and 84.69%, respectively, over that of the Sun

PDP, XEngine and SBA-XACML.
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1 Introduction

Access control, when a user performs access operation to a

network or information system, refers to the access to

distributed resources which the system controls or protects

through authentication, dynamic authorization and other

technologies. In recent years, as the service-oriented

architecture (SOA) (Angulo et al. 2017), Web services,

cloud computing and other emerging network application

technologies rapidly develop, authorized access control has

now become an important protection mechanism in net-

work and information security.

In an access control model, permissions on resources to

which users can access are generally described by policies

(Atlam et al. 2018, Wang et al. 2016, Han and Lei 2012).

Nowadays, one of the best languages for describing poli-

cies is the eXtensible Access Control Markup Language

(XACML) (OASIS 2007) that as an open standard lan-

guage based on XML, was approved by the Organization

for the Advancement of Structured Information Standards

(OASIS) to develop access control for standardizing XML

in February 2003.

Policy decision point (PDP) is an important part of an

access control model. The PDP stores an access control

policy set that is written by XACML. When a new request

is received, the PDP checks whether the request is per-

mitted or not. However, as information systems become

increasingly complex, the number and complexity of

XACML policies grow rapidly (Petersen and Voigtlaender

2018). Existing XACML policy evaluation engines, such as

Sun XACML PDP (Sun’s XACML implementation 2015),
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compare a new request to all policies in the XACML policy

set by brute-force search, which leads to a great deal of

time to deal with the new request and the poorer perfor-

mance of PDP. Therefore, deciding how to improve the

evaluation performance of policy decision point, in the

field of authorization services, becomes an important and

critical problem to be solved.

At present, the principal problems in the evaluation

performance of PDP include:

(1) The conflict and redundancy of policies in a policy

set cause extra comparison times and lower the

matching speed.

(2) The matching method of brute-force search affects

the matching speed of requests.

As known, many studies have addressed the problem of

eliminating conflicts and redundancies in a policy set

(Jebbaouia et al. 2015), achieving satisfactory results.

Kuang et al. (2018) put forward a modality conflict

detection model to recognize the applicable policies during

policy evaluation. Ngo et al. (2015) propose an XACML

logical model and a decision diagram by the data interval

partition aggregation. We have done some research about it

in Deng and Zhang (2015); Deng et al. (2016). In addition,

Deng et al. (2019a) propose the XACML policy evaluation

engine XDPMOE based on bitmap storage and HashMap to

improve the evaluation efficiency of the XACML policy.

Liu et al. (2008) report XEngine that converts a policy set

to a numerical policy and a normalized policy to tree data

structures. This paper aims to improve the performance of

PDP by changing the matching method.

With the advent of the era of big data, the explosive

growth of data has gone beyond the scope of human’s

abilities to observe and calculate, and thus, a machine

learning combining with statistics, database science and

computer science has received much attention (Jiang 2018;

Zerari et al. 2019). Machine learning is the research of how

a computer imitates human’s learning behavior, acquires

new knowledge or experience, and reorganizes existing

knowledge structure to improve its performance. This

paper applies machine learning to the matching method of

access control.

The contributions of this paper are stated as follows.

(1) The traditional K-means (Peña et al. 1999) algorithm

can be used to complete the classification of a policy

set. Considering the repeated calculation and the

large-scale policy sets, we propose an asynchronous

K-means algorithm to accelerate the classification

process. That is to say, multi-thread and mini-batch

are utile to improve the PDP evaluation performance.

(2) With a view to the particularity of a policy set,

distinguishing different clusters is not simple. The

proposed SGDK-means (stochastic gradient descent

K-means) algorithm makes centroids of different

clusters more distinguishable, which can render the

following training of neural networks more effective.

(3) Due to the higher classification performance of

neural networks, we utilize them to search for the

applicable rule for every coming request, which

makes it possible to dynamically insert new policies

into the policy set without restarting its preprocess-

ing. In addition, a quantitative neural network is

proposed to reduce the requirement of a server’s

computational cost in classifying new requests.

The remainder of this paper is organized as follows.

Section 2 reviews the related works and shows the nota-

tions used in the paper. The framework of the XDNNEn-

gine is addressed and its two-stage evaluation process is

outlined in Sec 3. Section 4 reports the SGDK-means

algorithm and elaborates on the training of neural net-

works. In Sec 5, experimental results on the PDP perfor-

mance improvement are shown and analyzed. Finally, we

conclude this paper in Sec 6.

2 Related work and related notations

In the area of access control, scholars are trying to

improving the PDP evaluation performance in a variety of

ways. Several efforts have been mainly devoted to three

directions, including elimination of conflicts and redun-

dancies, numericalization of policy sets, and clustering and

distributed models.

2.1 Elimination of conflicts and redundancies

Because of the derivation of authorizations according to the

hierarchical structure policies, redundancies between rules

may exist (Lin et al. 2013). This kind of authorization

propagation can also result in unexpected conflicts (Singh

and Singh 2010). It is useful to find an effective way to

detect and reduce the conflicts and redundancies.

A number of works focus on the modality conflict

detection (Kamoda et al. 2005, Toe et al. 2013 Mohan et al.

2011). An XACML logic model is presented by Ngo et al.

(2015), which achieves a decision diagram using the data

interval partition aggregation. By this model, the logic

expressions in a policy can be parsed and transformed into

a decision tree structure that can improve evaluation per-

formance and detect redundancies between policies. Wang
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et al. (2011) prove that redundant policies can be removed

without changing the result of evaluation and propose a

framework named MLOBEE (multi-level optimization-

based evaluation engine). However, they do not formulate

a general method of refinement. Moreover, Deng and

Zhang (2015) argue that conflicts can be eliminated by

constructing a special data structure called resource index

tree.

These works perform well in eliminating conflicts and

redundancies. Yet it is possible that the scale of policy

remains large even after conflicts and redundancies are

eliminated. In fact, the evaluation process can be consid-

ered as a simple procedure that compares attributes

between the coming request and each rule in policies. The

prevalent Sun PDP uses brute force to match rules, which is

not elegant enough and leaves a great space for progress.

Since the comparison with strings is much slower than

numbers, with the pursuit of better efficiency, approaches

have been studied to improve efficiency in this evaluation

process.

2.2 Numericalization of policy sets

The comparison of strings is slower than that of integer.

Guided by this idea, approaches that convert rules in a

numeric format and organize these rules in structures

designed for easily finding applicable rules are developed

by more and more researchers.

Alex and Liu (2008) present a fast and scalable XACML

policy evaluation engine, called XEngine. Firstly, this

engine converts strings into integers. Then policies with a

hierarchical structure in the numerical format are organized

into a flat structure with the possibility for changing the

combining algorithm. Deng et al. 2019a) address a rule

dictionary designed for boosting evaluation using a multi-

dimensional array to store rules in a numeric format. When

a request is coming, it can be converted into a numeric

format by checking the map that has already been obtained.

Then, the rule dictionary calculates the exact location

where the applicable policy should be. Mourad and Jeb-

baoui (2015) report an SBA-XACML framework by elab-

orating on a set-based language and create an intermediate

layer that can automatically convert policies. A semantics-

based policy evaluation method is also introduced in

Mourad and Jebbaoui (2015) to accelerate the PDP eval-

uation process.

However, the evaluation performance of methods men-

tioned above is not satisfied when a large-scale policy set is

evaluated. If rules reach more than 10,000 in a policy set,

the evaluation time of XEngine and SBA-XACML cannot

be reduced dramatically. Moreover, the rule dictionary

requires a great deal of space for the dictionary. Benefited

by the previous works aiming for eliminating the conflicts

and redundancies between policies and the numericaliza-

tion of policies, a lot of approaches using clustering and

distributed PDP techniques reveal an unexpected perfor-

mance in this area.

2.3 Clustering and distributed models

Using clustering techniques, we can divide rules into dif-

ferent groups. Accordingly, when a request is coming, we

can locate which group contains the applicable rule that we

are searching for, then we can easily find the very rule.

Since a policy set contains a large number of rules, the

searching process can be handled by a distributed system.

That is to say, a number of PDPs search for the applicable

rule simultaneously to speed up the evaluation.

Marouf and Shehab (2009) propose an adaptive

approach for policy optimization using a clustering tech-

nique to categorize policies and rules by the subject attri-

bute. They also elaborate on a framework to dynamically

reorder policies according to access request statistics. (Liu

and Wang 2015) come up with a new evaluation frame-

work based on clustering methods to cut down policy scale,

focusing on the processing of policies and rules. There is a

two-stage clustering method in Liu and Wang (2015). The

first stage is coarse-grained clustering, and the second stage

is fine-grained clustering. This method reduces the number

of comparisons by assigning the preprocessed policies to

evaluate a coming request. Deng et al. (2019b) address a

distributed PDP model based on spectral clustering.

According to the subject attribute, clustering of policies

and rules can divide a policy set into different groups,

which can be assigned to different PDPs. Among these

PDPs, similar rules are applicable to a certain request,

which means that we can calculate the similarity between

different rules and divide the policy set into many more

fine subsets, and pick centroids of different subsets.

Previous clustering techniques focus on the subject

attribute of requests, while there are several evident clus-

ters of subjects in the policy set, which makes it much more

effective to cluster policies. In this way, clustering cannot

improve the performance substantially compared with

brute-force evaluation, while these methods depend on the

classification between subjects. Therefore, clustering can

be difficult when there is no explicit classification of sub-

jects between policies.
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Besides the previously mentioned methods, there are

still a number of noticeable works. An optimization tech-

nique for policy evaluation using two trees, a matching tree

for quick finding of applicable rule and a combining tree

for finding the matching tree, is proposed by Pina et al.

(Santiago et al. 2012). This work performs well in the

evaluation process, but does not address the problem of a

frequent insertion of new rules into the original policy set.

2.4 Our novel work

In this paper, an asynchronous K-means cluster algorithm

is proposed and neural networks are adopted in the eval-

uation process to improve the PDP evaluation performance.

Euclidean distance is used in the cluster algorithm. We also

compare the different performances between an asyn-

chronous K-means algorithm and a synchronous one.

Neural networks are also utilized to speed up the PDP

evaluation process.

2.5 Related notations

For the convenience of discussion, we show some related

notations used in this paper as follows.

Notation 1. Rule and attribute: xi ¼ ðsi; ri; ai; ci; eiÞ
represents the ith rule, where si, ri, ai, ci, and ei represent its

five attributes of source, resource, action, condition and

effect, respectively.

Notation 2. Parameters of K-means algorithm: K is

the total number of clusters. Centeri is the ith centroid of

cluster and CenterðxiÞ represents the Center of xi. T rep-

resents the max times of iteration, and D is the distance

between Centeri and xi. rxiðClusterÞ represents the gradi-

ent estimator, as shown in Eq. (1).

rxiðClusterÞ ¼ xi � Center ð1Þ

Notation 3. Terms of neural network: There are dif-

ferent weights in different edges. Wi is introduced to

describe the weight vector of the ith layer and bi is the bias

of the ith layer. The parameter of the ith layer is Hi,

Hi ¼ Wi; bi½ �. Ai, Zi and g represent the activation vector of

the ith layer, output vector of the ith layer and the activa-

tion function, respectively. ai represents the ith element in

the vector Ai, zi stands for the ith element in the vector Zi,

Y represents the correct label vector, g is used to denote the

learning rate, J is the cost function, and Ei is the error, also

known as, false estimation of the ith layer.

3 Approach overview

Based on neural networks, we propose a policy evaluation

engine to improve the PDP evaluation performance. We

call the engine XDNNEngine (XiDian neural networks

engine), as shown in Fig. 1. The XDNNEngine has the

function of the PDP. By loading policies, the XDNNEngine

can evaluate access requests and return the authorization

results to context processors and the PEP (policy execution

point).

The evaluation process of the XDNNEngine includes

two phases:

(1) the preprocessing phase of policy sets;

(2) the matching phase of new requests.

3.1 Preprocessing phase of policy sets

The preprocessing phase of policy sets is shown in Fig. 2,

which includes four steps: 1) the numeralization of policy

sets, 2) the classification of policies by SGDK-means, 3)

the construction of neural networks and 4) the training of

neural networks.

Preprocessing Phase 
of 

Policy Sets

Matching Phase 
of 

New Requests

XDNNEngine

Fig. 1 Framework of XDNNEngine

Numeralization of 
Policy Sets

Classification of Policies 
by SGDK-means

Construction of 
Neural Networks

Training of 
Neural Networks

preprocessing

Fig. 2 Preprocessing phase of policy sets
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The first and most important step of preprocessing is the

numeralization of policy sets. In this step, we extract the

attributes of each policy from an input policy set, and then

encode the attributes with data and output numerical

policies.

The second step of preprocessing is the classification of

policies. The K-means clustering algorithm is adopted in

this part to cluster the input numerical policies, which

labels the policies on the basis of some sorts of criterion.

In the last two steps of preprocessing, we construct and

train a neural network classifier. Firstly, we define the

structure of the network and initialize its parameters. Then,

we extract a part of the policies from the policy set as the

training set, which is used to update and adjust the

parameters by the calculation. We can train a neural net-

work classifier with high accuracy.

3.2 Matching phase of new requests

This phase includes the numeralization of new requests and

their matching by a network classifier, as shown in Fig. 3.

For a new coming request, we make it numerical. Then, we

obtain the confidence of request for each class through the

network, which means the probability that the request

exists in each class. The matching process starts with the

class that has the highest confidence. Then, the engine

traverses each class as the confidence goes from high to

low until we find it, or fail to find it after searching all

classes.

4 Clustering and neural networks

For the purpose of training neural networks, there should

be a labeled policy set. With the pursuit of efficient, the

K-means clustering algorithm can divide rules into differ-

ent clusters in high speed.

4.1 Clustering

We first convert a policy into a numeric format by the

converting algorithm proposed in Deng et al. (2019a). This

algorithm takes a policy as an input and converts the four

main attributes of each rule in the policy to numerical

values in order. For example, after having extracted rules

from a sample policy, as shown in Table 1, we can obtain

rules in numerical format, as shown in Table 2.

In order to divide policies into different distinct subsets,

we use the K-means clustering algorithm, serving as an

unsupervised method that can help us obtain K clusters of

rules and K has to be given in advance (Hartigan and Wong

1979). Compared with the previous clustering works that

mainly consider subjects as a main factor to divide rules,

the K-means clustering algorithm takes all attributes into

consideration. The result of K-means clustering will ini-

tially perform better in classification process, and the

synchronous K-means algorithm is shown in Algorithm 1.

Notations used in Algorithm 1 are detailed in Sect. 2. T is

the max time of iterations and xi denotes the ith numeric

rule. Center xið Þ represents the centroid of rule xi, and

Clusteri represents ith cluster.

Request

Numeralization

Neural 
Network

Search in 
One Cluster

Return Result

Not Matching

Matching 

Fig. 3 Matching phase of new requests

Table 1 Extracted rules

Subject0 Resource0 Action0 Condition0 Deny

Subject1 Resource0 Action1 Condition0 Deny

Subject2 Resource1 Action2 Condition0 Permit

Subject3 Resource2 Action3 Condition1 Permit

Table 2 Rules in numeric format

Subject Resource Action Condition Effect

0 0 0 0 0

1 0 1 0 0

2 1 2 0 1

3 2 3 1 1

C1 C2 C3 ... Ci Ci+1 ... Ck-2 Ck-1 Ck

Thread a Thread b Thread c

Fig. 4 Multi-thread clustering
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As shown in Algorithm 1, the K-means algorithm con-

sists of two phases. The first phase is to pick up K centroids

and assigns each point into a cluster to make the distance

between the rule points and the centroid as small as pos-

sible. Therefore, we need a function to compute the dis-

tance between two objects. Here, Euclidean distance is

used. After obtaining an initial group of clusters, we

recalculate the new centroids and assign each point again

based on the new centroids. This process is repeated until

the distance is minimum. Thus, the K-means algorithm is

an iterative procedure that minimizes the sum distance

between data points and their cluster centroids.

However, K must be given in advance and usually it is

not easy to find the most appropriate K to obtain high

performance. Intuitively, K is expected to be as big as

possible. The more clusters we have, the less rules to be

searched afterwards. However, too many clusters, which

means less rules in a cluster, also increase the difficulty to

find which cluster has the applicable rule. Therefore,

clusters with fewer rules do not have capability for gen-

eralization, which means a coming request may not find the

applicable rule easily.

There are many irrelevant calculations in the above

procedures. It is natural to think of using an asynchronous

method to make calculations faster. The process of this

method is shown in Fig. 4.

Algorithm 1 can be considered as a single-thread

procedure. Therefore, it is natural to improve Algorithm

1 by using a multi-thread technique. The distance

between different data points in a policy set is not

obviously distinguishable. In other words, the different

centroids can be very close. To this end, a new improved

approach, called an asynchronous SGDK-means

(stochastic gradient descent K-means) algorithm, making

centroids more distinct, is shown in Algorithm 2. Nota-

tions used in Algorithm 2 are the same as Algorithm 1.

ms is a parameter to control the times of increasing

distances between two closed centroids.

It should be emphasized that Algorithms 1 and 2 have

the same inputs and outputs, but Algorithm 2 delivers a

significant improvement on the time of clustering and

training of neural networks.

After applying the K-means clustering algorithm to

large-scale policy sets, we can obtain K centroids that can
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be used to help us search for the applicable rule by com-

paring the similarity between the coming request and these

centroids. The details of this process will be exposed in the

next subsection.

Improvement on PDP Evaluation Performance Based on Neural Networks and SGDK-means Algorithm 3081

123



4.2 Construction and training of neural
networks

After having divided a policy set into K clusters, when a

request is coming, we should determine which cluster has

the most possibly applicable rule. To make this process

more efficient, we train a two-layer full-connected neural

network and obtain an estimation model.

A neural network is a model to classify an input by

calculating how possible the input belongs to a class. It

utilizes a unit called neuron to construct a whole network to

simulate the working method of human brain. After feeding

the network a policy set already classified, it can train itself

to fit the policy set. Then, when an unknown sample comes,

the network can estimate to which class it most possibly

belongs. In fact, a neural network draws a decision

boundary by formatting a complex function to calculate the

possibility. Every neuron uses a simple function called

activation function to calculate the activation of the input

from last layer and the output of this layer is propagated to

the next layer after multiplying weights.

As shown in Fig. 5, where
P

denotes the summation

and g is the activation function, a neuron takes the output

from last layer as input, sums them up, uses an activation

function to calculate an activation and propagates it to the

next layer after multiplying a weight. All the weights are

parameters of this network and they can be adjusted

automatically in order to learn the features of a policy set.

A neural network is composed of many neurons and for-

mats a complex function by combining all the simple

functions in every neuron.

After learning the features from a policy set, a neural

network can estimate to which class a new sample belongs

by using a complex function formatted during the learning.

There are several widely used activation functions, such as

sigmoid function, and rectified linear unit (ReLU), as

shown in Eqs. (2) and (3). The whole process of forward

propagation is shown in Eqs. (4), (5) and (9), where x is the

sum of outputs from last layer.

S xð Þ ¼ 1

1þ e�x
ð2Þ

f xð Þ ¼ max 0; xð Þ ð3Þ

In the process of forward propagation, the activation of

every neuron Ai is propagated to the next layer after mul-

tiplying a weight Wi and plus a bias bi, i.e.,

zi ¼ Wi�1Ai�1 þ bi�1 ð4Þ

Every neuron takes the output from the last layer zi�1

and generates new activation ai to be propagated, i.e.,

ai ¼ g zi�1ð Þ ð5Þ

After having obtained predictions, we can compare them

with the correct label vector Y , which is already labeled by

the K-means algorithm. According to false estimation

provided by a network and the cost function J (calculated

by Eq. (6)), the backup propagation algorithm can make

accuracy higher by using back propagation in order to

compute the partial derivative of the cost function (noted as

d ið Þ) (David et al. 1986). We have

J Wið Þ ¼ �Y log Aið Þ � 1� Yð Þlog 1� Aið Þ ð6Þ

Then by using an optimization algorithm, such as gra-

dient descent, we can find a prediction model with high

performance. The gradient descent is a widely used method

to find a solution in an optimization problem, as shown in

Eq. (7), where a is the learning rate in gradient descent.

Wnew
i ¼ Wold

i � a
o

oWold
i

ðWold
i Þ ð7Þ

The whole process of back propagation is shown in

Eq. (8). The new parameter of the ith layer Hnew
i can be

obtained by updating the old parameter Hold
i plus learning

rate g times d ið Þ.

Hnew
i ¼ Hold

i þ gd ið Þ ð8Þ

To calculate d ið Þ, a chain rule is used (shown in Eq. (9)).

The partial derivative of the cost function Ei with respect to

the parameters of the last layer Wi�1 can be calculated by

multiplication of the partial derivative of cost function Ei

with respect to activation Ai, the partial derivative of Ai

with respect to the output from the last layer Zi�1 and the

subject

action
condition

resources

Input 
layer

Hidden 
layer

Output 
layer

Fig. 6 Architecture of neural networks

Fig. 5 Calculation in a neuron
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partial derivative of Zi�1 with respect to parameters of the

last layer.

d ið Þ ¼ oEi

oWi�1

¼ oEi

oAi

oAi

oZi�1

oZi�1

oWi�1

ð9Þ

Therefore, we need to calculate oEi

oAi
, oAi

oZi�1
and oZi�1

oWi�1
at first

(shown in Eqs. (10), (11) and (12)).

The partial derivative of the output from the last layer

Zi�1 with respect to Wi�1 can be obtained from Eq. (4).

oZi�1

oWi�1

¼ Ai�1 ð10Þ

The partial derivative of the ReLU function (shown in

Eq. (3)) with respect to Zi�1 is shown in Eq. (11).

oAi

oZi�1

¼ 0; zi�1\0

1; zi�1 � 0

�

ð11Þ

We can derive cost function Ei with respect to activation

Ai from Eq. (6).

oEi

oAi
¼ Ai � Y

Ai 1� Aið Þ ð12Þ

Then, when an unknown sample comes, the network can

determine to which class it most possibly belongs. In fact, a

neural network draws a decision boundary to distinguish

different classes (Cybenko 1989). After learning the fea-

tures from a policy set, a neural network can estimate to

which class a new sample belongs by using a complex

function formatted.

As shown in Fig. 6, in our network model, there are four

nodes in the input layer, corresponding to the object,

resource, action and condition, respectively. The number of

hidden layer nodes is uncertain, since it can be adjusted in

order to improve the performance of evaluation on the

Internet. We can even increase the number of the layers to

improve the evaluation performance of the network. The

number of output layer nodes should be the same as K that

we assign to the K-means algorithm before. Therefore, the

numbers of nodes in the input layer and the output layer in

our network model are limited, and the hidden layer can be

adjusted for the purpose to achieve the best training effect.

The learning rate is set as 10�6. In the early stage of the

training network, the learning rate can be slightly higher. In

the process of back propagation, if the initial learning rate

is high, the value of the loss function will decrease rapidly.

However, in the later stage, the learning rate should be

adjusted to catch the optimal position of the loss function,

which can be achieved by a programming method. During

the training of a network, we pass data (object, resource,

action, condition) into the network and obtain the output by

forward propagation. In the output layer, the label vector is

used to calculate the loss function. For example, we input a

vector as done in Deng and Zhang (2015); Singh and Singh

(2010); Kamoda et al. (2005); Wang et al. (2011) into a

network and it is classified into the 60th cluster. Specially,

if there are 100 nodes in the output layer, the 60th position

of label vector should be 1 while the other positions should

be 0. By the difference between the value of prediction and

correct value, the value of loss can be calculated and the

gradient can be propagated layer by layer using back

propagation. At the same time, the parameters of the net-

work are updated to achieve the goal of training the

network.

At the last layer of network, we use the Softmax func-

tion (Blorasso and Sanguineti 1995). Ai is the output of the

i th node in the last layer. All output values are converted to

a probability distribution (shown in Eq. (13), m is the

number of nodes in the last layer) with positive values

whose sum is 1. What we obtain is a prediction of proba-

bility distribution for classification. As shown in Algorithm

2, we will search for the applicable rule in the most pos-

sible cluster. If we cannot find the applicable rule, a new

cluster with the highest possibility will be searched until it

is found.

by ¼ eAi

Pm
i¼1e

Ai
ð13Þ

+

X

X1

X2

*1

*2

*3

*4

*1/9

W

Encoder Decoder Encoder

Fig. 7 Structure of quantitative neural network
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However, the algorithms above require expensive

computational cost of a server. We can distribute the

computation in different embedded devices to lessen a

server’s computational cost. To optimize the algorithm, we

evolve a simple neural network into a quantitative neural

network, as shown in Fig. 7.

The activation function in this type of neuron network

should be adjusted to adapt to the new network, calculated

by the following formula.

In the part of encoder, we use Eq. (14) to process the

input, where x is a numrical input request.

Encoder xð Þ ¼
u
1

2
: sign sin

3

4
px

� �� �

u
2

2
: sign �sin

3

2
px

� �� �

8
>><

>>:
ð14Þ

In the later calculations, the following activation func-

tions are used to process the input from last layer and

calculate the activation.

HTanhðxÞ ¼
þ1; x[ 1

x; �1� x� 1

�1; x\� 1

8
><

>:
ð15Þ

HReLUðxÞ ¼
þ1; x[ 1

x; 0� x� 1

�1; x\0

8
><

>:
ð16Þ

This type of neural networks can perform well in an

embedded device, like FPGA, and thus, the requirement of

a server’s computational cost is reduced, since the calcu-

lation can be finished in the embedded devices.

After the network is trained, the model can be used to

find the application rule, as shown in Algorithm 3.

5 Experimental results and analyses

In this section, we demonstrate experimental policies, the

method to generate our test policies and comparisons of

evaluation performance among XDNNEngine, the Sun

PDP, XEngine and SBA-XACML. Our experiments are

Fig. 8 Comparison in clustering using different number of threads of

LMS
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conducted on a laptop running windows 10 with 8 GB of

memory and quad-core 2.50 GHz Intel processor.

5.1 Experimental policies

For the purpose of simulating practical application sce-

narios, three XACML access control policies are chosen as

follows.

Fig. 11 Comparison between K-means and SGDK-means of LMS

Fig. 12 Comparison between K-means and SGDK-means of VMS

Fig. 13 Comparison between K-means and SGDK-means of ASMS

Fig. 14 Comparison of evaluation performance of LMS

Fig. 9 Comparison in clustering using different number of threads of

VMS

Fig. 10 Comparison in clustering using different number of threads of

ASMS
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(1) Library management system (LMS) (Pretschner and

Baudry 2008) provides access control policies such

that a public library can use web services to manage

books.

(2) Virtual meeting system (VMS) (Mouelhi et al. 2008)

provides access control policies such that web

conference services can be managed.

(3) Auction sale management system (ASMS) (Mouelhi

et al. 2009) provides access control policies such that

buying and selling items online is available.

The policies in the LMS, VMS and ASMS contain 720

rules, 945 rules and 1760 rules, respectively.

In order to satisfy the actual requirement, we expand the

three policy sets by a random combination method to make

comparisons of a result more clearly. According to Carte-

sian Products under Subject, Resource, Action and Con-

dition, we create new rules and insert them into the original

policy. Finally, the numbers of policy rules contained in the

LMS, VMS and ASMS are expanded to 10,000, 20,000 and

30,000, respectively.

This experiment is only based on the simplest policy

sets. We do not consider the factors such as scattered

predicates, multi-valued rules.

5.2 Generation of test requests

Policies presented in Martin (2006) are utilized for maxi-

mizing the coverage of the test, which can automatically

generate access requests meeting Change-Impact. The

main idea is that conflicting rules can be obtained by

conflict detection tools according to the fact that different

policies or different rules in the same policy can make

inconsistent results of evaluation for the same request, and

that correlative access requests can be constructed for

testing according to the conflicting rules.

The study in Wei et al. (2011) suggests that access

requests can be generated automatically to test the cor-

rectness of the PDP and the configured policies, which

indicates that Context Schema, defined by the XML

Schema of the XACML, describes all the structures of the

access requests that might be accepted by the PDP. This

paper shows that the developed X-CREATE can generate

possible structures of access requests according to the

Context Schema of the XACML. The policy analyzer

obtains probable input values of every attribute from a

policy. The policy manager adopts the method for random

allocation to distribute the obtained input values into

structures of access requests. Another test scheme is Sim-

ple Combinatorial that can generate access requests

according to all the possible combinations of attribute

values of Subject, Action, Resource and Condition in the

XACML policies.

In order to make our experiment meet the practical

requirement, the combination of Change-Impact, Context

Schema and Simple Combinatorial is adopted to simulate

the actual access requests in this paper.

5.3 Clustering and distributed methods

In our experiments, we compare our implementation with

the Sun PDP, XEngine and SBA-XACML, respectively.

The Sun PDP, as a universally applied policy decision

point (Kateb et al. 2012), is able to evaluate access requests

based on the internal rule matching mechanism (Ramli

et al. 2014). The Sun PDP has become an industry standard

and the most widely deployed implementation of XACML

evaluation engine.

SBA-XACML (Mourad and Jebbaoui 2015) is a novel

set-based algebra (i.e., SBA) scheme that provides efficient

evaluation of XACML policies. SBA-XACML contains

formal semantics and algorithms that take advantage of the

mathematical operations to provide efficient policy

evaluation.

Fig. 15 Comparison of evaluation performance of VMS

Fig. 16 Comparison of evaluation performance of ASMS
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XEngine (Liu et al. 2008) can not only convert a textual

XACML policy to a numerical policy, but also convert a

numerical policy from complex structures to normalized

ones. Moreover, as a policy evaluation engine, XEngine

can translate numerical policies into tree data structures

and deal with requests efficiently.

In our experiment, we divide the policy sets into arbi-

trary classes by the K-means algorithm. There are less rules

in each class when the number of classes increases. As a

result, we divide the LMS, VMS and ASMS into 30, 40 and

50 classes, respectively. In this way, the time cost in

searching has dramatically reduced.

5.3.1 Clustering time

In this experiment, we use multi-thread to increase the

speedup of clustering such that it can efficiently make

calculations faster. Figures 8, 9 and 10 show how speedup

varies in different thread numbers in three given policy

sets.

From Fig. 8, 9 and 10, we observe that.

(1) Speedup gets higher when the number of threads

increases in the LMS, VMS and ASMS. When the

number reaches three, it remains steady.

(2) The asynchronous method is obviously better than

the single thread method in terms of clustering

time.

5.3.2 Object minus best

To make the distance between different data points in the

policy set more distinguishable, an SGDK-means algo-

rithm is utilized in our experiment. We compare SGDK-

means and K-means in this section. In Figs. 11, 12 and 13,

SGDK-means1 picks up 5 centroids and SGDK-means2

picks up 10 centroids.

From Figs. 11, 12 and 13, we observe that.

(1) Object minus best declines more significantly in

SGDK-means than in K-means when the number of

effective passes grows.

(2) When the number of effective passes is more than 1,

object minus best of K-means stays at a high level,

whereas SGDK-means decreases when effective

passes number increases.

(3) A higher rate of descent can be seen in SGDK-

means2 compared with SGDK-means1 as the more

clusters we have, and the less rules should be

searched afterward.

5.3.3 Evaluation time

In this part, we compare our method with Sun PDP,

XEngine and SBA-XACML in terms of evaluation time.

We randomly generate 500, 1000, …, 10,000 requests to

record the PDP evaluation time. The results can be seen in

Figs.14, 15 and 16.

From Figs.14, 15 and 16, we observe that.

(1) Given the three policy sets, when the number of

access requests grows, the evaluation time of Sun

PDP, XEngine, SBA-XACML and XDNNEngine

increases.

(2) The rate of increase in evaluation time of XDNNEn-

gine is less than that of the rest three methods in the

LMS, VMS and ASMS.

6 Conclusions and future work

In this paper, an approach based on neural networks is

implemented to improve the PDP evaluation performance.

After converting the rules into a numerical format, we use

an SGDK-means algorithm to divide a policy set into

K clusters. Based on the obtained clusters, we train a two-

layer full-connected neural network. When a request is

coming, this network can calculate possibilities that the

applicable rule belongs to each cluster. According to the

confidence given by the network, we search for the appli-

cable rule among the clusters on the basis of possibility

from high to low until we find it or the applicable rule does

not exist. If we want to insert a new rule into the policy set,

after converting it into a numerical format, we can put it

into the most appropriate cluster by the distances between

this rule and each centroid that has been obtained during

the application of an SGDK-means algorithm.

Compared with the Sun PDP, XEngine and SBA-

XACML, the proposed approach reduces the PDP evalua-

tion time dramatically under the condition of loading a

large-scale policy set. Moreover, the application of

K-means algorithm makes it much easier to insert a new

rule into the original policy set. What is more valuable, this

approach can find the applicable rule faster than other

methods. We believe that the training of neural networks

will be easier when the capability of computation is

improved. The proposed method can be employed to study

big data access control in social networks (Yu et al. 2021a;

Yang et al. 2020) and CoVID-19 (Yu et al. 2021b, c, d).
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