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Abstract Differential Evolution (DE) is a powerful
evolutionary algorithm for global optimization prob-

lems. Generally, appropriate mutation strategies and
proper equilibrium between global exploration and lo-
cal exploitation are significant to the performance of
DE. From this consideration, in this paper, we present
a novel DE variant, abbreviated to DMIE-DE, to fur-
ther enhance the optimization capacity of DE by de-
veloping a dual mutations collaboration mechanism
with elites guiding and inferiors eliminating techniques.
More specifically, an explorative mutation strategy
DE/current-to-embest with an elite individual serving
as part of the difference vector and an exploitative mu-
tation strategy DE/ebest-to-rand with selecting an elite
individual as the base vector are employed simultane-
ously to achieve the balance between local and global
performance of the whole population instead of only one
mutation strategy in classical DE algorithm. The con-
trol parameters F and CR for above mutation strate-
gies are updated adaptively to supplement the opti-
mization ability of DMIE-DE based on a rational prob-
ability distribution model and the successful experience
from the previous iterations. Moreover, an inferior so-
lutions eliminating technique is embedded to enhance
the convergence speed and compensate cost of the fit-
ness evaluation times during the evaluation process. To
evaluate the performance of DMIE-DE, experiments are
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conducted by comparing with five state-of-the-art DE
variants on solving 29 test functions in CEC2017 bench-
mark set. The experimental results indicate that the
performance of DMIE-DE is significantly better than,
or at least comparable to the considered DE variants.

Keywords Differential evolution · Dual mutations ·
Elites guiding technique · Inferior eliminating technique

1 Introduction

Differential evolution (DE), first proposed by Storn and
Price (Storn and Price, 1997), is a simple yet powerful

evolutionary algorithm. DE has exhibited notable per-
formance due to its simple structure, rapid convergence
speed as well as strong robustness and has been applied
successfully in many domains of science and engineer-
ing such as neural network (Su et al, 2019; Baioletti
et al, 2020), power system (Sakr et al, 2017; Reddy
and Bijwe, 2019), medical aspect (Nunes et al, 2017;

Song et al, 2019; Hosny et al, 2020), image process-
ing (Paul and Das, 2015; Tarkhaneh and Shen, 2019)
and many other practical optimization problems (Bal-
amurugan and Muthukumar, 2019; Huang et al, 2020).

The research directions of DE mainly consist of
four categories. The first direction is to implement ra-
tional mechanisms to adjust core parameters in DE.
For example, The fitness-adaptive parametric scheme
for the scale factor F and crossover rate CR is de-
veloped in (Ghosh et al, 2011) to maintain the ex-
ploration ability and help the population escape from
the premature convergence situations. Zhu et al. (Zhu
et al, 2013) proposed an adaptive population correction
method to improve the optimization ability of DE. Draa
et al (Draa et al, 2015) employed a cosine distribution
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and a sine distribution to generate F and CR, respec-

tively. AGDE (Mohamed and Mohamed, 2019) utilized
a pre-determined specific candidate pool with a novel

and effective adaptation scheme for generating appro-

priate values for CR. The second direction involves im-

proving the mutation operator, which is one of the most
significant operators in DE. Fan and Lampinen (Ghosh

et al, 2011) proposed a trigonometric mutant strat-
egy to accelerate the convergence speed. Zhang and

Sanderson (Zhang and Sanderson, 2009) developed a

DE variant with an effective mutation strategy called

DE/current-pbest/1, which is a milestone for the devel-

opment of DE algorithm. EFADE (Mohamed and Sug-
anthan, 2018) provided a new triangular mutation oper-

ator which was based on the convex combination vector

of the triplet defined by three randomly chosen vectors.

The third improvement direction is to hybridize DE al-

gorithm with other heuristic algorithms including par-

ticle swarm optimization (Thangaraj et al, 2011), arti-
ficial bee colony algorithm (Abraham et al, 2012), grey

wolf optimization algorithm (Luo and Liu, 2020), whale

optimization algorithm (Luo and Shi, 2019) and so on.

The main purpose of the hybridization is to combine the

advantages of DE and other algorithms to enhance the

optimization capacity. The fourth direction is executed

by adding an extra framework to DE. For example, Guo
et al. (Guo et al, 2014) proposed a framework to detect

the stagnation intelligently. When the population was
stagnant, the vectors involved in mutation were selected
from the archive and through this operation, the quality
of solutions were significantly improved. In ADE-ALC

algorithm (Fu et al, 2017), an aging mechanism is intro-

duced into the framework of DE to maintain diversity
of the population. Deng et al. (Deng et al, 2020a) intro-

duced a regeneration framework at the dimension level
to alleviate the stagnation problem in DE.

No matter which improvement strategy mentioned

above is utilized, an appropriate tradeoff between the

local exploitation and global exploration ability is an

important guideline for the algorithm design, especially

for the mutation operator, and excessive emphasis on

one of them will adversely influence another. Based on

this consideration, we propose a novel DE variant with

double mutation strategies (DE/current-to-embest and

DE/ebest-to-rand) and an inferior solution eliminat-

ing technique for further enhancing DE’s optimization
ability. More specifically, in the strategy DE/current-

to-embest, the current individual is taken as the base

vector while an randomly selected top ranking elite in-

dividual and middle ranking individual serve as part of

the difference vector to guide the current individual to
explore the promising area, which is propitious to the

population diversity but will not lead to the premature

convergence. The strategy DE/ebest-to-rand chooses

an elite individual as the base vector and two randomly
selected individuals to guide the elite individual to ex-
ploit it’s neighbour area. These two mutation strategies

are employed simultaneously to generate the mutant

vectors. Furthermore, the parameter adaptation scheme

utilizes the Cauchy distribution model and a sinusoidal
formula which is associated with successful experience

from the previous iterations to automatically update

scale factor F and crossover rate CR respectively. The

inferior solution eliminating technique is introduced to

reduce the population size at certain generations by

eliminating several bad-performing individuals to en-
hance the convergence speed and compensate the cost
for fitness evaluation times during the evaluation pro-

cess. In a summary, the main contributions of the pro-

posed algorithm can be listed as follows:

(1) Dual mutation strategies including DE/current-to-
embest and DE/ebest-to-rand are proposed and

employed simultaneously to achieve an appropriate

equilibrium between the global exploration and lo-

cal exploitation abilities.

(2) The core control parameters F and CR are updated

adaptively to supplement optimization ability of al-

gorithm on basis of rational probability distribution
and the successful experience from the previous it-

erations.

(3) An inferior solution eliminating technique is uti-

lized based on the principle of survival of the fittest

to compensate the cost for fitness evaluation times

and speed up the population convergence.

To verify the effectiveness of proposed DMIE-DE,

it’s compared with five state-of-the-art DE variants. Ex-

tensive experiments are carried out based on 30D, 50D

and 100D benchmark functions from CEC2017 test

suite. The results indicate that the proposed DMIE-DE

algorithm is superior and competitive to the considered

DE variants.

The remainder of this paper is arranged as follows.

Section 2 studies the basic DE. Section 3 briefly re-
views some advanced methods related to our research.

Section 4 outlines our approach for the proposed DMIE-
DE algorithm. The simulation results including the al-

gorithm performance comparison with several DE vari-

ants on empirical functions, effectiveness certification

for dual mutation strategies and inferior solution elimi-

nating technique are described in Section 5. Conclusion

is provided in Section 6.
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2 Basic DE Algorithm

In this section, four basic operations in DE will
be demonstrated including initialization, mutation,

crossover and selection. The global minimization task

of D dimensions is considered in this paper and can be

defined as follows:

f(
−→
X ∗) = Minf(

−→
X i),

−→
X i ∈ S (1)

where f(·) denotes the objective function, and
−→
X i =

(xi,1, xi,2, ···, xi,D) is called the target vector,
−→
X ∗ means

the global optima of the objective function. The vari-

able S means the searching space, and the target vec-
tors will be restricted in the searching space by a prede-

fined lower bound
−→
Xmin = (xmin,1, xmin,2, · · ·, xmin,D)

and a upper bound
−→
Xmax = (xmax,1, xmax,2, · ·

·, xmax,D).

2.1 Initialization

To begin with, an initial population consisted of NP

individuals will be produced which can be expressed as
D-dimensional vectors:

−→
X 0

i =
{

x0
i,1, x

0
i,2, · · ·, x

0
i,D

}

, i = 1, 2, · · ·, NP. (2)

The initial population can be produced randomly by

a uniform distribution within the search space via the

formula as follows.

x0
i,j = xmin,j + rand[0, 1] · (xmax,j − xmin,j) (3)

where rand[0, 1] denotes a uniformly distributed num-

ber in the interval [0,1].

2.2 Mutation

At each iteration, the mutation operator is employed for

each target vector to yield corresponding mutant vector
−→
V g

i = (vgi,1, v
g
i,2, · · ·, v

g
i,D). The five most frequently used

mutation strategies are listed below.
1) DE/rand/1:

−→
V g

i =
−→
X g

r1
+ F · (

−→
X g

r2
−
−→
X g

r3
) (4)

2) DE/best/1:

−→
V g

i =
−→
X g

best + F · (
−→
X g

r1
−
−→
X g

r2
) (5)

3) DE/current-to-best/1:

−→
V g

i =
−→
X g

i + F · (
−→
X g

best −
−→
X g

i ) + F · (
−→
X g

r1
−
−→
X g

r2
) (6)

4) DE/rand/2:

−→
V g

i =
−→
X g

r1
+ F · (

−→
X g

r2
−
−→
X g

r3
) + F · (

−→
X g

r4
−
−→
X g

r5
) (7)

5) DE/best/2:

−→
V g

i =
−→
X g

best + F · (
−→
X g

r1
−
−→
X g

r2
) + F · (

−→
X g

r3
−
−→
X g

r4
) (8)

where the indices r1, r2, r3, r4 and r5 ∈ {1, 2, · · ·, NP}

are mutually exclusive integers and are different form

the index i. The vector
−→
X g

best represents the optimal
individual in the population at the gth generation. The

parameter F is called the scaling factor, which is a pos-

itive constant within the range [0,1].

2.3 Crossover

The population diversity is enhanced by the crossover
operator. The trial vector

−→
U g

i = (ug
i,1, u

g
i,2, · · ·, u

g
i,D) is

produced by recombining the variables of target vector
−→
X g

i and mutation vector
−→
V g

i . The most generally im-

plemented binomial crossover operator is formulated as

follow:

ug
i,j =

{

vgi,j if rand[0, 1] 6 CR or j = jrand

xg
i,j otherwise

(9)

where rand[0, 1] is a random constant complying with

the uniform distribution in [0,1]. The parameter CR

controls the fraction of components copied from the

mutant vector and jrand ∈ (1, 2, · · ·, D) is a stochas-

tic integer to ensure that at least one component of

trial vector is inherited from the mutant vector.

2.4 Selection

The population is rebuilt by employing the selection

operation between the target vector
−→
X g

i and the trial

vector
−→
U g

i . Individual vectors with better fitness values

survive as the offsprings. For a minimization problem,

the selection operator is performed as follows:

−→
X g+1

i =

{−→
U g

i if f(
−→
U g

i ) 6 f(
−→
X g

i )
−→
X g

i otherwise
(10)

To sum up, the pseudo code of the classical DE algo-

rithm is written in Algorithm 1.

3 Related Works

Researches on DE have reached an impressive state over

the past two decades, and many variants have been
proposed by researchers to enhance DE’s optimization
capability. In this section, we will briefly review some
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4 Libao Deng 1 et al.

Algorithm 1: The classical DE algorithm with

DE/rand/1 strategy.

1 Randomly produce the initial population through:
x0
i,j = xmin,j + rand[0, 1] · (xmax,j − xmin,j);

2 Calculate the initial fitness value of individuals and

find the initial
−→
X best and f(

−→
X best);

3 while ( The stopping criterion is not met) do
4 for (i = 1 : NP ) do

5 Generate mutation vector
−→
V g

i by:
−→
V g

i =
−→
Xg

r1 + F · (
−→
Xg

r3 −
−→
Xg

r2)
6 Execute the crossover operator formulated by

Eq.(9) to generate the trial vector
−→
U g

i .
7 Employ the selection operator depicted by

Eq.(10) to generate the offspring
−→
Xg+1

i .
8 end
9 Recalculate the fitness value of individuals and

update
−→
X best and f(

−→
X best);

10 end

11 Output
−→
X best and f(

−→
X best).

modified methods related to our research. For a compre-
hensive survey on DE, please refer to literatures (Das

et al, 2016) and (Opara and Arabas, 2019).

An appropriate trial vector generation strategy is of

great significance to the performance of DE, and many
scholars have proposed various improvement strategies.
To modify the DE/current-to-best/1 approach, Zhang

and Sanderson (Zhang and Sanderson, 2009) intro-

duced a novel mutation strategy DE/current-to-pbest

in their research of JADE. The innovation of this strat-

egy lies in an optional external archive which could pro-

vide information about the evolution direction. Tanabe

and Fukunaga (Tanabe and Fukunaga, 2013) proposed

an advanced JADE variant named success history based
DE, which applied historical memory archives to store
a set of well-performed values of CR and F . In order

to alleviate the premature convergence and stagnation

problems, Islam et al. (Islam et al, 2012) developed

a DE variant, called MDE pBX with a new mutation

strategy DE/current-to-gr best/1 and a novel crossover

scheme p-best crossover operation. Otani et al. (Otani

et al, 2013) introduced a DE/isolated/1 mutation op-

erator to generates new individuals close to an isolated

individual which was expected to evenly allocate the

search resources. Mohamed and Suganthan (Mohamed
and Suganthan, 2018) presented an enhanced fitness-

adaptive DE with applying a new triangular mutation

operator to improve the global and local search capa-

bilities and increase the convergence speed of the ba-

sic DE. Zheng et al. (Zheng et al, 2017) proposed a

novel mutation strategy, referred to as DE/current-to-

ci mbest/1, which utilized the collective information of

the m best individuals to form the difference vector in

mutation.

Efforts have also been made to utilize multi-

ple mutation strategies during the evolution pro-
cess. For example, Li et al. (Li et al, 2017a) intro-

duced three mutation strategies including DE/current

to cbest, DE/current-to-rbest/1 and DE/current-to-

f best. Meanwhile, the whole population is divided into

three subpopulations and individuals in each subpop-

ulation utilize different mutation based on their fit-

ness value. Mohamed et al. (Mohamed et al, 2019)

introduced two novel mutation operators DE/current-

to-ord pbest and DE/current-to-ord best to enhance

DE’s performance. Liu et al. (Li et al, 2020) pre-

sented two variants of the classical DE/rand/2 and

DE/best/2 strategies, referred to as DE/e-rand/2 and
DE/e-best/2 respectively, and these two mutations

were used to achieve a balance between global explo-

ration and local exploitation. Deng et al. (Deng et al,
2020b) employed an explorative mutation technique

DE/seeds-to-seeds and an exploitative mutation strat-

egy DE/seeds-to-rand to enhance the optimization abil-

ity of DE.

The control parameters are also extremely impor-

tant to DE’s optimization capability, especially for the
scale factor F and crossover rate CR. However, the

parameters are always sensitive to solve different op-

timization problems, therefore, researchers have intro-

duced various adaptive or self-adaptive parameter ad-

justment methods to alleviate this problem. For in-

stance, Draa et al. (Draa et al, 2015) introduced a

sinusoidal differential evolution namely SinDE, which
utilized two sinusoidal formulas to adjust the values of
scaling factor and the crossover rate. Recently, Draa

et al. (Draa et al, 2019) presented a new variant of

SinDE, which utilized a compound sine-based formula

to adjust F and CR. Compared with SinDE, the new

version could make parameters variation less monotone.

Yu et al. (Yu et al, 2013) proposed a two-level adap-
tive parameters control strategy. More specifically, the

individual-level parameters are updated according to

not only individuals fitness value but also its distance

from the optimal individual, and the population-level

parameters were updated adaptively during the evolu-

tion process. Meng et al. (Meng et al, 2018) introduced
a DE variant called PALM-DE to generate new parame-

ters with an adaptive learning mechanism for the incon-

venience in selecting control parameters. However, this

variant was heavily relied on the number of individuals

to generate a suitable value for CR. Thus, on the basis

of (Meng et al, 2018), Meng et al. (Meng et al, 2019)

introduced a new parameter adaptive DE variant called
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PaDE to resolve inappropriate adaptation schemes with

a novel grouping strategy.

To summarize, the improvement methods on mu-

tation strategies and control parameters are promising

research area, which therefore provides the references
for our proposed DMIE-DE variant in this paper.

4 Description of DMIE-DE

In this section, we will provide an explicit elaboration

of proposed DMIE-DE algorithm. Firstly, we will intro-

duce the designing motivation of DMIE-DE. Then, we

will describe the new mutation method with two strate-

gies including DE/current-to-embest and DE/ebest-to-
rand as well as main parameters adaptation schemes.

Lastly, the inferior solution eliminating technique will

be described.

4.1 Motivation

The conspicuous flaw for DE variants lies in the fact

that it is difficult to coordinate the global exploration

ability and the local exploitation ability. Globality and

locality are ambivalent but existing in solving the op-

timization problems. The mutation operator in DE is

generally composed of base vectors and difference vec-

tors. The base vector is used to determine the searching

reference point while the difference vectors are utilized

to provide the searching direction and perturb the base

vector. The classical mutation strategy DE/rand/1 is

said to be the most frequently used scheme (Das and
Suganthan, 2011) with maintaining outstanding global

exploration ability but it tends to cause the problem

of stagnation because of its random manner. Stud-

ies indicate that greedy strategies, like DE/best/1 and

DE/best/2, have higher convergence speed and strong

exploitive ability (Li et al, 2017b) but it is easy to cause

premature convergence problem. Therefore, if an algo-

rithm could employ dual mutation strategies with dif-

ferent emphasis that one focuses on exploitation work
while the other on exploration work at the same time to

generate offsprings and select a better one to next gen-
eration, it may promote the accuracy and robustness

because their explorative and exploitive advantages are

combined. However, the problem with this scheme is

that the fitness evaluation times will also be doubled.

To overcome this problem, we can eliminate some in-

dividuals with bad performance at certain time during

the evolution process.

4.2 Dual Mutations Collaboration Mechanism with

Elites Guiding Technique

In order to achieve a proper balance of the global explo-
ration and local exploitation, we propose dual mutation

strategies called DE/current-to-embest and DE/ebest-

to-rand.

The first mutation DE/current-to-embest is rela-

tively explorative to maintain the population diversity,

and is formulated as follows:

−→
V i =

−→
X i+Fi · (

−→
X ebest−

−→
X i)+Fi · (

−→
Xmbest−

−→
X r) (11)

From Eq. (11), we can see that this strategy selects the

current individual
−→
X i as the base vector and two dif-

ference vectors are utilized. More specifically,
−→
X ebest is

called elite individual which is randomly selected from

the top 10% individuals with better fitness values in the
current population to guide the evolution direction. The

vector
−→
Xmbest is called the medium individual which is

randomly selected from a group centred on the middle

ranking individual according to the fitness values, and

the group size isD/5, where the parameterD means the

problem dimension.
−→
X r is a random individual from the

union P ∪ A, where P denotes the current population,
and A represents an external archive used to store the
inferior parents that fail in the selection process during

last iteration. Fig. 1 illustrates this mutation strategy

in a 2-D plane picture in which the marker a means

the vector
−→
Xmbest −

−→
X r2, and markers b and c denote

the vectors Fi · (
−→
Xmbest −

−→
X r2) and Fi · (

−→
X ebest −

−→
X i)

respectively. From the figure, we can draw two conclu-

sions. On the one hand, the current individual serves as

the searching centre, which will be helpful to get out of

the current poor area. On the other hand, it combines

the relatively better solution, i.e., elite individual, and

medium solution in the current population to guide the

current individual to a more promising area which is

helpful to a faster convergence speed.

The second mutation strategy DE/ebest-to-rand is
designed to be relatively exploitive and its calculation

formula can be written as follows:

−→
V i =

−→
X ebest + Fi · (

−→
X r1 −

−→
X r2) (12)

where the vectors Xebest is defined consistently as

Eq. (11). The vector
−→
X r1 means a random individual

selected from the current population P and
−→
X r2 is a

random individual from the union P∪A. The schematic

diagram for this strategy can be illustrated as Fig. 2

in which the marker e denotes the difference vector
−→
X r1 −

−→
X r2. From the figure, we can observe that this

mutation strategy selects the elite individual as base

vector instead of the best individual like DE/best/1,
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ebest
X

best
X

worst
X

mbest
X

i
V

i
X

r
X

Fig. 1: Illustration of the mutation operator
DE/current-to-embest.

worstX

F e

e

1r
X

ebest
X

i
V

best
X

i
X

2r
X

Fig. 2: Illustration of the mutation operator

DE/ebest-to-rand.

which is expected to have better solutions around it and
meanwhile alleviate the premature convergence prob-
lems. What’s more, the difference vector is beneficial to

maintain the population diversity because of its random

characteristic.

At each generation, these two mutation strategies,

i.e., DE/current-to-embest and DE/ebest-to-rand, are

applied simultaneously to generate two trial vectors.

Fitness values of these two trial vectors are calculated

and compared to select a better one to against with the

target vector in the selection operation. This scheme

is expected to enhance the optimization capacity and

robustness of DMIE-DE because the exploration and

exploitation strengthes are complementary.

4.3 Control Parameters Adaptation

The control parameters also paly an important role in

the effectiveness of DE. The scale factor F is utilized

to determine the searching radius centred on the base

vector, and the crossover rate CR controls the compo-

nents inherited from mutant vector. Different param-

eter adaptation schemes may be suitable for different

optimization problems. In our work, we design a mod-

ification of the parameter adaptation scheme proposed

in (Zhang and Sanderson, 2009).

At each generation, the scale factor Fi for each

individual is generated independently according to a

Cauchy distribution model:

Fi = Cauchyrand(µF , θF ) (13)

where µF is called the location parameter which de-

termines the peak location of the distribution and θF
denotes the scale parameter which decides half width

value at half of the maximum distribution value. In our

work, we set the parameter θF to a fixed value 0.1,
while the parameter µF is updated at each generation

according to the previous successful experience and its

initial value is set to be 0.3. Then, the update formula

of µF can be written as follows:

µF = (1− ρ) · µF + ρ ·meanLm(SF ) (14)

In Eq. (14), the parameter ρ is a dynamically adjusted

by an normal distribution:

ρ = abs(0.5 ·Normalrand(0, 1)) (15)

The function abs(·) means the absolute value and
Normalrand(0, 1) is a random number subject to the

standard normal distribution. SF is a set of successful
F values during last iteration, and meanLm(·) denotes

the Lehmer mean function:

meanLm(SF ) =

∑

F∈SF
F 2

∑

F∈SF
F

(16)

According to (Zheng et al, 2017), Cauchy distribution

is beneficial for the diversify of F and can avoid prema-
ture convergence to some extent. Moreover, the Lehmer

mean is utilized to generate larger F values to enhance

the population diversity.

For the crossover rate CR, we employ a sine distri-

bution formula which can be illustrated as follow:

CRi = µCR + δ · sin(π · (rand[0, 1]− 0.5)) (17)

The parameter µCR is initialized as 0.8, and is updated

by the following equation:

µCR = (1− ρ) · µCR + ρ ·meanLm(SCR) (18)

The parameter ρ is the same definition as Eq. (15). The
successful CR are also stored for the generation of µCR

by the Lehmer mean:

meanLm(SCR) =

∑

CR∈SCR
CR2

∑

CR∈SCR
CR

(19)
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Algorithm 2: Pseudo code of the inferior so-

lutions eliminating technique.

1 Input:(1) Current population size: NP ; (2) Current
index of iteration: g;(3) The generation interval:
gip;

2 if (Mod(g,gip)==0) then
3 Sorting the current population in an ascending

order according to the fitness values;
4 Decide the number of inferior solutions needing

to be eliminated: EP = round(NP/10);
5 Eliminate the last EP solutions;
6 Recount the population size: NP = NP − EP ;

7 end
8 else
9 g = g + 1;

10 end
11 Output: The current population and its size NP .

In Eq. (17), the δ is set to 0.1 to control rate of change

caused by sine distribution and rand[0, 1] is a random

constant complying with the uniform distribution in
[0,1]. The design philosophy of the adaptation of CR

is that better CR values are more likely to generate

individuals that will have more chances to survive and
these better values should be inherited to the next gen-
eration.

4.4 Inferiors Eliminating Technique

During the selection process, the fitness value of each

individual need to be evaluated for the comparison with

the target vector for surviving to next generation which

is time-consuming. When the proposed dual mutation

strategy is operated, function evaluation times will be
doubled. In order to ease the reduction of practical

evaluation rate for function evaluation, inferior solu-
tion eliminating technique is provided to improve the
situation. More specifically, some individuals with bad

fitness values will be removed from the population for

a certain generation interval, which is presented by pa-

rameter gip in our algorithm. In fact, the value of gip
is important for the performance of proposed inferiors

eliminating technique. On the one hand, if the value of

gip is too large, the inferiors eliminating technique will

be seldom utilized so the function evaluations will be

wasted. On the other hand, if gip is set to a small value,

individuals will be discarded frequently and the diver-

sity of population might be affected, which is against

the optimization capacity. Therefore, it’s necessary to

provide a suitable value for gip. In our work, we set gip

to a constant, i.e., 400, which will be discussed in the

experimental part. During the elimination process, the

eliminating size EP is associated with the initial popu-

lation size. and the population size will be reduced by a

tenth for every gip iterations. For a clearer illustration,

this technique is presented as Algorithm.2, in which the
function Mod(·) means the modular arithmetic and the

function round(·) denotes the rounding function.

The detailed description of dual mutation strate-
gies and control parameters adaptation scheme as well

as the inferior solution eliminating technique have been

provided. Then, an overall implementation of DMIE-

DE is presented in Algorithm 3.

5 Experimental Results

In this section, the comparisons results on the adopted
experimental platform between proposed DMIE-DE
and five state-of-the-art DE variants will be presented.

Moreover, the parameter sensitivity analysis as well as

the effectiveness certification for dual mutation strate-

gies and inferior solution eliminating technique will be

analysed in detail.

5.1 Benchmark Functions and Compared Algorithms

To evaluate the performance of the proposed DMIE-

DE algorithm, comparative experiments are carried out

based on 29 benchmark functions provided by CEC2017

platform, and the ith function is denoted by fi in this

paper. These functions can be divided into the following
four groups with different characteristics: f1, f3: uni-

modal functions; f4 − f10 : simple multimodal func-
tions; f11 − f20 : hybrid functions; f21 − f30: composi-

tion functions. It should be pointed out that function

f2 has been removed from the test suite because of its

unstable characteristic according to the original refer-

ence (Wu et al, 2017), which also provides more detail
information about other functions in this test suite.

The performance of DMIE-DE is compared with

five state-of-the-art DE variants including two clas-
sical DEs: JADE (Zhang and Sanderson, 2009) and

SinDE (Draa et al, 2015); three recently proposed DE

variants: TSDE (Liu et al, 2016), AGDE (Mohamed

and Mohamed, 2019) and EFADE (Mohamed and Sug-

anthan, 2018). For a convincing comparison, the asso-

ciated parameters of the five compared DE variants

are configured as recommended in the corresponding

original references and the detail information is listed

in Table 1. In DMIE-DE, the initial population size

NP is set to 5 · D for all different problems and D

represents the problem dimension. This setting for the

value of NP is recommended by DE’s original refer-

ence (Storn and Price, 1997) and is also adopted by
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8 Libao Deng 1 et al.

Algorithm 3: Pseudo code of proposed DMIE-DE algorithm.

1 Input:(1) The initial population size: NP ; (2) The maximum of function evaluation: FESmax; (3) The problem
dimension: D.

2 Set µF=0.3; µCR=0.8; Generation index g=1; Archive A=∅; FES=0;
3 Generate an initial population P 0 by Eq. (3);

4 Calculate each individual’s fitness value and find the initial
−→
X best and its fitness value f(

−→
X best);

5 FES = FES +NP ;
6 while FES ≤ FESmax do
7 Set SF = ∅; SCR = ∅;
8 for (i = 1 : NP ) do
9 Generate Fi and CRi by Eq. (13) and Eq. (17) respectively;

10 Randomly select
−→
Xg

ebest form the top 10% best individuals;

11 Randomly select
−→
Xg

mbest form the medium group controlled by the dimension D ;

12 Randomly select
−→
Xg

r1 and
−→
Xg

r ,
−→
Xg

r2 form the current population P and the union P ∪A respectively;

13 Generate
−→
V g

i1 and
−→
V g

i2 using the DE/current-to-embest and and DE/ebest-to-rand strategy as Eq. (11) and
Eq. (12) respectively;

14 Execute the crossover strategy as Eq.( 9) to generate
−→
U g

i1 and
−→
U g

i2 for
−→
V g

i1 and
−→
V g

i2 respectively;

15 Calculate the fitness value f(
−→
U g

i1) and f(
−→
U g

i2) and select a better one as
−→
U g

i ;
16 FES = FES + 2;

17 if (f(
−→
U g

i ) < f(
−→
Xg

i )) then

18

−→
Xg+1

i =
−→
U g

i ; Fi and CRi are stored in SF and SCR respectively;
−→
Xg

i is stored in archive A;
19 end
20 else

21

−→
Xg+1

i =
−→
Xg

i ;
22 end

23 end

24 Update the optimal individual
−→
X best and fitness value fbest.

25 Update µF and µCR according to Eq. (14) and Eq. (18);
26 Execute the inferior solution eliminating technique in Algorithm 2.

27 end

28 Output:
−→
X best and f(

−→
X best).

some advanced DE variants, such as Refs. (Guo et al,
2014; Guo and Yang, 2014). According to the require-

ments for these test functions in Ref. (Wu et al, 2017),
the maximum number of function evaluations FESmax

is set to 10, 000 ·D, which is also the stopping criteria.

For the fairness of the comparison, the computational

results are all obtained on a PC with Intel(R) Xeon(R)

Gold 5115, 2.39GHz CPU, 64.0 GB Memory and MAT-

LAB R2018b on Windows 10 system.

5.2 Performance Metric

In our simulation, all the compared algorithms are con-

ducted 50 independent runs to obtain the function error

value which is calculated by f(
−→
X best) − f(

−→
X ∗), where

f(
−→
X best) is the global optimal fitness value obtained by

each algorithm and f(
−→
X ∗) is the fitness value of the ac-

tual global optimal solution. The average value(denoted

by “Mean”) and the standard deviation(denoted by

“Std.”) of the function error values are utilized to reflect

the effectiveness of test algorithms for searching the so-

lution within limited evaluations. Convergence graphics

Table 1: Parameters setting for DE variants

Algorithm Parameter setting

JADE µF0 = µCR0 = 0.5; p = 0.05

SinDE F = 0.5;CR = 0.9; freq = 0.25

TSDE [F = 1.0, CR = 0.1]; [F = 1.0, CR = 0.9]; [F = 0.8, CR = 0.2]

AGDE CR1 ∈ [0.05, 0.15];CR2 ∈ [0.9, 1]; pj = 1/j

EFADE F = 0.7; p = 0.5

of the function error value are also utilized to compare

the convergence characteristic of each algorithm in the

respective experiment.

Moreover, to draw a statistically sound conclu-

sion. we employ the single-problem analysis based on

Wilcoxon test (Garćıa et al, 2009) at the 0.05 signifi-

cance level to test whether there is significant difference
between DMIE-DE and each compared DE variant and
the symbols “+/=/–” represent that the performance of

the DMIE-DE is significantly better than, similar to, or

inferior to each competitor, respectively. Moreover, the

multiple-problem analysis based on Wilcoxon test and

the Friedman test are also conducted at the 0.05 signifi-

cance level. The Friedman test is a non-parametric test
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Table 2: Mean and standard deviation of function error values obtained by JADE, SinDE, TSDE, AGDE,

EFADE and DMIE-DE on 50D test functions in CEC2017 over 50 independent runs.

Func.

JADE SinDE TSDE AGDE EFADE DMIE-DE

Mean Std. +/-/= Mean Std. +/-/= Mean Std. +/-/= Mean Std. +/-/= Mean Std. +/-/= Mean Std.

f1 2.48E+03 3.15E+03 + 5.12E+03 3.74E+03 + 6.89E+09 1.24E+09 + 3.23E+03 3.72E+03 + 8.07E+04 6.51E+04 + 2.33E-14 8.00E-15

f3 8.52E+04 7.20E+04 + 1.00E+05 1.56E+04 + 1.75E+05 1.94E+04 + 4.02E-07 8.74E-07 + 3.68E+04 8.35E+03 + 7.71E-12 1.94E-11

f4 1.27E+02 4.05E+01 + 1.25E+02 2.45E+01 + 1.10E+03 1.28E+02 + 8.43E+01 4.62E+01 = 2.07E+02 2.53E+01 + 7.35E+01 4.73E+01

f5 2.33E+02 1.15E+01 + 1.04E+02 2.76E+01 + 4.66E+02 1.82E+01 + 2.08E+02 3.37E+01 + 3.78E+02 1.62E+01 + 5.45E+01 1.70E+01

f6 4.92E-02 3.41E-02 + 2.54E-05 3.39E-06 + 3.29E+01 2.91E+00 + 2.38E-02 3.96E-02 + 7.58E+00 1.01E+00 + 1.04E-04 6.84E-04

f7 2.82E+02 1.37E+01 + 1.98E+02 3.43E+01 + 7.16E+02 4.11E+01 + 2.89E+02 1.66E+01 + 4.23E+02 1.62E+01 + 9.31E+01 9.23E+00

f8 2.28E+02 1.10E+01 + 1.09E+02 2.62E+01 + 4.63E+02 2.10E+01 + 1.97E+02 4.74E+01 + 3.75E+02 1.66E+01 + 5.25E+01 2.12E+01

f9 4.71E-02 1.37E-01 - 3.59E-07 2.27E-07 - 1.07E+04 1.46E+03 + 4.75E+01 7.15E+01 + 3.75E+01 1.75E+01 + 4.84E-01 5.52E-01

f10 9.17E+03 4.03E+02 + 8.28E+03 7.08E+02 + 1.25E+04 3.63E+02 + 9.24E+03 4.10E+02 + 1.12E+04 2.93E+02 + 6.65E+03 1.86E+03

f11 3.82E+02 5.01E+02 + 4.39E+01 5.82E+00 - 1.90E+03 3.22E+02 + 5.38E+01 1.63E+01 - 2.19E+02 1.91E+01 + 8.14E+01 2.32E+01

f12 5.53E+04 3.97E+04 + 2.34E+06 1.23E+06 + 1.07E+09 2.06E+08 + 7.36E+04 4.23E+04 + 1.46E+06 5.72E+05 + 6.41E+03 5.26E+03

f13 5.61E+02 1.76E+02 + 1.96E+03 1.83E+03 + 7.69E+07 1.65E+07 + 4.46E+03 5.21E+03 + 2.13E+03 1.34E+03 + 7.83E+01 3.76E+01

f14 2.17E+04 9.20E+04 + 6.48E+03 5.66E+03 + 8.58E+04 2.84E+04 + 6.81E+02 7.24E+02 + 1.67E+02 1.35E+01 + 5.27E+01 1.21E+01

f15 2.35E+02 4.94E+01 + 8.56E+02 9.28E+02 + 2.46E+06 8.27E+05 + 2.42E+03 2.69E+03 + 6.99E+02 6.97E+02 + 6.05E+01 1.97E+01

f16 2.09E+03 2.16E+02 + 5.71E+02 2.25E+02 - 3.38E+03 2.14E+02 + 6.83E+02 2.90E+02 = 2.62E+03 2.11E+02 + 7.80E+02 2.44E+02

f17 1.42E+03 1.64E+02 + 3.42E+02 1.41E+02 - 2.12E+03 1.69E+02 + 5.97E+02 2.38E+02 + 1.54E+03 1.61E+02 + 4.47E+02 2.13E+02

f18 2.56E+02 1.01E+02 + 2.37E+05 1.34E+05 + 3.83E+06 1.33E+06 + 5.74E+03 4.04E+03 + 9.36E+03 6.40E+03 + 6.68E+01 3.52E+01

f19 1.00E+02 2.55E+01 + 8.41E+03 3.64E+03 + 1.46E+06 4.53E+05 + 4.23E+03 5.72E+03 + 2.03E+02 2.57E+02 + 4.84E+01 1.75E+01

f20 1.25E+03 1.63E+02 + 2.79E+02 1.12E+02 = 1.62E+03 1.83E+02 + 4.64E+02 1.85E+02 + 1.30E+03 1.31E+02 + 3.57E+02 2.32E+02

f21 4.33E+02 1.33E+01 + 3.05E+02 2.61E+01 + 6.55E+02 1.85E+01 + 3.53E+02 7.53E+01 + 5.82E+02 1.29E+01 + 2.49E+02 1.04E+01

f22 7.91E+03 2.86E+03 + 7.74E+03 2.41E+03 + 1.23E+04 1.80E+03 + 5.24E+03 4.66E+03 = 9.05E+03 3.05E+03 + 6.14E+03 2.40E+03

f23 6.51E+02 1.70E+01 + 5.00E+02 1.92E+01 + 9.04E+02 1.93E+01 + 4.91E+02 3.61E+01 + 8.26E+02 1.76E+01 + 4.72E+02 2.26E+01

f24 7.22E+02 1.74E+01 + 5.63E+02 1.41E+01 + 9.62E+02 1.86E+01 + 5.84E+02 1.93E+01 + 8.93E+02 1.99E+01 + 5.50E+02 2.16E+01

f25 5.19E+02 3.54E+01 + 4.85E+02 1.75E+00 = 1.41E+03 1.21E+02 + 5.35E+02 3.91E+01 + 5.97E+02 1.77E+01 + 5.06E+02 3.50E+01

f26 3.16E+03 1.52E+02 + 1.82E+03 1.67E+02 + 5.94E+03 1.89E+02 + 2.09E+03 2.64E+02 + 4.80E+03 1.90E+02 + 1.64E+03 1.39E+02

f27 5.31E+02 1.14E+01 - 5.07E+02 5.16E+00 - 1.17E+03 5.79E+01 + 6.23E+02 4.02E+01 + 9.58E+02 3.91E+01 + 5.38E+02 2.41E+01

f28 4.86E+02 2.43E+01 + 4.59E+02 1.46E-02 + 1.44E+03 1.58E+02 + 4.92E+02 1.90E+01 + 6.12E+02 2.60E+01 + 4.72E+02 2.14E+01

f29 1.00E+03 1.25E+02 + 4.23E+02 3.29E+01 + 2.83E+03 2.21E+02 + 4.14E+02 1.14E+02 - 1.74E+03 1.29E+02 + 4.43E+02 1.27E+02

f30 6.57E+05 6.63E+04 = 7.10E+05 5.09E+04 + 6.94E+07 1.23E+07 + 8.36E+05 1.04E+05 + 1.73E+06 1.58E+05 + 6.51E+05 5.73E+04

Total Number of (+/=/-) 26/1/2 Total Number of (+/=/-) 22/2/5 Total Number of (+/=/-) 29/0/0 Total Number of (+/=/-) 24/3/2 Total Number of (+/=/-) 29/0/0

methods for multiple comparison to detect significant

difference and calculate the average ranking between all

the compared algorithms.

5.3 Results and Analysis

The average and standard deviation of the function er-

ror values obtained by DMIE-DE and five compared

variants for solving 50D benchmark functions are pre-

sented in Table 2, and the results of 30D and 100D

functions are summarized in Table A1 and Table A2 re-
spectively at the supplementary due to the page limit.

In these tables, The smallest average of function er-
ror values obtained for each function are highlighted in
boldface. For the sake of convenience, the results of the

single-problem analysis by the Wilcoxon test are listed

in Table 3 and the comparison about the number of

the smallest error values obtained by each algorithm is
plotted in Fig. 3.

For 30D test functions, in terms of the smallest fit-

ness error values, DMIE-DE ranks second by getting

the smallest function error value on 10 functions and is

defeated by SinDE with obtaining smallest function er-

ror value on 12 functions. For other algorithms, AGDE,

TSDE, JADE and EFADE are the winners on 6, 5, 4, 4

functions in turn. From the perspective of statistical re-

sults based on Wilcoxon test, DMIE-DE is significantly

better than EFADE on 23 functions, and is beaten by

EFADE on only 2 function(i.e., f15 and f18). For JADE,

SinDE, TSDE and AGDE, DMIE-DE performs better

on 16, 16, 17 and 18 functions, meanwhile it shows equal

performance on 10, 9, 5 and 6 functions, respectively.

Table 3: Results of the single-problem Wilcoxon test
between DMIE-DE and other compared variants at

the 0.05 significance level.

DMIE-DE VS. 30D(+/=/-) 50D(+/=/-) 100D(+/=/-)

JADE 17/10/3 27/1/2 20/4/6

SinDE 17/9/4 23/2/5 28/1/1

TSDE 18/5/7 30/0/0 30/0/0

AGDE 19/6/5 25/3/2 28/1/1

EFADE 24/4/2 30/0/0 27/2/1

Considering 50D problems, DMIE-DE still shows

its outstanding performance although it’s more dif-

ficult to deal with higher dimensional problems. In

terms of the average function error, DMIE-DE takes

the first-ranking position compared with other algo-

rithms by yielding the smallest function error values

on 18 test functions, which is increased by 8 functions
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Fig. 3: The number of the smallest error values

obtained by each algorithm on CEC2017 with

different dimensions.

compared with that of 30D problems. SinDE ranks the

second place by winning on 9 functions and is followed

by AGDE on 2 functions. For other algorithms, their

performance is slightly worse without obtaining small-

est function error values. Based on the single-problem
Wilcoxon test, it’s noticeable the DMIE-DE obtains 29
significantly better solutions without getting worse or

equal results compared with TSDE and EFADE algo-

rithms. For JADE, SinDE and AGDE, DMIE-DE yields

better results on 26, 22 and 24 functions, meanwhile, it

shows equal performance on 1, 2 and 3 functions, re-

spectively.

For 100D test functions, DMIE-DE obtains the

smallest fitness error for 21 functions, much more than
other algorithms. In detail, JADE wins on 7 functions
and EFADE on 1 functions while SinDE, TSDE and

AGDE on zero function with yielding the optimal av-

erage results. In terms of the Wilcoxon test, DMIE-DE

still outperforms TSDE on all the 29 test functions,

which remains the same as the performance of 50D.

For SinDE and AGDE, DMIE-DE shows the similar

performance by yielding better solutions on 27 func-

tions, equal solutions on 1 function, and worse results

on 1 function respectively. JADE performs best among

the 5 compared DE variants by beating DMIE-DE on

5 functions and obtaining equal results on 4 functions.

For EFADE, it is beaten by DMIE-DE on 26 functions

except for f9, f11 and f14, on which it shows equal or

better performance.

The multi-problem analysis results based on the

Wilcoxon test between DMIE-DE and other compared

variants at the 0.05 significance level are presented in

Table 4, in which R+ and R− mean the sum of ranks

that DMIE-DE performs significantly better and worse

Table 4: Results of the multiple-problem Wilcoxon

test between DMIE-DE and other compared variants

at the 0.05 significance level.

Dimension DMIE-DE VS. R+ R− Asymptotic p-value α = 0.05

30D

JADE 336.5 98.5 0.009376 YES

SinDE 303.0 132.0 0.062233 NO

TSDE 261.0 145.0 0.177829 NO

AGDE 290.0 116.0 0.046316 YES

EFADE 374.5 60.5 0.000660 YES

50D

JADE 430.0 5.0 0.000004 YES

SinDE 352.5 82.5 0.003305 YES

TSDE 435.0 0.0 0.000002 YES

AGDE 388.5 46.5 0.000200 YES

EFADE 435.0 0.0 0.000002 YES

100D

JADE 379.0 56.0 0.000460 YES

SinDE 433.0 2.0 0.000003 YES

TSDE 435.0 0.0 0.000002 YES

AGDE 422.0 13.0 0.000009 YES

EFADE 426.0 9.0 0.000006 YES

Table 5: Average ranking of DMIE-DE and other

compared variants by Friedman test at the 0.05

significance level.

Algorithms Ranking on 30D Ranking on 50D Ranking on 100D

JADE 3.5345 3.3103 2.4655

SinDE 3.3621 2.4828 3.7931

TSDE 3.2241 6.0000 5.8621

AGDE 3.5172 3.1207 3.4138

EFADE 4.6379 4.5172 4.1034

DMIE-DE 2.7241 1.5690 1.3621

than each competitor, respectively. The asymptotic p-
value indicates the difference level between each pair of

algorithms, and if the asymptotic p-value is less than

the significance level (i.e., 0.05), it will be assigned the

marker “YES” which means there is 95% probability

to ensure that there is significant difference between

DMIE-DE and its competitor and vice versa for “NO”.

From the results, we can draw two conclusions. On the

one hand, R+ value is much higer than R− compared

with all the other five variants in 30D, 50D and 100D

functions, which proves that DMIE-DE performs sig-

nificantly better than other algorithms in all the three

dimensions. On the other hand, except for SinDE and

TSDE when solving 30D problems, the asymptotic p-

value is much lower than the significance level 0.05 for
other cases. What’s more, compared with 30D func-

tions, DMIE-DE provides much lower asymptotic p-

value than 50D and 100D functions, which indicates

the outstanding performance of DMIE-DE for higher
dimensional optimization problems.

The results in Table 5 present the average ranking

of DMIE-DE and other compared variants by Friedman

test at the 0.05 significance level for solving 30D, 50D
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Fig. 4: The convergence process of the mean fitness errors derived from JADE, SinDE, TSDE, AGDE, EFADE

and DMIE-DE on 30D benchmark functions f1, f7, f8, f12, f21, f30.
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Fig. 5: The convergence process of the mean fitness errors derived from JADE, SinDE, TSDE, AGDE, EFADE

and DMIE-DE on 50D benchmark functions f1, f5, f7, f8, f14, f21.

and 100D functions in CEC2017, and the first rank-

ing values are presented in boldface. From the results,

we can see that DMIE-DE is the best among the com-

pared algorithms on lower or higher dimensional prob-

lems. More specifically, the average ranking of DMIE-

DE remains the first place for these three dimensional

cases. Moreover, along with the increase of dimension,

the average ranking value of DMIE-DE becomes lower

and lower, which also proves that the performance of

DMIE-DE becomes better when solving higher dimen-

sional problems.

DMIE-DE and compared DE variants are also con-

trasted from the perspective of convergence speed.

Figs.4-6 respectively depict the convergence progress of

DMIE-DE and other DE variants for solving several

sample test functions selected from CEC 2017 bench-
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Fig. 6: The convergence process of the mean fitness errors derived from JADE, SinDE, TSDE, AGDE, EFADE

DMIE-DE on 100D benchmark functions f1, f5, f7, f8, f16, f21.

mark test suite with different characteristics. The rest

convergence figures for solving other functions could be

found in Figs. A1-A3 of supplementary material file.

From these figures, we can see that DMIE-DE has the

best performance among these competitors in terms of
the convergence speed and the final solution accuracy
in most cases, which proves the efficiency of balancing

global exploration and local exploitation with dual mu-

tation strategies and inferior solution eliminating tech-

nique.

5.4 Technique Validity and Parameter Sensitivity

Analysis

In order to testify the validity of the proposed dual

mutation strategies (i.e., DE/current-to-embest and

DE/ebest-to-rand) and the inferior solution eliminat-

ing technique in DMIE-DE, comparative experiments

are carried out by designing three versions of DMIE-
DE, which are listed as follows:

• DMIE-DE1: DMIE-DE with only the mutation

DE/current-to-embest and the inferiors eliminating
technique;

• DMIE-DE2: DMIE-DE with only the mutation

DE/ebest-to-rand and the inferiors eliminating

technique;

• DMIE-DE3: DMIE-DE with both the mutation

DE/current-to-embest and DE/ebest-to-rand but

without the inferiors eliminating technique.

The experiment is also based on the 29 functions from

CEC 2017 test suite, and each function is tested for 50

independent runs to obtain the solutions. Detail statis-

tic results of 50D functions are presented in Table 6,

meanwhile the results of 30D and 100D functions are

listed in the supplementary as Table A3 and Table A4
respectively. In these tables, the best solutions obtained

by DMIE-DE and three versions are shown in boldface.
From the statistic results, we can observe that DMIE-
DE is superior to its three versions by obtaining the
smallest function error values in most cases.

The multi-problem analysis results based on the

Wilcoxon test at the 0.05 significance level are shown
in Table 7. The results indicate that DMIE-DE out-

performs other versions with obtaining larger R+ than

R− compared to all versions in 30D, 50D and 100D

functions. What’s more, based on the asymptotic p-
values, we have 95% probability to ensure that there is

significant difference between DMIE-DE and its three

versions except for 30D DMIE-DE1. The average rank-

ing results by Friedman test is listed in Table 8, from

which we can also observe that DMIE-DE remains the

first place for three kinds of dimensions.

To compare the convergence rate of three versions

with DMIE-DE, several typical functions are selected
here from different dimensions for the test, and their

convergence graphs are plotted in Fig. 7. The rest con-
vergence figures are attached in Figs.A4-A6 of supple-

mentary material file. From Fig. 7, we can observe that

DMIE-DE2 has the poorest performance in terms of

the accuracy of final solutions. The reason for this phe-
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Table 6: Mean and standard deviation of function error values obtained by DMIE-DE and its three versions on

50D test functions in CEC2017 over 50 independent runs.

Func.

DMIE-DE1 DMIE-DE2 DMIE-DE3 DMIE-DE

Mean Std. Mean Std. Mean Std. Mean Std.

f1 2.98E-14 1.12E-14 1.04E-13 1.30E-13 2.33E-14 8.00E-15 2.33E-14 8.00E-15

f3 4.05E-12 9.32E-12 1.12E-12 7.61E-13 6.16E-11 1.09E-10 7.71E-12 1.94E-11

f4 8.73E+01 3.96E+01 5.56E+01 5.66E+01 8.80E+01 4.54E+01 7.35E+01 4.73E+01

f5 5.67E+01 1.59E+01 6.98E+01 1.67E+01 6.22E+01 1.52E+01 5.45E+01 1.70E+01

f6 3.08E-02 2.83E-02 8.61E-02 9.75E-02 4.86E-03 6.99E-03 1.04E-04 6.84E-04

f7 1.03E+02 6.40E+00 1.37E+02 2.09E+01 9.86E+01 1.27E+01 9.31E+01 9.23E+00

f8 4.29E+01 6.72E+00 7.38E+01 1.60E+01 5.36E+01 1.59E+01 5.25E+01 2.12E+01

f9 5.33E+00 3.28E+00 3.57E+01 2.15E+01 3.05E+00 4.37E+00 4.84E-01 5.52E-01

f10 5.33E+03 4.41E+02 5.46E+03 1.07E+03 5.23E+03 1.35E+03 6.65E+03 1.86E+03

f11 1.24E+02 2.40E+01 1.21E+02 3.64E+01 9.88E+01 2.30E+01 8.14E+01 2.32E+01

f12 7.59E+03 6.12E+03 1.35E+04 1.14E+04 1.12E+04 1.14E+04 6.41E+03 5.26E+03

f13 1.07E+02 5.11E+01 1.36E+02 8.54E+01 9.07E+01 4.50E+01 7.83E+01 3.76E+01

f14 6.06E+01 1.70E+01 1.06E+02 4.20E+01 6.02E+01 1.50E+01 5.27E+01 1.21E+01

f15 1.12E+02 6.02E+01 1.26E+02 6.99E+01 7.39E+01 2.64E+01 6.05E+01 1.97E+01

f16 5.46E+02 1.84E+02 9.31E+02 3.41E+02 9.23E+02 2.03E+02 7.80E+02 2.44E+02

f17 4.55E+02 1.45E+02 5.87E+02 2.76E+02 4.42E+02 1.93E+02 4.47E+02 2.13E+02

f18 2.01E+02 1.31E+02 8.94E+01 5.52E+01 8.41E+01 3.28E+01 6.68E+01 3.52E+01

f19 1.00E+02 3.44E+01 8.22E+01 3.89E+01 5.75E+01 2.05E+01 4.84E+01 1.75E+01

f20 2.92E+02 8.56E+01 4.94E+02 2.19E+02 3.07E+02 1.60E+02 3.57E+02 2.32E+02

f21 2.52E+02 9.04E+00 2.74E+02 1.41E+01 2.53E+02 1.36E+01 2.49E+02 1.04E+01

f22 6.74E+03 1.73E+03 5.60E+03 1.59E+03 5.06E+03 1.66E+03 6.14E+03 2.40E+03

f23 4.59E+02 1.08E+01 5.05E+02 2.19E+01 4.78E+02 1.51E+01 4.72E+02 2.26E+01

f24 5.52E+02 2.05E+01 5.75E+02 1.81E+01 5.56E+02 1.64E+01 5.50E+02 2.16E+01

f25 5.21E+02 4.12E+01 5.08E+02 3.18E+01 5.14E+02 3.30E+01 5.06E+02 3.50E+01

f26 1.42E+03 9.05E+01 1.88E+03 1.97E+02 1.66E+03 1.66E+02 1.64E+03 1.39E+02

f27 5.60E+02 3.48E+01 5.58E+02 3.56E+01 5.40E+02 2.75E+01 5.38E+02 2.41E+01

f28 4.87E+02 2.60E+01 4.79E+02 2.24E+01 4.77E+02 2.39E+01 4.72E+02 2.14E+01

f29 4.62E+02 6.39E+01 6.57E+02 2.06E+02 4.92E+02 1.34E+02 4.43E+02 1.27E+02

f30 6.91E+05 1.14E+05 6.56E+05 6.77E+04 6.52E+05 7.86E+04 6.51E+05 5.73E+04

Table 7: Results of the multiple-problem Wilcoxon

test between DMIE-DE and its three versions at the

0.05 significance level.

Dimension DMIE-DE VS. R+ R− Asymptotic p-value α = 0.05

30D

DMIE-DE1 272.5 162.5 0.228845 NO

DMIE-DE2 371.0 35.0 0.000119 YES

DMIE-DE3 300.0 106.0 0.025977 YES

50D

DMIE-DE1 312.0 123.0 0.000004 YES

DMIE-DE2 373.0 62.0 0.000719 YES

DMIE-DE3 322.5 83.5 0.005992 YES

100D

DMIE-DE1 341.0 65.0 0.001562 YES

DMIE-DE2 291.0 115.0 0.043876 YES

DMIE-DE3 311.5 123.5 0.039389 YES

nomenon is that the designed DE/ebest-to-rand is a

relatively exploitative strategy to help DMIE-DE2 have

a faster convergence speed, however, this strategy is

against the population diversity and is easy to cause

premature convergence problem. On the contrary, the

mutation DE/current-to-embest in DMIE-DE1 is an

explorative strategy which is helpful to maintain the

population diversity and keep the population active to

find better solutions than DMIE-2, but it’s easy to lead

to the stagnation problem and fall into local optimum.

By contrast, DMIE-DE3 has the best performance

among the three versions of DMIE-DE since it combines

DE/ebest-to-rand and DE/current-to-embest and the

exploitation and exploration strengthes are complemen-

tary. However, DMIE-DE3 still needs to be improved

due to the dual cost of evaluation times. Thus, the in-

ferior solution eliminating technique plays an important

role and helps DMIE-DE has better performance than

DMIE-DE3. In summary, the dual mutation strategies

and inferior solution eliminating technique play indis-

pensable role in balancing the exploration and exploita-

tion abilities and help DMIE-DE have an outstanding

performance.

Table 8: Average ranking of DMIE-DE and its three
versions by Friedman test at the 0.05 significance level.

Algorithms Ranking on 30D Ranking on 50D Ranking on 100D

DMIE-DE1 2.2414 2.6724 2.9483

DMIE-DE2 3.5690 3.3966 2.8793

DMIE-DE3 2.4828 2.3966 2.3103

DMIE-DE 1.7069 1.5345 1.8621

As mentioned previously, the inferior solution elim-

inating technique is proposed for avoiding the waste

of function evaluations by eliminating some poor-

performing individuals at a certain generation interval.
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Fig. 7: The convergence process of the mean fitness errors derived from DMIE-DE and its three versions on

several typical 30D, 50D and 100D functions.

The effectiveness of inferior solution eliminating tech-
nique is controlled by the parameter gip. In order to

confirm the best choice of gip, the experiment is car-

ried out based on CEC2017 functions by setting gip to

different values, i.e., 200, 300, 400, 500 and 600 respec-
tively. The experimental results obtained by DMIE-DE
with different gip values for solving 50D functions are

presented in Table 9, and results of 30D and 100D func-
tions are listed in Table A5 and Table A6 respectively

of the supplementary material file. The smallest func-

tions error values are highlighted in bold to indicate the

best-performing gip value. Based on these function er-

ror values, Friedman test method is employed to draw a

comprehensive comparison conclusion. The results are
shown in Table 10, from which we can draw the conclu-

sion that gip equaling to 400 is the most appropriate

choice for DMIE-DE with obtaining the best ranking

results for 30D, 50D and 100D functions. Therefore,

based on a comprehensive consideration, we confirm
that gip equaling to 400 is the most suitable for the

superior performance of DMIE-DE.

6 Conclusion

The performance of DE algorithm is highly depends
on the mutation strategies and associated control pa-

rameters which are expected to balance the global ex-

ploration and local exploitation abilities. Based on this

consideration, we propose a dual mutations collabora-

tion mechanism with elites guiding and inferiors elim-

inating techniques for DE. The dual mutation strate-

gies are guided by elite individuals with different func-

tional emphasis. More specifically, the mutation strat-

egy DE/current-to-embest is designed relatively explo-

rative while the mutation DE/ebest-to-rand is rela-

tively exploitative. During the evolution process, these
two mutation strategies are employed simultaneously
to achieve the balance between local and global perfor-

mance. Moreover, a newly designed parameter adap-

tation method is applied to automatically adjust the

parameters F and CR. They are updated according

to a Cauchy distribution model and a sine formula re-

spectively, and the updating process is associated with
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Table 9: Mean and standard deviation of function error values obtained by DMIE-DE with different gip values

on 50D test functions in CEC2017 over 50 independent runs.

Func.

gip = 200 gip = 300 gip = 400 gip = 500 gip = 600

Mean Std. Mean Std. Mean Std. Mean Std. Mean Std.

f1 3.07E-14 7.79E-15 2.79E-14 8.59E-15 2.33E-14 8.00E-15 2.33E-14 8.50E-15 2.47E-14 8.02E-15

f3 2.72E+03 1.92E+04 2.05E-12 3.73E-12 7.71E-12 1.94E-11 1.20E+02 8.50E+02 1.67E-11 8.22E-11

f4 5.37E+01 4.89E+01 6.12E+01 5.11E+01 7.35E+01 4.73E+01 6.57E+01 5.06E+01 6.39E+01 5.08E+01

f5 4.91E+01 1.60E+01 5.01E+01 1.22E+01 5.45E+01 1.70E+01 5.24E+01 1.56E+01 4.88E+01 1.44E+01

f6 1.10E-04 6.93E-04 4.27E-06 1.21E-05 1.04E-04 6.84E-04 9.57E-05 6.12E-04 4.97E-06 1.79E-05

f7 1.04E+02 2.71E+01 1.06E+02 2.85E+01 9.31E+01 9.23E+00 1.05E+02 2.93E+01 9.98E+01 2.71E+01

f8 4.75E+01 1.20E+01 5.06E+01 1.12E+01 5.25E+01 2.12E+01 5.01E+01 1.41E+01 4.81E+01 1.31E+01

f9 4.45E-01 5.68E-01 6.27E-01 8.79E-01 4.84E-01 5.52E-01 5.07E-01 6.35E-01 7.19E-01 9.35E-01

f10 6.46E+03 1.65E+03 6.83E+03 1.54E+03 6.65E+03 1.86E+03 6.39E+03 1.83E+03 6.77E+03 1.77E+03

f11 8.73E+01 2.30E+01 8.07E+01 2.50E+01 8.14E+01 2.32E+01 8.64E+01 2.21E+01 8.22E+01 2.30E+01

f12 7.09E+03 4.73E+03 6.62E+03 6.18E+03 6.41E+03 5.26E+03 7.58E+03 9.32E+03 6.01E+03 5.19E+03

f13 8.52E+01 3.37E+01 9.17E+01 4.03E+01 7.83E+01 3.76E+01 8.18E+01 2.99E+01 8.24E+01 3.06E+01

f14 5.22E+01 1.33E+01 5.06E+01 9.79E+00 5.27E+01 1.21E+01 4.81E+01 8.95E+00 5.11E+01 1.31E+01

f15 6.86E+01 2.61E+01 6.89E+01 2.23E+01 6.05E+01 1.97E+01 7.14E+01 2.83E+01 6.90E+01 2.57E+01

f16 7.44E+02 3.04E+02 7.07E+02 2.61E+02 7.80E+02 2.44E+02 7.03E+02 3.11E+02 7.21E+02 2.49E+02

f17 4.74E+02 2.13E+02 4.27E+02 1.96E+02 4.47E+02 2.13E+02 4.57E+02 1.87E+02 4.92E+02 2.09E+02

f18 7.08E+01 3.46E+01 7.19E+01 4.44E+01 6.68E+01 3.52E+01 7.74E+01 3.96E+01 8.39E+01 3.95E+01

f19 5.01E+01 2.35E+01 4.56E+01 1.81E+01 4.84E+01 1.75E+01 4.92E+01 2.38E+01 4.41E+01 1.56E+01

f20 3.37E+02 2.02E+02 3.54E+02 2.09E+02 3.57E+02 2.32E+02 3.70E+02 2.17E+02 3.81E+02 2.12E+02

f21 2.48E+02 1.53E+01 2.48E+02 1.03E+01 2.49E+02 1.04E+01 2.53E+02 2.24E+01 2.50E+02 2.00E+01

f22 5.88E+03 2.48E+03 5.57E+03 2.62E+03 6.14E+03 2.40E+03 5.76E+03 3.01E+03 6.23E+03 2.71E+03

f23 4.78E+02 1.96E+01 4.73E+02 1.45E+01 4.72E+02 2.26E+01 4.74E+02 1.28E+01 4.70E+02 1.60E+01

f24 5.48E+02 1.89E+01 5.51E+02 1.98E+01 5.50E+02 2.16E+01 5.53E+02 2.33E+01 5.51E+02 2.33E+01

f25 5.15E+02 3.54E+01 5.09E+02 3.45E+01 5.06E+02 3.50E+01 5.05E+02 3.15E+01 5.07E+02 3.35E+01

f26 1.58E+03 1.69E+02 1.60E+03 1.47E+02 1.64E+03 1.39E+02 1.60E+03 1.44E+02 1.60E+03 1.50E+02

f27 5.39E+02 1.96E+01 5.40E+02 1.73E+01 5.38E+02 2.41E+01 5.38E+02 1.94E+01 5.45E+02 2.72E+01

f28 4.77E+02 2.33E+01 4.79E+02 2.36E+01 4.72E+02 2.14E+01 4.82E+02 2.47E+01 4.79E+02 2.40E+01

f29 4.51E+02 1.15E+02 4.27E+02 7.90E+01 4.43E+02 1.27E+02 4.61E+02 1.18E+02 4.26E+02 1.22E+02

f30 6.51E+05 6.12E+04 6.57E+05 5.80E+04 6.51E+05 5.73E+04 6.62E+05 6.83E+04 6.54E+05 7.81E+04

Table 10: Average ranking of DMIE-DE with different

gip settings by Friedman test at the 0.05 significance

level.

Dimension gip=200 gip=300 gip=400 gip=500 gip=600

30D 3.1207 3.3448 2.1552 2.6897 3.6897

50D 2.9138 2.8448 2.7759 3.3966 3.0690

100D 3.0172 2.8276 2.7759 3.0345 3.3448

the successful experience from the previous generations.

The inferior solution eliminating technique is supple-

mented to enhance the convergence speed and com-

pensate the cost for fitness evaluations in the eval-

uation process. The experiments between DMIE-DE

and its three versions prove that the dual mutation

strategies and inferior solution eliminating technique

play indispensable role in the performance of DMIE-

DE. The comparative experiments with five state-of-

the-art DE variants, i.e., JADE, SinDE, TSDE, AGDE,

EFADE, on solving 30D, 50D and 100D test functions

in CEC2017 benchmark set, demonstrate that the pro-

posed DMIE-DE algorithm is superior to the considered

DE variants, especially in higher dimension.
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