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Abstract

Binary information table, multi-valued information table and set-valued information table are three kinds of in-

formation systems often encountered in information processing. For any information system, we can often induce

different information granular structures, and then construct the corresponding rough set models. Generally speaking,

for the same information system, three models of Pawlak rough set, covering rough set and multi-granulation rough

set can be induced according to different rules. These three kinds of rough set models are effective tools for data

mining and information processing. This paper studies the relationship among Pawlak rough set, covering rough set

and multi granularity rough set induced in binary information table, multi-valued information table and set-valued

information table, and obtains many important conclusions. The research content of this paper effectively connects

the theories, methods and applications of Pawlak rough set, covering rough set and multi granularity rough set, which

not only enriches the rough set theory, but also expands the application prospect of rough set.

Key words: Granular computing, Rough sets, Granular structure, Partition, Covering, Reduction

1. Introduction

In todays society, people are facing the problem about how to deal with large-scale complex data. In order to find

useful knowledge from data conveniently and effectively, people often get a granular structure by granulating data

according to the characteristics of data. Then, based on the granular structure, the corresponding granular computing

model is constructed to deal with various data analysis problems. Therefore, this idea of granulating and processing

the complex data is called granular computing method. In recent years, granular computing has become a popular

research branch in the fields of knowledge discovery and data analysis.

In 1979, Zadeh et al.(1979) published a paper entitled fuzzy sets and information granularity, in which they first

proposed the concept of information granule. Since then, people have been interested in using information granules

to represent data information in information systems (Li et al. 2019, 2020 a, 2020 b, Xu and Li. 2016). Therefore,

a series of granular computing models are defined based on various information granules. In 1985, Hobbs (1985)

discussed the decomposition and merging of granules, and how to get granules with different sizes, and proposed a

model to generate granules with different sizes. In addition, in order to deal with the problem solving, the quotient

space model is proposed (Zhang and Zhang 1992). The idea of quotient space theory is that different quotient spaces

can be constructed for the same problem, so as to get different solutions from various angles and levels. Finally,

based on these solutions, the solution of the original problem can be accurately described. Lin (2000) discussed the

granular computing model in binary relation, and discusses the granular structure, granular description, and granular

application. On the basis of Lin’s work, Yao (1998, 2001) proposed the granular computing model based on neigh-

borhood system. This model led to solve the problem of consistent classification by using the lattice composed of

∗Corresponding author is W.H. Xu(E-mail: chxuwh@gmail.com).

Email addresses: kongqingzhao@163.com (Qingzhao Kong), chxuwh@gmail.com (Weihua Xu ), 149956879@qq.com (Dongxiao Zhang)

Preprint submitted to Soft Computing September 30, 2021

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 

https://www.editorialmanager.com/soco/download.aspx?id=655964&guid=665b7e7d-9acd-46f3-ae40-a75f962b1b16&scheme=1
https://www.editorialmanager.com/soco/download.aspx?id=655964&guid=665b7e7d-9acd-46f3-ae40-a75f962b1b16&scheme=1


all partitions and provided a new method and perspective for knowledge mining. Based on probability theory and

fuzzy mathematical theory, Li et al. (1995) introduced the cloud model which can realize qualitative and quantitative

mutual conversion. An and Wang et al. (2005) put forward a granular computing model based on tolerance relation.

To sum up, we can see that scholars define information granules by different methods and then build corresponding

granular computing models to solve various theoretical and practical problems. As a wonderful number, “3” plays an

important role in people’s daily life and work. Three-way decisions are ternary or ternary thinking, which can also be

understood as a granular computing model based on three granules. By adding the “uncommitted” option to the tradi-

tional “accept” and “reject” options, Yao (2010, 2012, 2016, 2018) proposed a three-way decision model by dividing

the research objects into three disjoint parts, which can effectively avoid the loss caused by the false acceptance or

rejection under the uncertainty of object cognition, and improve the accuracy of decision.

When dealing with data mining and knowledge discovery with granular computing method, we find that different

granular structure can be induced in the same information system. Based on these granular structures, various granular

computing models can be defined to solve the practical problems. For example, Pawlak (1982) proposed the rough

set model in 1982. Its essential idea is to define two exact sets (upper and lower approximation sets) to describe a set

with fuzzy boundary by using a partition on the universe. Rough set model can effectively analyze data without any

prior knowledge, so it has been widely concerned and studied as soon as it is proposed. In order to better describe and

reflect the characteristics of data, Zakowski (1983) extended the partition of the universe to the covering in 1983, and

established the covering rough set model. Covering rough set model is one of the most important models in rough

set theory. Until now, it is still a hot topic to analyze data with covering rough set models (Xu and Zhang 2007, Zhu

and Wang 2012, Wang et al. 2015). Sometimes, based on the different attributes of information system, we can get

a serious of partitions. In order to integrate these partitions to obtain the required knowledge, Qian et al. (2010 a,b)

established a multi-granulation rough set model based on multiple partitions. This multi-granulation rough set model

provides a very effective method to solve the problem of information fusion (Li 2016, Xu and Guo 2016, Xu and Yu

2017, Kong and Xu 2019, Sun et al. 2019, Yang et al. 2020). In particular, many scholars have extended multiple

partitions to multiple coverings, and further proposed and studied the multi-granulation rough set models based on

multiple coverings (Lin ea al. 2013, Liu et al. 2014, Qian et al. 2014, Zhang and Kong 2016, Kong and Xu 2018).

Although rough set theory has been widely studied, there are still many deficiencies to be solved. On the basis

of previous studies, this paper attempts to discuss the following problems. For instance, through the above analysis,

four kinds of granular structures can be induced by an information system, which are granular structures based on

one partition, one covering, multiple partitions and multiple coverings, respectively. Furthermore, the Pawlak rough

set model, the covering rough set model, the multi- granulation rough set model based on multiple partitions and

the multi-granulation rough set model based on multiple coverings are established, respectively. These four kinds of

granular structures and rough set models have their own advantages and disadvantages in solving practical problems.

So we naturally raise a question: how many kinds of granular structures can be induced from the same information

system? At the same time, what is the relationship among the rough set models based on these granular structures?

Finally, as the reduction theory is a very important research topic of granular computing method (Kong et al. 2020,

Long et al. 2020, Wang et al. 2020), then what are the similarities and differences of the reduction theories of

these granular structures? If these three questions can be answered well, we would have a deep understanding of the

interrelationship between the granular structures and the rough set models. The purpose of this paper is to highlight

the advantages of each granular structure and granular computing model and overcome their own shortcomings.

When we analyze data and discover knowledge, three kinds of information systems are often involved, which are the

binary information system, the multi-valued information system and the set-valued information system, respectively.

Based on the data characteristics of these three kinds of information systems, there will be many differences in the

information granules and granular structures induced from these information systems. The rough set models based on

these granular structures are also different. Finally, there are many similarities and differences among the reduction

theories of these granular structures. In this paper, the induced granular structures in binary information system, multi-

valued information system and set-valued information system, the relationship among the rough set models based on

these granular structures, and the similarities and differences among the reduction theories based on these granular

structures are deeply studied, respectively.

The rest of this paper is organized as follows. In Section 2, the concepts of information granules and four kinds
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of granular structures induced by information system are reviewed at the beginning. And then the rough set models

generated by these four kinds of granular structure are introduced. Finally, the concepts of reduction related to

these four kinds of granular structures are shown. In Section 3, four kinds of granular structures induced by binary

information system are studied. At the same time, the relationship among the rough set models related to these

granular structures is discussed systematically. Then the reduction theories among the four kinds of granular structures

are compared. In Section 4, three kinds of granular structures induced by multi-valued information system are studied.

Then the rough set models and reductions based on these granular structures are comparatively studied. In Section

5, the granular structures induced by set-valued information system are studied. Then, the corresponding rough set

models and reduction theories are further comparatively discussed. Section 6 gives a brief review and summary of

this paper and introduces the follow-up research works.

2. Preliminaries

Generally speaking, an information table or an information system can be defined by a tuple as follows (Pawlak

1981): I = (OB, AT, {Va|a ∈ AT }, { fa|a ∈ AT }), where the universe OB = {x1, x2, · · · , xn} is a nonempty finite

set; AT = {a1, a2, · · · , am} is a nonempty attribute set; V = ∪ai∈AT Vai
, Vai

= {vai1, vai2, · · · , vai
li } is the domain of

attribute ai; f
ai

: OB −→ Vai
is an information function. We use f

ai
(x) to denote the value of object x on attribute

ai, i = 1, 2, · · · ,m.

2.1. granules and granular structures induced by the information system

Based on different data characteristics and considerations, multiple granular structures are often induced from

the same information system. Then, according to these granular structures, the corresponding rough set models are

established to deal with the data problems in various environments. Next, the concept of elementary information

granules in information system is introduced, and then several kinds of granular structures induced from the same

information system are shown.

Definition 2.1 Suppose that I = (OB, AT, {Va|a ∈ AT }, { fa|a ∈ AT }) is an information system. g
ai
vai j
= {x ∈ OB|vai j ∈

f
ai

(x)} is called an elementary information granule with respect to ai and vai j, i = 1, 2, · · · ,m and j = 1, 2, · · · , li.

Definition 2.2 Suppose that I = (OB, AT, {Va|a ∈ AT }, { fa|a ∈ AT }) is an information system. PAT = {g1, g2, · · · , gs}

is called a partition of OB with respect to AT , if (1) for any g ∈ PAT and any x, y ∈ g, fai
(x) = fai

(y), i = 1, 2, · · · ,m.;

(2) for any g
′

, g
′′

∈ PAT , any x ∈ g
′

and any y ∈ g
′′

, there exists a ∈ AT such that fa(x) , fa(y); (3) ∪s
i=1

gi = OB.

Definition 2.3 Suppose that I = (OB, AT, {Va|a ∈ AT }, { fa|a ∈ AT }) is an information system. CAT is called a covering

of OB with respect to AT , if (1) CAT is a family of nonempty subsets of OB; (2) ∪CAT = OB.

Based on any attribute a in an information system, a partition Pa of OB can often be induced. In this way, m

partitions Pa1
,Pa2
, · · · ,Pam

of OB can be developed according to the attribute set AT = {a1, a2, · · · , am}. Then a

multi-partition granular structure PAT = {Pa1
,Pa2
, · · · ,Pam

} will be developed.

Definition 2.4 Suppose that I = (OB, AT, {Va|a ∈ AT }, { fa|a ∈ AT }) is an information system. PAT = {Pa1
,Pa2
, · · · ,Pam

}

is called a multi-partition of OB with respect to AT , if for any Pa ∈ PAT , Pa is a partition of OB.

For any attribute a in an information system, sometimes a covering Ca of OB will be induced. Then, m coverings

Ca1
,Ca2
, · · · ,Cam

of OB can be developed according to the attribute set AT = {a1, a2, · · · , am}. Then a multi-covering

granular structure CAT = {Ca1
,Ca2
, · · · ,Cam

} will be built.

Definition 2.5 Suppose that I = (OB, AT, {Va|a ∈ AT }, { fa|a ∈ AT }) is a set-valued information system. CAT =

{Ca1
,Ca2
, · · · ,Cam

} is called a multi-covering of OB with respect to AT , if for any Ca ∈ CAT , Ca is a covering of OB.

2.2. Rough set models based on different granular structures

For a granular structure, a rough set model can be proposed by defining the lower and upper approximation opera-

tors. In this subsection, four kinds of rough set models are reviewed in turn: Pawlak rough set model, covering rough

set model, multi-granulation rough set model based on multiple partitions, and multi-granulation rough set model

based on multiple coverings.
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Definition 2.6 Suppose that I = (OB, AT, {Va|a ∈ AT }, { fa|a ∈ AT }) is an information system and PAT is a partition of

OB with respect to AT . For any X ⊆ OB,

apr
PAT

(X) = ∪{P ∈ PAT |P ⊆ X},

aprPAT
(X) = ∪{P ∈ PAT |P ∩ X , ∅}

are called the lower and upper approximations of X with respect to the partition PAT .

In 1983, Zakowski (1983) first proposed the lower and upper approximation operators in an information system.

Obviously, covering rough set model is a direct extension of Pawlak rough set model.

Definition 2.7 Suppose that I = (OB, AT, {Va|a ∈ AT }, { fa|a ∈ AT }) is an information system and CAT is a covering of

OB with respect to AT . For any X ⊆ OB,

apr
CAT

(X) = ∪{K ∈ CAT |K ⊆ X},

aprCAT
(X) =∼ apr

CAT

(∼ X)

are called the lower and upper approximations of X with respect to the covering CAT .

Different from Pawlak rough sets based on single equivalence relation, Qian et al. (2010a,b) proposed two rough

set models called the optimistic and pessimistic multi-granulation rough sets by using multiple equivalence relations.

Definition 2.8 Suppose that I = (OB, AT, {Va|a ∈ AT }, { fa|a ∈ AT }) is an information system and PAT = {Pa1
,Pa2
, · · · ,Pam

}

is a family of the partitions of OB with respect to AT . For any X ⊆ OB,

aprO

PAT

(X) = ∪{x ∈ OB|(x ∈ P1(∈ Pa1
) ⊆ X) ∨ (x ∈ P2(∈ Pa2

) ⊆ X)) ∨ · · · ∨ (x ∈ Pm(∈ Pam
) ⊆ X))},

apr
O
PAT

(X) =∼ aprO

PAT

(∼ X)

are called the optimistic lower and upper approximations of X with respect to the family of the partitions PAT .

Definition 2.9 Suppose that I = (OB, AT, {Va|a ∈ AT }, { fa|a ∈ AT }) is an information system and PAT = {P1,P2, · · · ,Pl}

is a family of the partitions of OB with respect to AT . For any X ⊆ OB,

aprP

PAT

(X) = ∪{x ∈ OB|(x ∈ P1(∈ Pa1
) ⊆ X) ∧ (x ∈ P2(∈ Pa2

) ⊆ X) ∧ · · · ∧ (x ∈ Pm(∈ Pam
) ⊆ X)},

apr
P
PAT

(X) =∼ aprP

PAT

(∼ X)

are called the pessimistic lower and upper approximations of X with respect to the family of the partitions PAT .

Multi-granulation rough set model based on multiple coverings is proposed in recent years. The three kinds of

rough set models mentioned above can be regarded as its special cases.

Definition 2.10 Suppose that I = (OB, AT, {Va|a ∈ AT }, { fa|a ∈ AT }) is an information system and CAT = {Ca1
,Ca2
, · · · ,Cam

}

is a family of the coverings of OB with respect to AT . For any X ⊆ OB,

aprO

CAT

(X) = ∪{x ∈ OB|(x ∈ K1(∈ Ca1
) ⊆ X) ∨ (x ∈ K2(∈ Ca2

) ⊆ X) ∨ · · · ∨ (x ∈ Km(∈ Cam
) ⊆ X)},

apr
O
CAT

(X) =∼ aprO

CAT

(∼ X)

are called the optimistic lower and upper approximations of X with respect to the family of the coverings CAT .

Definition 2.11 Suppose that I = (OB, AT, {Va|a ∈ AT }, { fa|a ∈ AT }) is an information system and CAT = {Ca1
,Ca2
, · · · ,Cam

}

is a family of the coverings of OB with respect to AT . For any X ⊆ OB,

aprP

CAT

(X) = ∪{x ∈ OB|(x ∈ K1(∈ Ca1
) ⊆ X) ∧ (x ∈ K2(∈ Ca2

) ⊆ X) ∧ · · · ∧ (x ∈ Km(∈ Cam
) ⊆ X)},

apr
P
CAT

(X) =∼ aprP

CAT

(∼ X)

are called the pessimistic lower and upper approximations of X with respect to the family of the coverings CAT .

2.3. Reducts based on different granular structures

Reduction is always a very important research content of granular computing theory. No matter what kind of

granular computing model, its results of reduction theory are very rich. Here, we give the concepts of reduction for

the four kinds of granular structures mentioned above.
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Definition 2.12 Suppose that I = (OB, AT, {Va|a ∈ AT }, { fa|a ∈ AT }) is an information system and PAT is a partition

of OB with respect to AT . For any a ∈ AT , if PAT = PAT/{a}, we say that a is a reducible attribute of AT with respect

to PAT , and a is denoted by areductPAT
; Otherwise, we say that a is an irreducible attribute of AT with respect to PAT .

If AT
′

⊆ AT meets two conditions: (1) for any a ∈ AT/AT
′

, a is the reducible attribute of AT with respect to PAT ; (2)

for any a ∈ AT
′

, a is not the reducible attribute of AT with respect to PAT . Then AT
′

is called the reduct of AT with

respect to PAT , and denoted by reduct(AT )PAT
.

Definition 2.13 Let I = (OB, AT, {Va|a ∈ AT }, { fa|a ∈ AT }) be an information system and CAT a covering of OB with

respect to AT . For g ∈ CAT , if g is the union ( or intersection ) of some sets in C/{g}, we say that g is the union ( or

intersection ) reducible element of CAT , and g is denoted by (g)reductCAT ,∪
( or (g)reductCAT ,∩

); Otherwise, we say that g

is the union ( or intersection ) irreducible element of CAT . If C
′

⊆ CAT meets two conditions: (1) for any g ∈ CAT /C
′

,

g is the union ( or intersection ) reducible element of CAT ; (2) for any g ∈ C
′

, g is not the union ( or intersection )

reducible element of CAT . Then C
′

is called the union ( or intersection ) reduct of CAT , and denoted by reduct(CAT )∪
(or reduct(CAT )∩).

Definition 2.14 Suppose I = (OB, AT, {Va|a ∈ AT }, { fa|a ∈ AT }) is an information system and PAT = {Pa1
,Pa2
, · · · ,Pam

}

is a family of the partitions of OB with respect to AT . For any a ∈ AT and any P ∈ Pa, if there exist P
′

AT
⊆ PAT /{Pa}

and P
′

⊆ P̃ ∈ P
′

AT
( or P

′

∈ P̃ ∈ P
′

AT
) such that P = ∪

P̃∈P
′

AT

(∪P
′

) ( or P = ∩
P̃∈P

′

AT

P
′

), then a is called the union ( or

intersection ) reducible attribute of AT with respect to PAT , and a is denoted by areductPAT ,∪
( or areductPAT ,∩

). Other-

wise, a is called the union ( or intersection ) irreducible attribute of AT with respect to PAT . If AT
′

⊆ AT meets two

conditions: (1) for any a ∈ AT/AT
′

, a is the union ( or intersection ) reducible attribute of AT with respect to PAT ; (2)

for any a ∈ AT
′

, a is not the union ( or intersection ) reducible attribute of AT with respect to PAT . Then AT
′

is called

the union ( or intersection ) reduct of AT with respect to PAT , and denoted by reduct(AT )PAT ,∪ ( or reduct(AT )PAT ,∩ ).

3. The granular structures induced by the binary information systems

For an information system I = (OB, AT, {Va|a ∈ AT }, { fa|a ∈ AT }), where AT = {a1, a2, · · · , am}, I is called the

binary information system or a 0 − 1 information table, if for each a ∈ AT ,Va = {0, 1}, where f
a
(x) = 1 means that

x has the attribute a, f
a
(x) = 0 means that x does not have the attribute a. In this section, we mainly pay attention to

the study of granular structures induced by the 0 − 1 information table, and suppose that for each x ∈ OB, there exist

a, a
′

∈ AT such that f
a
(x) = 1 and f

a
′ (x) = 0.

In this section, we first introduce the induced elementary information granules and four kinds of granular structures

induced by the 0−1 information system, then explore the inclusion relationship among the rough set models developed

from these granular structures, and finally compare the relationship among the reductions based on these four kinds

of granular structures.

3.1. Granules and granular structures induced by the binary information systems

From the 0 − 1 information table, the elementary granular structures first can be induced as follows:

G = {g
ai

j
= {x ∈ OB| f

ai
(x) = j}|i = 1, 2, · · · ,m, j = 0, 1}

For any a ∈ AT , ga
1

is the set of all objects with attribute a, and ga
0

is the set of all objects without attribute a.

Based on the 0−1 information table and the elementary granular structures, four kinds of special granular structures

can be explored as follows:

(1) The partition of OB with respect to AT :

PAT = {g1, g2, · · · , gs} Eq.(1)

where for any x, y ∈ g ∈ PAT , fai
(x) = fai

(y), i = 1, 2, · · · ,m. For any g
′

, g
′′

∈ PAT , any x ∈ g
′

and any y ∈ g
′′

, there

exist a ∈ AT such that fa(x) , fa(y). And ∪s
i=1

gi = OB.

(2) The covering of OB with respect to AT :
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CAT = {g
a1

1
, g

a1

0
, g

a2

1
, g

a2

0
, · · · , g

am

1
, g

am

0
} Eq.(2)

CAT consists of all elementary information granules in the information system.

(3) The multi-partition of OB with respect to AT :

PAT = {Pa1
,Pa2
, · · · ,Pam

} Eq.(3)

where Pai
= {g

ai

1
, g

ai

0
}, i = 1, 2, · · · ,m.

(4) The multi-covering of OB with respect to AT :

CAT = {C1,C0} Eq.(4)

where C1 = {g
a1

1
, g

a2

1
, · · · , g

am

1
}, and C0 = {g

a1

0
, g

a2

0
, · · · , g

a4

0
}.

Based on the above analysis, a binary information table can induce four kinds of granular structures. In the

following, we give an example to explain the induced elementary information granules and granular structures in the

binary information table.

Example 3.1 Here is a 0 − 1 information table I = (OB, AT, {Va|a ∈ AT }, { fa|a ∈ AT }), where OB = {x1, x2, · · · , x8},

AT = {a1, a2, a3, a4}. More details can be shown in Table 1 as follows.

Table 1. A 0 − 1 information table

OB a1 a2 a3 a4

x1 1 1 0 0

x2 0 1 0 1

x3 0 0 1 1

x4 1 1 0 0

x5 0 1 0 1

x6 0 0 0 1

x7 1 0 0 1

x8 1 1 1 0

Based on the Table 1, all of the elementary granules can be shown as follows:

g
a1

1
= {x1, x4, x7, x8}, g

a1

0
= {x2, x3, x5, x6}; g

a2

1
= {x1, x2, x4, x5, x8}, g

a2

0
= {x3, x6, x7}; g

a3

1
= {x3, x8}, g

a3

0
=

{x1, x2, x4, x5, x6, x7}; g
a4

1
= {x2, x3, x5, x6, x7}, g

a4

0
= {x1, x4, x8}.

According to these elementary granules, four kinds of granular structures can be induced as follows:

(1) The partition of OB with respect to AT :

PAT = {{x1, x4}, {x2, x5}, {x3}, {x6}, {x7}, {x8}};

(2) The multi-partition of OB with respect to AT :

PAT = {Pa1
, Pa2

, Pa3
, Pa4

}

={{g
a1

1
, g

a1

0
}, {g

a2

1
, g

a2

0
}, {g

a3

1
, g

a3

0
}, {g

a4

1
, g

a4

0
}}

={{{x1, x4, x7, x8}, {x2, x3, x5, x6}}, {{x1, x2, x4, x5, x8}, {x3, x6, x7}}, {{x3, x8}, {x1, x2, x4, x5, x6, x7}},

{{x2, x3, x5, x6, x7}, {x1,x4,x8}}};

(3) The covering of OB with respect to AT :

CAT = {g
a1

1
, g

a1

0
, g

a2

1
, g

a2

0
, g

a3

1
, g

a3

0
, g

a4

1
, g

a4

0
}

={{x1, x4, x7, x8}, {x2, x3, x5, x6}, {x1, x2, x4, x5, x8}, {x3, x6, x7}, {x3, x8}, {x1, x2, x4, x5, x6, x7},

{x2, x3, x5, x6, x7}, {x1,x4,x8}};

(4) The multi-covering of OB with respect to AT :

CAT = {C1,C0}

= {{g
a1

1
, g

a2

1
, g

a3

1
, g

a4

1
}, {g

a1

0
, g

a2

0
, g

a3

0
, g

a4

0
}}

={{{x1, x4, x7, x8}, {x1, x2, x4, x5, x8}, {x3, x8}, {x2, x3, x5, x6, x7}}, {{x2, x3, x5, x6}, {x3, x6, x7},

{x1, x2, x4, x5, x6, x7}, {x1,x4,x8}}}.
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3.2. The relationship among the rough set models induced by the binary information systems

We know that four kinds of granular structures can be induced from a binary information table, and then four rough

set models can be constructed according to these granular structures. In this subsection, we study the relationship

among these rough set models.

Proposition 3.1 Suppose that I = (OB, AT, {Va|a ∈ AT }, { fa|a ∈ AT }) is a 0 − 1 information system. For any X ⊆ OB,

the following results hold.

(1) aprO

CAT

(X) = aprO

PAT

(X) = apr
CAT

(X) ⊆ apr
PAT

(X)

(2) aprPAT
(X) ⊆ apr

O
CAT

(X) = apr
O
PAT

(X) = aprCAT
(X)

Proof. It is clear from the definitions of equations (1)-(4).

Example 3.2 (Continued from Example 3.1) For X = {x1, x2, x4, x5}, we have that aprO

MCAT

(X) = aprO

MPAT

(X) =

apr
CAT

(X) = ∅, apr
PAT

(X) = {x1, x2, x4, x5}. Then aprO

CAT

(X) = aprO

PAT

(X) = apr
CAT

(X) ⊆ apr
PAT

(X).

For Y = {x3, x6, x7, x8}, we have that apr
O
MCAT

(Y) = apr
O
MPAT

(Y) = aprCAT
(Y) = OB, aprPAT

(Y) = {x3, x6, x7, x8}.

So aprPAT
(X) ⊆ apr

O
CAT

(X) = apr
O
PAT

(X) = aprCAT
(X).

What is the relationship between aprP

PAT

(X) and aprP

CAT

(X) ( apr
P
CAT

(X) and apr
P
PAT

(X)). Let’s illustrate this problem

with an example.

Example 3.3 On the one hand, suppose that g
a1

1
= {x1, x2, x3}, g

a1

0
= {x4, x5, x6, x7, x8}, g

a2

1
= {x4, x5, x6, x7, x8}, g

a2

0
=

{x1, x2, x3}, g
a3

1
= {x1, x2, x3, x4}, g

a3

0
= {x5, x6, x7, x8} are the elementary information granules of an information sys-

tem. For X = {x1, x2, x3}, we have that aprP

PAT

(X) ⊆ aprP

CAT

(X) and apr
P
CAT

(X) ⊆ apr
P
PAT

(X).

On the other hand, let g
a1

1
= {x1, x2, x3}, g

a1

0
= {x4, x5}, g

a2

1
= {x1, x2, x3}, g

a2

0
= {x4, x5} be the elementary in-

formation granules of some information system. For X = {x3, x4, x5}, we have that aprP

CAT

(X) ⊆ aprP

PAT

(X) and

apr
P
PAT

(X) ⊆ apr
P
CAT

(X).

3.3. The relationship among the reducts induced by the binary information systems

Reduction is a hot issue in granular computing theory. Based on the binary information system, four kinds of

granular structures can be induced. In this part, we first give the definitions of reductions on the corresponding

granular structures, and then compare the relationship among the reductions.

Definition 3.1 Suppose that I = (OB, AT, {Va|a ∈ AT }, { fa|a ∈ AT }) is a 0-1 information system, and CAT =

{g
a1

1
, g

a1

0
, g

a2

1
, g

a2

0
, · · · , g

am

1
, g

am

0
} is a covering of OB with respect to AT . For any a ∈ AT , there exist Ci ⊆ CAT /{g

a
1
, ga

0
}

such that ga
i
= ∪g∈Ci

g ( or ga
i
= ∩g∈Ci

g), where i = 0, 1, then a is called the union ( or intersection ) reducible attribute

of AT with respect to CAT , and denoted by areductCAT ,∪
( or areductCAT ,∪

). If AT
′

⊆ AT meets two conditions: (1) for

any a ∈ AT/AT
′

, a is the union ( or intersection ) reducible attribute of AT with respect to CAT ; (2) for any a ∈ AT
′

,

a is not the union ( or intersection ) reducible attribute of AT with respect to CAT . Then AT
′

is called the union ( or

intersection ) reduct of AT with respect to CAT , and denoted by reduct(AT )CAT ,∪ ( or reduct(AT )CAT ,∩ ).

Definition 3.2 Suppose that I = (OB, AT, {Va|a ∈ AT }, { fa|a ∈ AT }) is a 0 − 1 information system and CAT = {C1,C0}

is a multi-covering of OB with respect to AT . If ga
j

is the union ( or intersection ) of some sets in C j/{g
a
j
} (where

C j ∈ CAT ), then ga
j

is called the union ( or intersection ) reducible element of CAT with respect to C j, and is

denoted by (ga
j
)reductCAT ,∪

( (ga
j
)reductCAT ,∩

), where j = 0, 1, and a ∈ AT . Meanwhile {reduct(C1)∪, reduct(C0)∪} (

{reduct(C1)∩, reduct(C0)∩} ) is called the union ( or intersection ) reduct of CAT , denoted by reduct(CAT )∪ ( or

reduct(CAT )∩ ).

Definition 3.3 Suppose that I = (OB, AT, {Va|a ∈ AT }, { fa|a ∈ AT }) is a 0 − 1 information system and CAT = {C1,C0}

is a multi-covering of OB with respect to AT . For any a ∈ AT , and any ga
i
∈ Ci, there exist C

′

i
⊆ Ci/{g

a
i
} (where

Ci ∈ CAT ) such that ga
i
= ∪g∈C

′

i
g ( or ga

i
= ∩g∈C

′

i
g ), i = 0, 1, then a is called the union ( or intersection ) reducible

attribute of AT with respect to CAT , and denoted by areductCAT ,∪
( or areductCAT ,∩

). If AT
′

⊆ AT meets two conditions:

(1) for any a ∈ AT/AT
′

, a is the union ( or intersection ) reducible attribute of AT with respect to CAT ; (2) for any
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a ∈ AT
′

, a is not the union ( or intersection ) reducible attribute of AT with respect to CAT . Then AT
′

is called the

union ( or intersection ) reduct of AT with respect to CAT , denoted by reduct(AT )CAT ,∪ ( or reduct(AT )CAT ,∩ ).

Firstly, we study the influences of reductions among these rough set models, and find that different reductions have

different effects on these rough set models. The detailed conclusions are presented as follows.

Proposition 3.2 Suppose that I = (OB, AT, {Va|a ∈ AT }, { fa|a ∈ AT }) is a 0 − 1 information system. For any X ⊆ OB,

the following results hold.

(1) apr
reduct(AT )PAT

(X) = apr
PAT

(X), aprreduct(AT )PAT
(X) = aprPAT

(X);

(2) apr
reduct(AT )CAT ,∪

(X) = apr
CAT

(X), aprreduct(AT )CAT ,∪
(X) = aprCAT

(X);

(3) apr
reduct(CAT )∪

(X) = apr
CAT

(X), aprreduct(CAT )∪
(X) = aprCAT

(X);

(4) aprO

reduct(AT )PAT ,∪

(X) = aprO

PAT

(X), apr
O
reduct(AT )PAT ,∪

(X) = apr
O
PAT

(X);

(5) aprP

reduct(AT )PAT ,∪

(X) = aprP

PAT

(X), apr
P
reduct(AT )PAT ,∪

(X) = apr
P
PAT

(X);

(6) aprO

reduct(CAT )∪
(X) = aprO

CAT

(X), apr
O
reduct(CAT )∪

(X) = apr
O
CAT

(X);

(7) aprP

reduct(CAT )∪
(X) = aprP

CAT

(X), apr
P
reduct(CAT )∪

(X) = apr
P
CAT

(X);

(8) aprO

reduct(AT )CAT ,∪

(X) = aprO

CAT

(X), apr
O
reduct(AT )CAT ,∪

(X) = apr
O
CAT

(X);

(9) aprP

reduct(AT )CAT ,∪

(X) = aprP

CAT

(X), apr
P
reduct(AT )CAT ,∪

(X) = apr
P
CAT

(X).

Proof. It is clear from the definitions of reductions and approximation operators.

Proposition 3.3 Suppose that I = (OB, AT, {Va|a ∈ AT }, { fa|a ∈ AT }) is a 0 − 1 information system. For any X ⊆ OB,

the following results hold.

(1) apr
reduct(AT )CAT ,∩

(X) ⊆ apr
CAT

(X), aprreduct(AT )CAT ,∩
(X) ⊇ aprCAT

(X);

(2) apr
reduct(CAT )∩

(X) ⊆ apr
CAT

(X), aprreduct(CAT )∩
(X) ⊇ aprCAT

(X);

(3)aprP

reduct(AT )PAT ,∪

(X) ⊆ aprP

PAT

(X), apr
P
reduct(AT )PAT ,∪

(X) ⊇ apr
P
PAT

(X);

(4)aprO

reduct(AT )PAT ,∩

(X) ⊆ aprO

PAT

(X), apr
O
reduct(AT )PAT ,∩

(X) ⊇ apr
O
PAT

(X);

(5) aprP

reduct(AT )PAT ,∩

(X) ⊆ aprP

PAT

(X), apr
P
reduct(AT )PAT ,∩

(X) ⊇ apr
P
PAT

(X);

(6) aprO

reduct(CAT )∩
(X) ⊆ aprO

CAT

(X), apr
O
reduct(CAT )∩

(X) ⊇ apr
O
CAT

(X);

(7) aprP

reduct(CAT )∩
(X) ⊆ aprP

CAT

(X), apr
P
reduct(CAT )∩

(X) ⊇ apr
P
CAT

(X);

(8) aprO

reduct(AT )CAT ,∩

(X) ⊆ aprO

CAT

(X), apr
O
reduct(AT )CAT ,∩

(X) ⊇ apr
O
CAT

(X);

(9) aprP

reduct(AT )CAT ,∩

(X) ⊆ aprP

CAT

(X), apr
P
reduct(AT )CAT ,∩

(X) ⊇ apr
P
CAT

(X).

Proof. It is clear from the definitions of reductions and approximation operators.

Based on the granular structure CAT , the definitions of four kinds of reduction are proposed, from which four kinds

of covering rough set models can be developed. Then the relationship among the approximation sets of these four

kinds of rough set models is discussed.

Proposition 3.4 Suppose that I = (OB, AT, {Va|a ∈ AT }, { fa|a ∈ AT }) is a 0 − 1 information system and CAT is a

covering of OB with respect to AT . For any X ⊆ OB, the following results hold.

(1) apr
reduct(CAT )∩

(X) ⊆ apr
reduct(AT )CAT ,∩

(X) ⊆ apr
reduct(CAT )∪

(X) ⊆ apr
reduct(AT )CAT ,∪

(X);

(2) aprreduct(AT )CAT ,∪
(X) ⊆ aprreduct(CAT )∪

(X) ⊆ aprreduct(AT )CAT ,∩
(X) ⊆ aprreduct(CAT )∩

(X).
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Proof. (1) Firstly, based on the definitions of reduct(CAT )∩ and reduct(AT )CAT ,∩, for each g ∈ reduct(CAT )∩,

there exists a ∈ reduct(AT )CAT ,∩ such that g = ga
1

or g = ga
0
. Then according to Definition 2.7, we have that

apr
reduct(CAT )∩

(X) ⊆ apr
reduct(AT )CAT ,∩

(X).

Secondly, since reduct(CAT )∪ is the union reduction of C, for each X ⊆ OB, equation apr
reduct(CAT )∪

(X) =

apr
CAT

(X) holds. And because reduct(CAT )∪ is the intersection reduction of C, for each X ⊆ OB, one can find

that apr
reduct(CAT )∩

(X) ⊆ apr
CAT

(X) holds. So apr
reduct(CAT )∩

(X) ⊆ apr
reduct(CAT )∪

(X).

Finally, based on the definitions of reduct(CAT )∪ and reduct(AT )CAT ,∪, for each g ∈ reduct(CAT )∪, there exists

a ∈ reduct(AT )CAT ,∪ such that g = ga
1

or g = ga
0
. Then according to Definition 2.7, we have that apr

reduct(CAT )∪
(X) ⊆

apr
reduct(AT )CAT ,∪

(X).

(2) The proof of (2) is similar to that of (1).

According to the granular structure PAT , the definitions of four kinds of reduction are introduced, from which four

kinds of multi-partition rough set models can be developed. Then the relationship among four kinds of rough set

models is discussed.

Proposition 3.5 Suppose that I = (OB, AT, {Va|a ∈ AT }, { fa|a ∈ AT }) is a 0 − 1 information system and PAT is a

multi-partition of OB with respect to AT . For any X ⊆ OB, the following results hold.

(1) aprP

reduct(AT )PAT ,∩

(X) ⊆ aprP

reduct(AT )PAT ,∪

(X) ⊆ aprO

reduct(AT )PAT ,∪

(X);

(2) apr
O
reduct(AT )PAT ,∪

(X) ⊆ apr
P
reduct(AT )PAT ,∪

(X) ⊆ apr
P
reduct(AT )PAT ,∩

(X);

(3) aprP

reduct(AT )PAT ,∩

(X) ⊆ aprO

reduct(AT )PAT ,∩

(X) ⊆ aprO

reduct(AT )PAT ,∪

(X);

(4) apr
O
reduct(AT )PAT ,∪

(X) ⊆ apr
O
reduct(AT )PAT ,∩

(X) ⊆ apr
P
reduct(AT )PAT ,∩

(X).

By the granular structure CAT , the definitions of two kinds of reductions are proposed, from which four kinds of

multi-covering rough set models can be explored. Then the relationship among the approximation sets of these four

kinds of rough set models is discussed.

Proposition 3.6 Suppose that I = (OB, AT, {Va|a ∈ AT }, { fa|a ∈ AT }) is a 0 − 1 information system and CAT is a

multi-partition of OB with respect to AT . For any X ⊆ OB, the following results hold.

(1) aprP

reduct(CAT )∩
(X) ⊆ aprP

reduct(AT )CAT ,∩

(X) ⊆ aprP

reduct(AT )CAT ,∪

(X) = aprP

reduct(CAT )∪
(X);

(2) apr
P
reduct(CAT )∪

(X) = apr
P
reduct(AT )CAT ,∪

(X) ⊆ apr
P
reduct(AT )CAT ,∩

(X) ⊆ apr
P
reduct(CAT )∩

(X);

(3) aprO

reduct(CAT )∩
(X) ⊆ aprO

reduct(AT )CAT ,∩

(X) ⊆ aprO

reduct(AT )CAT ,∪

(X) = aprO

reduct(CAT )∪
(X);

(4) apr
O
reduct(CAT )∪

(X) = apr
O
reduct(AT )CAT ,∪

(X) ⊆ apr
O
reduct(AT )CAT ,∩

(X) ⊆ apr
O
reduct(CAT )∩

(X).

According to Example 3.1, we havePAT/{a4} = PAT , i.e. a4 is a reducible attribute of AT with respect toPAT . Then,

for any X ⊆ OB, apr
PAT/{a4 }

(X) = apr
PAT

(X) and aprPAT/{a4 }
(X) = aprPAT

(X). So, for any X ⊆ OB, do the upper and

lower approximation sets of X shown from definitions 2.3-2.11 remain unchanged? The following example answers

this question.

Example 3.4 (Continued from Example 3.1) According to Definitions 2.3-2.11, we have the following results.

(1) For X = {x1, x2, x4, x8}, we have that apr
CAT

(X) = {x1, x4, x8}, apr
CAT/{a4 }

(X) = ∅, then apr
CAT/{a4 }

(X) , apr
CAT

(X);

Similarly, aprCAT/{a4 }
(X) , aprCAT

(X).

(2) For X = {x1, x2, x4, x8}, we have that aprO

PAT

(X) = {x1, x4, x8}, aprO

PAT/{a4 }

(X) = ∅, then aprO

PAT/{a4 }

(X) , aprO

PAT

(X);

Similarly, apr
O
PAT/{a4 }

(X) , apr
O
PAT

(X).

(3) For X = {x1, x2, x4, x5, x8}, we have that aprP

PAT

(X) = {x1, x4, x8}, aprP

PAT/{a4 }

(X) = ∅, then aprP

PAT/{a4 }

(X) ,

aprP

PAT

(X); Similarly, apr
P
PAT/{a4 }

(X) , apr
P
PAT

(X).
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(4) For X = {x1, x2, x4, x8}, we have that aprO

CAT

(X) = {x1, x4, x8}, aprO

CAT/{a4 }

(X) = ∅, then aprO

CAT/{a4 }

(X) ,

aprO

CAT

(X); Similarly, apr
O
CAT/{a4 }

(X) , apr
O
CAT

(X).

(5) For X = {x1, x2, x4, x5, x8}, we have that aprP

CAT

(X) = {x1, x4, x8}, aprP

CAT/{a4 }

(X) = ∅, then aprP

CAT/{a4 }

(X) ,

aprP

CAT

(X); Similarly, apr
P
CAT/{a4 }

(X) , apr
P
CAT

(X).

Based on Example 3.4, for any X ⊆ OB, before and after attribute a4 is deleted from Table 1, the lower and upper

approximations of X defined from Definitions 2.3-2.7 may be changed.

In the above, we mainly study the relationship of different reductions from the perspective of rough set model.

Next, we will compare and study the relationship among the different reduction elements or reduction attributes.

Proposition 3.7 Suppose that I = (OB, AT, {Va|a ∈ AT }, { fa|a ∈ AT }) is a 0 − 1 information system. If a ∈ AT is a

union ( or intersection ) reducible attribute of AT with respect to PAT , then the following results hold.

(1) a ∈ AT is a reducible attribute of AT with respect to PAT ;

(2) a ∈ AT is a union ( or intersection ) reducible attribute of AT with respect to CAT ;

(3) ga
0

and ga
1

are both the union ( or intersection ) reducible elements of CAT .

Proof. Here, we prove the theorem only when a is an union reducible attribute of AT with respect to PAT . In the

case that a is an intersection reducible attribute of AT with respect to PAT , the proof of the theorem is omitted.

(1) Let PAT be the multi-partition of OB. For each P ∈ Pa ∈ PAT , there exists S ⊆ ∪(PAT /Pa) such that P = ∪S.

For each x ∈ P, there are a set family P ⊆ G and a set P
′

∈ PAT so that x ∈ P
′

= ∩P. Denote Sx = {g ∈ S|x ∈ g},

one can find that for each g ∈ Sx, g ⊆ P. Since a ∈ AT is a union reducible attribute of AT with respect to PAT , so

Sx ∪ P ⊆ P. That is to say that P
′

= ∩P = ∩Sx ∩ P∩ (P/(Sx ∪ P)) =∩Sx ∩ (P/(Sx ∪ P))=∩(P/P). Therefore, based

on Definition 2.12, a ∈ AT is a reducible attribute of AT with respect to PAT .

(2) If a ∈ AT is a union ( or intersection ) reducible attribute of AT with respect to PAT , according to Definitions

2.12 and 2.13, it is easy to see that a ∈ AT is a union ( or intersection ) reducible attribute of AT with respect to CAT .

(3) Based on Definitions 2.12 and 3.1, it is clear that the conclusion is true.

Proposition 3.8 Suppose that I = (OB, AT, {Va|a ∈ AT }, { fa|a ∈ AT }) is a 0 − 1 information system. If a ∈ AT is a

union ( or intersection ) reducible attribute of AT with respect to PAT if and only if a ∈ AT is a union ( or intersection

) reducible attribute of AT with respect to CAT .

Proof. Based on the structure characteristics of PAT ,CAT , and Definitions 2.14 and 3.1, it can be seen that the

proposition is obviously correct.

Proposition 3.9 Suppose that I = (OB, AT, {Va|a ∈ AT }, { fa|a ∈ AT }) is a 0 − 1 information system. If a ∈ AT is a

union ( or intersection ) reducible attribute of AT with respect to CAT , then the following results hold.

(1) a ∈ AT is a reducible attribute of AT with respect to PAT ;

(2) a ∈ AT is a union ( or intersection ) reducible attribute of AT with respect to PAT

(3) a ∈ AT is a union ( or intersection ) reducible attribute of AT with respect to CAT ;

(4) ga
0

and ga
1

are both the union ( or intersection ) reducible elements of CAT ;

(5) ga
0

and ga
1

are the union ( or intersection ) reducible elements of CAT with respect to C0 and C1, respectively.

Proof. According to Proposition 3.7 and other relevant definitions, all conclusions are obvious.

Proposition 3.10 Suppose that I = (OB, AT, {Va|a ∈ AT }, { fa|a ∈ AT }) is a 0 − 1 information system. If ga
0

and ga
1

are

the union ( or intersection ) reducible elements of CAT with respect to C0 and C1, respectively, the following results

hold.

(1) a is a union ( or intersection ) reducible attribute of AT with respect to CAT ;

(2) a is a union ( or intersection ) reducible attribute of AT with respect to CAT ;

(3) ga
0

and ga
1

are both the union ( or intersection ) reducible elements of CAT .

Proof. Obviously, all the conclusions are true.
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Proposition 3.11 Suppose that I = (OB, AT, {Va|a ∈ AT }, { fa|a ∈ AT }) is a 0 − 1 information system. If a ∈ AT is a

union reducible attribute of AT with respect to CAT if and only if a ∈ AT is an intersection reducible attribute of AT

with respect to CAT .

Proof. Based on the structure characteristics of CAT and Definition 3.3, it can be seen that the proposition is

obviously true.

Through the discussion from Propositions 3.7-3.11, the relationship among all reductions is systematically dis-

cussed. In order to know the relationship among all reductions better, a relationship diagram among these reductions

are shown as follows.

Figure 1. The relationship among the reducible attributes (or elements) in the 0 − 1 information system

(ga
1
)reductCAT ,∪

and (ga
0
)reductCAT ,∪

⇔ areduct)CAT ,∪
⇔ areduct)CAT ,∩

⇔ (ga
1
)reductCAT ,∩

and (ga
0
)reductCAT ,∩

⇓ ⇓

areduct)PAT ,∪
areduct)PAT ,∩

⇓ ⇓

(ga
1
)reductCAT ,∪

and (ga
0
)reductCAT ,∪

⇔ areduct)CAT ,∪
areduct)CAT ,∩

⇔ (ga
1
)reductCAT ,∩

and (ga
0
)reductCAT ,∩

⇓ ⇓

areduct)PAT
areduct)PAT

4. The granular structures induced by the multi-valued information systems

For an information system I = (OB, AT, {Va|a ∈ AT }, { fa|a ∈ AT }), where AT = {a1, a2, · · · , am}, I is called the

multi-valued information system or the multi-valued information table, if for each ai ∈ AT ,Vai
= {vai1, vai2, · · · , vai

li }, i =

1, 2, · · · ,m. In this section, we mainly pay attention to the study of elementary granules and granular structures in-

duced by the multiple-valued information table.

In this part, we first study the induced elementary information granules and three kinds of granular structures

coming from the multi-valued information system. Then we discuss the inclusion relationship among the rough set

models obtained from these granular structures. Finally we will comparatively researched the relationship among the

reductions according to these three kinds of granular structures.

4.1. Granules and granular structures induced by the multi-valued information systems

From the multi-valued information table, the elementary granular structures first can be induced as follows:

G = {gai
vai j
= {x ∈ OB| f

ai
(x) = vai j}|i = 1, 2, · · · ,m, j = 1, 2, · · · , li}

In the last section, we know that four kinds of granular structures can be induced in binary information system. In

the multi value information system, only three kinds of granular structures can be induced as follows.

(1) The partition of OB with respect to AT :

PAT = {g1, g2, · · · , gs} Eq.(5)

where for any x, y ∈ gi, fa j
(x) = fa j

(y), i = 1, 2, · · · , s; j = 1, 2, · · · ,m. For any g, g
′

∈ PAT and for any x ∈ g, x
′

∈

g
′

, there exists a ∈ AT such that fa(x) , fa(x
′

). And ∪s
i=1

gi = OB.

(2) The covering of OB with respect to AT :

CAT = {g
ai
vai j
|i = 1, 2, · · · ,m, j = 1, 2, · · · , li} Eq.(6)

(3) The multi-partition of OB with respect to AT :

PAT = {P1,P2, · · · ,Pm} Eq.(7)

11

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 



where P1 = {g
a1
va11
, g

a1
va12
, · · · , g

a1
va1 l1
},P2 = {g

a2
va21
, g

a2
va22
, · · · , g

a2
va2 l2
}, · · · ,Pm = {g

am
vam1
, g

am
vam2
, · · · , g

am
vamlm
}.

In the 0-1 information table, we regard all information particles with attribute values of 0 as a covering, and all

information particles with attribute values equal to 1 as another covering. In this way, the two coverings are put

together to obtain multiple coverings of OB. However, for a multi-valued information table, because attribute values

are multi-valued, what rules are used to define multiple coverings? This question is difficult to answer.

Example 4.1 Here is a multi-valued information table I = (OB, AT, {Va|a ∈ AT }, { fa|a ∈ AT }), where OB =

{x1, x2, · · · , x8}, AT = {a1, a2, a3, a4}. More details can be shown in Table 2 as follows.

Table 2. A multi-valued information table

OB a1 a2 a3 a4

x1 1 1 2 3

x2 2 3 1 1

x3 2 2 1 2

x4 3 1 2 3

x5 1 1 2 3

x6 3 1 2 3

x7 2 2 1 2

x8 1 4 1 3

Clearly, all elementary granules induced by Table 2 can be shown as follows:

g
a1

1
= {x1, x5, x8}, g

a1

2
= {x2, x3, x7}, g

a1

3
= {x4, x6}; g

a2

1
= {x1, x4, x5, x6}, g

a2

2
= {x3, x7}, g

a2

3
= {x2}, g

a2

4
= {x8};

g
a3

1
= {x2, x3, x7, x8}, g

a3

2
= {x1, x4, x5, x6}; g

a4

1
= {x2}, g

a4

2
= {x3, x7}, g

a4

3
= {x1, x4, x5, x6, x8}.

According to these elementary granules, several special granular structures can be induced as follows:

(1) The partition of OB with respect to AT :

PAT = {{x1, x5}, {x2}, {x3, x7}, {x4, x6}, {x8}};

(2) The granular structure based on a covering of OB with respect to AT :

CAT = {g
a1

1
, g

a1

2
, g

a1

3
, g

a2

1
, g

a2

2
, g

a2

3
, g

a2

4
, g

a3

1
, g

a3

2
, g

a4

1
, g

a4

2
, g

a4

3
}

={{x1, x5, x8}, {x2, x3, x7}, {x4, x6}, {x1, x4, x5, x6}, {x3, x7}, {x2}, {x8}, {x2, x3, x7, x8}, {x1, x4, x5, x6, x8}};

(3) The multi-partitions of OB with respect to AT :

PAT = {Pa1
,Pa2
,Pa3
,Pa4
}

={{g
a1

1
, g

a1

2
, g

a1

3
}, {g

a2

1
, g

a2

2
, g

a2

3
, g

a2

4
}, {g

a3

1
, g

a3

2
}, {g

a4

1
, g

a4

2
, g

a4

3
}}

={{{x1, x5, x8}, {x2, x3, x7}, {x4, x6}}, {{x1, x4, x5, x6}, {x3, x7}, {x2}, {x8}}, {{x2, x3, x7, x8}, {x1, x4, x5, x6}},

{{x2}, {x2, x3, x7}, {x1, x4, x5, x6, x8}};

4.2. The relationship among the rough set models induced by the multi-valued information systems

Three kinds of granular structures can be obtained from the multi-valued information system. Similarly, three kinds

of rough set models can be constructed naturally from these three kinds of granular structures. Next, the relationship

of the upper and lower approximation sets in these three rough set models is discussed.

Proposition 4.1 Suppose that I = (OB, AT, {Va|a ∈ AT }, { fa|a ∈ AT }) is a multi-valued information system. For any

X ⊆ OB, the following results hold.

(1) aprP

PAT

(X) ⊆ aprO

PAT

(X) = apr
CAT

(X) ⊆ apr
PAT

(X);

(2) aprPAT
(X) ⊆ apr

O
PAT

(X) = aprCAT
(X) ⊆ apr

P
PAT

(X).

Proof. It can be easily proved based on the definitions of equations (5)-(7).

For any X ⊆ OB, there is no explicit inclusion relationship among the pessimistic lower and upper approximations

of X, which are listed in Definitions 2.5 and 2.7. Let’s illustrate this problem with an example.
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Example 4.2 (Continued from Example 4.1) For X = {x1, x2, x5, x6}, we have that aprP

PAT

(X) = ∅, aprO

PAT

(X) =

apr
CAT

(X) = {x2}, apr
PAT

(X) = {x1, x2, x5}. Then aprP

PAT

(X) ⊆ aprO

PAT

(X) = apr
CAT

(X) ⊆ apr
PAT

(X).

For Y = {x3, x4, x7, x8}, we have that aprPAT
(Y) = {x3, x4, x6, x7, x8}, apr

O
PAT

(Y) = aprCAT
(Y) = {x1, x3, x4, x5, x6, x7,

x8}, aprP

PAT

(X) = OB. So aprPAT
(X) ⊆ apr

O
PAT

(X) = aprCAT
(X) ⊆ apr

P
PAT

(X).

4.3. The relationship among the reductions induced by the multi-valued information systems

Based on the multi-valued information system, three kinds of granular structures can be induced. In this part,

we first add a concept of attribute reduction based on covering granular structure, and then comparatively study the

relationship among the reductions based on these granular structures.

Definition 4.1 Suppose that I = (OB, AT, {Va|a ∈ AT }, { fa|a ∈ AT }) is a multi-valued information system, and

CAT = {g
ai
vai j
|i = 1, 2, · · · ,m, j = 1, 2, · · · , li} is a covering of OB with respect to AT . For any a ∈ AT , any va ∈ Va, and

any ga
va j
, j ∈ {1, 2, · · · , li}, there exist Cva j ⊆ CAT /Pa (where Pa ∈ PAT ) such that ga

va j
= ∪g∈Cva j

g ( or ga
va j
= ∩g∈Cva j

g ),

then a is called the union ( or intersection ) reducible attribute of AT with respect to CAT , and denoted by areductCAT ,∪
(

or areductCAT ,∪
). If AT

′

⊆ AT meets two conditions: (1) for any a ∈ AT/AT
′

, a is the union ( or intersection ) reducible

attribute of AT with respect to CAT ; (2) for any a ∈ AT
′

, a is not the union ( or intersection ) reducible attribute of AT

with respect to CAT . Then AT
′

is called the union ( or intersection ) reduct of AT with respect to CAT , and denoted by

reduct(AT )CAT ,∪ ( or reduct(AT )CAT ,∩ ).

The following results focus on the inclusion relations of the upper and lower approximation sets of different rough

set models developed from equations (5)-(7).

Proposition 4.2 Suppose that I = (OB, AT, {Va|a ∈ AT }, { fa|a ∈ AT }) is a multi-valued information system. For any

X ⊆ OB, the following results hold.

(1) apr
reduct(AT )PAT

(X) = apr
PAT

(X), aprreduct(AT )PAT
(X) = aprPAT

(X);

(2) apr
reduct(AT )CAT ,∪

(X) = apr
CAT

(X), aprreduct(AT )CAT ,∪
(X) = aprCAT

(X);

(3) apr
reduct(CAT )∪

(X) = apr
CAT

(X), aprreduct(CAT )∪
(X) = aprCAT

(X);

(4) aprO

reduct(AT )PAT ,∪

(X) = aprO

PAT

(X), apr
O
reduct(AT )PAT ,∪

(X) = apr
O
PAT

(X);

(5) aprP

reduct(AT )PAT ,∩

(X) = aprP

PAT

(X), apr
P
reduct(AT )PAT ,∩

(X) = apr
P
PAT

(X);

Proposition 4.3 Suppose that I = (OB, AT, {Va|a ∈ AT }, { fa|a ∈ AT }) is a multi-valued information system. For any

X ⊆ OB, the following results hold.

(1) apr
reduct(AT )CAT ,∩

(X) ⊆ apr
CAT

(X), aprreduct(AT )CAT ,∩
(X) ⊇ aprCAT

(X);

(2) apr
reduct(CAT )∩

(X) ⊆ apr
CAT

(X), aprreduct(CAT )∩
(X) ⊇ aprCAT

(X);

(3)aprP

reduct(AT )PAT ,∪

(X) ⊆ aprP

PAT

(X), apr
P
reduct(AT )PAT ,∪

(X) ⊇ apr
P
PAT

(X);

(4)aprO

reduct(AT )PAT ,∩

(X) ⊆ aprO

PAT

(X), apr
O
reduct(AT )PAT ,∩

(X) ⊇ apr
O
PAT

(X);

(5) aprP

reduct(AT )PAT ,∩

(X) ⊆ aprP

PAT

(X), apr
P
reduct(AT )PAT ,∩

(X) ⊇ apr
P
PAT

(X);

Proposition 4.4 Suppose that I = (OB, AT, {Va|a ∈ AT }, { fa|a ∈ AT }) is a multi-valued information system and CAT is

a covering of OB with respect to AT . For any X ⊆ OB, the following results hold.

(1) apr
reduct(CAT )∩

(X) ⊆ apr
reduct(AT )CAT ,∩

(X) ⊆ apr
reduct(CAT )∪

(X) ⊆ apr
reduct(AT )CAT ,∪

(X);

(2) aprreduct(AT )CAT ,∪
(X) ⊆ aprreduct(CAT )∪

(X) ⊆ aprreduct(AT )CAT ,∩
(X) ⊆ aprreduct(CAT )∩

(X).

Proposition 4.5 Suppose that I = (OB, AT, {Va|a ∈ AT }, { fa|a ∈ AT }) is a multi-valued information system and PAT is

a multi-partition of OB with respect to AT . For any X ⊆ OB, the following results hold.

(1) aprP

reduct(AT )PAT ,∩

(X) ⊆ aprP

reduct(AT )PAT ,∪

(X) ⊆ aprO

reduct(AT )PAT ,∪

(X);
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(2) apr
O
reduct(AT )PAT ,∪

(X) ⊆ apr
P
reduct(AT )PAT ,∪

(X) ⊆ apr
P
reduct(AT )PAT ,∩

(X);

(3) aprP

reduct(AT )PAT ,∩

(X) ⊆ aprO

reduct(AT )PAT ,∩

(X) ⊆ aprO

reduct(AT )PAT ,∪

(X);

(4) apr
O
reduct(AT )PAT ,∪

(X) ⊆ apr
O
reduct(AT )PAT ,∩

(X) ⊆ apr
P
reduct(AT )PAT ,∩

(X).

The following two propositions show the relationship among the attribute reductions of different granular structures

from equations (5)-(7).

Proposition 4.6 Suppose that I = (OB, AT, {Va|a ∈ AT }, { fa|a ∈ AT }) is a multi-valued information system. If a ∈ AT

is a union (intersection) reducible attribute of AT with respect to PAT , then the following results hold.

(1) a ∈ AT is a reducible attribute of AT with respect to PAT ;

(2) a ∈ AT is a union (intersection) reducible attribute of AT with respect to CAT ;

(3) ga
0

and ga
1

are both the union (intersection) reducible elements of CAT .

Proposition 4.7 Suppose that I = (OB, AT, {Va|a ∈ AT }, { fa|a ∈ AT }) is a multi-valued information system. If a ∈ AT

is a union (intersection) reducible attribute of AT with respect to PAT if and only if a ∈ AT is a union (intersection)

reducible attribute of AT with respect to CAT .

Figure 2. The relationship among the reducible attributes (or elements) in the multi-valued information system

areduct)PAT ,∪
areduct)PAT ,∩

⇓ ⇓

(ga
1
)reductCAT ,∪

and (ga
0
)reductCAT ,∪

⇔ areduct)CAT ,∪
areduct)CAT ,∩

⇔ (ga
1
)reductCAT ,∩

and (ga
0
)reductCAT ,∩

⇓ ⇓

areduct)PAT
areduct)PAT

5. The granular structures induced by set-valued information systems

For an information system I = (OB, AT, {Va|a ∈ AT }, { fa|a ∈ AT }), where AT = {a1, a2, · · · , am}, I is called the

set-valued information system or the set-valued information table, if for each ai ∈ AT ,Vai
= {vai1, vai2, · · · , vai

li }, and

for each x ∈ OB, fai
(x) ⊆ Vai

, i = 1, 2, · · · ,m. In this section, we mainly pay attention to the study of elementary

granules and granular structures induced by the set-valued information table.

In this section, we first study the induced elementary information granules and four kinds of granular structures

based on the set-valued information system, then research the inclusion relationship among the rough set models

developed by these granular structures, and further discuss the relationship among the reductions based on these four

kinds of granular structures.

5.1. Granules and granular structures induced by the set-valued information systems

From the set-valued information table, the elementary granular structures first can be induced as follows:

G = {gai
vai j
= {x ∈ OB|vai j ∈ f

ai
(x)}|i = 1, 2, · · · ,m, j = 1, 2, · · · , li}

Similar to the induced granular structures in the multi-valued information systems, four types of granular structures

can be induced in the set-valued information systems as follows.

(1) The partition of OB with respect to AT :

PAT = {g1, g2, · · · , gs} Eq.(8)

where for any x, y ∈ g j, fai
(x) = fai

(y), j = 1, 2, · · · , s; i = 1, 2, · · · ,m. For any g, g
′

∈ PAT and for any x ∈ g, x
′

∈

g
′

, there exists a ∈ AT such that fa(x) , fa(x
′

). And ∪s
i=1

gi = OB.

(2) The multi-partition of OB with respect to AT :
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PAT = {Pa1
,Pa2
, · · · ,Pam

} Eq.(9)

where for any P ∈ Pai
and any x, y ∈ P, fai

(x) = fai
(y). And for any P, P

′

∈ Pai
and any x ∈ P, x

′

∈ P
′

, one can find

that fai
(x) , fai

(x
′

), i = 1, 2, · · · ,m.

(3) The multi-covering of OB with respect to AT :

CAT = {Ca1
,Ca2
, · · · ,Cam

} Eq.(10)

where Cai
= Pai

∪ C
′

ai
and C

′

ai
needs to meet two conditions: (1) For each K ∈ C

′

ai
, there exists vai j ∈ Vai

such that

vai j ∈ ∩x∈K fai
(x); (2) For each y ∈ OB/K, fai

(y) ∩ (∩x∈K fai
(x)) , ∩x∈K fai

(x), where i = 1, 2, · · · ,m; j = 1, 2, · · · , li.

(4) The covering of OB with respect to AT

CAT = {K1,K2, · · · ,Kt} Eq.(11)

where any K ∈ CAT needs to meet two conditions: (1) K , ∅; (2) There are K
′

i
∈ Cai

∈ CAT , i = 1, 2. · · · ,m so that

K = K
′

1
∩ K

′

2
∩ · · · ∩ K

′

m.

In order to better understand the elementary information granules and granular structures obtained from set-valued

information systems, we will use the following examples to illustrate them.

Example 5.1 Here is a set-valued information table I = (OB, AT, {Va|a ∈ AT }, { fa|a ∈ AT }), where OB = {x1, x2, · · · , x8},

AT = {a1, a2, a3, a4}. More details can be shown in Table 3 as follows.

Table 3. A set-valued information table

OB a1 a2 a3 a4

x1 {1} {2} {1, 3} {1}

x2 {2} {1, 2} {2} {1}

x3 {2, 3} {1} {1} {3}

x4 {1} {2} {1, 3} {1}

x5 {2, 3} {1, 2} {2} {3}

x6 {3} {1, 2} {1} {1, 2}

x7 {3} {2} {1, 2} {2, 3}

x8 {3} {2} {2} {1, 3}

Based on the Table 3, all the elementary information granules can be got as follows:

g
a1

1
= {x1, x4}, g

a1

2
= {x2, x3, x5}, g

a1

3
= {x3, x5, x6, x7, x8}; g

a2

1
= {x2, x3, x5, x6}, g

a2

2
= {x1, x2, x4, x5, x6, x7, x8}; g

a3

1
=

{x1, x3, x4, x6, x7}, g
a3

2
= {x2, x5, x7, x8}, g

a3

3
= {x1, x4}; g

a4

1
= {x1, x2, x4, x6, x8}, g

a4

2
= {x6, x7}, g

a4

3
= {x3, x5, x7, x8}.

According to these elementary information granules, several special granular structures can be induced as follows:

(1) The partition of OB with respect to AT :

PAT = {{x1, x4}, {x2}, {x3}, {x5}, {x6}, {x7}, {x8}};

(2) The multi-partition of OB with respect to AT :

PAT = {Pa1
, Pa2
, Pa3
, Pa4
}

={{{x1, x4}, {x2}, {x3, x5}, {x6, x7, x8}}, {{x1, x4, x7, x8}, {x3}, {x2, x5, x6}}, {{x1, x4}, {x2, x5, x8}, {x3, x6}, {x7}},

{{x1, x2, x4}, {x3, x5}, {x6}, {x7}, {x8}}};

(3) The multi-covering of OB with respect to AT :

CAT = {Ca1
,Ca2
,Ca3
,Ca4
}

={{{x1, x4}, {x2}, {x3, x5}, {x2, x3, x5}, {x6, x7, x8}, {x3, x5, x6, x7, x8}}, {{x1, x4, x7, x8}, {x3}, {x2, x5, x6}, {x2, x3, x5, x6},

{x1, x2, x4, x5, x6, x7, x8}}, {{x1, x3, x4, x6, x7}, {x1, x4}, {x2, x5, x8}, {x3, x6}, {x7}, {x2, x5, x7, x8}}, {{x1, x2, x4}, {x3, x5},

{x6}, {x7}, {x8}, {x1, x2, x4, x6, x8}, {x6, x7}, {x3, x5, x7, x8}}};
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(4) The covering of OB with respect to AT :

CAT = {{x1, x4}, {x2}, {x3}, {x5}, {x6}, {x7}, {x8}, {x5, x7, x8}, {x6, x7}, {x7, x8}}.

5.2. The relationship among the rough set models induced by the set-valued information systems

Here, we will focus on the inclusion relationship among the upper and lower approximation sets in the rough set

models obtained from the set-valued information system.

Proposition 5.1 Suppose that I = (OB, AT, {Va|a ∈ AT }, { fa|a ∈ AT }) is a set-valued information system. For any

X ⊆ OB, the following results hold.

(1) aprP

CAT

(X) = aprP

PAT

(X) ⊆ aprO

CAT

(X) = aprO

PAT

(X) ⊆ apr
CAT

(X) = apr
PAT

(X)

(2) aprPAT
(X) = aprCAT

(X) ⊆ apr
O
PAT

(X) = apr
O
CAT

(X) ⊆ apr
P
PAT

(X) = apr
P
CAT

(X)

Proof. It is easy to be proved by equations (8)-(11).

Example 5.2 (Continued from Example 5.1) For X = {x5, x6, x8}, we have that aprP

CAT

(X) = aprP

PAT

(X) = ∅,

aprO

CAT

(X) = aprO

PAT

(X) = {x6, x8}, apr
CAT

(X) = apr
PAT

(X) = {x5, x6, x8}. Then aprP

CAT

(X) = aprP

PAT

(X) ⊆ aprO

CAT

(X) =

aprO

PAT

(X) ⊆ apr
CAT

(X) = apr
PAT

(X).

Meanwhile, for Y = {x2, x3, x4, x7}, we can get aprPAT
(Y) = aprCAT

(Y) = {x1, x2, x3, x4, x7}, apr
O
PAT

(Y) = apr
O
CAT

(Y)

= {x1, x2, x3, x4, x5, x7}, apr
P
PAT

(Y) = apr
P
CAT

(Y) = OB. So, aprPAT
(Y) = aprCAT

(Y) ⊆ apr
O
PAT

(Y) = apr
O
CAT

(Y) ⊆

apr
P
PAT

(Y) = apr
P
CAT

(Y).

5.3. The relationship among the reductions induced by the set-valued information systems

Based on the set-valued information system, four kinds of granular structures can be induced. In this part, we

first add a concept of attribute reduction based on covering granular structure, and then comparatively study the

relationship among the reductions based on these granular structures.

Definition 5.1 Suppose that I = (OB, AT, {Va|a ∈ AT }, { fa|a ∈ AT }) is a set-valued information system and CAT is the

covering of OB with respect to AT . For any a ∈ AT , one can find that PAT ⊆ CAT/{a}, then a is called the reducible

attribute of AT with respect to CAT , and denoted by areductCAT
. If AT

′

⊆ AT meets two conditions: (1) for any

a ∈ AT/AT
′

, a is the reducible attribute of AT with respect to CAT ; (2) for any a ∈ AT
′

, a is not the reducible attribute

of AT with respect to CAT . Then AT
′

is called the reduct of AT with respect to CAT , and denoted by reduct(AT )CAT
.

Definition 5.2 Suppose I = (OB, AT, {Va|a ∈ AT }, { fa|a ∈ AT }) is a set-valued information system and CAT =

{Ca1
,Ca2
, · · · ,Cam

} is a family of the coverings of OB with respect to AT . Then we call {reduct(Ca1
)∪, reduct(Ca2

)∪, · · · ,

reduct(Cam
)∪} the union reduct of CAT , and denoted by reduct(CAT )∪. Meanwhile, we call {reduct(Ca1

)∩, reduct(Ca2
)∩,

· · · , reduct(Cam
)∩} the intersection reduct of CAT , and denoted by reduct(CAT )∩.

Definition 5.3 Suppose I = (OB, AT, {Va|a ∈ AT }, { fa|a ∈ AT }) is a set-valued information system and CAT =

{Ca1
,Ca2
, · · · ,Cam

} is a family of the coverings of OB with respect to AT . For any a ∈ AT and any g ∈ Ca ∈ CAT , if

there exist C
′

AT
⊆ CAT /{Ca} and K

′

⊆ K̃ ∈ C
′

AT
such that K = ∪

K̃∈C
′

AT

(∪
K
′
⊆K̃
K
′

) ( or K = ∩
K̃∈C

′

AT

(∩
K
′
∈K̃
K
′

) ), then

a is called the union ( or intersection ) reducible attribute of AT with respect to CAT , and a is denoted by areductCAT ,∪

( or areductCAT ,∩
). Otherwise, a is called the union ( or intersection ) irreducible attribute of AT with respect to CAT .

If AT
′

⊆ AT meets two conditions: (1) for any a ∈ AT/AT
′

, a is the union ( or intersection ) reducible attribute of

AT with respect to CAT ; (2) for any a ∈ AT
′

, a is not the union ( or intersection ) reducible attribute of AT with

respect to CAT . Then AT
′

is called the union ( or intersection ) reduction of AT with respect to CAT , and denoted by

reduct(AT )CAT ,∪ ( or reduct(AT )CAT ,∩ ).

According to the definition of each rough set model and the reduction of the related granular structure, it is easy to

see that the conclusions of propositions 5.2-5.6 are true. So the proof of these propositions is omitted.

Proposition 5.2 Suppose that I = (OB, AT, {Va|a ∈ AT }, { fa|a ∈ AT }) is a set-valued information system. For any

X ⊆ OB, the following results hold.

(1) apr
reduct(PAT )

(X) = apr
PAT

(X), aprreduct(PAT )(X) = aprPAT
(X);
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(2) apr
reduct(CAT )∪

(X) = apr
CAT

(X), aprreduct(CAT )∪
(X) = aprCAT

(X);

(3) apr
reduct(AT )CAT

(X) = apr
CAT

(X), aprreduct(AT )CAT
(X) = aprCAT

(X);

(4) aprO

reduct(PAT )∪
(X) = aprO

PAT

(X), apr
O
reduct(PAT )∪

(X) = apr
O
PAT

(X);

(5) aprP

reduct(PAT )∩
(X) = aprP

PAT

(X), apr
P
reduct(PAT )∩

(X) = apr
P
PAT

(X);

(6) aprO

reduct(CAT )∪
(X) = aprO

CAT

(X), apr
O
reduct(CAT )∪

(X) = apr
O
CAT

(X);

(7) aprP

reduct(CAT )∪
(X) = aprP

CAT

(X), apr
P
reduct(CAT )∪

(X) = apr
P
CAT

(X);

(8) aprO

reduct(CAT )∪
(X) = aprO

CAT

(X), apr
O
reduct(CAT )∪

(X) = apr
O
CAT

(X);

(9) aprP

reduct(CAT )∩
(X) = aprP

CAT

(X), apr
P
reduct(CAT )∩

(X) = apr
P
CAT

(X).

Proposition 5.3 Suppose that I = (OB, AT, {Va|a ∈ AT }, { fa|a ∈ AT }) is a set-valued information system. For any

X ⊆ OB, the following results hold.

(1) apr
reduct(CAT )∩

(X) ⊆ apr
CAT

(X), aprreduct(CAT )∩
(X) ⊇ aprCAT

(X);

(2) aprP

reduct(PAT )∪
(X) ⊇ aprP

PAT

(X), apr
P
reduct(PAT )∪

(X) ⊆ apr
P
PAT

(X);

(3) aprP

reduct(OAT )∩
(X) ⊆ aprO

PAT

(X), apr
O
reduct(PAT )∩

(X) ⊇ apr
O
PAT

(X);

(4) aprO

reduct(CAT )∩
(X) ⊆ aprO

CAT

(X), apr
O
reduct(CAT )∩

(X) ⊇ apr
O
CAT

(X);

(5) aprP

reduct(CAT )∩
(X) ⊆ aprP

CAT

(X), apr
P
reduct(CAT )∩

(X) ⊇ apr
P
CAT

(X);

(6) aprP

reduct(CAT )∪
(X) ⊇ aprP

CAT

(X), apr
P
reduct(CAT )∪

(X) ⊆ apr
P
CAT

(X);

(7) aprO

reduct(CAT )∩
(X) ⊆ aprO

CAT

(X), apr
O
reduct(CAT )∩

(X) ⊇ apr
O
CAT

(X).

Proposition 5.4 Suppose that I = (OB, AT, {Va|a ∈ AT }, { fa|a ∈ AT }) is a set-valued information system and CAT is a

covering of OB with respect to AT . For any X ⊆ OB, the following results hold.

(1) apr
reduct(CAT )∩

(X) ⊆ apr
reduct(CAT )∪

(X) = apr
reduct(AT )CAT

(X);

(2) aprreduct(AT )CAT
(X) = aprreduct(CAT )∪

(X) ⊆ aprreduct(CAT )∩
(X).

Proposition 5.5 Suppose that I = (OB, AT, {Va|a ∈ AT }, { fa|a ∈ AT }) is a set-valued information system and PAT is a

multi-partition of OB with respect to AT . For any X ⊆ OB, the following results hold.

(1) aprP

reduct(AT )PAT ,∩

(X) ⊆ aprP

reduct(AT )PAT ,∪

(X) ⊆ aprO

reduct(AT )PAT ,∪

(X);

(2) apr
O
reduct(AT )PAT ,∪

(X) ⊆ apr
P
reduct(AT )PAT ,∪

(X) ⊆ apr
P
reduct(AT )PAT ,∩

(X);

(3) aprP

reduct(AT )PAT ,∩

(X) ⊆ aprO

reduct(AT )PAT ,∩

(X) ⊆ aprO

reduct(AT )PAT ,∪

(X);

(4) apr
O
reduct(AT )PAT ,∪

(X) ⊆ apr
O
reduct(AT )PAT ,∩

(X) ⊆ apr
P
reduct(AT )PAT ,∩

(X).

Proposition 5.6 Suppose that I = (OB, AT, {Va|a ∈ AT }, { fa|a ∈ AT }) is a set-valued information system and CAT is a

multi-partition of OB with respect to AT . For any X ⊆ OB, the following results hold.

(1) aprP

reduct(CAT )∩
(X) ⊆ aprP

reduct(AT )CAT ,∩

(X) ⊆ aprP

reduct(AT )CAT ,∪

(X) = aprP

reduct(CAT )∪
(X);

(2) apr
P
reduct(CAT )∪

(X) = apr
P
reduct(AT )CAT ,∪

(X) ⊆ apr
P
reduct(AT )CAT ,∩

(X) ⊆ apr
P
reduct(CAT )∩

(X);

(3) aprO

reduct(CAT )∩
(X) ⊆ aprO

reduct(AT )CAT ,∩

(X) ⊆ aprO

reduct(AT )CAT ,∪

(X) = aprO

reduct(CAT )∪
(X);

(4) apr
O
reduct(CAT )∪

(X) = apr
O
reduct(AT )CAT ,∪

(X) ⊆ apr
O
reduct(AT )CAT ,∩

(X) ⊆ apr
O
reduct(CAT )∩

(X).

The following two propositions show the relationship among the attribute reductions of different granular structures

proposed above.
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Proposition 5.7 Suppose that I = (OB, AT, {Va|a ∈ AT }, { fa|a ∈ AT }) is a set-valued information system. Then the

following results hold.

(1) reduct(CAT )∪ = PAT ;

(2) reduct(Creduct(AT )CAT
)∪ = PAT ;

(3) reduct(CAT )∪ = PAT ;

(4) reduct(Creduct(AT )PAT ,∪
)∪ = Preduct(AT )PAT ,∪

;

Proof. (1) suppose that CAT = {K1,K2, · · · ,Kt} is the covering of OB with respect to AT . Then for any K ∈ CAT ,

there exist K
′

i
∈ Ca1

∈ CAT , i = 1, 2. · · · ,m such that K = K
′

1
∩ K

′

2
∩ · · · ∩ K

′

m. Since Cai
= Pai

∪ C
′

ai
, if C

′

ai
= ∅,

then one can find that there are Pi ∈ Pai
∈ PAT , i = 1, 2, · · · ,m so that K = P1 ∩ P2 ∩ · · · ∩ Pm. That is to say that

PAT ⊆ CAT . In addition, based on the structure of C
′

ai
, for each K

′′

∈ C
′

ai
/Pai

, there is P ⊆ PAT so that K
′′

= ∪P∈PP.

In conclusion, equation reduct(CAT )∪ = PAT holds.

(2) Based on Definition 5.1, one can find that PAT ⊆ Creduct(AT )CAT
. At the same time, the relation Creduct(AT )CAT

⊆

CAT also holds. That is to say that PAT ⊆ Creduct(AT )CAT
⊆ CAT . Then PAT ⊆ reduct(Creduct(AT )CAT

)∪ ⊆ reduct(CAT )∪.

Because reduct(CAT )∪ = PAT , we can get that reduct(Creduct(AT )CAT
)∪ = PAT .

(3) According to the structures of CAT and PAT , the conclusion is obvious.

(4) Based on the third conclusion in this proposition, the result obviously holds.

Proposition 5.8 Suppose that I = (OB, AT, {Va|a ∈ AT }, { fa|a ∈ AT }) is a set-valued information system. If a ∈ AT

is a reducible attribute of AT with respect to PAT if and only if a ∈ AT is a reducible attribute of AT with respect to

CAT .

Proof. (⇒:) Since a ∈ AT is a reducible attribute of AT with respect to PAT , then PAT/{a} = PAT . Meanwhile,

based on the construction of CAT , we have that PAT/{a} ⊆ CAT/{a}. Then we can get that PAT ⊆ CAT/{a}. Therefore,

a ∈ AT is a reducible attribute of AT with respect to CAT .

(⇐:) If a ∈ AT is a reducible attribute of AT with respect to CAT , then PAT ⊆ CAT/{a}. This shows that PAT/{a} =

PAT . So, a ∈ AT is a reducible attribute of AT with respect to PAT .

Proposition 5.9 Suppose that I = (OB, AT, {Va|a ∈ AT }, { fa|a ∈ AT }) is a set-valued information system. If a ∈ AT

is a union or an intersection reducible attribute of AT with respect to PAT , then a ∈ AT is a reducible attribute of AT

with respect to PAT ;

Proof. The proof of this proposition is similar to that of the first conclusion in Proposition 3.7.

Proposition 5.10 Suppose that I = (OB, AT, {Va|a ∈ AT }, { fa|a ∈ AT }) is a set-valued information system. If a ∈ AT

is the intersection reducible attribute of AT with respect to CAT , then a ∈ AT is the reducible attribute of AT with

respect to PAT .

Proof. For each g ∈ PAT , there are Pi ∈ Pai
∈ PAT so that g = P1∩P2∩· · ·∩Pm. Without loss of generality, suppose

that a1 ∈ AT is the intersection reducible attribute of AT with respect to CAT . Then there exist C
′

AT
⊆ CAT /{Ca1

} and

K
′

⊆ K̃ ∈ C
′

AT
such that P1 = ∩K̃∈C

′

AT
(∩K

′
∈K̃ K

′

). Let’s mark ∪C
′

AT
= {K1,K2, · · · ,Kl}. So g = P1 ∩ P2 ∩ · · · ∩ Pm =

(K1 ∩ K2 ∩ · · · ∩ Kl) ∩ (P2 ∩ P3 ∩ · · · ∩ Pm). Based on the structures of K j, j = 1, 2, · · · , l, for each K j, one can find

that there is Pi such that Pi ⊆ K j. Then g = P2 ∩ · · · ∩ Pm. Therefore, a ∈ AT is the reducible attribute of AT with

respect to PAT .

Proposition 5.11 Suppose that I = (OB, AT, {Va|a ∈ AT }, { fa|a ∈ AT }) is a set-valued information system. a ∈ AT is

a union reducible attribute of AT with respect to PAT if and only if a ∈ AT is a union reducible attribute of AT with

respect to CAT .

Proof. (⇒:) Obviously.

(⇐:) For each P ∈ Pa ∈ PAT , it can be found that P ∈ Ca ∈ CAT . If a ∈ AT is a union reducible attribute of

AT with respect to CAT , then there exists K = {K1,K2, · · · ,Kp} ⊆ ∪CAT such that P = K1 ∪ K2 ∪ · · · ∪ Kp, where

Ki∈Ca, i = 1, 2, · · · , p. According to the definition of CAT , for each K ∈ K , one can find that an attribute a
′

∈ AT/{a}

and a subset family P̃a
′ ⊆ Pa

′ so that K = ∪P̃a
′ . That is to say that K is the union of some sets in Pa

′ . Then, P is the
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union of some sets in ∪PAT/{a}. Therefore, we know that a ∈ AT is a union reducible attribute of AT with respect to

PAT .

From Proposition 5.11, we know that a ∈ AT is a union reducible attribute of AT with respect to PAT if and only

if a ∈ AT is a union reducible attribute of AT with respect to CAT . What is the relationship between the intersection

reducible attribute of AT with respect to PAT and CAT ? Next, let’s use Examples 5.4 and 5.5 to answer this question.

Example 5.4 Suppose that I = (OB, AT, {Va|a ∈ AT }, { fa|a ∈ AT }) is a set-valued information system. The details are

shown in Table 4.

Based on the Table 4,

PAT = {Pa1
,Pa2
,Pa3
}

where

Pa1
= {{x1, x4}, {x2, x5}, {x3}, {x6}, {x7}, {x8}},

Pa2
= {{x1, x4}, {x2, x3, x5}, {x6, x7}, {x8}},

Pa3
= {{x1, x3, x4}, {x2, x5, x7}, {x6, x8}}.

CAT = {Ca1
,Ca2
,Ca3
}

where

Ca1
= {{x1, x4}, {x2, x5}, {x3}, {x6}, {x7}, {x8}, {x1, x4, x6, x8}, {x2, x3, x4, x5}, {x3, x6, x7}},

Ca2
= {{x1, x4}, {x2, x3, x5}, {x6, x7}, {x8}, {x2, x3, x5, x6, x7}, {x1, x2, x3, x4, x5, x8}, {x1, x4, x6, x7}},

Ca3
= {{x1, x3, x4}, {x2, x5, x7}, {x6, x8}, {x1, x3, x4, x6, x8}, {x1, x2, x3, x4, x5, x7}, {x2, x5, x6, x7, x8}}.

Clearly, a1 ∈ AT is an intersection reducible attribute of AT with respect to PAT , but a1 ∈ AT is not the intersection

reducible attribute of AT with respect to CAT .

Table 4. A set-valued information table

OB a1 a2 a3

x1 {1, 2} {2, 3} {1, 2}

x2 {2} {1, 2} {2, 3}

x3 {2, 3} {1, 2} {1, 2}

x4 {1, 2} {2, 3} {1, 2}

x5 {2} {1, 2} {2, 3}

x6 {1, 3} {1, 3} {1, 3}

x7 {3} {1, 3} {2, 3}

x8 {1} {2} {1, 3}

Example 5.5 Suppose that I = (OB, AT, {Va|a ∈ AT }, { fa|a ∈ AT }) is a set-valued information system. The details are

shown in the Table 5.

Table 5. A set-valued information table

OB a1 a2 a3

x1 {1} {1, 2} {1}

x2 {2} {3} {2, 4}

x3 {2} {3, 4} {1}

x4 {1} {1, 2} {1}

x5 {2} {3} {2, 4}

x6 {3} {1, 4} {3, 4}

x7 {3} {1, 4} {2, 4}

x8 {3, 4} {1} {3, 4}

19

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 



Based on the Table 4,

PAT = {Pa1
,Pa2
,Pa3
}

where

Pa1
= {{x1, x4}, {x2, x3, x5}, {x6, x7}, {x8}},

Pa2
= {{x1, x4}, {x2, x5}, {x3}, {x6}, {x7}, {x8}},

Pa3
= {{x1, x3, x4}, {x2, x5, x7}, {x6, x8}}.

CAT = {Ca1
,Ca2
,Ca3
}

where

Ca1
= {{x1, x4}, {x2, x3, x5}, {x6, x7}, {x8}, {x6, x7, x8}},

Ca2
= {{x1, x4}, {x2, x5}, {x3}, {x6}, {x7}, {x8}, {x3, x6, x7}, {x2, x3, x5}, {x1, x4, x6, x7, x8}}},

Ca3
= {{x1, x3, x4}, {x2, x5, x7}, {x6, x8}, {x2, x5, x6, x7, x8}}.

Clearly, a1 ∈ AT is an intersection reducible attribute of AT with respect to CAT , but a1 ∈ AT is not the intersection

reducible attribute of AT with respect to PAT .

According to the above two examples, we know that there is no inevitable relationship between the intersection

reducible attribute of AT with respect to CAT and PAT .

From Propositions 5.8-5.11, and Examples 5.4 and 5.5 the relationship among all kinds of reducible attributes

based on different granular structures is deeply explored. Next, a figure is used to show the relationship among these

reducible attributes.

Figure 3. The relationship among the reducible attributes in

the set-valued information system

areductCAT

m

areductCAT ,∩
⇒ areductPAT

⇐ areductPAT ,∩

⇑

areductPAT ,∪

m

areductCAT ,∪

6. Conclusion

Binary information system, multi-valued information system and set-valued information system are three kinds of

important information systems which are often used in data mining and knowledge discovery. When these information

systems are processed by granular computing method, four kinds of granular structures can be obtained, which are

one partition, one covering, multiple partitions and multiple coverings, respectively. For a long time, the researches

on these granular structures and their corresponding granular computing models have been carried out independently.

In many models of granular computing, we take rough set as an example to compare and study the relationship among

these rough set models. In addition, the reduction theories of these granular structures are also discussed. In this

paper, we compare the induced granular structure in the same information system, the relationship among the rough
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set models defined by these granular structures and the relationship among the reducts of these granular structures.

This paper aims to study the relationship between different rough set models induced from the same information

system, so that different rough set theories can be integrated and learn from each other. It is of great significance to

improve the ability of data mining and information processing.

Due to the length of the manuscript, this paper only makes a preliminary discussion on the comparative study of

different rough set theories, and there are still many problems to be further studied. For example, we can study the

measurements and information entropies among these granular structures, the algebraic properties and topological

properties of the rough set models defined by these granular structures and so on. Meanwhile, in addition to the

rough set model studied in this paper, based on the theoretical development and practical needs, many other rough set

models have been proposed, and the relationship between these models still needs to be studied. we can also consider

the granular structures induced by the information system in fuzzy environment, and the relationship among granular

computing models based on these granular structures. And different rough set models can also be compared in rule

extraction. All of these works are worthy of further study.
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