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Abstract

Decision implication is an elementary representation of decision knowledge in formal concept analysis.
Decision implication canonical basis (DICB), a set of decision implications with completeness and non-
redundancy, is the most compact representation of decision implications. The method based on true
premises (MBTP) for DICB generation is the most efficient one at present. In practical applications,
however, data is always changing dynamically, and MBTP has to re-generate inefficiently the whole
DICB. This paper proposes an incremental algorithm for DICB generation, which obtains a new DICB
just by modifying and updating the existing one. Experimental results verify that when the samples in
data are much more than condition attributes, which is actually a general case in practical applications,
the incremental algorithm is significantly superior to MBTP. Furthermore, we conclude that, even for
the data in which samples are less than condition attributes, when new samples are continually added
into data, the incremental algorithm must be also more efficient than MBTP, because the incremental
algorithm just needs to modify the existing DICB, which is only a part of work of MBTP.

Keywords: formal concept analysis; decision premise; decision implication canonical basis; incremental
method

1. Introduction

1.1. A brief review of formal concept analysis

Formal Concept Analysis (FCA) is an order-theoretic method for concept analysis and visualization,
pioneered by Wille [38] in the mid-80s. In essence, FCA comes from a philosophical understanding of
a concept, which is viewed as a unit of thought constituted by its extent and intent. The extent of a
concept is a collection of all objects belonging to that concept and its intent is the set of all attributes
common to all the objects of the extent. FCA is capable of presenting the relationship between intent
and extent and visualizing the generalization and specialization of concepts by means of concept lattice.
Because of its strengths, FCA attracts the interest of researchers in the fields of data mining [27, 1, 5,
36, 2, 29, 52], social networks [32], cognition-based concept learning [41, 40, 16, 23, 54, 14], knowledge
reduction [11, 4, 35, 25, 17, 12, 13, 6] and decision making [50, 51].

1.2. A brief review of decision implication logic

The study of knowledge representation and reasoning in FCA is that of attribute implication [42, 8,
30, 43, 26, 37], which has been widely applied to areas of information acquisition, text mining, software
engineering and machine learning [3, 7]. Decision implication, revealing the dependency between con-
ditions and consequences (causes and effects), is an elementary representation of decision knowledge in
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FCA. A decision implication is defined as a formula A → B, meaning that if the conditions in A are
satisfied, then the conclusions in B hold. Compared with other classifiers, decision implication has an
equal or better classification ability [33, 10, 37].

In practical applications, however, a small-scale data may produce a large number of decision impli-
cations. Thus, for the sake of easy storage and efficient processing, it is widely recognized that decision
implications should be deduced from decision implication basis (a complete set of decision implications)
rather than being computed from data [31, 47, 46]. To achieve this, Qu et al. [31] introduced α-decision
inference rule, meaning that new decision implications can be deduced from decision implications by am-
plifying their premises or reducing their consequences. By using α-decision inference rule, one can obtain
a decision implication set with relative completeness and non-redundancy. Li et al. [19, 21, 20, 22, 18]
discussed the application of α-decision inference rule in decision contexts, incomplete decision contexts
and real decision contexts. Nevertheless, all the above studies fail to present an integrated logic descrip-
tion of decision implication. Hence, Zhai et al. [45, 15, 47, 46] researched decision implication logic from
semantical aspect and syntactical aspect. The semantical aspect accounts for the soundness of decision
implications and the non-redundancy and completeness of decision implication sets. In the syntactical
aspect, two inference rules, namely Augmentation and Combination were proposed, which were proven
to be sound, complete and non-redundant w.r.t. the semantical aspect.

1.3. A brief review of decision implications in decision contexts

Based on decision implication logic, Zhai [46, 45, 47] proposed the most compact set of decision
implications, decision implication canonical basis (DICB), in decision contexts. This basis takes deci-
sion premises as its premises and the closures of decision premises as its consequences. DICB keeps
all decision implications in data by the least amount of decision implications, that is because this basis
is complete and non-redundant w.r.t. decision implication logic, and more importantly, it is optimal,
i.e., it is of minimal cardinality among all complete sets of decision implications [46, 45, 47]. Starting
from DICB, one can obtain all decision implications in data by iteratively applying Augmentation and
Combination. Furthermore, DICB has been proven to have the strongest strength of knowledge repre-
sentation, comparing with other models of decision implications, such as concept rule and granule rule
[39, 53, 24]. Other researches about decision implications and fuzzy decision implications can be found
in [34, 44, 39, 49, 48, 28].

1.4. Motivations and contributions of the paper

An efficient method for DICB generation is essential for decision implication-based decision knowledge
representation and reasoning. Zhai et al. [46] proposed a minimal generator-based method to generate
DICB, which is, however, of exponential time complexity [15]. Considering this shortcoming, Li et al.
[15] put forward a method based on true premises (abbreviated to MBTP). MBTP has a polynomial
time complexity; and by experiments, it is more efficient than the minimal generator-based method [15].
In practical applications, however, data is always changing dynamically [9]. In this case, MBTP always
needs to re-generate the whole DICB, and thus does not applies to this situation.

This paper proposes an incremental method for DICB generation, which intends to obtain DICB
just by updating the existing one. In this method, decision premises are clarified into four categories:
unchanged decision premises, modified decision premises, invalid decision premises and new decision
premises. We study their properties and renewal mechanisms, by which, the existing DICB can be
modified and then a new DICB is achieved. Experimental results verify that when the samples are much
more than condition attributes, which is actually a general case in practical applications, the incremental
algorithm is significantly superior to MBTP. Furthermore, we conclude that, even for the data in which
objects are less than condition attributes, when new samples are continually added into data (such as
new purchase records being added moment by moment into the database of a supermarket), MBTP still
re-generates the whole DICB; by contrast, the incremental algorithm just needs to modify the existing
DICB, which is only a part of work of MBTP, and thus is also more efficient than MBTP.
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Figure 1: The structure of the article

1.5. The arrangement of the paper

This article is organized as follows. Section 2 introduces decision implication logic. Section 3
presents decision implication in decision contexts. Section 4 studies the incremental generation of de-
cision premises. Section 5 proposes an incremental algorithm of generating DICB. Section 6 conducts
an experiment to compare the performance of the incremental algorithm and MBTP. Conclusions and
further work end the paper in Section 7. In what follows, we give the overall structure diagram of this
article, as shown in Figure 1.

2. Decision implication logic

Decision implication [47, 49, 48, 15, 44, 45, 46], revealing the dependency between premises and
consequences (causes and effects), is defined as a formula between condition attributes and decision
attributes.

Definition 1 ([45]). Let C be a set of condition attributes and D be a set of decision attributes such
that C ∩ D = ∅. If A ⊆ C and B ⊆ D, then A → B is called a decision implication, where A is the
premise of A → B and B is the consequence.

Decision implication logic gives the semantical and syntactical description of decision implications.
The semantical aspect studies the completeness and non-redundancy of decision implication sets [45, 47].

Definition 2 ([45]). Let C be a set of condition attributes, D be a set of decision attributes, and L and
L1 be sets of decision implications.

(1) For a set T ⊆ C ∪ D and a decision implication A → B, if A * T ∩ C or B ⊆ T ∩ D, then
T respects A → B (or T is a model of A → B), denoted by T |= A → B. If for any A1 → B1 ∈ L,
T |= A1 → B1 holds, then T respects L, denoted by T |= L.

(2) For a decision implication A → B, if for any T ⊆ C ∪D, T |= L implies T |= A → B, then A → B
can be semantically deduced from L, denoted by L ⊢ A → B. If for any A1 → B1 ∈ L1, L ⊢ A1 → B1

holds, then L1 can be semantically deduced from L, denoted by L ⊢ L1.
(3) If for any A → B ∈ L, L \ {A → B} 0 A → B holds, then L is non-redundant.
(4) If any A → B that can be semantically deduced from L is contained in L, then L is closed.
(5) If L is closed, L1 ⊆ L and L1 ⊢ L, then L1 is complete w.r.t. L.

For a given dataset, the soundness of a decision implication means that the decision implication is
valid in the dataset. The completeness of a set of decision implications means that all valid decision
implications can be deduced from the set. A set of decision implications is non-redundant if, in the set,
no valid decision implications can be deduced from the other decision implications.
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In syntactical aspect[45, 47], two inference rules Augmentation and Combination are proposed, and
their soundness, completeness and redundancy of semantic compatibility are proved.

Augmentation :
A → B,A1 ⊇ A,B1 ⊆ B

A1 → B1

Combination :
A → B,A1 → B1

A ∪A1 → B ∪B1

Theorem 1 ([45]). Augmentation and Combination are sound, i.e.,
(1) If A → B, A1 ⊇ A and B1 ⊆ B, then A → B ⊢ A1 → B1;
(2) If A → B and A1 → B1, then {A → B,A1 → B1} ⊢ A ∪A1 → B ∪B1.

Theorem 2 ([45]). Augmentation and Combination are complete w.r.t. the semantical aspect, i.e., for
any closed set of decision implicationL and a complete set L1 ⊆ L, all decision implications in L can be
obtained from L1, by applying Augmentation and Combination.

Theorem 3 ([45]). Augmentation and Combination are non-redundancy, i.e., they cannot be replaced
by each other in deduction process.

3. Decision implication in decision contexts

Zhai et al. [46, 30, 31, 19, 20, 18, 17, 15] studied decision implication in decision contexts, and
proposed the most compact set of decision implications, i.e., decision implication canonical basis [46].

Decision context in firstly introduced in the following.

Definition 3 ([45]). A decision context is a triple K = (G,C ∪D, IC ∪ ID), where G is the object set,
C is the condition attribute set, and D is the decision attribute set such that C ∩D = ∅. In this case,
IC ⊆ G × C is the set of condition incidence relations and ID ⊆ G ×D is the set of decision incidence
relations. For g ∈ G and m ∈ C ∪D, (g,m) ∈ IC or (g,m) ∈ ID denotes “the object g has the attribute
m”.

A decision context can also be represented by a two-dimensional table, in which row headers are
object names, column headers are attribute names, and a “1” indicates the row object g has the column
attribute m, i.e., (g,m) ∈ IC or (g,m) ∈ ID.

Example 1. A decision context K = (G,C∪D, IC∪ID) is given in Table 1, where G = {g1, g2, g3, g4, g5, g6, g7, g8},
C = {a1, a2, a3, a4, a5, a6} and D = {d1, d2}.

Table 1: A decision context

a1 a2 a3 a4 a5 a6 d1 d2

g1 1 1 0 0 1 1 1 0

g2 0 0 1 0 0 0 0 1

g3 1 0 1 0 0 1 1 0

g4 0 1 0 0 0 0 0 0

g5 0 1 1 1 1 1 1 1

g6 0 0 1 0 1 0 0 0

Definition 4 defines operators (.)C and (.)D in decision contexts.
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Definition 4 ([45]). Let K = (G,C ∪D, IC ∪ ID) be a decision context. For sets A1 ⊆ C, A2 ⊆ D and
B ⊆ G:

(1)AC
1 = {g ∈ G|(g,m) ∈ IC , ∀m ∈ A1}

(2)AD
2 = {g ∈ G|(g,m) ∈ ID, ∀m ∈ A2}

(3)BC = {m ∈ C|(g,m) ∈ IC , ∀g ∈ B}

(4)BD = {m ∈ D|(g,m) ∈ ID, ∀g ∈ B}

For g ∈ G and A ⊆ C, {g}C , {g}D and (AC)D are abbreviated to gC , gD and ACD, respectively.
Actually, gC and gD are respectively the condition attribute set and decision attribute set of g.

Proposition 1states the properties of operators (.)C and (.)D.

Proposition 1 ([38, 15]). Let K = (G,C ∪ D, IC ∪ ID) be a decision context. For sets A,A1, A2 ⊆ C
and B,B1, B2 ⊆ G, we have:

(1) A1 ⊆ A2 ⇒ AC
2 ⊆ AC

1 (1′) B ⊆ B2 ⇒ BC
2 ⊆ BC

1

(2) A ⊆ ACC (2′) B ⊆ BCC

(3) AC = ACCC (3′) BC = BCCC

(4) (A1 ∪A2)
C = AC

1 ∩AC
2 (4′) (B1 ∪B2)

C = BC
1 ∩BC

2

(5) A1 ⊆ A2 ⇒ ACD
1 ⊆ ACD

2

Operator (.)D has the similar properties in Proposition 1. Definition 5 introduces decision implications
in decision contexts.

Definition 5 ([46]). Let K = (G,C ∪ D, IC ∪ ID) be a decision context. For A ⊆ C and B ⊆ D, if
AC ⊆ BD, then A → B is called a decision implication of K, where A is the premise and B is the
consequence of A.

Example 2 (Continuing Example 1). Take the decision context in Example 1 as an example. It is verified
that {a1} → {d1} is a decision implication of K, because {a1}

C = {g1, g3, g8} ⊆ {g1,g3, g5, g8} = {d1}
D,

i.e., {a1}C ⊆ {d1}
D.

Proposition 2 ([46]). Let K = (G,C ∪D, IC ∪ ID) be a decision context, A ⊆ C and B ⊆ D. Then,
(1) A → ACD is a decision implication of K;
(2) A → B is a decision implication of K if and only if B ⊆ ACD.

By Proposition 2, we can see that for set A ⊆ C, ACD is the maximal consequence of A.
Zhai et al. [46, 15] defined the most compact set of decision implications, i.e., decision implication

canonical basis.

Definition 6 ([46, 15]). Let K = (G,C ∪ D, IC ∪ ID) be a decision context. A set A ⊆ C is called a
decision premise of K, if ACD ⊃ Θ(A), where

Θ(A) = ∪{ACD
i |Ai ⊂ A,Ai is a decision premise of K} (1)

Proposition 3. Let K = (G,C ∪ D, IC ∪ ID) be a decision context. A set A ⊆ C is not a decision
premise of K if and only if ACD = Θ(A).

Proof. It is easy to see that ACD ⊇ Θ(A). Then, by Definition 6, the proof is straightforward.

By Definition 6, we know that A is a decision premise if and only if ACD contains more decisions than
Θ(A). In other words, if A is a decision premise, one can only collect Θ(A) from the decision premise
subsets of A, but the consequence of A is ACD, which contains more conclusions than Θ(A). In this case,
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decision implication A → ACD is indispensable to derive more decisions. On the contrary, if A is not a
decision premise, by Proposition 3, ACD is equal to Θ(A), meaning that ACD can be collected from the
decision premise subsets of A, and hence A → ACD is not necessary.

Decision implication canonical basis is a set of decision implications which take decision premise A as
premises and ACD as consequences.

Definition 7 ([46, 15]). Let K = (G,C ∪D, IC ∪ ID) be a decision context. We call the set

O = {A → ACD|A is a decision premise of K}

the decision implication canonical basis (DICB) of K.

Decision implication canonical basis is proven to be complete, non-redundant and optimal w.r.t.
decision implication logic [46], as shown in Theorem 4.

Theorem 4 ([46]). Let K = (G,C ∪D, IC ∪ ID) be a decision context and O be the DICB of K. Then,:
(1) O is complete, i.e., all decision implications in K can be obtained from O, by applying Augmentation

and Combination.
(2) O is non-redundant, i.e., any decision implication in O cannot be obtained from others in O, by

applying Augmentation and Combination.
(3) O is optimal, i.e., it is of minimal cardinality among all complete sets of decision implications.

Example 3 (Continuing Example 1). The DICB of Table 1 is shown in Table 2.

Table 2: The DICB of Table 1

{a1} → {d1} {a2, a5} → {d1}

{a6} → {d1} {a1, a3, a5} → {d1, d2}

{a4} → {d1, d2} {a3, a5, a6} → {d1, d2}

{a2, a3} → {d1, d2}

Starting from Table 2, all decision implications in Example 1 can be deduced by applying Augmentation
and Combination.

In practical applications, however, data always changes when new objects/samples are continuously
added into data, and DICB also changes simultaneously. In this paper, we study an incremental method
for DICB generation, which updates the existing DICB to obtain a new one, when new objects come.

4. Incremental generation of decision premises

By Definition 7, we can see DICB is defined based on decision premise. Hence, to obtain a new DICB
by updating the existing DICB, the key is to updating the existing decision premises.

4.1. Categories of decision premises

For the given decision context K = (G,C ∪ D, IC ∪ ID), when a new object g is added into K, we
denote the new decision context as:

Kg = (G ∪ {g}, C ∪D, IC ∪ ID)

where IC ⊆ (G ∪ {g}) × C and ID ⊆ (G ∪ {g}) ×D, and write respectively the operators (.)C and (.)D

in Kg as (.)C and (.)D.
Since decision premise is defined via the operators (.)CD (Definition 6), in order to check the changes

of decision premises from K to Kg, it is necessary to check the change from ACD to ACD.
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Proposition 4. For decision context K = (G,C ∪D, IC ∪ ID) and Kg, let A ⊆ C. Then, we have the
following conclusions:

(1) ACD ⊆ ACD;

(2) If A * gC , then ACD = ACD;

(3) If A ⊆ gC , then ACD = ACD ∩ gD;

(4) A ⊆ gC and ACD * gD if and only if ACD ⊂ ACD.

Proof. (1) Firstly, by the definitions of (.)CD and (.)CD, it is easy to see that ACD = ACD. There are
two cases to be considered:

• A * gC . In this case, by the definitions of (.)C and (.)C , we have AC = AC and hence ACD = ACD;

and considering ACD = ACD, we have ACD = ACD.

• A ⊆ gC . In this case, we have AC = AC ∪ {g}. By conclusion (4) of Proposition 2, we know
ACD = (AC ∪ {g})D = ACD ∩ gD, i.e., ACD = ACD ∩ gD; and considering ACD = ACD, we have
ACD = ACD ∩ gD, which implies that ACD ⊆ ACD.

In conclusion, ACD = ACD holds.
(2) and (3) have been proven in the process of proving (1).
(4) “⇐”.Assume that A * gC . By conclusion (2), ACD = ACD holds, which contradicts ACD ⊂ ACD,

and hence A ⊆ gC .
Now, since A ⊆ gC , by conclusion (3), ACD = ACD ∩ gD holds, and hence ACD * gD (because once

ACD ⊆ gD, ACD ∩ gD = ACD holds, i.e., ACD = ACD, contradicting ACD ⊂ ACD).
“⇒”. Because A ⊆ gC , by conclusion (3), we know ACD = ACD ∩ gD; and considering ACD * gD,

ACD ∩ gD ⊂ ACD holds and thus ACD ⊂ ACD.

By Proposition 4, we conclude that:

• If A * gC , by conclusion (2), we have ACD = ACD.

• If A ⊆ gC and ACD ⊆ gD, by conclusion (3), we have ACD = ACD ∩ gD = ACD, i.e., ACD = ACD.

• If A ⊆ gC and ACD * gD, by conclusion(4), we have ACD = ACD ∩ gD ⊂ ACD, i.e.,ACD ⊂ ACD.

To generate decision premises of Kg based on the existing decision premises of K, we classify the decision
premises of K and Kg as follows:

(1) A is a decision premise of K, and A is also a decision premise of Kg. Despite this, one may not

obtain the same decision implication, since the consequence may change, i.e., ACD 6= ACD. Thus, by (1)
of Proposition 4, we divide ACD ⊆ ACD into two cases:

(1.1) ACD = ACD, i.e., the consequence of A is unchanged. In this case, we call A an unchanged
decision premise;

(1.2) ACD ⊂ ACD, i.e., the consequence of A needs to be changed into ACD. In this case, we call A
a modified decision premise;

(2) A is a decision premise of K, but A is not a decision premise of Kg. In this case, we call A an
invalid decision premise.

(3) A is a not decision premise of K, but A is a decision premise of Kg. In this case, we call A a new
decision premise.

From the above, the decision premises of K and Kg can be classified into four categories: unchanged
decision premises, modified decision premises, invalid decision premises and new decision premises.
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Table 5: The categories of premises and the corresponding decision implications

Categories Corresponding decision implications

Unchanged decision premises

{a1} → {d1}
{a2, a5} → {d1}
{a1, a3, a5} → {d1, d2}
{a3, a5, a6} → {d1, d2}

Invalid decision premises {a6} → {d1}

Modified decision premises
{a4} → {d2}
{a2, a3} → {d2}

New decision premises
{a4, a5} → {d1, d2}
{a5, a6} → {d1}

Example 4 (Continuing Examples 1 and 3). Consider the decision context K in Example 1. Its DICB
is shown in Example 3.We add a new object g7, which processes attributesa2, a3, a4, a6 and d2, into K,
and then obtain a new decision context Kg7 , as shown in Table 3.

Table 3: Decision context Kg7

a1 a2 a3 a4 a5 a6 d1 d2

g1 1 1 0 0 1 1 1 0

g2 0 0 1 0 0 0 0 1

g3 1 0 1 0 0 1 1 0

g4 0 1 0 0 0 0 0 0

g5 0 1 1 1 1 1 1 1

g6 0 0 1 0 1 0 0 0

g7 0 1 1 1 0 1 0 1

The DICB of Kg7 is shown in Table 4.

Table 4: The DICB of Kg7

{a1} → {d1} {a5, a6} → {d1}

{a4} → {d2} {a4, a5} → {d1, d2}

{a2, a3} → {d2} {a1, a3, a5} → {d1, d2}

{a2, a5} → {d1} {a3, a5, a6} → {d1, d2}

Comparing the DICB of K (Table 2) and that of Kg7 (Table 4), the types of decision premises are
recognized, as shown in Table 5.

4.2. Properties and update of decision premises

In this section, we will study the properties of the four types of decision premises, by which one can
determine which category they belong to and how to modify or update them. We rewrite the set Θ(A)
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(formula 1) in Kg as:

Θ(A) = ∪{ACD
i |Ai ⊂ A,Ai is a decision premise of Kg} (2)

Proposition 5. For decision contexts K and Kg, let O be the DICB of K and A → ACD ∈ O. Then, A

is an unchanged decision premise if and only if ACD = ACD.

Proof. “⇐”. We firstly prove that if A is a modified decision premise or an invalid decision premise, then
ACD ⊂ ACD holds.

(1) A is a modified decision premise, then by the definition of modified decision premise, we have
ACD ⊂ ACD.

(2) A is an invalid decision premise, i.e., A is a decision premise of K but not a decision premise of
Kg. Assume that ACD 6⊂ ACD. By (1) of Proposition 4, we have ACD = ACD. By Corollary 1 of [15],
we have

Θ(A) = ∪{ACD
j |Aj ⊂ A} (3)

and
Θ(A) = ∪{ACD

j |Aj ⊂ A} (4)

Because for any Aj ⊂ A, ACD
j ⊆ ACD

j holds by (1) of Proposition 4, and hence Θ(A) ⊆ Θ(A) holds.

Because A is not a decision premise of Kg, and hence ACD = Θ(A) by Proposition 3. Taking ACD = ACD,

Θ(A) ⊆ Θ(A) and ACD = Θ(A) into consideration, we have ACD ⊆ Θ(A), i.e., A is not a decision premise
of K by Proposition 3, which contradicts the fact that A is a decision premise of K. Hence, ACD ⊂ ACD.

Because ACD = ACD, then ACD 6⊂ ACD, i.e., A is neither a modified decision premise nor an invalid
decision premise by Proposition 6. Because A → ACD ∈ O, A is not a new decision premise. In
conclusion, A is an unchanged decision premise.

“⇒”. It is straightforward.

Example 5 (Continuing 4). Take {a2, a5}, an unchanged decision premise in Example 4 as an example.
We compute in K (Table 1) that {a2, a5}CD = {d1}, and compute in Kg (Table 3) that {a2, a5}CD = {d1}.

It is seen that {a2, a5}
CD = {a2, a5}

CD.

Proposition 6. For decision contexts K and Kg, let O be the DICB of K and A → ACD ∈ O. Then, A

is a modified decision premise if and only if ACD ⊂ ACD and ACD ⊃ Θ(A).

Proof. “⇒”. It has been proven in the sufficiency proof of Proposition 5 that ACD ⊂ ACD. Because A is
a modified decision premise, A is a decision premise of Kg, i.e., ACD ⊃ Θ(A) by Definition 6.

“⇐”. Because A → ACD ∈ O, A is a decision premise of K. Because ACD ⊃ Θ(A), by Definition 6,
A is a decision premise of Kg. Because ACD ⊂ ACD, A is a modified decision premise.

Example 6 (Continuing Example 4). Take {a4}, an modified decision premise, as an example. We
compute that {a4}

CD = {d1, d2}, {a4}CD = {d2} and Θ(a4) = ∅, satisfying that {a4}
CD ⊂ {a4}

CD and
{a4}

CD ⊃ Θ(a4).

Proposition 7. For decision contexts K and Kg, let O be the DICB of K and A → ACD ∈ O. Then, A

is an invalid decision premise if and only if ACD ⊂ ACD and ACD = Θ(A).

Proof. “⇒”. It has been proven in the sufficiency proof of Proposition 5 that ACD ⊂ ACD. Because A is
an invalid decision premise, A is a not decision premise of Kg, i.e., ACD = Θ(A) by Proposition 3.

“⇐”. Because A → ACD ∈ O, A is a decision premise of K. Because ACD = Θ(A), by Proposition 3,
A is not a decision premise of Kg. Hence, A is an invalid decision premise.
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Example 7 (Continuing Example 4). As shown in Example 4, {a6} is an invalid decision premise. From
K and Kg, we know {a6}

CD = {d1}, {a6}CD = ∅ and Θ(a6) = ∅, implying that {a6}
CD ⊂ {a6}

CD and

{a6}
CD = Θ(a6).

Proposition 8. For decision contexts K and Kg, if A is a new decision premise, then:

(1) A * gC ;

(2) ACD = Θ(A);
(3) Θ(A) ⊂ Θ(A);

(4) There exist a Ai → ACD
i ∈ O such that Ai ⊂ A and ACD

i ⊂ ACD
i .

Proof. (1) Assume A ⊆ gC . If we can prove A is not a decision premise of Kg, i.e., ACD = Θ(A) by
Proposition 3, it contradicts the fact that A is a new decision premise. In this case, the assumption
A ⊆ gC is wrong, and henceA * gC .

We firstly prove Θ(A) = Θ(A). By formulas 3 and 4, we just need to prove that for any Ai ⊂ A,
ACD

i = ACD
i . Because Ai ⊂ A and A ⊆ gC , we have Ai ⊆ gC . On the one hand, ACD

i = ACD
i ∩ gD

by (3) of Proposition 4; on the other hand, ACD
i ⊆ gCCD by Proposition 1. Because gC ⊆ gC , we have

gCCD ⊆ gCCD ⊆ gD by Proposition 1, i.e., gCCD ⊆ gD. Considering ACD
i ⊆ gCCD and gCCD ⊆ gD, we

have ACD
i ⊆ gD. Considering ACD

i = ACD
i ∩ gD and ACD

i ⊆ gD, we have ACD
i = ACD

i .
By (1) of Proposition 4, we have ACD ⊆ ACD. Because A is a new decision premise, it is not a

decision premise of K, and hence ACD = Θ(A) by Proposition 3. Take ACD ⊆ ACD, ACD = Θ(A) and
Θ(A) = Θ(A) into consideration, we have ACD ⊆ Θ(A). And it is easy to see that ACD ⊇ Θ(A), thus,
ACD = Θ(A) holds.

(2) On the one hand, by (2) of Proposition 4, we haveACD = ACD. On the other hand, A is not a
decision premise of K, and then ACD = Θ(A) by Proposition 3. Take ACD = ACD and ACD = Θ(A)

into consideration, we have ACD = Θ(A).
(3) Because A is a new decision premise, on the one hand, A is not a decision premise of K, and then

ACD = Θ(A) by Proposition 3. On the other hand, A is a decision premise of Kg, and then Θ(A) ⊂ ACD

by Definition 6. By (2) of Proposition 4, we haveACD = ACD. Taking Θ(A) ⊂ ACD, ACD = ACD and
ACD = Θ(A) into consideration, we have Θ(A) ⊂ Θ(A).

(4) Assume that for any Aj → ACD
j ∈ O, Aj 6⊂ A or ACD

j 6⊂ ACD
j .

We will prove Θ(A) ⊆ Θ(A). For any d ∈ Θ(A), by the definition of Θ(A), there must exist a
Ak → ACD

k ∈ O such that Ak ⊂ A and d ∈ ACD
k . Because Ak ⊂ A, one the one hand, by the assumption,

we know ACD
k 6⊂ ACD

k , and hence ACD
k = ACD

k by (1) of Proposition 4. On the other hand, because

Ak ⊂ A, by formula 3, we have ACD
k ⊆ Θ(A). Take d ∈ ACD

k , ACD
k = ACD

k and ACD
k ⊆ Θ(A) into

consideration, we have d ∈ Θ(A). In conclusion, d ∈ Θ(A) implies d ∈ Θ(A), i.e., Θ(A) ⊆ Θ(A). By
(3), A is not a new decision premise, contradicting the fact that A is a new decision premise. Thus, the
assumption is wrong, and then there must exist a Ai → ACD

i ∈ O such that Ai ⊂ A and ACD
i ⊂ ACD

i .

Example 8 (Continuing Example 4). Take {a4, a5}, a new decision premise, as an example. It is verified
that {a4, a5} satisfied the conditions in Proposition 8:

(1) {a4, a5} * gC7 = {a2, a3, a4, a6}.

(2) From Table 3, we have {a4, a5}
CD = {d1, d2}; and from Table 2, we have Θ({a4, a5}) = {d1, d2},

implying that {a4, a5}
CD = Θ({a4, a5}).

(3) From Table 4, we have Θ({a4, a5}) = {d2}, and then Θ({a4, a5}) ⊂ Θ({a4, a5}).
(4) For {a4, a5}, there exists {a4} → {d1, d2} in the DICB of K (Table 2) satisfying that {a4} ⊂

{a4, a5} and {a4}
CD ⊂ {a4}

CD ({a4}CD = {d2}, {a4}CD = {d1, d2}).
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By (4) of Proposition 8, we know that for any new decision premise A, there must exist a decision
implication such that Ai → ACD

i ∈ O, Ai ⊂ A and ACD
i ⊂ ACD

i . Inspired by this, we define the generator
of new decision premises, and intend to generate new premises based on their generators.

Definition 8. For decision contexts K and Kg, let O be the DICB of K and A be a new decision premise.
Let

Ω(A) = {Ai|Ai → ACD
i ∈ O,Ai ⊂ A,ACD

i ⊂ ACD
i }

For Am ∈ Ω(A), if |Am| = max{|Ai||Ai ∈ Ω(A)}, we call Am a generator of A.

By Definition 8, we know that there may be more than one generator of A.
Proposition 9 further clarifies the relationship between A and its generators.

Proposition 9. For decision contexts K and Kg, let A be a new decision premise. For any generator

Am of A, A has exactly one more attribute m than Am and m does not belong to gC , i.e., m ∈ C − gC .

Proof. Because Am is a generator of A, we have Am ⊂ A and ACD
m ⊂ ACD

m by Definition 8; and Am ⊆ gC

by (4) of Proposition 4. Considering Am ⊆ gC and Am ⊂ A, A can be written as:

A = Am ∪ S ∪ T

where S = (gC−Am)∩A and T = (C−gC)∩A. It is clear that Am∪S = Am∪((gC−Am)∩A) = gC∩A,
i.e., Am ∪ S = gC ∩A.

(1) We prove |T | = 1 in the following.
Assume |T | = 0. We have A = Am ∪ S ∪ T = Am ∪ S, and by Am ∪ S = gC ∩ A, we have

A = gC ∩ A ⊆ gC , i.e., A ⊆ gC . Because A is a new decision premise, by (1) of Proposition 8, A * gC

holds, which contradicts A ⊆ gC . Thus, |T | 6= 0 holds.
Assume |T | > 1. For any Ai ⊂ A, there are two cases to be considered:

• Ai * gC . By (2) of Proposition 4, we have ACD
i = ACD

i . Because Ai ⊂ A, by formula 4, we

haveACD
i ⊆ Θ(A), and hence ACD

i ⊆ Θ(A) because ACD
i = ACD

i .

• Ai ⊆ gC . Because |T | > 1, we can define Aj = Ai∪{a} where {a} ⊂ T . It is clear that Ai ⊂ Aj ⊂ A.

By Ai ⊂ Aj and Proposition 1, we have ACD
i ⊆ ACD

j . Because T ∩ gC = ∅ and a ∈ T , then a /∈ gC ,

and hence Aj = Ai∪{a} * gC ; and by (2) of Proposition 4, we have ACD
j = ACD

j . Because Aj ⊂ A,

by formula 4, we have ACD
j ⊆ Θ(A). Considering ACD

i ⊆ ACD
j , ACD

j = ACD
j and ACD

j ⊆ Θ(A), we
have ACD

i ⊆ Θ(A).

In conclusion, for any Ai ⊂ A, ACD
i ⊆ Θ(A) holds, i.e., Θ(A) ⊆ Θ(A) by formula 3, implying that A is

not a new decision premise by (3) of Proposition 8, which contradicts the fact that A is a new decision
premise. Thus, the assumption |T | > 1 is wrong; and considering |T | 6= 0, we have |T | = 1.

(2) We prove |S| = 0. Assume that |S| > 0. Because |S| > 0 and |T | = 1, by the definitions of S and
T , it is clear that Am ⊂ Am ∪ S ⊂ A.

Prove (Am ∪ S)CD ⊂ (Am ∪ S)CD. By (4) of Proposition 4, it is equivalent to prove Am ∪ S ⊆ gC

and (Am ∪ S)CD * gD. Because, Am ∪ S = gC ∩ A, Am ∪ S ⊆ gC holds. Because Am is a generator

of A, by Definition 8, we have ACD
m ⊂ ACD

m , which implies ACD
m * gD by (4) of Proposition 4. Because

Am ⊂ Am ∪ S, ACD
m ⊆ (Am ∪ S)CD holds, and hence (Am ∪ S)CD * gD because ACD

m * gD.

Assume that Am∪S is a decision premise of K. Because Am∪S ⊂ A and (Am∪S)CD ⊂ (Am∪S)CD,
by Definition 8,we have Am ∪ S ∈ Ω(A), and hence |Am| < |Am ∪ S| ≤ max{|Ai||Ai ∈ Ω(A)}, implying
that Am is not a generator of A, which contradicts the fact that Am is a generator of A. Thus, the
assumption Am ∪ S is a decision premise of K is wrong, i.e., Am ∪ S is not a decision premise of K.

For any decision premise Ai of K such thatAi ⊂ A, there are two cases to be considered:
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• Ai * gC . By (2) of Proposition 4, we have ACD
i = ACD

i . Because Ai ⊂ A, by formula 4, we

haveACD
i ⊆ Θ(A), and hence ACD

i ⊆ Θ(A) because ACD
i = ACD

i .

• Ai ⊆ gC . Let Aj = Ai ∪ T . It is clearly that Ai ⊆ Aj , and then ACD
i ⊆ ACD

j by Proposition 1.

Because T ∩ gC = ∅, then T * gC , and hence Aj = Ai ∪ T * gC , and then ACD
j = ACD

j by (2)

of Proposition 4. Because Ai ⊂ A and Ai ⊆ gC , then Ai ⊆ A ∩ gC , i.e., Ai ⊆ Am ∪ S because
A ∩ gC = Am ∪ S. BecauseAi is a decision premise of K and we have proven that Am ∪ S is not a
decision premise of K, we can ensureAi 6= Am∪S, and hence Ai ⊂ Am∪S. Because A = Am∪S∪T

and Am ∪ S ⊃ Ai, then A ⊃ Ai ∪ T = Aj , i.e., A ⊃ Aj , and hence ACD
j ⊆ Θ(A) by formula 4.

Considering ACD
i ⊆ ACD

j , ACD
j = ACD

j and ACD
j ⊆ Θ(A), we have ACD

i ⊆ Θ(A).

In conclusion, for any decision premise Ai of K satisfying thatAi ⊂ A and ACD
i ⊆ Θ(A), Θ(A) ⊆ Θ(A)

holds by formula 1, implying that A is not a new decision premise by (3) of Proposition 8, contradicting
the fact that A is a new decision premise. Thus, the assumption |S| > 0 is wrong, and hence |S| = 0.

Example 9 (Continuing Example 4). In Example 4, an object g7, whose condition attribute set is
{a2, a3, a4, a6} and decision attribute set is {d2}, is added into the decision context.

Take the new decision premise {a4, a5} as an example. By calculation, it is known that Ω(A) = {{a4}},
implying that {a4} is a generator of {a4, a5} by Definition 8. Comparing {a4} with {a4, a5}, it is seen
that {a4, a5} has exactly one more attribute {a5} than {a4}, and {a5} does not belong to g7.

By Theorem 5, one can obtain all candidate new decision premises.

Theorem 5. For decision contexts K and Kg, let O be the DICB of K. If A is a new decision premise,
then there must exist Ai → ACD

i ∈ O satisfying the following conditions:

(1) ACD
i ⊂ ACD

i ;

(2) A has exactly one more attribute than Ai, and the extra attribute does not belong to gC .

Proof. By (4) of Proposition 8 and Proposition 9, they are straightforward.

By Theorem 5, for a new decision premise A, there must exist a set Ai that satisfies conditions (1)
and (2) in Theorem 5. Thus, we can obtain all the candidate new decision premises A′ ∪ {d′}, where
d′ ∈ C−gC , by searching all A′ → A′CD in O that satisfy condition (1) and filtering those A′ that do not
satisfy condition (2). By Theorem 5, there must exist a premise Ai and condition attribute d′ ∈ C − gC

that satisfy A = Ai ∪ {d}.

5. Incremental algorithm for DICB generation

In this section, we will give the incremental algorithm for generating DICB. The incremental algorithm
starts with an empty decision context, i.e., there is no objects in this decision context.

Proposition 10. Let K = (G,C ∪D, IC ∪ ID) be a decision context where D 6= ∅. If G = ∅, then the
DICB of K is {∅ → ∅CD}.

Proof. We firstly prove ∅ is a decision premise of K. By Definition 4, we have ∅C = G = ∅, and hence
∅CD = ∅D = D ⊃ ∅ = Θ(∅), i.e., ∅CD ⊃ Θ(∅), and hence ∅ is a decision premise by Definition 6.

We then prove for any ∅ ⊂ A ⊆ C, A is not a decision premise of K. Because ∅ ⊂ A and ∅ is
a decision premise, by the definition of Θ(A), we have ∅CD ⊆ Θ(A), and hence D ⊆ Θ(A) because
∅CD = D. Considering D ⊆ Θ(A) and ACD ⊆ D, we have ACD ⊆ Θ(A), i.e., A is not a decision premise
by Definition 6.

From the above, the DICB of K is {∅ → ∅CD}.
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The incremental algorithm for generating DICB is shown in Algorithm 1.

Algorithm 1 Incremental algorithm for DICB generation

Input: Decision context K = (G,C ∪D, IC ∪ ID) (G 6= ∅, C 6= ∅ and D 6= ∅)

Output: The DICB O of K

1. Kcurrent = (∅, C ∪D, ∅ ∪ ∅)

2. O = {∅ → ∅CD}

3. for all g ∈ G do
4. O = Update−CanoBasis(Kcurrent, g, O)

5. Kcurrent = Kg

6. end for
7. return O

For the given decision context K = (G,C ∪ D, IC ∪ ID), starting with G = ∅ and D 6= ∅, by
Proposition 10, we initialize O with {∅ → ∅CD} (steps 1-2). At each iteration (steps 3-6), we add
an object g to the existing decision context Kcurrent, and update the existing DICB by the function
Update−CanoBasis(Kcurrent, g, O) (Algorithm 2).

Algorithm 2 Update−CanoBasis function

Input: Kcurrent, g and O

Output: The DICB O of Kg

1. for all Ai → ACD
i ∈ O do

2. modify Ai → ACD
i to Ai → ACD

i

3. if ACD
i ⊂ ACD

i then

4. for all a ∈ C − gC do

5. add Ai ∪ {a} → (Ai ∪ {a})CD to O //by (2) of Proposition 8, (Ai ∪ {a})CD = Θ(Ai ∪ {a})

6. sort the decision implications in O by the cardinality of the premises
7. end for
8. end if
9. end for

10. for all A → ACD ∈ O do
11. Θ(A) = ∅

12. for all Ai → ACD
i ∈ O do

13. if Ai ⊂ A then
14. Θ(A) = Θ(A) ∪ACD

i

15. end if
16. end for
17. if Θ(A) = ACD then

18. remove A → ACD from O

19. end if
20. end for
21. return O
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In Algorithm 2, steps 1-9 are used to generate all the candidate new decision premises: for each
decision implication Ai → ACD

i ∈ O, we firstly modify its consequence from ACD
i to ACD

i (step 2),
and then generate all the candidate new decision premises (steps 3-8). This is reasonable, because by
Theorem 5, if Ai satisfies condition (1) and A = Ai ∪ {d} satisfies condition (2), then A = Ai ∪ {d} is a
candidate new decision premise. In this case, the premises of decision implications in O are divided into
four categories: candidate new decision premises, unchanged decision premises, invalid decision premises,
and modified decision premises (the consequences of the modified decision premises have been modified
in step 2). Steps 10-20 remove the invalid decision premises and the candidate new decision premises
that are not new decision premises (steps 17-19). Note that, because the decision implications in O are
stored in the increasing cardinality of decision premises (step 6) and O is traversed in order (step 10), we
can compute Θ(A) (steps 11-16).

Example 10 illustrates Algorithm 2.

Example 10 (Continuing Example 4). In Example 4, object g7, processing attributes a2, a3, a4, a6 and
d2, is added into the existing decision context Kcurrent. The DICB O of Kcurrent is shown in Table 2.

Take the decision premise {a4} of Kcurrent as an example. It is verified that {a4} satisfies condition
(1) of Theorem 5, and both {a1, a4} and {a4, a5} satisfy condition (2) of Theorem 5, and thus the two
decision implications {a1, a4} → {a1, a4}

CD and {a4, a5} → {a4, a5}
CD are added into O. The set O

after steps 1-9 is shown in Table 6.

Table 6: Set O

Categories Corresponding decision implications

Unchanged decision premises

{a1} → {d1}
{a2, a5} → {d1}
{a1, a3, a5} → {d1, d2}
{a3, a5, a6} → {d1, d2}

Invalid decision premises {a6} → {d1}

Modified decision premises
{a4} → {d2}
{a2, a3} → {d2}

Candidate new decision premises

{a4, a5} → {d1, d2}
{a5, a6} → {d1}
{a1, a4} → {d1, d2}
{a1, a6} → {d1}
{a1, a2, a3} → {d1, d2}
{a2, a3, a5} → {d1, d2}

Take {a1, a4} in Table 6 as an example. We have

T = {a1}
CD ∪ {a4}

CD = {d1, d2} = {a1, a4}
CD

i.e., {a1, a4} is not a decision premise of Kg7 , and then {a1, a4} → {d1, d2} is removed. In the same
way, we remove all those invalid decision premises and the candidate new decision premises that are not
decision premises of Kg7 .

The DICB of Kg7 is shown in Table 7.
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Table 7: The DICB of Kg7

{a1} → {d1} {a2, a5} → {d1}

{a4} → {d2} {a4, a5} → {d1, d2}

{a2, a3} → {d2} {a1, a3, a5} → {d1, d2}

{a5, a6} → {d1} {a3, a5, a6} → {d1, d2}

Now let us analyze the time complexity of Algorithm 2. Let |C| be the number of condition attributes,
|D| be the number of decision attributes, and on be the number of decision implications in DICB of
Kcurrent. The time complexity of steps 1-9 is O(on · |C| · on · (|C|+ |D|)). Denote the number of decision
implications after step 9 by ōn. Then, the time complexity of steps 10-20 is O(ō2n · (|C| + |D|)). Thus,
the time complexity of Algorithm 2 is:

O(on · |C| · on · (|C|+ |D|) + ō2n · (|C|+ |D|))

Let |G| be the number of objects in K. Then, the time complexity of Algorithm1 is:

O(|G| · |C| · o2n · (|C|+ |D|) + |G| · ō2n · (|C|+ |D|))

Let |O| be the number of decision implications in DICB of K. We approximate on by |O| and ōn by
|O|+ |O| · |C|. The time complexity of Algorithm 1 becomes:

O(|G| · |C|2 · |O|2 + |G| · |C| · |D| · |O|2 + |G| · |C|3 · |O|2 + |G| · |C|2 · |D| · |O|2)

i.e.,
O(|G| · |C|3 · |O|2 + |G| · |C|2 · |D| · |O|2) (5)

[15] put forward a true premise-based algorithm (abbreviated to MBTP below), whose time complexity
is1

O(|G|2 · |C| · |D|+ |G| · |C|3 · |D| · |O|2 + |G| · |D|2 · |O|) (6)

and proved its absolute advantages compared with the minimal generator-algorithm in [46]. Section 6
makes a further comparative experiment between our proposed algorithm and MBTP algorithm.

6. Experimental verification

An advantage of the incremental algorithm is that it is able to update, instead of re-generating, DICB
when new objects are added to decision contexts. Taking this advantage into account, one can compare
the performance of MBTP and the incremental algorithm in two ways:

1. new objects are added to decision contexts and we compare the time consumption of MBTP in
generating the whole DICB and the time consumption of the incremental algorithm in updating
the existing DICB;

2. a decision context is given and we compare the time consumption of MBTP and the incremental
algorithm in generating the whole DICB.

Obviously, the time consumption of the incremental algorithm in the first way is only a part of that in the
second way, whereas the time consumption of MBTP in the first way is the same as that in the second
way. Thus, if the incremental algorithm is more efficient than MBTP in the second way, it must be also

1The time complexity of MBTP obtained in the paper is slightly different with that of [15], where Li et al. made a
mistake when analyzing o′i, i.e., setting o′i = |O| instead of o′i = |O|+ |C| · |O|.
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more efficient than MBTP in the first way. In the section, we compare their performances in the second
way.

6.1. Experiment data

We selected 8 UCI datasets with different scales, carried out some necessary pre-processing, such as
removing missing values and normalizing the continuous attributes, and finally obtained 8 formal contexts
according to the threshold value 0.5. The summary information of the formal contexts is shown in Table
8, in which |G| and |M | denote the numbers of objects and attributes respectively.

Table 8: Data sets

No Data sets |G| |M |

1 cloud 108 21

2 hou 506 14

3 ion 351 34

4 triazines 186 181

5 bank8FM 8192 27

6 dplanes 40767 33

7 bank32nh 8192 99

8 waveform 5000 123

6.2. Experiment approach and results

For a dataset, we generated the first decision context by randomly selecting one condition attribute
from all the attributes and taking the remainder attributes as the decision attributes. Subsequently, we
equably increased the number of condition attributes, which were also randomly selected from all the
attributes, with the rest being taken as the decision attributes. This process was repeated 10 times. It
is noted that when the number of condition attributes was not an integer, we rounded it to the nearest
integer. Take the dataset “cloud” as an example. We obtained 10 decision contexts by randomly choosing
1, 3, 5, 7, 9, 11, 13, 16, 18, 20 condition attributes from all the attributes and taking the rest as decision
attributes.

The results are shown in Tables 9-16, in which:

1. “Incre” represents the incremental algorithm;
2. If the time consumption of the incremental algorithm is less than that of MBTP, we highlight it

bold;
3. If the time consumption of one algorithm is more than 3600 seconds and 10 times that of the other

one, the algorithm is terminated and its time consumption is appended with the symbol “+”, e.g.
“9922.8+”;

4. If an algorithm has ran more than 24 hours, it is also terminated and its time consumption is
denoted as “24h+”. It is noted that when both the algorithms are determined, |O| is unknown, and
then it is denoted as “∗”.
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Table 9: cloud

No |G| |C| |D| |O| |G|/|C| MBTP (s) Incre (s)

1 108 1 20 0 108.00 0.39 0.02

2 108 3 18 2 36.00 0.39 0.02

3 108 5 16 13 21.60 0.16 0.03

4 108 7 14 22 15.43 0.17 0.09

5 108 9 12 27 12.00 0.17 0.17

6 108 11 10 55 9.82 0.23 0.59

7 108 13 8 76 8.31 0.30 0.73

8 108 15 6 132 7.20 0.50 2.01

9 108 17 4 180 6.35 0.92 5.63

10 108 20 1 208 5.40 0.73 9.47

Table 10: hou

No |G| |C| |D| |O| |G|/|C| MBTP (s) Incre (s)

1 506 1 13 0 506.00 4.34 0.03

2 506 2 12 1 253.00 3.90 0.03

3 506 3 11 1 168.67 2.63 0.03

4 506 4 10 9 126.50 1.88 0.03

5 506 6 8 7 84.33 2.06 0.08

6 506 7 7 19 72.329 1.92 0.09

7 506 8 6 17 63.25 1.61 0.11

8 506 10 4 14 50.60 0.69 0.09

9 506 11 3 20 46.00 0.92 0.14

10 506 13 1 17 38.92 0.27 0.08

Table 11: ion

No |G| |C| |D| |O| |G|/|C| MBTP (s) Incre (s)

1 351 1 33 0 351.00 2.51 0.02

2 351 4 30 1 87.75 1.42 0.08

3 351 8 26 14 43.88 0.95 0.23

4 351 11 23 166 31.90 1.67 5.07

5 351 15 19 705 23.40 5.80 147.11

6 351 18 16 2182 19.50 37.21 1483.88

7 351 22 12 2657 15.95 56.71 2261.87

8 351 25 9 5246 14.04 236.39 3600+

9 351 29 5 11138 12.10 992.28 9922.8+

10 351 33 1 1 10.64 0.06 0.06
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Table 12: triazines

No |G| |C| |D| |O| |G|/|C| MBTP (s) Incre (s)

1 186 1 180 2 186.00 11.73 0.09

2 186 20 161 94 9.30 7.59 2.31

3 186 40 141 466 4.65 62.46 86.19

4 186 60 121 1223 3.10 497.39 657.11

5 186 80 101 2520 2.33 1736.10 2987.83

6 186 100 81 5664 1.86 8545.09 36192.73

7 186 120 61 14263 1.55 85422.69 63303.00

8 186 140 41 * 1.33 24h+ 24h+

9 186 160 21 * 1.16 24h+ 24h+

10 186 180 1 * 1.03 24h+ 24h+

Table 13: bank8FM

No |G| |C| |D| |O| |G|/|C| MBTP (s) Incre (s)

1 8192 1 26 0 8192.00 2975.56 0.58

2 8192 3 24 1 2730.67 1288.52 0.98

3 8192 6 21 3 1365.33 1137.56 4.06

4 8192 9 18 5 910.22 969.14 9.83

5 8192 12 15 79 682.67 847.65 23.46

6 8192 14 13 179 585.14 665.70 37.60

7 8192 17 10 545 481.88 443.73 427.19

8 8192 20 7 360 409.60 525.86 168.96

9 8192 23 4 1419 356.17 356.54 3713.78

10 8192 26 1 2325 315.08 386.76 3867.6+

Table 14: dplanes

No |G| |C| |D| |O| |G|/|C| MBTP (s) Incre (s)

1 40767 1 32 0 40767.00 3600+ 4.38

2 40767 4 29 1 10191.75 41349.31 11.19

3 40767 8 25 3 5095.88 32780.72 44.04

4 40767 11 22 18 3706.09 29970.98 215.20

5 40767 15 18 49 2717.80 24646.89 1882.13

6 40767 18 15 187 2264.83 20602.41 2356.20

7 40767 22 11 2785 1853.05 19932.35 84995.86

8 40767 25 8 4746 1630.68 19782.78 24h+

9 40767 29 4 13344 1405.76 74936.36 24h+

10 40767 32 1 * 1273.97 24h+ 24h+
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Table 15: bank32nh

No |G| |C| |D| |O| |G|/|C| MBTP (s) Incre (s)

1 8192 1 98 0 8192.00 8790.00 1.84

2 8192 11 88 271 744.73 5675.13 125.66

3 8192 22 77 9149 372.36 8494.20 24h+

4 8192 33 66 * 248.24 24h+ 24h+

5 8192 44 55 * 186.18 24h+ 24h+

6 8192 54 45 * 151.70 24h+ 24h+

7 8192 65 34 * 126.03 24h+ 24h+

8 8192 76 23 * 107.79 24h+ 24h+

9 8192 87 12 * 94.16 24h+ 24h+

10 8192 98 1 * 83.59 24h+ 24h+

Table 16: waveform

No |G| |C| |D| |O| |G|/|C| MBTP (s) Incre (s)

1 5000 1 122 0 5000.00 3332.47 1.82

2 5000 14 109 1465 357.14 1808.45 3630.22

3 5000 27 96 50619 185.19 61655.25 24h+

4 5000 41 82 * 121.95 24h+ 24h+

5 5000 54 69 * 92.59 24h+ 24h+

6 5000 68 55 * 73.53 24h+ 24h+

7 5000 81 42 * 61.73 24h+ 24h+

8 5000 95 28 * 52.63 24h+ 24h+

9 5000 108 15 * 46.30 24h+ 24h+

10 5000 122 1 * 40.98 24h+ 24h+

6.3. Experiment analysis

The time complexity of MBTP and the incremental algorithm are determined by |G|, |C|, |D| and
|O| (Equations 5 and 6), where |G|, |C| and |D| are known for a given decision context but |O| is not.
To explain the results in Tables 9-16, we firstly explore the factors determining |O|.

From Tables 9-16, it can be seen that as |C| increases, |O| grows in most cases, meaning that |O|
is largely determined by |C|. Although the result is obtained as |D| decreases, we will explain in the
following that, compared with |C|, the impact of |D| on |O| can be negligible in most cases.

For a decision context K = (G,C ∪D, IC ∪ID), by Definition 7, |O| is equal to the number of decision
premises; by Theorem 3 in [15], A is a decision premise if and only if A is a true premise of a decision
attribute, and thus the number of decision premises is equal to the number of true premises, i.e., |O| is
equal to the number of true premises. Now, we assume that for a decision context with |C| condition
attributes, each decision attribute has n true premises on average. Then, K, which has |C| condition
attributes and |D| decision attributes, has |D| · n true premises, i.e., |O| = |D| · n.

When |C| increases to |C| + 1, there are C
|C|
|C|+1

= |C| + 1 sub-decision contexts of K, each of
which has |C| condition attributes and |D| decision attributes and hence has |D| · n true premises on
average, as assumed above. Now, K has (|C| + 1) · |D| · n true premises and the increment of |O| is
(|C|+ 1) · |D| · n− |D| · n = |C| · |D| · n.
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When |D| increases to |D|+1, as assumed above, we have (|D|+1) ·n true premises and the increment
of |O| is (|D|+ 1) · n− |D| · n = n. Thus, when |D| decreases to |D| − 1, the decrement of |O| will be n.

Thus, when |C| increases to |C| + 1 and |D| decreases to |D| − 1, the increase of |C| leads to an
increment |C| · |D| · n of |O| and the decrease of |D| leads to a decrement n of |O|, thus leading to an
increment |C| · |D| ·n−n of |O|. Thus, in our experiments, when |C| increases to |C|+ i and |D| decreases
to |D| − i, |O| will get the increment of about n · i · (|C| · |D| − 1).

We then evaluate the effect of |G| on |O| by selecting four datasets from Tables 9-16. For each decision
context listed in these tables, we divided the objects into 10 equal groups and incrementally added one
group to the original decision context. Figure 2 records the change of |O| as |G| increases.

Figure 2: The change of |O| as |G| increases

Figure 2 shows that as |G| increases, |O| grows slowly in most cases; and when |G| is large enough,
|O| holds steady.

By the above experiments, we conclude that |C| has a major impact on |O|, whereas both |D| and
|G| have a limited impact on |O|.

We then discuss the key factors that affect the performances of the two algorithms. From Tables
9-16, we can see that, for each dataset, as |C| increases, with |D| decreasing and |G| unchanged, the
time consumption of the incremental algorithm grows in most cases, which means that the incremental
algorithm is mainly affected by |C|.

However, this is not the case with MBTP. For example, for “cloud”,“ion” and “triazines” (see Tables
9, 11 and 12), as |C| increases, the time consumption of MBTP grows in most cases; but for “hou”,
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“bank8FM” and “dplanes” (see Tables 10, 13 and 14), as |C| increases, it drops in most cases. We
then find that, for “cloud”,“ion” and “triazines”, |G|/|C| is small (≤ 50 in most cases).Comparatively, for
“hou”, “bank8FM” and “dplanes”, |G|/|C| is large (> 50 in most cases); and especially for “bank8FM”
and “dplanes”, |G|/|C| > 300 and |G|/|C| > 1000 respectively. In this case, we assert that the time
consumption of MBTP is related to |G|/|C|, and give an explanation for this assertion as follows.

By [15], MBTP mainly includes two sub-functions getAllgd and DPgenerator, whose time complexity
is respectively O(|G|2 · |C| · |D|) and O(|G| · |C|3 · |D| · |O|2), meaning that getAllgd is mainly affected by
|G|, and DPgenerator is mainly affected by |C| and |O|. As analyzed previously, |O| is mainly affected
by |C|, and hence DPgenerator is also mainly affected by |C|. In this sense, when |G|/|C| is small, i.e.,
|G| is small but |C| is large, DPgenerator will take more time than getAllgd. Thus, as |C| increases,
the time consumption of DPgenerator increases, and hence that of MBTP also grows. When |G|/|C| is
large, i.e., |G| is large but |C| is small, getAllgd will take more time than DPgenerator. Figure 3 further
shows that when |G|/|C| is large, such as for “hou”, “bank8FM” and “dplanes”, as |C| increases, the time
consumption of getAllgd is very close to that of the whole algorithm MBTP, and hence they will keep a
coincident variation, i.e., as the time consumption of getAllgd decreases, the time consumption of MBTP
also drops.

Figure 3: The time consumption of getAllgd and that of MBTP as |C| increases

Based on the above analysis, we can further compare the performances of the two algorithms by
Tables 9-16.

First, we notice that, when |G|/|C| is large, the incremental algorithm is more efficient than MBTP.
Examplary datasets are “bank8FM” and “dplanes” (Tables 13 and 14). When |G|/|C| > 300 in “bank8FM”
and |G|/|C| > 1000 in “dplanes”, compared with MBTP, the incremental algorithm has a remarkable
advantage. Especially for “dplanes”, where |G| = 4076, |C| = 4 and |D| = 29, MBTP takes 41349.31s
but the incremental algorithm just takes 11.19s, with the efficiency being increased by more than 99%.
Another example is “hou” (Table 10), where |G|/|C| > 30 and both the two algorithms are of low time-
consumption, with the incremental algorithm being more efficient.
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When |G|/|C| is small, however, the incremental algorithm loses this advantage. Take “ion” and
“triazines” (Tables 11 and 12) for example. It is observed that while the incremental algorithm is more
efficient than MBTP in the beginning, when |G|/|C| < 40 or |G|/|C| < 5, MBTP will be more efficient.
Another example is “cloud” (Table 9). When |G|/|C| < 30, both the two algorithms are of low time-
consumption, with MBTP being more efficient.

In addition, we conclude that when |C| is large, both algorithms are time-consuming. For example, in
“bank32nh” and “waveform” (Tables 15 and16), when |C| ≥ 33 or |C| ≥ 41, both the two algorithms take
more than 24 hours and were terminated. That is because when |C| is large, there are a great number of
decision implications in O, as analyzed before; and as |C| increases, |O| may have an explosive growth.
For example, in “bank32nh”, when |C| increases from 11 to 22, |O| increases from 271 to 9149; and in
“waveform”, when |C| increases from 14 to 27, |O| increases from 1465 to 50619. It is known that, when
|O| is large, traversing O will be time-consuming for the two algorithms.

It is noted that, in most practical cases, objects are much more than condition attributes, i.e., |G|/|C|
is large, and as analyzed before, the incremental algorithm will be superior to MBTP. Actually, even
for the data in which objects are less than condition attributes, new objects may be continually added
into data. For example, new purchase records are added moment by moment into the database of a
supermarket. In this case, |G|/|C| increases and remains large. MBTP, however, still generates the whole
DICB; and by contrast, the incremental algorithm just needs to modify the existing DICB to obtain a
new one, which is only a part of work of MBTP. Hence, the incremental algorithm must be also more
efficient than MBTP.

7. Conclusion and further work

In this paper, we proposed an incremental algorithm, which produces a new DICB by modifying and
updating the existing DICB in the case of new objects being continually added into data. Experimental
results verified that when samples in data are much more than condition attributes, the time consumption
of generating the whole DICB by incremental algorithm will be remarkably less than that by MBTP. In
addition, we conclude that, even for the data in which samples are less than condition attributes, when
new objects are continually added into data, the incremental algorithm will also be more efficient than
MBTP.

In practice cases, multiple samples but not a single one may be added simultaneously into data. Hence,
when a bunch of samples come, how to modify the existing DICB to obtain a new one deserves further
exploration. Furthermore, an improved distributed algorithm for DICB generation will be designed in
our future study.

DICB is a complete and extremely compact representation of decision information in data. Hence,
the DICB-based knowledge representation and reasoning is a valuable topic, which includes studying the
effects of inference rules when they are applied to knowledge inference in different orders and different
times, designing optimal inference strategies and constructing a system of knowledge representation and
inference that takes DICB as its knowledge base and inference rules as its inference engine.

Acknowledgement

This work is supported by the National Natural Science Foundation of China (62072294, 61972238,
61806116), the Key R&D program of Shanxi Province (International Cooperation, 201903D421041),
the Natural Science Foundation of Shanxi Province (201801D221175), the Cultivate Scientific Research
Excellence Programs of Higher Education Institutions in Shanxi (CSREP) (2019SK036), the Training
Program for Young Scientific Researchers of Higher Education Institutions in Shanxi, the Scientific and
Technological Innovation Programs of Higher Education Institutions in Shanxi (2019L0500), and the
Shanxi Application Basic Research Plan (201901D211414).

22



Compliance with Ethical Standards

• Conflict of interest. The authors declare no conflict of interest.

• Ethical approval. We confirm that we have given due consideration to the protection of intellec-
tual property associated with this work and that there are no impediments to publication, including
the timing of publication, with respect to intellectual property. We confirm that we have followed
the regulations of our institutions concerning intellectual property.

• Human and animal studies. This article does not contain any studies with human participants
or animals performed by any of the authors.

• Data availability. The datasets generated during the current study are available from the corre-
sponding author on reasonable request.

Reference

[1] Eduard Bartl and Jan Konecny. L-concept lattices with positive and negative attributes: Modeling
uncertainty and reduction of size. Information Sciences, 472:163–179, 2019.

[2] Radim Belohlavek, Jan Outrata, and Martin Trnecka. Factorizing boolean matrices using formal
concepts and iterative usage of essential entries. Information Sciences, 489:37–49, 2019.

[3] Claudio Carpineto and Giovanni Romano. Concept data analysis: Theory and applications. John
Wiley & Sons, 2004.

[4] Aswani Kumar Cherukuri, Sérgio M. Dias, and Newton Josě Vieira. Knowledge reduction in for-
mal contexts using non-negative matrix factorization. Mathematics and Computers in Simulation,
109:46–63, 2015.
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The time consumption of getAllgd and that of MBTP as |C| increases
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